MTech in Electronics and Electrical Engineering

(Specialization: Applied Control)

           

 

Semester I

 

 

 

Semester II

 

Course No

Course Name

L-T-P-C

 

Course No

Course Name

L-T-P-C

EC 580

Control of Electrical Drives

3-0-0-6

 

EC 551

Optimal and Adaptive Control

3-0-0-6

EC 650

Linear System Theory

3-0-0-6

 

EC 652

Digital Control

3-0-0-6

EC 558

Applied Control Lab

0-0-3-3

 

EC 6xx

Dept. Elective - III

3-0-0/2-6/8

EC 6xx

Dept. Elective - I

3-0-0/2-6/8

 

EC 6xx

Dept. Elective - IV

3-0-0/2-6/8

EC 6xx

Dept. Elective - II

3-0-0/2-6/8

 

EC 697

Project Phase - I

0-0-6-6

 

Total

12-0-3/7-27/31

 

 

Total

12-0-6/10-30/34

 

Semester III

 

 

 

Semester IV

 

EC 698

Project Phase – II

0-0-24-24

 

EC 699

Project Phase - III

0-0-24-24

 

Total

0-0-24-24

 

 

Total

0-0-24-24

 

 

 

                                   

EC 580    Control of Electrical Drives (3-0-0-6)    

 

Mode ling of DC Machines, Phase Controlled DC Motor Drives, Chopper Controlled DC Motor Drives, Modeling of Polyphase Induction Machines, Phase Controlled Motor Drives, Frequency Controlled Induction Motor Drives, Vector Controlled Induction Motor Drives, Permanent Magnet Synchronous and Brushless DC Motor Drive Modeling and Control.

 

 

Texts/References:

 

1. R. Krishnan, Electric Motor Drives: Modeling, Analysis and Control, Prentice Hall, 2002.

           

2. Mohamed El-Sharkawi, Fundamentals of Electric Drive, CL-Engineering, 1st Edition, 2000.

 

              

EC 650   Linear System Theory   (3-0-0-6)        

 

Essentials of linear algebra: vector spaces, subspaces, singular value decomposition; state variable modeling of linear dynamical systems; transfer function matrices; Stability theory: Lyapunov theorems; controllability and observability; realization theory: balanced realization, Kalman canonical decomposition; linear state feedback and estimation. Introduction to linear robust control: model uncertainty, model reduction and co-prime factorization; robust stability and robust performance.

 

 

Texts/References:

 

1. S. Lang, Introduction to Linear Algebra, Springer-Verlag, 2/e, 1997.

2. L. A. Zadeh and C. A. Desoer, Linear System Theory: The State Space Approach, Springer-

    Verlag, 2008.

3. C.T. Chen, Linear System Theory and Design, Oxford University Press, 3/e, 1999.

4. W. Rugh, Linear System Theory, Prentice Hall, 2/e, 1995.

 

 

 

EC 558   Applied Control Lab   (0-0-3-3)           

 

1. DC Motor Speed Control: Using PLC to control the speed of DC Motor to understand

    the principles of feedback control, PWM and PLC programming.  The objective is to

    study the following:

 

a. Open loop speed control

b. Close loop speed control

c. Use of PLC for the speed control

d. Acceleration and deceleration ramps programming in PLC

e. To Monitor the duty cycle of the motor

 

2. AC Machine Control: The objective will be to study:

 

a. Open loop speed control

b. Close loop speed control

c. Frequency converter and its control

d. Acceleration and deceleration ramps programming in the controller

e. PWM programming

 

 

3. Process Measurement and Control: The objective of this experiment is to understand:

 

a. Industrial measurements

b. The control systems used in industry

c. The programming techniques of the controller to achieve specific purpose

d. Process supervision through PC

e. Various transducers and sensors used in the industry

 

 

EC 551             Optimal and Adaptive Control (3-0-0-6)            [New]

 

Basic mathematical concepts, Conditions for optimality, Calculus of variations, Pontryagin’s maximum principle, Hamilton Jacobi-Bellman theory, dynamic programming, structures and properties of optimal systems, various types of constraints, singular solutions, minimum time problems, optimal tracking control problem

 

Model reference adaptive control, gain scheduling, adaptive internal model control, adaptive variable structure control, adaptive back-stepping design, introduction to system identification, direct and indirect adaptive control.

 

 

Texts/References:

 

  1. D. E. Kirk, Optimal Control Theory: An Introduction, Prentice-Hall, 2004.
  2. B.D.O. Anderson and J.B. Moore, Optimal Control: Linear Quadratic Methods, 2007.
  3. M. Krstic, P. V. Kokotovic, I. Kanellakopoulos, Nonlinear and Adaptive Control Design, John Willey and Sons, 1995.
  4. K. J. Astrom and B. Wittenmark, Adaptive Control, 2/e, 2008.
  5. G. Feng and R. Lozano, Adaptive Control Systems, Oxford University Press, 1999.
 
 

EC 652                         Digital Control                                     (3-0-0-6)           

 

Discrete-time system representations: modeling discrete-time systems by linear difference equations and pulse transfer functions, time responses of discrete systems; discrete state-space models, stability of discrete-time systems. Finite settling-time control design: deadbeat systems, inter sample behavior, time-domain approach to ripple-free controllers, limitations and extensions of the deadbeat controller. State-feedback design techniques: linear system properties, state feedback using Ackermann's formula, tracking of known reference inputs. Output-feedback design techniques: observer design , observer-based output feedback design.

Texts/References:

 

1.  B. C. Kuo,  Digital Control Systems; Oxford University Press, 2/e, Indian Edition, 2007.

1.2.  K. Ogata, Discrete Time Control Systems; Prentice Hall, 2/e, 1995.

3.  M. Gopal, Digital Control and State Variable Methods; Tata Mcgraw Hill, 2/e, 2003.

4.  G. F. Franklin, J. D. Powell and M. L. Workman; Digital Control of Dynamic Systems;

     Addison Wesley, 1998, Pearson Education, Asia, 3/e, 2000.

5.  K. J. Astroms and B. Wittenmark, Computer Controlled Systems - Theory and Design;

     Prentice Hall, 3/e, 1997.

 

 

.