
Kinematics of Particles: Plane Curvilinear Motion

Rectangular Coordinates (x-y)
If all motion components are directly expressible 

in terms of horizontal and vertical coordinates

1

Also, dy/dx = tan θ = vy /vx

Time derivatives of the unit 

vectors are zero because their 

magnitude and direction remains

constant.
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Kinematics of Particles: Plane Curvilinear Motion

Normal and Tangential Coordinates (n-t)
Determination of ėt: 

 change in et during motion from A to A’ 

 The unit vector changes to e’t
The vector difference det is shown in the bottom figure.

• In the limit det has magnitude equal to length of 

the arc │et│ dβ = dβ

• Direction of det is given by en

 We can write: det = en dβ 

Dividing by dt: det /dt = en (dβ/dt) en 

Substituting this and v = ρ dβ/dt =            in equation for acceleration:



Here:
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Example (1) on normal and tangential coordinates
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Example (1) on normal and tangential coordinates
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Example (2) on normal and tangential coordinates
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Example (2) on normal and tangential coordinates
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Example (2) on normal and tangential coordinates
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Kinematics of Particles: Plane Curvilinear Motion

Polar Coordinates (r - θ)
The particle is located by the radial distance r from 

a fixed point and by an angular measurement θ to 

the radial line.

• θ is measured from an arbitrary reference axis

• er and eθ are unit vectors along +r & +θ dirns.

Location of particle at A: r = r er

By definition: v = dr/dt and a = d2r/dt2

Therefore we need: ėr and ėθ

During time dt, the coordinate directions rotate 

through an angle dθ: er  e’r and eθ  e’θ
Vector change der is in the +ve θ direction

Vector change deθ is in the -ve r direction

As already seen in the previous section: 

magnitudes of der and deθ in the limit are equal to 

the unit vector (radius) times dθ 

der = eθ dθ and deθ = - er dθ
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Kinematics of Particles: Plane Curvilinear Motion

Polar Coordinates (r - θ)
der = eθ dθ and deθ = - er dθ

• Dividing by dθ 

• Dividing by dt 



Relations for Velocity:

Differentiating r = r er wrt time

Vector expression for velocity 



Magnitudes can be calculated as:

r-component of v is the rate at which

the vector r stretches. θ component of 

v is due to the rotation of r along the

circumference of a circle having radius r.
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Kinematics of Particles: Plane Curvilinear Motion

Polar Coordinates (r - θ)
Relations for Acceleration:

Differentiating the expression                           wrt time

The derivative of the second term will produce three 

terms since all three factors are variable.

We know: 

Vector expression for acceleration 



Magnitudes can be calculated as:

 eev  rr r 
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θ-component can be 

alternatively written as:  
21
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a The term d2θ/dt2 is 

called Angular Accln 

since it represents 

change made in angular 

vel during an instant of 

time (rad/s2)
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Kinematics of Particles: Plane Curvilinear Motion

Polar Coordinates (r - θ)
Geometric Interpretations of the equations
Top figure shows velocity vectors and their r- and θ- components 

at positions A and A’ after an infinitesimal movement. 

Changes in magnitudes and directions of these components are 

shown in the bottom figure. Following are the changes:

(a) Magnitude change of vr : 

= increase in length of vr or                      

 Accn term (in the + r-dirn): 

(b) Direction change of vr : 

Magnitude of this change =

 Accn term (in the + θ-dirn): 

(c) Magnitude change of vθ :

= change in length of vθ or                      

 Accn term (in the + θ-dirn): 

(d) Direction change of vθ :

Magnitude of this change =

 Accn term (in the - r-dirn): 
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Kinematics of Particles: Plane Curvilinear Motion

Polar Coordinates (r - θ)
Geometric Interpretations of the equations
Collecting terms gives same relations as obtained previously
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Kinematics of Particles: Plane Curvilinear Motion

Polar Coordinates (r - θ)
Circular Motion: For motion in a circular path, r is constant 

 The components of velocity and acceleration become:





 Same as that obtained with n- and t-components, where the θ and t-directions 

coincide but the +ve r-direction is along the –ve n-direction

 ar = -an for circular motion centered at the origin of the polar coordinates.

Further the expressions for ar and aθ can also be obtained using rectangular 

coordinates x = rcosθ and y = rsinθ



these rectangular components can be resolved into r- and θ-components to get 

the same expressions as obtained above.
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Example (1) on polar coordinates

Rotation of the radially slotted arm is governed by θ = 0.2t + 0.02t3. 

Simultaneously, the power screw in the arm engages the slider B and controls its 

distance from O according to r = 0.2 + 0.04t2. Calculate the magnitudes of the 

velocity and acceleration of the slider for the instance when t = 3 s.

θ is in radians, r is in meters, and t is in seconds.
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Example (1) on polar coordinates

Solution: 

Using the Polar Coordinates.

Available Equations:

Obtaining the derivatives of r and θ at t = 3 s.
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Example (1) on polar coordinates

Solution: 

Substituting in these eqns:
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Example (2) on polar coordinates
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Example (2) on polar coordinates
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Example (3) on polar coordinates
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Example (3) on polar coordinates
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Example (3) on polar coordinates
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