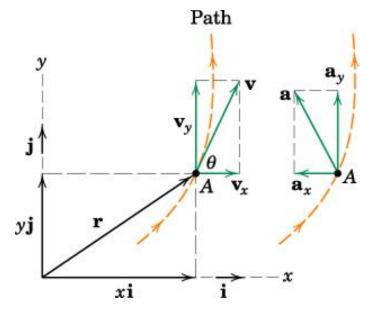
Rectangular Coordinates (x-y)

If all motion components are directly expressible in terms of horizontal and vertical coordinates

$$\mathbf{r} = x\mathbf{i} + y\mathbf{j}$$
$$\mathbf{v} = \dot{\mathbf{r}} = \dot{x}\mathbf{i} + \dot{y}\mathbf{j}$$
$$\mathbf{a} = \dot{\mathbf{v}} = \ddot{\mathbf{r}} = \ddot{x}\mathbf{i} + \ddot{y}\mathbf{j}$$

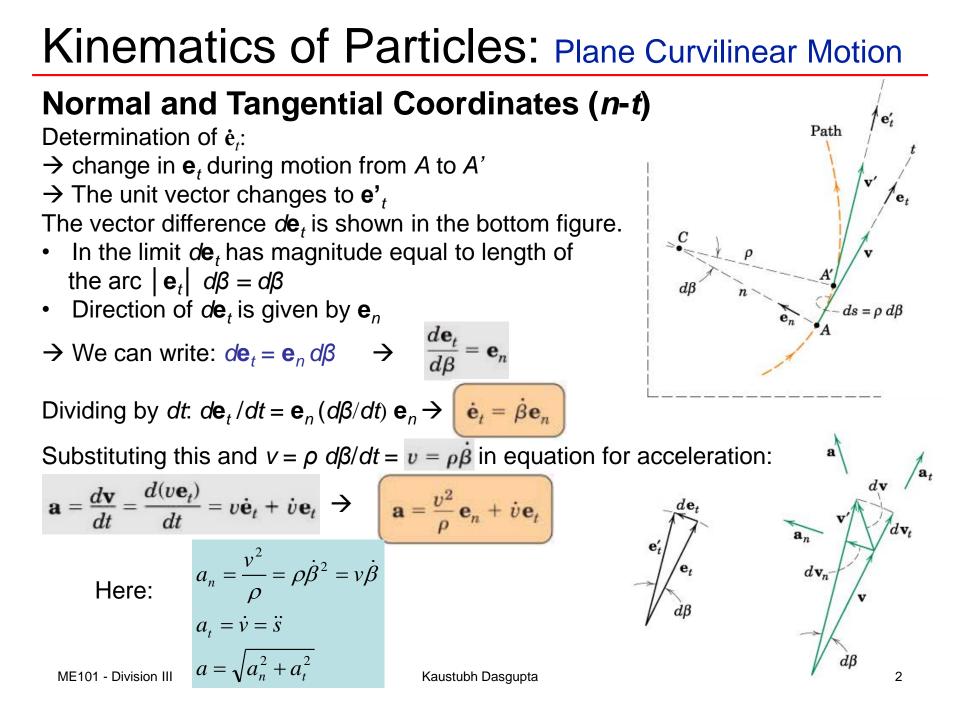
$$v_x = \dot{x}, v_y = \dot{y}$$
 and $a_x = \dot{v}_x = \ddot{x}, a_y = \dot{v}_y = \ddot{y}$



$$v^{2} = v_{x}^{2} + v_{y}^{2} \qquad v = \sqrt{v_{x}^{2} + v_{y}^{2}} \qquad \tan \theta = \frac{v_{y}}{v_{x}}$$
$$a^{2} = a_{x}^{2} + a_{y}^{2} \qquad a = \sqrt{a_{x}^{2} + a_{y}^{2}}$$

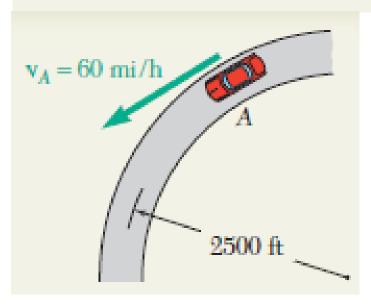
Time derivatives of the unit vectors are zero because their magnitude and direction remains constant.

Also, $dy/dx = tan \ \theta = v_y/v_x$

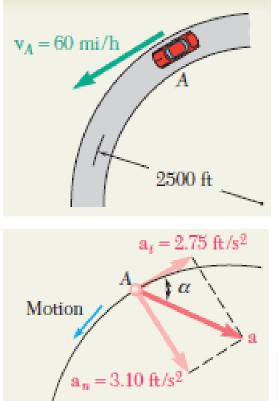


Example (1) on normal and tangential coordinates

A motorist is traveling on a curved section of highway of radius 2500 ft at the speed of 60 mi/h. The motorist suddenly applies the brakes, causing the automobile to slow down at a constant rate. Knowing that after 8 s the speed has been reduced to 45 mi/h, determine the acceleration of the automobile immediately after the brakes have been applied.



Example (1) on normal and tangential coordinates



Tangential Component of Acceleration. First the speeds are expressed in ft/s.

$$60 \text{ mi/h} = \left(60 \frac{\text{mi}}{\text{h}}\right) \left(\frac{5280 \text{ ft}}{1 \text{ mi}}\right) \left(\frac{1 \text{ h}}{3600 \text{ s}}\right) = 88 \text{ ft/s}$$

$$45 \text{ mi/h} = 66 \text{ ft/s}$$

Since the automobile slows down at a constant rate, we have

$$a_t = \text{average } a_t = \frac{\Delta v}{\Delta t} = \frac{66 \text{ ft/s} - 88 \text{ ft/s}}{8 \text{ s}} = -2.75 \text{ ft/s}^2$$

Normal Component of Acceleration. Immediately after the brakes have been applied, the speed is still 88 ft/s, and we have

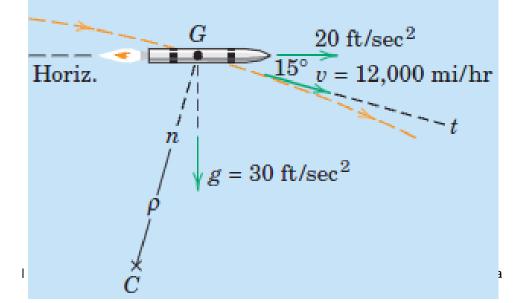
$$a_n = \frac{v^2}{\rho} = \frac{(88 \text{ ft/s})^2}{2500 \text{ ft}} = 3.10 \text{ ft/s}^2$$

Magnitude and Direction of Acceleration. The magnitude and direction of the resultant \mathbf{a} of the components \mathbf{a}_n and \mathbf{a}_t are

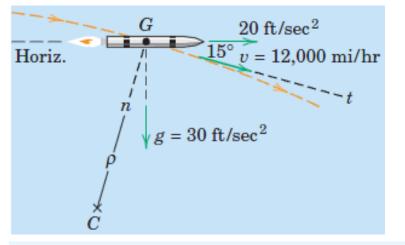
$$\tan \alpha = \frac{a_n}{a_t} = \frac{3.10 \text{ ft/s}^2}{2.75 \text{ ft/s}^2} \qquad \alpha = 48.4^\circ \quad \blacktriangleleft$$
$$a = \frac{a_n}{\sin \alpha} = \frac{3.10 \text{ ft/s}^2}{\sin 48.4^\circ} \qquad a = 4.14 \text{ ft/s}^2 \quad \blacktriangleleft$$

Example (2) on normal and tangential coordinates

A certain rocket maintains a <u>horizontal attitude</u> of its axis during the powered phase of its flight at high altitude. The thrust imparts a <u>horizontal component of acceleration of 20 ft/sec²</u>, and the <u>downward acceleration component</u> is the acceleration due to gravity at that altitude, which is g = 30 ft/sec². At the instant represented, the <u>velocity of the mass center G</u> of the rocket along the 15° direction of its trajectory is 12,000 mi/hr. For this position determine (a) the <u>radius of curvature</u> of the flight trajectory, (b) the <u>rate at which the speed v is increasing</u>, (c) the <u>angular rate $\dot{\beta}$ of the radial line from G to the center of curvature C</u>, and (d) the vector expression for the <u>total acceleration a</u> of the rocket.



Example (2) on normal and tangential coordinates



 $a_n = 30 \cos 15^\circ - 20 \sin 15^\circ = 23.8 \text{ ft/sec}^2$

$$a_t = 30 \sin 15^\circ + 20 \cos 15^\circ = 27.1 \text{ ft/sec}^2$$

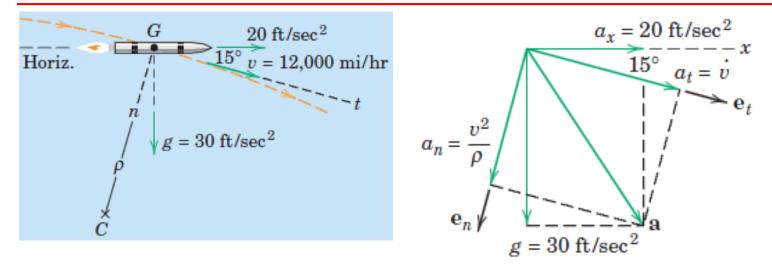
(a) We may now compute the radius of curvature from

$$[a_n = v^2/\rho] \qquad \rho = \frac{v^2}{a_n} = \frac{\left[(12,000)(44/30)\right]^2}{23.8} = 13.01(10^6) \text{ ft} \qquad Ans.$$

(b) The rate at which v is increasing is simply the t-component of acceleration.

$$[\dot{v} = a_t]$$
 $\dot{v} = 27.1 \text{ ft/sec}^2$ Ans

Example (2) on normal and tangential coordinates



(c) The angular rate $\dot{\beta}$ of line GC depends on v and ρ and is given by

$$[v = \rho \dot{\beta}] \qquad \dot{\beta} = v/\rho = \frac{12,000(44/30)}{13.01(10^6)} = 13.53(10^{-4}) \text{ rad/sec} \qquad Ans.$$

(d) With unit vectors \mathbf{e}_n and \mathbf{e}_t for the *n*- and *t*-directions, respectively, the total acceleration becomes

$$\mathbf{a} = 23.8\mathbf{e}_n + 27.1\mathbf{e}_t \, \text{ft/sec}^2 \qquad Ans.$$

Polar Coordinates ($r - \theta$)

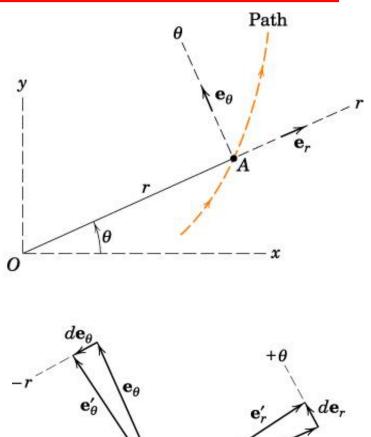
The particle is located by the radial distance *r* from a fixed point and by an angular measurement θ to the radial line.

- θ is measured from an arbitrary reference axis
- \mathbf{e}_r and \mathbf{e}_{θ} are unit vectors along +r & + θ dirns.

Location of particle at *A*: $\mathbf{r} = r \mathbf{e}_r$ By definition: $\mathbf{v} = d\mathbf{r}/dt$ and $\mathbf{a} = d^2\mathbf{r}/dt^2$ *Therefore we need:* $\dot{\mathbf{e}}_r$ *and* $\dot{\mathbf{e}}_{\theta}$

During time *dt*, the coordinate directions rotate through an angle $d\theta$: $\mathbf{e}_r \rightarrow \mathbf{e'}_r$ and $\mathbf{e}_{\theta} \rightarrow \mathbf{e'}_{\theta}$ Vector change $d\mathbf{e}_r$ is in the +ve θ direction Vector change $d\mathbf{e}_{\theta}$ is in the -ve *r* direction

As already seen in the previous section: magnitudes of $d\mathbf{e}_r$ and $d\mathbf{e}_{\theta}$ in the limit are equal to the unit vector (radius) times $d\theta \rightarrow$ $d\mathbf{e}_r = \mathbf{e}_{\theta} d\theta$ and $d\mathbf{e}_{\theta} = -\mathbf{e}_r d\theta$



Polar Coordinates ($r - \theta$)

 $d\mathbf{e}_r = \mathbf{e}_{\theta} d\theta$ and $d\mathbf{e}_{\theta} = -\mathbf{e}_r d\theta$

- Dividing by $d\theta \rightarrow \frac{d\mathbf{e}_r}{d\theta} = \mathbf{e}_{\theta} \qquad \frac{d\mathbf{e}_{\theta}}{d\theta} = -\mathbf{e}_r$
- Dividing by $dt \rightarrow \frac{d\mathbf{e}_r}{dt} = \mathbf{e}_{\theta} \frac{d\theta}{dt}$ $\frac{d\mathbf{e}_{\theta}}{dt} = -\mathbf{e}_r \frac{d\theta}{dt}$

$$\rightarrow \dot{\mathbf{e}}_r = \dot{\mathbf{\theta}} \mathbf{e}_{\mathbf{\theta}} \qquad \dot{\mathbf{e}}_{\mathbf{\theta}} = -\dot{\mathbf{\theta}} \mathbf{e}$$

Relations for Velocity:

Differentiating $\mathbf{r} = r \, \mathbf{e}_r$ wrt time Vector expression for velocity \rightarrow

$$\mathbf{v} = \dot{\mathbf{r}} = \dot{r}\mathbf{e}_r + r\dot{\mathbf{e}}_r \quad \Rightarrow \quad \mathbf{v} = \dot{r}\mathbf{e}_r + r\dot{\theta}\mathbf{e}_{\theta}$$

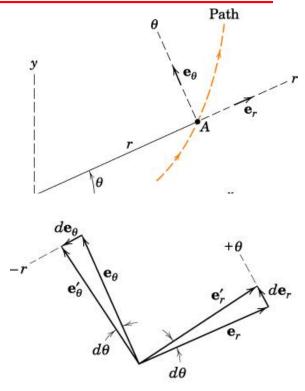
Magnitudes can be calculated as:

r-component of *v* is the rate at which the vector *r* stretches. θ component of *v* is due to the rotation of *r* along the circumference of a circle having radius *r*.

$$v_r = \dot{r}$$
$$v_\theta = r\dot{\theta}$$
$$v = \sqrt{v_r^2 + v_\theta^2}$$

θ

The term $d\theta/dt$ is called Angular Velocity (rad/s) since it represents time rate of change of angle



Polar Coordinates $(r - \theta)$

Relations for Acceleration:

Differentiating the expression $\mathbf{v} = \dot{r}\mathbf{e}_r + r\dot{\theta}\mathbf{e}_{\theta}$ wrt time The derivative of the second term will produce three terms since all three factors are variable.

$$\mathbf{a} = \dot{\mathbf{v}} = (\ddot{r}\mathbf{e}_r + \dot{r}\dot{\mathbf{e}}_r) + (\dot{r}\dot{\partial}\mathbf{e}_{\theta} + r\ddot{\partial}\mathbf{e}_{\theta} + r\dot{\partial}\dot{\mathbf{e}}_{\theta})$$

We know: $\dot{\mathbf{e}}_r = \dot{\partial}\mathbf{e}_{\theta}$ $\dot{\mathbf{e}}_{\theta} = -\dot{\partial}\mathbf{e}_r$
Vector expression for acceleration \rightarrow

$$\mathbf{a} = \ddot{r}\mathbf{e}_{r} + \dot{r}\dot{\theta}\mathbf{e}_{\theta} + \dot{r}\dot{\theta}\mathbf{e}_{\theta} + r\ddot{\theta}\mathbf{e}_{\theta} - r\dot{\theta}^{2}\mathbf{e}_{r}$$

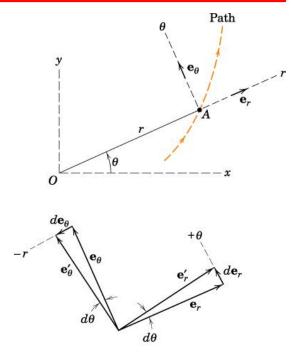
$$\Rightarrow \mathbf{a} = \left(\ddot{r} - r\dot{\theta}^{2}\right)\mathbf{e}_{r} + \left(r\ddot{\theta} + 2\dot{r}\dot{\theta}\right)\mathbf{e}_{\theta}$$

Magnitudes can be calculated as:

 $a_{r} = \ddot{r} - r\dot{\theta}^{2}$ $a_{\theta} = r\ddot{\theta} + 2\dot{r}\dot{\theta}$ $a = \sqrt{a_{r}^{2} + a_{\theta}^{2}}$

The term $d^2\theta/dt^2$ is called Angular AccIn since it represents change made in angular vel during an instant of time (rad/s²) θ -component can be alternatively written as:

$$a_{\theta} = \frac{1}{r} \frac{d}{dt} \left(r^2 \dot{\theta} \right)$$



Polar Coordinates $(r - \theta)$

Geometric Interpretations of the equations Top figure shows velocity vectors and their *r*- and θ - components

at positions A and A' after an infinitesimal movement.

Changes in magnitudes and directions of these components are shown in the bottom figure. Following are the changes:

(a) Magnitude change of \mathbf{v}_r : = increase in length of v_r or $dv_r = d\dot{r}$ \rightarrow Accn term (in the + *r*-dirn): $d\dot{r}/dt = \ddot{r}$ (b) Direction change of \mathbf{v}_r : Magnitude of this change = $v_r d\theta = \dot{r} d\theta$ \rightarrow Accn term (in the + θ -dirn): $\dot{r}d\theta/dt = \dot{r}\theta$ (c) Magnitude change of \mathbf{v}_{θ} : = change in length of v_{θ} or $d(r\theta)$ \rightarrow Accn term (in the + θ -dirn): $d(r\dot{\theta})/dt = r\ddot{\theta} + \dot{r}\dot{\theta}$ (d) Direction change of \mathbf{v}_{θ} :

Magnitude of this change = $v_{\theta}d\theta = r\theta d\theta$

 \rightarrow Accn term (in the - *r*-dirn): $r\dot{\theta}(d\theta/dt) = r\dot{\theta}^2$

Kaustubh Dasgupta

rde

 $d\theta$

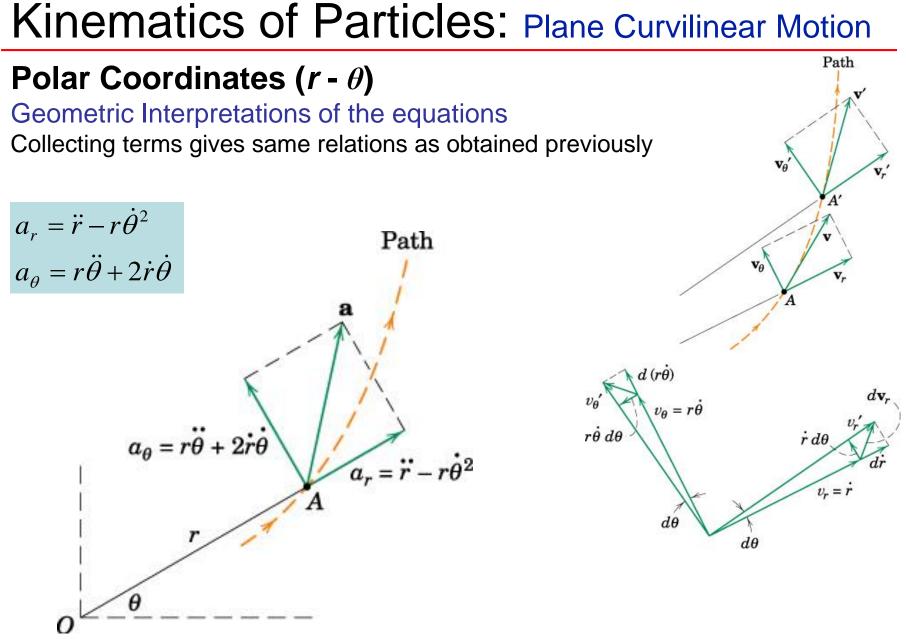
 $v_r = 1$

Path

 $d(r\dot{\theta})$

 $r\dot{\theta} d\theta$

 $v_{\theta} = r\dot{\theta}$



ME101 - Division III

Polar Coordinates ($r - \theta$)

Circular Motion: For motion in a circular path, r is constant \rightarrow The components of velocity and acceleration become:

$v_r = \dot{r}$	\rightarrow	$v_r = 0$
$v_{\theta} = r\dot{\theta}$		$v_{\theta} = r\dot{\theta}$
$a_r = \ddot{r} - r\dot{\theta}^2$	<u>ح</u>	$a_r=-r\dot\theta^2$
$a_{\theta} = r\ddot{\theta} + 2\dot{r}\dot{\theta}$	\rightarrow	$a_{\theta} = r\ddot{\theta}$

→ Same as that obtained with *n*- and *t*-components, where the θ and *t*-directions coincide but the +ve *r*-direction is along the –ve *n*-direction

 $\rightarrow a_r = -a_n$ for circular motion centered at the origin of the polar coordinates.

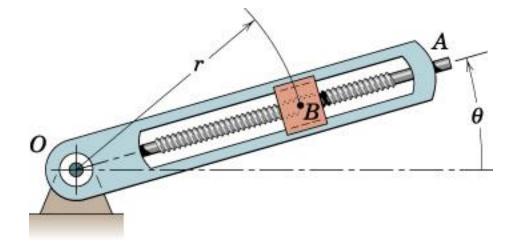
Further the expressions for a_r and a_{θ} can also be obtained using rectangular coordinates $x = r\cos\theta$ and $y = r\sin\theta$

$$\rightarrow$$
 $a_x = \ddot{x}$ and $a_y = \ddot{y}$

these rectangular components can be resolved into *r*- and θ -components to get the same expressions as obtained above.

Example (1) on polar coordinates

Rotation of the radially slotted arm is governed by $\theta = 0.2t + 0.02t^3$. Simultaneously, the power screw in the arm engages the slider B and controls its distance from O according to $r = 0.2 + 0.04t^2$. Calculate the magnitudes of the velocity and acceleration of the slider for the instance when t = 3 s. θ is in radians, *r* is in meters, and *t* is in seconds.

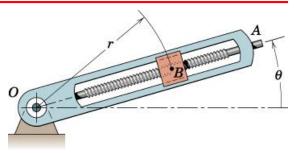


Example (1) on polar coordinates

Solution:

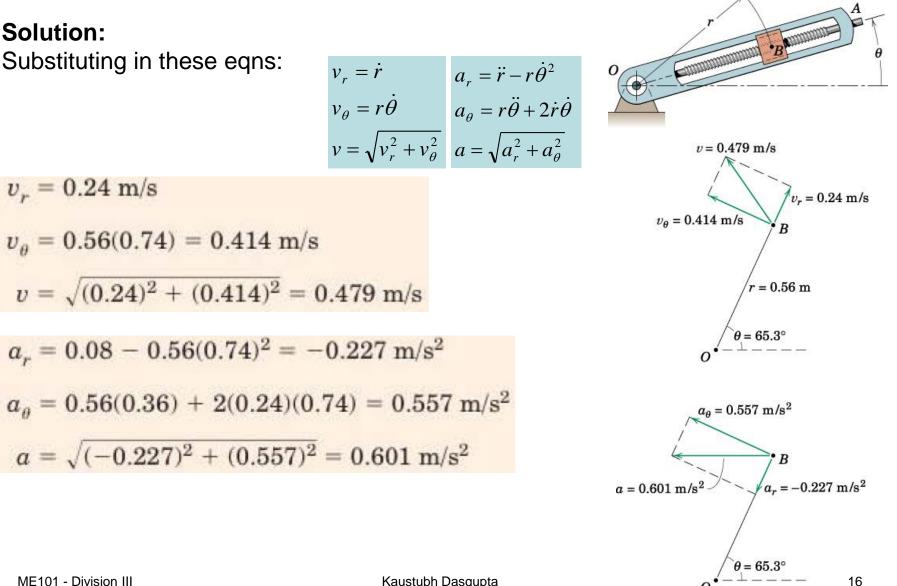
Using the Polar Coordinates. Available Equations:

$$\begin{aligned} v_r &= \dot{r} & a_r = \ddot{r} - r\dot{\theta}^2 \\ v_\theta &= r\dot{\theta} & a_\theta = r\ddot{\theta} + 2\dot{r}\dot{\theta} \\ v &= \sqrt{v_r^2 + v_\theta^2} & a = \sqrt{a_r^2 + a_\theta^2} \end{aligned}$$



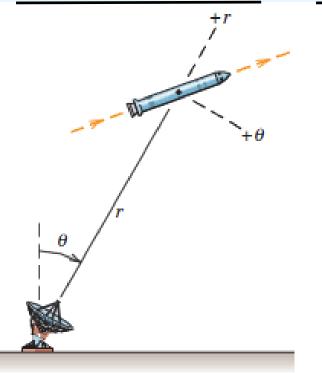
Obtaining the derivation	ves of <i>r</i> and θ at <i>t</i> = 3 s.
$r = 0.2 + 0.04t^2$	$r_3 = 0.2 + 0.04(3^2) = 0.56 \text{ m}$
$\dot{r} = 0.08t$	$\dot{r}_3 = 0.08(3) = 0.24$ m/s
$\ddot{r} = 0.08$	$\ddot{r}_3 = 0.08 \text{ m/s}^2$
$\theta = 0.2t + 0.02t^3$	$\theta_3 = 0.2(3) + 0.02(3^3) = 1.14 \text{ rad}$
	or $\theta_3 = 1.14 (180/\pi) = 65.3^\circ$
$\dot{\theta} = 0.2 + 0.06t^2$	$\dot{\theta}_3 = 0.2 + 0.06(3^2) = 0.74 \text{ rad/s}$
$\ddot{\theta} = 0.12t$	$\ddot{\theta}_3 = 0.12(3) = 0.36 \; \rm{rad/s^2}$
ME101 - Division III	Kaustubh Dasgupta

Example (1) on polar coordinates



Example (2) on polar coordinates

A tracking radar lies in the <u>vertical plane</u> of the path of a rocket which is coasting in unpowered flight above the atmosphere. For the instant when $\theta = 30^{\circ}$, the tracking data give $r = 25(10^4)$ ft, $\dot{r} = 4000$ ft/sec, and $\dot{\theta} = 0.80$ deg/sec. The <u>acceleration</u> of the rocket is due only to gravitational attraction and for its particular altitude is 31.4 ft/sec² vertically down. For these conditions determine the velocity v of the rocket and the values of \ddot{r} and $\ddot{\theta}$.



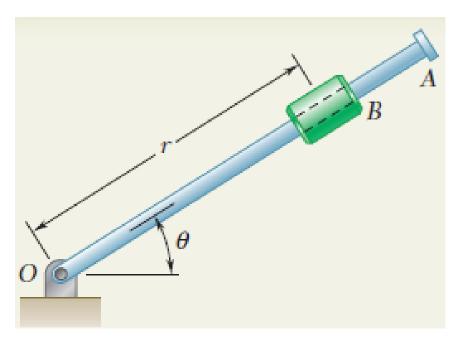
Example (2) on polar coordinates

$$\begin{bmatrix} v_r = \dot{r} \end{bmatrix} & v_r = 4000 \text{ ft/sec} \\ \begin{bmatrix} v_\theta = r\dot{\theta} \end{bmatrix} & v_\theta = 25(10^4)(0.80) \left(\frac{\pi}{180}\right) = 3490 \text{ ft/sec} \\ \begin{bmatrix} v = \sqrt{v_r^2 + v_\theta^2} \end{bmatrix} & v = \sqrt{(4000)^2 + (3490)^2} = 5310 \text{ ft/sec} \\ a_r = -31.4 \cos 30^\circ = -27.2 \text{ ft/sec}^2 \\ a_\theta = 31.4 \sin 30^\circ = 15.70 \text{ ft/sec}^2 \\ \end{bmatrix}$$

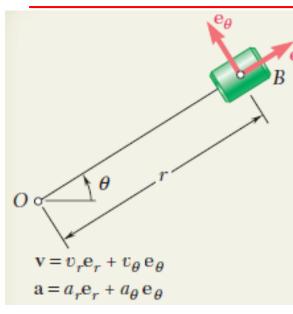
$$\begin{bmatrix} a_r = \ddot{r} - r\dot{\theta}^2 \end{bmatrix} -27.2 = \ddot{r} - 25(10^4) \left(0.80 \frac{\pi}{180}\right)^2 \\ \ddot{r} = 21.5 \text{ ft/sec}^2 \\ a_\theta = r\ddot{\theta} + 2\dot{r}\dot{\theta} \end{bmatrix} \quad 15.70 = 25(10^4) \ddot{\theta} + 2(4000) \left(0.80 \frac{\pi}{180}\right) \\ \ddot{\theta} = -3.84(10^{-4}) \text{ rad/sec}^2 \\ \end{bmatrix}$$

Example (3) on polar coordinates

The rotation of the 0.9-m arm OA about O is defined by the relation $\theta = 0.15t^2$, where θ is expressed in radians and t in seconds. Collar B slides along the arm in such a way that its distance from O is $r = 0.9 - 0.12t^2$, where r is expressed in meters and t in seconds. After the arm OA has rotated through 30°, determine (a) the total velocity of the collar, (b) the total acceleration of the collar, (c) the relative acceleration of the collar with respect to the arm.



Example (3) on polar coordinates

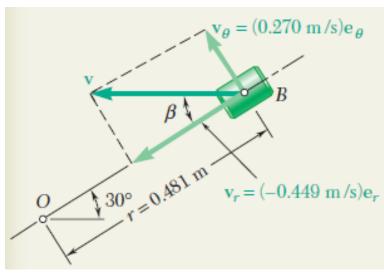


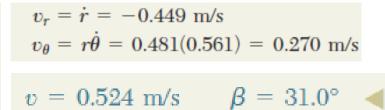
Time *t* at which $\theta = 30^\circ$. Substituting $\theta = 30^\circ = 0.524$ rad into the expression for θ , we obtain

 $\theta = 0.15t^2$ $0.524 = 0.15t^2$ t = 1.869 s

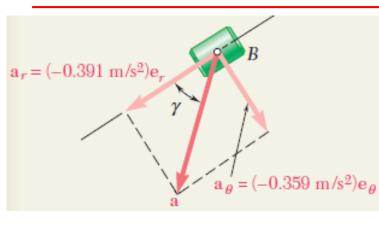
Equations of Motion. Substituting t = 1.869 s in the expressions for r, θ , and their first and second derivatives, we have

$r = 0.9 - 0.12t^2 = 0.481 \text{ m}$	$\theta = 0.15t^2 = 0.524$ rad
$\dot{r} = -0.24t = -0.449$ m/s	$\dot{\theta} = 0.30t = 0.561 \text{ rad/s}$
$\ddot{r} = -0.24 = -0.240 \text{ m/s}^2$	$\ddot{\theta} = 0.30 = 0.300 \text{ rad/s}^2$

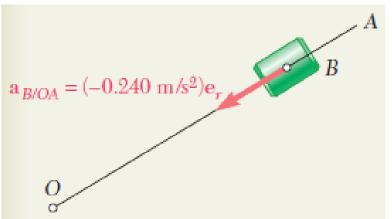




Example (3) on polar coordinates



Acceleration of B. Using Eqs. (11.46), we obtain $a_r = \ddot{r} - r\dot{\theta}^2$ $= -0.240 - 0.481(0.561)^2 = -0.391 \text{ m/s}^2$ $a_{\theta} = r\ddot{\theta} + 2\dot{r}\dot{\theta}$ $= 0.481(0.300) + 2(-0.449)(0.561) = -0.359 \text{ m/s}^2$ $a = 0.531 \text{ m/s}^2$ $\gamma = 42.6^\circ$



c. Acceleration of *B* with Respect to Arm *OA*. We note that the motion of the collar with respect to the arm is rectilinear and defined by the coordinate *r*. We write

$$a_{B/OA} = \ddot{r} = -0.240 \text{ m/s}^2$$

 $a_{B/OA} = 0.240 \text{ m/s}^2 \text{ toward } O.$