Kinematics of Particles: plane curvilinear Motion

Rectangular Coordinates (X-y) Path
If all motion components are directly expressible
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in terms of horizontal and vertical coordinates | A" & o
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v2=v2 +uv2 v=Jv2+uv2 banip =2 Time derivatives of the unit
. v U, vectors are zero because their
"’ g 2 e magnitude and direction remains
a"=a, T a, a=ya- +a, constant.

Also, dy/dx = tan 6 = v, /v,
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Kinematics of Particles: plane curvilinear Motion

Normal and Tangential Coordinates (n-t) fe
Determination of é;: t
—> change in e, during motion from Ato A’

—> The unit vector changes to e’,

The vector difference de, is shown in the bottom figure.

|

I

i
* In the limit de, has magnitude equal to length of i -+ 1P
the arc | e,| dB =dg L S

« Direction of de, is given by e, |

: de |

-> We can write: de, = e, dB > d—B’ =e, i

Dividing by dt: de, /dt = e, (dB/dt) e, > | ¢, = Be, | T

Substituting this and v = p dB/dt = v = pB in equation for acceleration: a\ /a
dv $

dv dve) LY PO i b2 .
s=@& @ e a=""e,+ve
V2 - .h_
a = = :V
Here: " PP P
a =V=S

_ / 2 2
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Example (1) on normal and tangential coordinates

A motorist is traveling on a curved section of highway of radius 2500 ft at
the speed of 60 mi'h. The motorist suddenly applies the brakes, causing the
antomobile to slow down at a constant rate. Knowing that after § s the speed
has been reduced to 45 mi‘h, determine the acceleration of the automobile
immediately after the brakes have been applied.

VA =fi'llw
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Example (1) on normal and tangential coordinates

v, ﬂ;w
A

Tangential Component of Acceleration. First the speeds are expressed

in ft/s.
mi \/ 3280 ft 1h
G0 mi‘th = (E{l h )( Lo )(Eﬁﬂﬂ 5)— 88 fit/s

45 mivh = 66 ft/s

Since the antomobile slows down at a constant rate, we have

2500 £ Av 66 ft/'s — 88 it/
— a4, = average g, = ;f = SS - > = —2.75 fus]
a,=275ft/s2  MNormal Component of Acceleration. Immediately after the brakes have
A ff,..-—"*q—'—- been applied, the speed is still 88 ft/s, and we have
AR 2 (881Ys)?
Motion \ Gy = — = _ 310 f/s
N n - -
4 » p 2500 ft
-~
o =310 fi/e2 - Magnitude and Direction of Acceleration. The magnitude and direction

of the resultant a of the components a, and a, are

2
tan o = 22 - 31085 « = 48.4°
a 275 fus’

a, 3.0 fus

= a = 4.14 fi/s°
sin o sin 48.4°
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Example (2) on normal and tangential coordinates

A certain rocket maintains a horizontal attitude of its axis during the pow-
ered phase of its flight at high altitude. The thrust imparts a horizontal compo-
nent of acceleration of 20 ft/sec?, and the downward aceeleration component is
the acceleration due to gravity at that altitude, which is g = 30 ft/sec®. At the in-
stant represented, the velocity of the mass center (7 of the rocket along the 15°
direction of its trajectory is 12,000 mi'hr. For this position determine (a) the ra-
dius of curvature of the flight trajectory, (b) the rate at which the speed v is in-
creasing, (c) the angular rate B of the radial line from G to the center of
curvature C, and (d) the vector expreszion for the total acceleration a of the
rocket.

G 20 ft/sec?
— e T T — —I}"‘-'
Horiz. ! ~157 v = 12,000 mi/hr
[l ——
. .
/ Jrg = 30 ft/sec”



Example (2) on normal and tangential coordinates

G 20 ft/sec?
Horiz. ] ..Lﬂ;— 12,000 mi/hr

I T
= t

/ Jrg = 30 ft/sec”
o

/

C
a, = 30 cos 15° — 20 sin 15° = 23.8 ft/sec”

a, = 30 sin 15° + 20 cos 15° = 27.1 fi/sec®

(a) We may now compute the radius of curvature from

|"2 / .
la, = v2/p] p=2 = [{12,{1{:331{;* SO _ 1301010 Ans.

'n

(b) The rate at which v is increasing is simply the ¢-component of acceleration.

[0 = a,] v = 27.1 ft/sec? Ans.
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Example (2) on normal and tangential coordinates

G 20 ft/sec? a, = 20 ft/sec?
Horiz. = 15”'—120{}1} i/hr o T T UF
OT1Z. ” ~y{= mil 15 a;=v
n | T3 I |o>e
2 |/
/ Jrgz'&l]ftfsecz a,=— |
P jD | | i
| 1
C e, | a
g = 30 ft/sec”
(¢) The angular rate ,Ei of line GC depends on v and p and is given by
: : 12,000044/30)
= = vip = — = 13.53(10~*) rad/sec Ans.
[v = pBl B =uvlp 13.01(109 (107%)

(d) With unit vectors e, and e, for the n- and ¢-directions, respectively, the total
acceleration becomes

a = 23.8e, + 27.1e, ft/sec? Ans.
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Kinematics of Particles: plane curvilinear Motion

Polar Coordinates (r - 6)

The particle is located by the radial distance r from
a fixed point and by an angular measurement 6 to
the radial line.

« 0Ois measured from an arbitrary reference axis
« e, and e, are unit vectors along +r & +6 dirns.

Location of particle at A:r =r g,
By definition: v = dr/dt and a = d°r/dt?
Therefore we need: ¢, and é,

During time dt, the coordinate directions rotate
through an angle d6: e, > e’, and e, 2> €’
Vector change de, is in the +ve 6 direction
Vector change dey is in the -ve r direction

As already seen in the previous section:
magnitudes of de, and de, in the limit are equal to
the unit vector (radius) times d@ »>

de, = e,d6 and dey,=-¢e, db
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Kinematics of Particles: plane curvilinear Motion

Path

Polar Coordinates (r - 6) %
de, = e,d6 and dey, = -e,d6 y ‘\eg .
* Dividing by d6 > —— de, =e de, =—€ | \\ //’ei/
do °  do f | r A
S 5 de_o 4o de, do /
« Dividing by dt dt dt dt " dt | n

Relations for Velocity:
Differentiating r = r e, wrt time
Vector expression for velocity -

v=r=re +re, > v=re, +rde,

Magnitudes can be calculated as: V. =71 The term do/dt is called

_ _ ' Angular Velocity (rad/s)

r-component of v is the rate at which V. — ré? since it represents time
5 =

the vector r stretches. 6 component of rate of change of angle
v is due to the rotation of r along the [ > 6
circumference of a circle having radius r. V= V TV
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Kinematics of Particles: plane curvilinear Motion

Polar Coordinates (r - 6)
Relations for Acceleration:

Differentiating the expression v =re, + réee wrt time
The derivative of the second term will produce three

terms since all three factors are variable.

a=v=(re, + fér)+(fé?ee +roe, + réég)

We know: e, :939

ée = _eer

Vector expression for acceleration -

a=ie, +rde,+rde,+rde,—ro’e,
> a=(F-ré?)e, +(rd+2rd)e,

Magnitudes can be calculated as:

a, =iF—rf’
a, =ro+2i6

a=.a’+a’

ME101 - Division Il

Path

The term d26/dt? is S-component canbe o 19 (12g)
called Angular Accln alternatively written as: “é r dt
since it represents
change made in angular
vel during an instant of
time (rad/s?)
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Kinematics of Particles: plane curvilinear Motion

Path

Polar Coordinates (r - 0)

Geometric Interpretations of the equations

Top figure shows velocity vectors and their r- and 6- components
at positions A and A’ after an infinitesimal movement.

Changes in magnitudes and directions of these components are
shown in the bottom figure. Following are the changes:

(@) Magnitude change of v, : e
= increase in length of v, or dv, =dr T
- Accn term (in the + r-dirn): dr/dt =¥
(b) Direction change of v,
Magnitude of this change = v,df=rdd
> Accn term (in the + 6-dirn): fd@/dt =@
(c) Magnitude change of v, :
= change in length of v, or d(re) -
> Accn term (in the + 6-dirn): d(r@)/dt =ré + 0 6
(d) Direction change of v, :
Magnitude of this change = V,d6 =r&do
- Accn term (in the - r-dirn): r@(dé/dt) = r6?
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Kinematics of Particles: plane curvilinear Motion

Polar Coordinates (r - 0)

Geometric Interpretations of the equations
Collecting terms gives same relations as obtained previously

Pgth

= 52
A=t ) ro . Path
a,=ro+2ro / )

0
12
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Kinematics of Particles: plane curvilinear Motion

Polar Coordinates (r - 0)

Circular Motion: For motion in a circular path, r is constant
- The components of velocity and acceleration become:

v, =T 5 =0

Vg =10 Vg =10

_ i _rp? :
a, _rirﬁ | a, _ 402
a, =ré+2r6 a, .y

- Same as that obtained with n- and t-components, where the 6 and t-directions
coincide but the +ve r-direction is along the —ve n-direction
- a, = -a, for circular motion centered at the origin of the polar coordinates.

Further the expressions for a, and a, can also be obtained using rectangular
coordinates x = rcos@ and y = rsinf

> a,=Xanda, =y

these rectangular components can be resolved into r- and 6-components to get
the same expressions as obtained above.
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Example (1) on polar coordinates

Rotation of the radially slotted arm is governed by 6 = 0.2t + 0.02t3.
Simultaneously, the power screw in the arm engages the slider B and controls its
distance from O according to r = 0.2 + 0.04t°. Calculate the magnitudes of the

velocity and acceleration of the slider for the instance when t = 3 s.
O is in radians, r is in meters, and t is in seconds.

MEZ101 - Division IlI Kaustubh Dasgupta
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Example (1) on polar coordinates

Solution:

Usmg the Polar_Coordlnates. v =t a = F—ré?

Available Equations: : . :
Vo =16 a,=ro+2ro

V=4V’ +V: a=.a’+a’

Obtaining the derivatives of rand f att =3 s.
r=0.2 + 0.04¢° ry = 0.2 + 0.04(3%) = 0.56 m

r = 0.08¢ r, = 0.08(3)= 0.24 m/s

r = 0.08 Fq = 0.08 m/s®

0 = 0.2t + 0.026* 0, =0.2(3) + 0.02(3%) = 1.14 rad
or A, = 1.14(180/7) = 65.3°

0 =0.2+0.06:2 0,=02+ 0.06(3%) = 0.74 rad/s

6 = 0.12¢ 0, = 0.12(3) = 0.36 rad/s>
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Example (1) on polar coordinates

Solution:

Substituting in these egns: _¢ 4 10

Vr
V, =10 a,=ro+2ro

V=4V:+V, a=,a’+a’ v=0.479 m/s
= / "V

v, = 0.24 m/s 4&/ =024 m/s
vg=0.414 m/s Y

v, = 0.56(0.74) = 0.414 m/s g

v = (0.24)* + (0.414)* = 0.479 m/s r=056m
a, = 0.08 — 0.56(0.74)% = —0.227 m/s? Y e

a, = 0.56(0.36) + 2(0.24)(0.74) = 0.557 m/s®

a= J(—0.227)2 + (0.557)2 = 0.601 m/s?
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Example (2) on polar coordinates

A tracking radar lies in the vertical plane of the path of a rocket which 1s
coasting mn unpowered flight above the atmosphere. For the instant when 6 =

30°, the tracking data give r = 25(10%) ft, 7 = 4000 ft/sec, and § = 0.80 deg/sec.
The acceleration of the rocket 1s due only to gravitational attraction and for its
particular altitude is 31.4 ft/sec” vertically down. For these conditions determine
the velocity v of the rocket and the values of r and #.

+r
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Example (2) on polar coordinates

lv, = 7] v, = 4000 ft/sec
[v, = ré] vy = 25(194]{115{1](%) = 3490 ft/sec
v=v,2+ v, v = /(4000)2 + (3490)2 = 5310 ft/sec
a, = —31.4 cos 30° = —27.2 ft/sec?
a, = 31.4 sin 30° = 15.70 ft/sec?
la, = 7 — ré?] —272=F — 25{1{14}(&.31::- %)2

7 = 21.5 ft/sec?

la,=ré + 2761 1570 = 25(1096 + 2[4D{}D}(D.BD FW{:-)

§ = —3.84(10~ % rad/sec?
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Example (3) on polar coordinates

The rotation of the 0.9-m arm OA about O is defined by the relation
f = 0.15t", where 8 is expressed in radians and t in seconds. Collar B slides
along the arm in such a way that its distance from O is r = 0.9 — 0.12¢",
where r is expressed in meters and ¢ in seconds. After the arm OA has
rotated through 30°, determine (a) the total velocity of the collar, (b) the
total acceleration of the collar, (¢) the relative acceleration of the collar with

resper:t to the arm.
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Example (3) on polar coordinates

eg

Time f at which # = 30°. Substituting # = 30° = 0.524 rad into the
e, expression for #, we obtain

B 6 = 0.15¢ 0.524 = 0.15¢° t = 1.869 s

Equations of Motion. Substituting t = 1.869 s in the expressions for r, 8,
and their first and second derivatives. we have

g
O r= 09— 012 = 0481 m 6 = 0.15t = 0.524 rad
F= —0.24t = —0.449 m/s 0 = 0.30t = 0.561 rad/s
v=oe +tgeg = —024 = —0.240 m/s" = 0.30 = 0.300 rad/s’

a=dae, +dgeg

vg=(0270m/s)e, ~ Or =1 = —0449 m/s
7 vg = rf = 0.481(0.561) = 0.270 m/s

N B\ ; ? v = 0.524 m/s B = 31.0°
\
: S\
-\.- i
Mﬂ fﬁ..@' v, = (—0.449 m /s)e,
"

-
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m A
a, = — rf”

Example (3) on polar coordinates
= —0.240 — 0.481(0.561)° = —0.391 m/s"
dg = )+ 278

Acceleration of B. Using Egs. (11.46), we obtain
.-"".,’ o
- = 0.481(0.300) + 2(—0.449)(0.561) = —0.359 m/s
-

~"agy=(-0.359 m/s2e, a =053 m/ss y=426°

a,=(-0.391 m/s)e,

/\‘x\‘

H | B/OA = |—{:]£'1'ﬂ I[l."l-."ini.:l:'l.

c. Acceleration of B with Respect to Arm OA. We note that the motion
of the collar with respect to the arm is rectilinear and defined by the coor-

dinate r. We write
agion = ¥ = —0.240 m/s”
agos = 0.240 m/s” toward O. 21



