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In this talk, we discuss the ”Heisenberg uniqueness pair” (HUP) for the hyperbola.

The notion of Heisenberg uniqueness pair introduced in the article ”Heisenberg unique-

ness pairs and the Klein-Gordon equation, Ann. of Math. (2) 173 (2011), no. 3,

1507-1527” by Hedenmalm and Montes-Rodŕıguez.

Let � be a smooth curve or finite disjoint union of smooth curves in the plane and

⇤ be any subset of the plane. Let X (�) be the space of all finite complex-valued Borel

measures in the plane which are supported on � and are absolutely continuous with

respect to the arc length measure on �. Let AC(�,⇤) = {µ 2 X (�) : µ̂|⇤ = 0}, then
(�,⇤) is said to be a Heisenberg uniqueness pair if AC(�,⇤) = {0}. In this case, since ⇤

determine the measures µ 2 X (�), we say that ⇤ is a ”Fourier uniqueness set” for �.

In this talk we present the following result. Let � be the hyperbola {(x, y) 2 R2
:

xy = 1} and ⇤
✓
� be the lattice-cross in R2

is defined by

⇤
✓
� := ((Z+ {✓})⇥ {0}) [ ({0}⇥ �Z) ,

where ✓ = 1/p, for some p 2 N, and � is a positive real. Then AC
⇣
�,⇤✓

�

⌘
= {0} if and

only if 0 < �  p.
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