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Syllabus



Text Books: 

1. Introduction to Classical Mechanics by Takwale R and Puranik P 

(McGraw Hill Education, 1 st Ed., 2077) . 

2. Classical mechanics by John Taylor (University Science, 2005).

3. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles by 

R. Eisbergand R, Resnick [f ohn-Wiley, 2nd Ed., 2006). 

References:
1. A Student's Guide to Lagrangians and Hamiltonians by Patrick Hamill 

(Cambridge University Press, 1st edition, 2013).
2. Theoretical Mechanics by M. R. Spiegel (Tata McGraw Hill, 2008).
3. The Feynman Lectures on Physics, Vol. Iby R. P. Feynman, R. B. 

Leighton, and M.Sands, [Narosa Publishing House, 1998J.

Books

Intro. Classical Mechanics, David Morin (Cambridge)



Layout of mechanics course

• Mathematical concepts of partial differentiation and coordinate systems.

• Constraints, degree’s of freedom and generalized coordinates. 

• Challenges with unknown nature of constrain forces in Newtonian Mechanics

• D’Alembert’s Principle of virtual work  to remove the constrain forces from 

analysis.

• Lagrange’s equation: An alternative to Newton’s law 

• Variational method and Lagrange's equation from variational principle 

• Hamiltonian equations of motion



Analytical mechanics 

Introduction of new concepts of mechanics 

beyond Newton’s law:

Largangian and Hamiltonian equations

Why this is important?

 Making the analysis easier, in particular complex dynamical 

situations with imposed constrains/conditions. 

 More general concepts extendable to other modern area of 

physics like quantum mechanics, field theory etc. 



Review of certain mathematical concepts 

Key to understand classical mechanics 



Total Differential: Function of one variable
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• Infinitesimal change of � around certain point (�) =(rate of change of � around the 

point) (magnitude of change in � )

• At stationary points (A,B, C), � does not changes [	� = 0] even if � is changed 

infinitesimally, 

which implies that at those points �� � = 0. 
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Partial differential: function of more than one 

variables
�(�, �) depends on two independent variables � ��	 �.

Example: Height (�) of a hill as function of position 

coordinate �, � . 

 The rate of change (slope) in the ‘��	��������, when �
remains constant is denoted by

 The rate of change in the ‘��	��������, when � remains 

constant is denoted by
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• Change in height if I walk in the ‘#’ direction [keeping ‘�’ 

fixed] by ‘$#’ ? 
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Change in height if I go in the arbitrary direction so that ‘�’ 

changes by ‘	�’ and ‘�’ also changes by ‘	�’ 
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Partial differential

• Generalization for a function which depends on several 

variables �(�., �/, �0…. �1)
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Partial differential (Examples)

 f(x,y) = a x2 + b y2

'%
'# = ; < =

 f(x,y) = a x2y + b
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'# = ; < = >

 f(x,θ) = a x Sin(θ) + b θ2
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'� = < = Cos(θ) + 2b θ



Differentiation of function of functions 

�(�, �) is such that  � and � are function of another variable say, �. 

We wish to find the derivative 
-3
-@.

Example: � = �� + ln �/
(we say, f depends x & y explicitly; 

f depends u implicitly!) 

Let, � = � cos � and � = � sin �
How to calculate 

-3
-@ ?

Method 1: Direct substitution 

Step 1: � = (� cos �)(� sin �) + ln(� sin �)/

Step 2: Find 
-3
-@



Example

G(�, �) = �/ + �/:
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Method 2: Chain rule

You know, 	�=(
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Find the First differentials individually 
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and then substitute in the above relation. 

Chain rule of partial differential



Generalization for a function depends on several variables 

�(�., �/, �0…. �1) and the variables are function of another 

set of variables, Let, �9 (�., �/, …. �1)
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Chain rule of partial differential



Questions?


