Welcome to IIT Guwahati

PH101: PHYSICS-I

Lecture 1

Padma Kumar Padmanabhan

Uday Maiti Department of Physics IIT Guwahati

1. Analytical (Classical) mechanics

(Up to Mid-Sem Exam; Of 50% marks)

Prof. P. Poulose Prof. Girish Setlur

2. Relativity

3. Quantum mechanics

(For End-Sem Exam; Of 50% marks)

Evaluations

Quiz-I of 10% marks on 27th August 2018 (*tentatively*)

Mid-Semester Exam of 40% (as per institute time table)

Quiz-II of 10 marks (Dates will be announced later)

End-Semester exam of 40% (as per institute time table)

Course Web Page:

http://www.iitg.ac.in/physics/fac/padmakumarp/Courses/PH101/JulyNov2018.htm

PHYSICS-I (PH101) July-Nov, 2018

+

Syllabus & Textbooks	Tutorial Groups		Tutors	
Lectures	DIV-I/DIV-II (am)	DIV-III/DIV-IV (pm)		
Tuesday	9-10 (am)	4-5	(pm)	
Wednesday	10-11 (am)	3-4	(pm)	
Thursday	11-12 (am)	2-3	(pm)	
Tutorials	Monday: 8:00	Monday: 8:00-8:55 (For All)		

Lecture Notes & Tutorial Assignments

Month	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
July		24 Lecture#1	25 Lecture#2	26 Lecture#3	27	28	29
2018	30 Tutorial#1	31 Lecture#4					
			1 Lecture#	2 Lecture#	3	4	5
August - 2018	6 Tutorial#2	7 Lecture#	8 Lecture#	9 Lecture#	10	11	12
	13 Tutorial#3	14	15 Holiday	16	17	18	19
	20 Tutorial#4	21	22 Holiday	23	24	25	26

Syllabus

PH101: Physics - I (2-1-0-6)

Calculus of variation: Fermat's principle, Principle of least action, Euler-Lagrange equations and its applications.

Lagrangian mechanics: Degrees of freedom, Constraints and constraint forces, Generalized coordinates, Lagrange's equations of motion, Generalized momentum, Ignorable coordinates, Symmetry and conservation laws, Lagrange multipliers and constraint forces.

Hamiltonian mechanics: Concept of phase space, Hamiltonian, Hamilton's equations of motion and applications.

Special Theory of Relativity: Postulates of STR. Galilean transformation. Lorentz transformation. Simultaneity. Length Contraction. Time dilation. Relativistic addition of velocities. Energy momentum relationships.

Quantum Mechanics: Two-slit experiment. De Broglie's hypothesis. Uncertainty Principle, wave function and wave packets, phase and group velocities. Schrödinger Equation. Probabilities and Normalization. Expectation values. Eigenvalues and eigenfunctions.

Applications in one dimension: Infinite potential well and energy quantization. Finite square well, potential steps and barriers - notion of tunnelling, Harmonic oscillator problem zero point energy, ground state wavefunction and the stationary states.

Books

Text Books:

- 1. Introduction to Classical Mechanics by Takwale R and Puranik P (McGraw Hill Education, 1 st Ed., 2077).
- 2. Classical mechanics by John Taylor (University Science, 2005).
- 3. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles by

R. Eisbergand R, Resnick [f ohn-Wiley, 2nd Ed., 2006).

References:

- 1. A Student's Guide to Lagrangians and Hamiltonians by Patrick Hamill (Cambridge University Press, 1st edition, 2013).
- 2. Theoretical Mechanics by M. R. Spiegel (Tata McGraw Hill, 2008).
- 3. The Feynman Lectures on Physics, Vol. Iby R. P. Feynman, R. B. Leighton, and M.Sands, [Narosa Publishing House, 1998J.

Intro. Classical Mechanics, David Morin (Cambridge)

Layout of mechanics course

- Mathematical concepts of partial differentiation and coordinate systems.
- Constraints, degree's of freedom and generalized coordinates.
- Challenges with unknown nature of constrain forces in Newtonian Mechanics
- D'Alembert's Principle of virtual work to remove the constrain forces from analysis.
- Lagrange's equation: An alternative to Newton's law
- Variational method and Lagrange's equation from variational principle
- Hamiltonian equations of motion

Analytical mechanics

Introduction of new concepts of mechanics beyond Newton's law: Largangian and Hamiltonian equations

Why this is important?

- Making the analysis easier, in particular complex dynamical situations with imposed constrains/conditions.
- More general concepts extendable to other modern area of physics like quantum mechanics, field theory etc.

Review of certain mathematical concepts

Key to understand classical mechanics

Total Differential: Function of one variable

$$y = f(x) \text{ is a function of one variable } x$$

$$f'(x) = \frac{dy}{dx} \underset{\Delta x \to 0}{=} Lt \quad \frac{\Delta y}{\Delta x} \underset{\Delta x \to 0}{=} Lt \quad \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$dy = [f'(x)] dx$$

$$y = f(x)$$

- Infinitesimal change of *y* around certain point (*x*) =(rate of change of *y* around the point) (magnitude of change in *x*)
- At stationary points (A,B, C), y does not changes [dy = 0] even if x is changed infinitesimally,

which implies that at those points f'(x) = 0.

Partial differential: function of more than one variables

f(x, y) depends on two independent variables x and y.

Example: Height (f) of a hill as function of position coordinate (x, y).

□ The rate of change (slope) in the 'x' direction, when y remains constant is denoted by

$$(\frac{\partial f}{\partial x})_y = Lt \quad \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$
$$\Delta x \to 0$$

□ The rate of change in the 'y' direction, when x remains constant is denoted by

$$(\frac{\partial f}{\partial y})_{x} = Lt \quad \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$
$$\Delta y \to 0$$

• Change in height if I walk in the 'x' direction [keeping 'y' fixed] by 'dx'?

$$[df]_{dx} = (\frac{\partial f}{\partial x}) dx$$

=(rate of change in 'x' direction)(amount of change in x)

• Similarly,
$$[df]_{dy} = (\frac{\partial f}{\partial y}) dy$$

Change in height if I go in the arbitrary direction so that 'x' changes by 'dx' and 'y' also changes by 'dy'

$$df = \left(\frac{\partial f}{\partial x}\right) dx + \left(\frac{\partial f}{\partial y}\right) dy = [df]_{dx} + [df]_{dy}$$

• Generalization for a function which depends on several variables $f(x_1, x_2, x_3 \dots x_n)$

$$df = \left(\frac{\partial f}{\partial x_1}\right) dx_1 + \left(\frac{\partial f}{\partial x_2}\right) dx_2 + \dots + \left(\frac{\partial f}{\partial x_n}\right) dx_n = \sum \left(\frac{\partial f}{\partial x_i}\right) dx_i$$

Partial differential (Examples)

G
$$f(x,y) = a x^2 + b y^2$$

$$\frac{\partial f}{\partial x} = 2 \text{ a x}$$
 $\frac{\partial f}{\partial y} = 2 \text{ b y}$

 $\Box \qquad f(x,y) = a x^2 y + b$

$$\frac{\partial f}{\partial x} = 2 \text{ a x y} \qquad \qquad \frac{\partial f}{\partial y} = ax2$$

 $\Box \qquad f(x,\theta) = a \times Sin(\theta) + b \theta^2$

$$\frac{\partial f}{\partial x} = a \operatorname{Sin}(\theta) \qquad \frac{\partial f}{\partial \theta} = a \operatorname{x} \operatorname{Cos}(\theta) + 2b \theta$$

Differentiation of function of functions

f(x, y) is such that x and y are function of another variable say, u. We wish to find the derivative $\frac{df}{du}$.

Example:
$$f = xy + \ln y^2$$

(we say, f depends x & y explicitly;
f depends u implicitly!)
Let, $x = a \cos u$ and $y = a \sin u$
How to calculate $\frac{df}{du}$?

Method 1: Direct substitution Step 1: $f = (a \cos u)(a \sin u) + \ln(a \sin u)^2$ Step 2: Find $\frac{df}{du}$

Example

Distance of the Projectile from the origin,

$$S(x,y) = \sqrt{x^2 + y^2}$$

$$x(t) = u_0 \cos(\theta) t$$

&
$$y(t) = u_0 \sin(\theta) t - \frac{1}{2}g t^2$$

Chain rule of partial differential

Method 2: Chain rule

You know,
$$df = (\frac{\partial f}{\partial x}) dx + (\frac{\partial f}{\partial y}) dy$$

$$\frac{df}{du} = \left(\frac{\partial f}{\partial x}\right) \frac{dx}{du} + \left(\frac{\partial f}{\partial y}\right) \frac{dy}{du}$$

Find the First differentials individually

$$\frac{\partial f}{\partial x}, \quad \frac{\partial f}{\partial y}, \quad \frac{dx}{du}, \quad \frac{dy}{du}$$

and then substitute in the above relation.

Chain rule of partial differential

Generalization for a function depends on several variables $f(x_1, x_2, x_3, ..., x_n)$ and the variables are function of another set of variables, Let, x_i ($u_1, u_2, ..., u_n$)

$$df = \left(\frac{\partial f}{\partial x_{1}}\right) dx_{1} + \left(\frac{\partial f}{\partial x_{2}}\right) dx_{2} + \dots + \left(\frac{\partial f}{\partial x_{n}}\right) dx_{n} = \sum_{1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right) dx_{i}$$
$$\frac{\partial f}{\partial u_{1}} = \left(\frac{\partial f}{\partial x_{1}}\right) \frac{\partial x_{1}}{\partial u_{1}} + \left(\frac{\partial f}{\partial x_{2}}\right) \frac{\partial x_{2}}{\partial u_{1}} + \dots + \left(\frac{\partial f}{\partial x_{n}}\right) \frac{\partial x_{n}}{\partial u_{1}} = \sum_{1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right) \frac{\partial x_{i}}{\partial u_{1}}$$
$$\frac{\partial f}{\partial u_{j}} = \sum_{1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right) \frac{\partial x_{i}}{\partial u_{j}}$$

