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Lecture 3
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II. Cylindrical coordinate system �, �, �

How to specify a point ‘P’ in space ?

 �	, 
� Coordinate of the foot 

of the point in XY plane

 �-Height from the XY plane

 �, �, � coordinates system is known as cylindrical coordinate system 

Why the name cylindrical? 

 Point ‘P’ is the intersection of three surfaces: A cylindrical surface � �
�������; A half plane containing �-axis with �=constant and a plane 

�=constant. 

�, �, �

O

P



Coordinate transformation: Cartesian to 

cylindrical
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Transformation equation is very similar to polar coordinate 

with additional �-coordinate.

Reverse transformation
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Note: Instead of �	, 
� many books use notation �", #). 



Unit vectors in cylindrical coordinate system 
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�% �$, �% and �$ are unit vectors 

along increasing direction of 

coordinates �, �		and �.

Polar coordinate unit vectors (�$, �%) + 

additional unit vector in the � 'direction.
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	̂ and 
* are orthogonal but their directions depend on location.



Position, Velocity, Acceleration, Newton’s law 

in cylindrical coordinate system
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Position vector

Velocity

Acceleration

Newton’s law

Vector components are very similar to polar coordinate+ 

� 'component



=

>

?

��, �, ��

�
�

@

III. Spherical polar coordinate system

� → Radial distance from origin

� →Angle of radial vector with �-axis. 

@ →	Angle between X-axis and the 

projection of radial vector in XY plane

�, �, @ is known as spherical polar coordinate 

Note that point �	, 
, #� is at the intersection of three surfaces 

 A sphere  where � �Constant

 A half plane containing �-axis and @= constant 

 A cone about �=axis with �=constant.
Be careful, notations are different.

� and � are  not planer coordinate.
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Connection of spherical polar with cartesian
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� � � sin� cos@

� � � sin � sin@
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Transformation relations 
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Unit vectors in spherical polar 

 Position vector 

	, � 	 GHI 
 JKG # L$ � 	 GHI 
 GHI # M$ � 	 cos 
 �̂
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 	̂, 	
. and #$	are, respectively 

perpendicular to 	 � JKIGN.	

 � JKIGN. # � JKIGN.

�$ �
�

�
�$ =GHI 
 JKG # L$ � GHI 
 GHI # M$ � cos 
 �̂

�$

 @( is the unit vector perpendicular to 

# �constant plane (��	PQ��R�, 
I,e, perpendicular to unit vectors 	̂ and �	(

Thus 												#$ �
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Unit vectors in spherical polar 



Partial differential of unit vectors in spherical 

polar  

]�$

]�
�

]

]�
�( �a�� ��@ � �( �a�� �a�@ � �$ ���

� �( ���� ���@ � �( ���� ���@ ' �$ ���� � �%

]�$

]@
�

]

]@
�( �a�� ��@ � �( �a�� �a�@ � �$ ���

� '�( ���� ���@ � �( ���� ���@ � ����@(

]�%

]�
�

]

]�
�( ��� ��@ � �( ��� �a�@ ' �$ �a��

� '�( ���� ���@ ' �( ���� ���@ '�$ ���� � '�$

Unit vectors in spherical polar coordinate are function of � and @ only. 
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Additionally, you may verify:



Velocity in spherical polar coordinate 
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Chain rule 

Acceleration
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You must try to prove this
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Velocity –to remember!
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Elementary 

displacement in 

arbitrary direction 
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Done!

Well, We are done with the necessary

mathematical concepts!

Ok, Now in to Physics!Ok, Now in to Physics!Ok, Now in to Physics!Ok, Now in to Physics!


