

Lecture 8

D'Alembert's principle of virtual work,

Derivation of Lagrange's equation from D'Alember's principle

Real vs Virtual displacement

Simple pendulum with a variable string length $l(t)$ **[Time dependent constraint]**

Real displacement of the bob in time dt is given by $d\vec{r} = \vec{r}(t + dt) - \vec{r}(t)$

Let's **imagine** any **instantaneous arbitrary displacement** at time t (that is, *without allowing time to change*, $dt = 0$) **AND consistent with the constraint relations at time** ?

Imaginary, instantaneous displacement which is consistent with the constrain relation at a given instant (i,e. without allowing real time to change) is called *Virtual displacement* and denoted by $\delta\vec{r}$ (for infinitesimal case)

Real vs Virtual displacement

• By definition a virtual infinitesimal displacement is given by

$$
\delta x_i = dx_i
$$

$$
dt = 0
$$

 \bullet If the constraint is not time dependent, the real and virtual displacements matches eachother.

Virtual displacement in generalized coordinates

 \Box Consider a system of N particles with k constrains, DOF, $n = 3N - k$

Q Cartesian coordinates, \vec{r}_i i $\vec{r}_i = \vec{r}_i(x)$ x_1, y_1, z_1 $\begin{aligned} Z_1 \dots X_N \nolimits_j \mathcal{Y}_{N_j} Z_1 \end{aligned}$ $(z_N) \mid (i = 1, ..., N)$ **Q** Generalized coordinates q_j $(j = 1, ..., n)$

 \Box Virtual displacements of the particles $\delta \vec{r}_1$, $\delta \vec{r}_2$,, $\delta \vec{r}_1$ \bm{N}

 \Box Virtual displacements of the particles in the generalized coordinates
 δa , δa , δa , an be found from given transformation relations δq_1 , δq_2, δq $\, n$ $\frac{n}{n}$ can be found from given transformation relations

Virtual work done

Real work done: Work done due to real displacement $(d\vec{r})$ of a particle acted on by total force \vec{F} is given by

$$
dW=\vec{F}.\,d\vec{r}
$$

As you can always **imagine** an instantaneous displacement (without allowing time to change), known as virtual displacement $(\delta \vec{r})$, and hence you can always define a scalar function

$$
\delta W = \vec{F}.\,\delta \vec{r}
$$

This scalar function is know called **Virtual work done.**

Note: 'Virtual work' is different from 'Real work', as virtual displacement is imagined without allowing time to change.

Consider a system of particles and \vec{F}_1 , \vec{F}_2 , ..., \vec{F}_N N_N are the forces on 1,2 \ldots N_{th} particles, then Total virtual work done

$$
\delta W = \sum_{i=1}^N \vec{F}_i \cdot \delta \vec{r}_i
$$

Here, force on each particle, \vec{F}_i is the sum of external force and also forces of constraints.

$$
\vec{F}_i = \vec{F}_{ie} + \vec{f}_{ic}
$$

Where,

 F_{ie} is the external applied force on i_{th} particle. f_{ic} is the constraint force

Virtual work for a dynamical system

Newton's second law reads as

$$
\mathbf{m}\ddot{\vec{r}} = \vec{F}
$$

\nTotal force(\vec{F}) = Applied force(\vec{F}_e) + constraint force (\vec{f}_c)
\n
$$
\mathbf{m}\ddot{\vec{r}} = \vec{F}_e + \vec{f}_c
$$

1

Taking dot product with an infinitesimal virtual displacement $\delta \vec{r}$

$$
m\ddot{\vec{r}}\cdot\delta\vec{r} = (\vec{F}_e + \vec{f}_c)\cdot\delta\vec{r}
$$

Now, virtual displacement is instantaneous (frozen in time & imaginary) AND **consistent with ALL the constraint relations.**

As $\delta \vec{r}$ are perpendicular to \vec{f}_c , thus virtual work due to constraint force is zero, $f_c \cdot \delta \vec{r} = 0$

D'Alembert's principle of virtual work

If virtual work done by the constraint forces is ($f_c \cdot \delta \vec{r} = 0$) (from eq.-1),

$$
\left(\vec{F}_e - m\ddot{\vec{r}}\right) \cdot \delta \vec{r} = 0 \longrightarrow D' \text{Alembert's principle of Virtual work}
$$

Now, for a general system of N particles having virtual displacements, $\delta \vec r_1, \delta \vec r_2,, \delta \vec r_N$,

$$
\sum_{i=1}^{N} (\vec{F}_{ie} - m_i \ddot{\vec{r}}_i) \cdot \delta \vec{r}_i = 0
$$

 $\vec{i}_i \cdot \delta \vec{r}_i = 0$ $\vec{F}_{ie} \rightarrow$ Applied force on i_{th} particle

Does not necessarily means that individual terms of the summation are zero as \vec{r}_i are not independent, they are connected by constrain relation

$$
\sum_{i=1}^{N} (\vec{F}_{ie} - m_i \ddot{\vec{r}}_i) \cdot \delta \vec{r}_i = 0
$$

 \Box Want to express this relation in such a way where all the terms in the summation becomes individually zero. summation becomes individually zero.

how to do?

Let's remember: $u_1 \, \delta x_1 + u_2 \, \delta x_2$ $u_2 = 0$; does this always mean u_1 $u_1 = 0$ and u_2 $_2 = 0?$ If x_1 x_1 and x_2 $_2$ are independent then u_1 $u_1 = 0$ and u_2 $_2 = 0$ for all possible variation of

If x_1 x_1 and x_2 ₂ are not independent, changing one will change the other.

 x_1 and x_2

 x_1 and x_2 ,

 $\sum u_i \delta x_i = 0$, then all u_i will be individually zero for all possible variation of the x_i if they are independent.

D'Alembert's principle,

Constraint forces are out of the game!

Now, no need of additional subscript, we shall simply write $\vec{F}_{\pmb{i}}\,$ instead of $\, \vec{F}_{\pmb{i}\pmb{e}} \,$

But How to express this relation so that individual terms in the summation are zero?

Switch to generalized coordinate system as they are independent!

Let's take the 1st term

 $\pmb Q$

 $Q_j = \sum \vec{F}_i$

i

· $\frac{\partial \vec{r}_i}{\partial q_j}$

$$
\sum_i \vec{F}_i \cdot \delta \vec{r}_i = \sum_i \vec{F}_i \cdot \sum_{j=1}^n \frac{\partial \vec{r}_i}{\partial q_j} \delta q_j = \sum_{j=1}^n \left(\sum_i \vec{F}_i \cdot \frac{\partial \vec{r}_i}{\partial q_j} \right) \delta q_j = \sum_{j=1}^n Q_j \delta q_j
$$

Generalized force

Q Dimensions of Q_j is not always of force! \Box Dimensions of $Q_j \delta q_j$ is always of work!

00

$$
\begin{aligned}\n\Box \quad & 2^{\text{nd}} \text{Term:} \quad \left| \sum_{i} m_{i} \ddot{\vec{r}}_{i} \cdot \delta \vec{r}_{i} = \sum_{i} m_{i} \ddot{\vec{r}}_{i} \cdot \sum_{j=1}^{n} \frac{\partial \vec{r}_{i}}{\partial q_{j}} \delta q_{j} = \sum_{i,j} m_{i} \ddot{\vec{r}}_{i} \cdot \frac{\partial \vec{r}_{i}}{\partial q_{j}} \delta q_{j} \right| \\
& \overrightarrow{\vec{r}}_{i} \cdot \frac{\partial \vec{r}_{i}}{\partial q_{j}} = \frac{d}{dt} \left(\dot{\vec{r}}_{i} \cdot \frac{\partial \vec{r}_{i}}{\partial q_{j}} \right) - \dot{\vec{r}}_{i} \cdot \frac{d}{dt} \left(\frac{\partial \vec{r}_{i}}{\partial q_{j}} \right) \\
& = \frac{d}{dt} \left(\dot{\vec{r}}_{i} \cdot \frac{\partial \dot{\vec{r}}_{i}}{\partial \dot{q}_{j}} \right) - \dot{\vec{r}}_{i} \cdot \left(\frac{\partial \dot{\vec{r}}_{i}}{\partial q_{j}} \right) \\
& = \frac{d}{dt} \left(\dot{\vec{r}}_{i} \cdot \frac{\partial \dot{\vec{r}}_{i}}{\partial \dot{q}_{j}} \right) - \dot{\vec{r}}_{i} \cdot \left(\frac{\partial \dot{\vec{r}}_{i}}{\partial q_{j}} \right) \\
& = \frac{d}{dt} \left(\frac{\partial}{\partial \dot{q}_{j}} \left(\frac{1}{2} \dot{\vec{r}}_{i}^{2} \right) \right) - \frac{\partial}{\partial q_{j}} \left(\frac{1}{2} \dot{\vec{r}}_{i}^{2} \right) \\
& \text{dot cancellation!} \\
\end{aligned}
$$
\nNot cancellation!

Interchange of order of differential operators

$$
\vec{r}_i = \vec{r}_i(q_1, ..., q_n, t) \qquad \frac{d}{dt} \left(\frac{\partial \vec{r}_i}{\partial q_j}\right) = \frac{\partial \dot{\vec{r}}_i}{\partial q_j} \qquad \frac{\partial \vec{r}_i}{\partial q_j} = \frac{\partial \vec{r}_i}{\partial q_j} (q_1, ..., q_n; t)
$$

$$
\dot{\vec{r}}_i = \frac{d\vec{r}_i}{dt} = \frac{\partial \vec{r}_i}{\partial q_1} \dot{q}_1 + \frac{\partial \vec{r}_i}{\partial q_2} \dot{q}_2 + \dots + \frac{\partial \vec{r}_i}{\partial q_n} \dot{q}_n + \frac{\partial \vec{r}_i}{\partial t}
$$
\nRHS = $\frac{\partial \dot{\vec{r}}_i}{\partial q_j} = \frac{\partial^2 \vec{r}_i}{\partial q_j \partial q_1} \dot{q}_1 + \frac{\partial^2 \vec{r}_i}{\partial q_j \partial q_2} \dot{q}_2 + \dots + \frac{\partial^2 \vec{r}_i}{\partial q_j \partial q_n} \dot{q}_n + \frac{\partial^2 \vec{r}_i}{\partial q_j \partial t}$

LHS =
$$
\frac{d}{dt} \left(\frac{\partial \vec{r}_i}{\partial q_j} \right) = \frac{\partial}{\partial q_1} \left(\frac{\partial \vec{r}_i}{\partial q_j} \right) \frac{dq_1}{dt} + \dots + \frac{\partial}{\partial q_n} \left(\frac{\partial \vec{r}_i}{\partial q_j} \right) \frac{dq_n}{dt} + \frac{\partial}{\partial t} \left(\frac{\partial \vec{r}_i}{\partial q_j} \right)
$$

 $\boldsymbol{\partial}$ 2 \sim V $\partial x \partial y$ = $\boldsymbol{\partial}$ 2 \sim V $\partial y\partial x$ **This true for any** *x* **&** *y!* **ie., even if say,** *y= t* **!**= ∂ 2 $2\vec{r}$ \dot{l} $\partial q_{\hspace{0.6pt} j} \partial q_{\hspace{0.3pt} 1}$ \dot{q}_1 + ∂ 2 $\frac{\partial^2 \vec{r}_i}{\partial q_j \partial q_2}$ \dot{q}_2 $_2 + ... +$ ∂ 2 $\frac{\partial^2 \vec{r}_i}{\partial q_j \partial q_n}$ \dot{q}_n + ∂ 2 $\frac{\partial^2 \vec{r}_i}{\partial q_j \partial t}$ = RHS

Interchange of order of differential operators

$$
\frac{\partial \vec{r}_i}{\partial q_j} = \frac{\partial \dot{\vec{r}}_i}{\partial \dot{q}_j}
$$

$$
\dot{\vec{r}}_i = \dot{\vec{r}}_i (q_1, ..., q_n; \dot{q}_1, ..., \dot{q}_2; t)
$$
\n
$$
\dot{\vec{r}}_i = \frac{d\vec{r}_i}{dt} = \frac{\partial \vec{r}_i}{\partial q_1} \dot{q}_1 + \frac{\partial \vec{r}_i}{\partial q_2} \dot{q}_2 + \dots + \frac{\partial \vec{r}_i}{\partial q_j} \dot{q}_j + \dots + \frac{\partial \vec{r}_i}{\partial q_n} \dot{q}_n + \frac{\partial \vec{r}_i}{\partial t}
$$
\nLet's look at the dependency=\n
$$
\frac{\partial \vec{r}_i}{\partial q_j} = \frac{\partial \vec{r}_i}{\partial q_j} (q_1, ..., q_n; t)
$$
\nRHS=\n
$$
\frac{\partial \vec{r}_i}{\partial t} = \frac{\partial \vec{r}_i}{\partial t} = -L
$$

 $\partial\dot q_j\ \ \ \ \ \partial q_j$

 \Box Thus 2nd term becomes

$$
\sum_{i=1}^{N} m_i \ddot{\vec{r}}_i \cdot \delta \vec{r}_i = \sum_{i,j} m_i \left[\frac{d}{dt} \left\{ \frac{d}{d\dot{q}_j} \left(\frac{1}{2} \dot{r}_i^2 \right) \right\} - \frac{\partial}{\partial q_j} \left(\frac{1}{2} \dot{r}_i^2 \right) \right\} \delta q_j
$$
\n
$$
= \sum_{j} \left[\frac{d}{dt} \left\{ \frac{\partial}{\partial \dot{q}_j} \left(\sum_{i} \frac{1}{2} m_i \dot{r}_i^2 \right) \right\} - \frac{\partial}{\partial q_j} \left(\sum_{i} \frac{1}{2} m_i \dot{r}_i^2 \right) \right] \delta q_j
$$
\n
$$
= \sum_{j} \left\{ \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_j} \right\} \delta q_j
$$

The 1st term

$$
\sum_{i} \vec{F}_i \cdot \delta \vec{r}_i = \sum_{j=1}^{n} Q_j \delta q_j
$$

 \Box D'Alembert's principle in generalized coordinates becomes

$$
\sum_{j} \left\{ \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} \right\} \delta q_{j} = \sum_{j} Q_{j} \delta q_{j}
$$

$$
\sum_{j} \left[\left\{ \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} \right\} - Q_{j} \right] \delta q_{j} = 0
$$

Well, we are very close to Lagrange's equation!

 \Box Since generalized coordinates q_i are all independent each

term in the summation is zero
\n
$$
\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} = Q_j
$$
\n
$$
= -\left(\frac{\partial V_i}{\partial x_i} \hat{i} + \frac{\partial V_i}{\partial y_i} \hat{j} + \frac{\partial V_i}{\partial z_i} \hat{k} \right) \cdot \left(\frac{\partial x_i}{\partial q_j} \hat{i} + \frac{\partial y_i}{\partial q_j} \hat{j} + \frac{\partial z_i}{\partial q_j} \hat{k} \right)
$$
\n
$$
= -\left(\frac{\partial V_i}{\partial x_i} \frac{\partial x_i}{\partial q_j} + \frac{\partial V_i}{\partial y_i} \frac{\partial y_i}{\partial q_j} + \frac{\partial V_i}{\partial z_i} \frac{\partial z_i}{\partial q_j} \right)
$$
\n
$$
Q_j = \sum_i \left(-\vec{\nabla} V_i \right) \cdot \frac{\partial \vec{r}_i}{\partial q_j} = -\sum_i \frac{\partial V_i}{\partial q_j} = -\frac{\partial}{\partial q_j} \sum_i V_i = -\frac{\partial V}{\partial q_j}
$$
\n
$$
V = \sum_i V_i
$$

Hence,
\n
$$
\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} = Q_j = -\frac{\partial V}{\partial q_j}
$$

 \Box Assume that *V* does not depend on \dot{q}_j , then $\boldsymbol{\partial V}$ $\frac{\partial}{\partial \dot{q}_j} = 0$

$$
\frac{d}{dt} \left\{ \frac{\partial}{\partial \dot{q}_j} (T - V) \right\} - \frac{\partial (T - V)}{\partial q_j} = 0
$$

$$
\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_j}\right)-\frac{\partial L}{\partial q_j}=0
$$

Where,

$$
L(q_j, \dot{q}_j, t) = T(q_j, \dot{q}_j, t) - V(q_j, t)
$$

We have reached to Lagrange's equation from D'Alembert's principle.

Review of the steps we followed

 \Box Started from Newton's law

$$
m\ddot{\vec{r}} = \vec{F}_e + \vec{f}_c
$$

 $m\ddot{\vec{r}} = \vec{F}_e + \vec{f}_c$
 \Box Taken dot product with virtual displacement to kick out constrain force from the game by using \vec{f}_c $\vec{r}_c \cdot \delta \vec{r} = 0$; Arrive at D'Alembert's principle $(\vec{F}_e - m\vec{r})$ $\ddot{\vec{r}}\cdot \delta\vec{r}$ \cdot $\delta\vec{r}$ = 0

 \Box Extended D'Alembert's principle for a system of particles;

$$
\sum_{i=1}^N (\vec{F}_{ie} - m_i \ddot{\vec{r}}_i) \cdot \delta \vec{r}_i = 0
$$

 Converted this expression in generalized coordinate system that *"every"* term of this summation is zero to get

$$
\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_i}\right) - \frac{\partial T}{\partial q_j} = Q_j
$$

This is a more general expression!

■ Now, with the assumptions: i) Forces are conservative, $\vec{F}_i = -\vec{\nabla}V_i$, hence $\frac{\partial V}{\partial V}$ $Q_j = -$ We get back our Lagrange's eqn., $\frac{d}{d}$ ∂V ∂q and ii) potential does not depend on $\dot{\mathbf{q}}_j$, then $\frac{\partial V}{\partial \dot{q}_j} = 0$ \overline{dt} $\boldsymbol{\partial L}$ $\overline{\partial\dot{\boldsymbol{q}}_{j}}$ − $-\frac{\partial L}{\partial q_j}$ =0

