1. A commonly used potential energy function to describe the interaction between two atoms (say, each of mass, m) is the Lennard-Jones potential,

$$
U = \varepsilon \left[\left(\frac{r_0}{r} \right)^{12} - 2 \left(\frac{r_0}{r} \right)^6 \right]
$$

 \overline{m}

where r is the separation between the particles, r_0 and ε are constants. Show that the potential minimum correspond to the separation, r_0 , and that the depth of the potential well is ε . Find (a) the potential energy and (b) the x-component of the force acting on atom A due to atom B, if A and B are located respectively at $(r_0, 0, 0)$ and $(2r_0, r_0, 0)$.

- 2. The potential energy function for a particular two dimensional force field is given by $U = Cxe^{-y}$, where C is a constant. (a) Sketch the constant energy lines. (b) Show that if a point is displace by a short distance dx along a constant energy line, then its total displacement is $\overline{dr} = dx(\hat{i} + \frac{\hat{j}}{\hat{r}})$ $\frac{1}{x}$). (c) Using result of (b) show explicitly that ∇U is perpendicular to the constant energy line.
- 3. When the flattening of the earth at the poles is taken into account, it is found that the gravitational potential energy of a mass m a distance r from the center of the earth is approximately,

$$
U = -\frac{GMm}{r} \left[1 - 5.4 \times 10^{-4} \left(\frac{R}{r} \right)^2 (3 \cos^2 \theta - 1) \right]
$$

where θ is measured from the pole. Show that there is a small tangential gravitational force on m except above the poles or the equator. Find the ratio of this force to $-{\bar G}Mm$ $\sqrt{r^2}$ for $\theta = 45^\circ$ and $r = R$.

- 4. A bead of mass m slides without friction on a smooth rod along the xaxis. The rod is equidistant between two spheres of mass M. The spheres are located at $x=0$, $y=\pm a$ as shown, and attract the bead gravitationally.
	- a. Find the potential energy and force on the bead when it is at $x = -\sqrt{3} a$.
	- b. Find the frequency of small oscillation of the bead around the equilibrium.
- 5. Determine if the following forces are conservative:
	- a) $F_a = B(y^2 \hat{i} x^2 \hat{j})$, where B is a constant.
	- b) $F_b = -Ar^3 \hat{r}$, where A is a constant.
	- c) $F_c = (y^2 \cos x + z^3)\hat{i} + (2y \sin x 4)\hat{j} + (3xz^2 + 2)\hat{k}$