1. A commonly used potential energy function to describe the interaction between two atoms (say, each of mass, *m*) is the Lennard-Jones potential,

$$U = \varepsilon \left[\left(\frac{r_0}{r} \right)^{12} - 2 \left(\frac{r_0}{r} \right)^6 \right]$$

m

where r is the separation between the particles, r_0 and ε are constants. Show that the potential minimum correspond to the separation, r_0 , and that the depth of the potential well is ε . Find (a) the potential energy and (b) the x-component of the force acting on atom A due to atom B, if A and B are located respectively at (r_0 , 0, 0) and ($2r_0$, r_0 , 0).

- 2. The potential energy function for a particular two dimensional force field is given by $U = Cxe^{-y}$, where C is a constant. (a) Sketch the constant energy lines. (b) Show that if a point is displace by a short distance dx along a constant energy line, then its total displacement is $\overline{dr} = dx(\hat{\iota} + \frac{\hat{j}}{x})$. (c) Using result of (b) show explicitly that ∇U is perpendicular to the constant energy line.
- 3. When the flattening of the earth at the poles is taken into account, it is found that the gravitational potential energy of a mass m a distance r from the center of the earth is approximately,

$$U = -\frac{GMm}{r} \left[1 - 5.4 \times 10^{-4} \left(\frac{R}{r}\right)^2 (3\cos^2\theta - 1) \right]$$

where θ is measured from the pole. Show that there is a small tangential gravitational force on m except above the poles or the equator. Find the ratio of this force to $-GMm/_{r^2}$ for $\theta = 45^\circ$ and r = R.

- 4. A bead of mass m slides without friction on a smooth rod along the x-axis. The rod is equidistant between two spheres of mass M. The spheres are located at x=0, y= \pm a as shown, and attract the bead gravitationally.
 - a. Find the potential energy and force on the bead when it is at $x = -\sqrt{3} a$.
 - b. Find the frequency of small oscillation of the bead around the equilibrium.
- 5. Determine if the following forces are conservative:
 - a) $F_a = B(y^2 \hat{\iota} x^2 \hat{j})$, where B is a constant.
 - b) $F_b = -Ar^3 \hat{r}$, where A is a constant.
 - c) $F_c = (y^2 \cos x + z^3)\hat{\imath} + (2y \sin x 4)\hat{\jmath} + (3xz^2 + 2)\hat{k}$