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Transformation of Velocities

 In particular, if ux = c and uy = uz = 0, we find that

 If the particle has the speed c in S , it has the same speed c in S’ ! 

 Now consider the case in which the particle is moving with a speed that is less that c,
i.e. suppose uy = uz = 0 and |ux| < c , therefore 

 Now, if  v < c then along with |ux| < c,  it is not difficult to show that the u’x < c !

Therefore, u’x > - c   

|u’x |< c Therefore, if a particle has a speed less than c in one frame of reference, 
then its speed is always less than c in any other frame of reference, 
provided this other frame of reference is moving at a speed less than c !



Relativistic Dynamics
 Till now we have only been concerned with kinematics !!

we need to look at the laws that determine the motion

 The relativistic form of Newton’s Laws of Motion ?

Newton’s Second Law may need revision

 Following Newton’s Second Law a particle can be accelerated to a velocity up to and
then beyond the speed of light. 

Now if v > c then we find that the factor γ in the Lorentz Transformation 
becomes imaginary i.e. the real space and time will transform into imaginary
quantities.

 In an isolated system, the momentum p = m u of all the particles involved is constant ! 

With momentum defined in this way, is momentum conserved in all inertial
frames of reference?

We could study the collision of two bodies !



Relativistic momentum

We will check whether or not this relation holds in all 
inertial frame of reference ? 

 Collision between two particles of masses m1 and m2 ! 

The velocities must be transformed according to the relativistic laws !

However, if we retain the Newtonian principle that the mass of a particle is 
independent of the frame of reference in which it is measured we find that the above
equation does not hold true in all frames of reference !

Collision Problem



Relativistic Momentum
 Any relativistic generalization of Newtonian momentum must satisfy two criteria:

1. Relativistic momentum must be conserved in all frames of reference.

2.   Relativistic momentum must reduce to Newtonian momentum at low speeds.

An inelastic collision between two equal point
Masses, momentum is conserved according to S

The same collision viewed from S’,  momentum 
is not conserved according to S’

Center of mass frame 

Lab frame 



Relativistic Momentum

 Thus the Newtonian definition of momentum and the Newtonian 
law of conservation of momentum are inconsistent with the 
Lorentz transformation!!

However , at very low speeds (i.e. v << c) these Newtonian principles are known to
yield results in agreement with observation to an exceedingly high degree of accuracy.

 So, instead of abandoning the momentum concept entirely in the relativistic theory, a 
more reasonable approach is to search for a generalization of the Newtonian concept 
of momentum in which the law of conservation of momentum is obeyed in all frames 
of reference.

Using this definition of momentum it can be shown
that momentum is conserved in both S and S’

Relativistic definition of momentum 



Relativistic momentum
A more general definition  of momentum must be something slightly different from the 
mass of an object times the object's velocity as measured in a given reference frame, but 
must be similar to the Newtonian momentum since we must preserve Newtonian 
momentum at low speeds.

 Time intervals measured in one reference frame are not equal to time

intervals measured in another frame of reference.

 The Lorentz transformation equations for the transverse components of position and 
velocity are not the same  ! 

If the momentum is to transform like the position, and not like velocity, we must 

divide the perpendicular components of the vector position by a quantity that is 

invariant. space-time interval

Now, if the displacement of an 

object measured in a given 

intertial frame is divided by the 

space-time interval, we obtain



Velocity four vector
A further four-vector is the velocity four-vector

proper time interval

This is the time interval measured by a clock in its own rest frame as it makes its way 

between the two events an interval ds apart.

 How the velocity four-vector relates to our usual understanding of velocity ?

 Consider a particle in motion relative to the inertial reference frame S => We can 

identify two events , E1 at (x,y,z) at time t and E2 at (x+dx, y+dy, z+dz) at time t+dt ! 

 The displacement in time dt can be represented by four vector ds  

If u << c, the three spatial components of the four velocity reduces to the usual 

components of ordinary three-velocity.

The velocity 

Four velocity associated with the two 
events E1 and E2  



Relativistic kinetic energy

Relativistic Force : F = dp/dt , Relativistic Work  : dW = F.dr

Hence, the rate of doing work  :  P = F. u = dT/dt
Relativistic kinetic energy (K.E.)

Integrating with respect to t gives

Classical Newtonian expression for the kinetic 
energy of a particle of mass moving with a velocity u



Total Relativistic Energy 
 We can now define a quantity E by

Thus, if there exists particles of zero rest mass, 
we see that their energy and momentum are 
related and that they always travel at the speed 
of light. Examples are Photon, Neutrinos ?


