Quantum Mechanics

Soumitra Nandi PH101, Lec-7

Operators in QM

✓ So far we have described the states of a physical system by vectors belonging to a complex vector space.

Insufficient to fully describe the properties of a physical system

- ✓ How the state of a system evolves in time?
- ✓ How to represent fundamental physical quantities such as position, momentum or energy?
 - > It requires further developments in the mathematics of vector spaces.
 - ✓ Involve the introduction a new mathematical entity known as an operator.

It's role is to 'operate' on state vectors and map them into other state vectors

Operators play many different roles in quantum mechanics !!

- ✓ The evolution of the state of a system in time!
- ✓ The creation or destruction of particles!
- ✓ Represent the observable properties of a system (x, p , E e.t.c.).

Operators in QM: Definition

- ✓ It is needed to introduce the mathematical notion of an operator into quantum mechanics!
 - The system will evolve in time i.e. its state will be time dependent
- The changes in a state can be brought about by various processes !!
 - ➤ It is possible to describe a physical process by an exhaustive list of all the changes that it induces on every state of the system.
 - ✓ The state of a system in quantum mechanics is represented by a vector!
 - We can prepare a table of all possible before and after states.
 - ✓ A mathematical device can then be constructed which represents this list of before and after states. Operator

The operator representing the physical process is a mathematical object that acts on the state of a system and maps this state into some other state in accordance with the exhaustive list proposed above. $\widehat{Q}_{\psi} = \chi$

Operators in QM: Types

- ➤ It is well motivated to introduce the idea of an operator as something that acts to change the state of a quantum system!
 - ✓ However, there are many operators that arise in quantum mechanics, which can act on a state vector to map it into another state vector, do not represent a physical process acting on the system.
 - ✓ In fact, the operators that represent such physical processes as the evolution of the system in time, are one kind of operator important in quantum mechanics known as unitary operators.
 - ✓ Another very important kind of operator, which represents the physically observable properties of a system, such as momentum or energy, is known as
 Hermitian operator! Not an actual physical process
 - Hermitian operators represent observables of a system !!
 - Unitary operators represent possible actions performed on a system !!

Operators in QM: Hermitian

Postulate 4

- ✓ Every dynamical variable in classical mechanics can be replaced by operator which will act on the wave function .
- ✓ An operator is merely the mathematical rule used to describe a certain mathematical operation.
- ✓ For each dynamical variable, x, there exist an expectation value < x >
- ✓ Real world, measurable observables needs to be real values!

What makes for real expectation value?

$$\langle \mathbf{Q} \rangle = \int_{-\infty}^{\infty} dx \, \psi^* \, \widehat{\mathbf{Q}} \, \psi = \langle \mathbf{Q} \rangle^* = \int_{-\infty}^{\infty} dx \, \psi^* \, \widehat{\mathbf{Q}}^* \, \psi$$

 $Q = Q^*$ \Rightarrow Hermitian operator

More general definition for an operator to be Hermitian

$$\int_{\Omega} dx \, \psi_1^* \, \widehat{Q} \, \psi_2 = \int_{\Omega} dx \, \psi_2^* \, \widehat{Q}^* \, \psi_2$$

Eigenvalues are real and their eigen functions are orthonormal!

$$\frac{\partial^2 \Psi}{\partial \psi} = \lambda \Psi$$

Operators in QM: Properties!

Most operators in quantum mechanics have a very important property: they are linear or, at worst, anti-linear. $\widehat{T}(c_1 \psi_1 + c_2 \psi_2) = c_1^*(\widehat{T}\psi_1) + c_2^*(\widehat{T}\psi_2)$

$$\widehat{A} \left(c_1 \psi_1 + c_2 \psi_2 \right) = c_1 (\widehat{A} \psi_1) + c_2 (\widehat{A} \psi_2)$$

- ✓ Equality of Operators : If $\widehat{\mathbf{A}} \psi = \widehat{\mathbf{B}} \psi$ then $\widehat{\mathbf{A}} = \widehat{\mathbf{B}}$!!
- ✓ The Unit Operator and the Zero Operator : $\hat{1} \psi = \psi \& \hat{0} \psi = 0$
- \checkmark Addition of Operators: $(\widehat{A} + \widehat{B}) \psi = \widehat{A} \psi + \widehat{B} \psi$
- ✓ Multiplication of an Operator by a Complex Number : \widehat{A} (λ ψ) = λ (\widehat{A} ψ)
- ✓ Multiplication of Operators : $\widehat{A} \{ \widehat{B} \psi \} = \widehat{A} \widehat{B} \psi$

Commutator

- ✓ Commutators : In general, $\widehat{A} \widehat{B} \neq \widehat{B} \widehat{A}$ The difference $\widehat{A} \widehat{B} \widehat{B} \widehat{A} = [\widehat{A}, \widehat{B}]$
 - > If the commutator vanishes, the operators are said to commute.

Two observable properties of a system can be known simultaneously with precision!

Let us define an operator U(t + t, t) such that

$$\psi(t+\Delta t) = \upsilon(t+\Delta t, t) \psi(t)$$
 $\psi(t+\Delta t) = \hat{\Pi}$
 $\psi(t+\Delta t) = \hat{\Pi}$
 $\psi(t+\Delta t, t) = \hat{\Pi}$
 $\psi(t+\Delta t) = \hat{\Pi}$
 $\psi(t) = \hat{\Pi}$