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Abstract: Flight planning for airborne LiDAR data collection determines flight 
parameters, which in turn control the flight duration. While the former ensures 
desired quality of captured data the cost of the project is directly affected by the 
latter. This paper attempts to optimise flight planning problem. The flight 
duration is expressed as an objective function and the associated data 
requirements, preferences and limitations of flight planning problem are 
considered as constraints. Due to the typical characteristics of flight duration 
and flight parameters, a two-step procedure of optimisation that consists of 
genetic algorithms (GA) and Hooke and Jeeve’s (HJ) method of optimisation 
are adopted. The two-step procedure alleviates the pitfalls of both GA and HJ 
method and successfully determines the optimal flight planning parameters for 
a fairly complicated problem. Results obtained in this paper demonstrate that 
the proposed two-step procedure can be used for solving complex engineering 
problems like flight planning. 

Keywords: two-step procedure; optimisation; flight planning; airborne LiDAR 
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1 Introduction to flight planning problem for ALS 

Airborne LiDAR scanning (ALS) provides 3D topographic data of a terrain surface with 
certain attributes like planimetric (horizontal) and altimetric (vertical) accuracies, data 
density, overlap, etc. Due to negligible dependencies on the accessibility and type of 
terrain conditions (rough and undulating, plane or steep), the ALS is considered to be a 
viable option for capturing highly accurate 3D topographic data. As a result, the ALS is 
being used for different types of applications: forest management, mining, oil and gas 
explorations, corridor mapping, environmental monitoring, utility surveillance and 
management, engineering and construction, municipal mapping, real estate development, 
flood plain mapping, etc. (DWMI, 2007). However, the cost involved is higher due to the 
expensive hardware and complicated operations. Flying for data capture is one such 
complicated operation which directly controls the cost of the project. 

Flying operations, apart from the other critical operations, consists of flying the 
aircraft (or helicopter) in stable position (ideally no change or vibrations in attitude and 
altitude with respect to time) over the given area of interest (AOI) on terrain. Moreover, 
in addition to the flying direction and flying height, other parameters (aircraft speed, 
scanning angle, scanning frequency and point repetition frequency) impose the 
constraints on the flight duration. Therefore, it should maintain a known direction of 
flight and height. The problem of altitude and attitude measurement is alleviated  
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as inertial measurement unit (IMU) and global positioning system (GPS), which 
respectively determine attitude (roll, pitch, yaw angles) and the position (3D coordinates 
of aircraft trajectory) of an aircraft with considerable accuracy and precision are 
integrated with LiDAR scanner onboard. However, the quality of the data gathered 
depends on the flight parameters and the nature of ground, where the former include the 
parameters of sensor and aerial platform. Moreover, the cost of flying operation is 
directly dictated by the duration of the flight. Therefore, aerial LiDAR data acquisition 
demands optimum flying parameters that minimise the flight duration while at the same 
time ensure the quality and quantity of data. 

This paper first addresses the flight planning problem in detail, formulates the 
objective function, identifies the parameters of flight planning, explains the derived 
methodology to obtain the optimum result, and performs the minimisation of the flight 
duration. The basic details of ALS are given in Baltsavias (1999) and Wehr and Lohr 
(1999). The definitions of fundamental terms (scanning angle ‘φ‘, scanning frequency ‘f’, 
flying height ‘H’, flying speed ‘V’, point repetition frequency or PRF ‘F’) and the derived 
terms (effective swath ‘B’, point density or data density ‘ρ’, along track spacing ‘DA’, 
across track spacing ‘DS’) related to laser scanning are adopted from Baltsavias (1999) 
and Wohr and Lohr (1999). The formulations of turning time involved in the objective 
function are not derived here but are done in the technical report describing the turning 
time calculations (Dashora and Lohani, 2013a). Furthermore, planimetric and altimetric 
errors of 3D data can be found in technical report of error calculation for airborne LiDAR 
data (Dashora and Lohani, 2013b). 

The paper is organised in ten sections. Introduction to flight planning problem in 
Section 1 is followed by the detailed description of problem with technicalities in  
Section 2. Section 3 formulates the flight planning problem as optimisation problem and 
defines the objective function and constraints. Sections 4 and 5 select the optimisation 
method and also describe two-step procedure of optimisation. Sections 6 and 7 perform 
the optimisation for flight planning problems, respectively, for simulated and real test 
sites. Section 8 presents the flight plans for the two AOIs. Section 9 provides a guideline 
on minimum number of simulations to be performed for obtaining the results with higher 
confidence. Conclusion is presented in Section 10. 

2 Description of flight planning problem for ALS 

ALS operation consists of scanning over the ground using a LiDAR scanner, mounted in 
an aircraft or helicopter, and thus measuring the range (direct distance from laser emitter 
to the ground) to a ground point. In order to measure the range of the point, LiDAR 
scanner fires a laser pulse that reaches the ground by travelling through the atmosphere 
with the velocity of light and reflects back from the ground to be captured by the 
scanner’s receiver. The time difference between the firing and receiving of the laser pulse 
gives a measure of the distance or range. As mentioned earlier, LiDAR scanner is 
integrated with the GPS and IMU devices that provide 3D coordinates in WGS84  
reference system (Hofton et al., 2000). The 3D coordinates of the collected data points on 
the ground surface collectively represent the terrain. Although, the laser pulses are fired 
with regular time interval to form a scanning pattern, data points on the surface of ground 
are collected in a pseudo-random manner. As an example the process of data collection 
using the ALS is illustrated in Figure 1. 
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Figure 1 Airborne LiDAR scanning process (see online version for colours) 

 

During the scanning process, the pulses are fired successively in the field of view (FOV). 
The FOV is equally divided on both sides (left and right) with respect to the nadir 
direction at the emitter. The half of the FOV is termed as ‘half scan angle’ and denoted 
by φ. The angle φ of a scanner mounted in an aircraft, which is flying at a height H with 
reference to a datum, forms ‘swath’ (Bs) or width of a flight strip on the ground (Figure 2) 
and is expressed as: 

2 tan( )sB H= φ  (1) 

Figure 2 Schematic view of half scan angle, flying height, swath, Z shape scanning pattern, along 
track spacing, and across track spacing for ALS 

 

Ideally, the swath is equal to the spacing between the centre lines of two adjacent flight 
strips which have no overlap. However, due to the overlap, which is maintained between 
two adjacent flight strips for continuity of data and error removal (Bang et al., 2009), the 
distance between the flight lines or centre lines of flight strips is reduced to the ‘effective 
swath’. The effective swath (B) is written as: 
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(1 )sB B P= −  (2) 

where P is ‘percentage overlap’ (Shih and Huang, 2009) or ‘overlap fraction’ that 
represents the fraction (or percentage) of the swath which lies under the area of overlap at 
the edges of two adjacent flight strips on the map. 

‘Speed’ (V) of an aircraft along the flight direction realises the second dimension of 
scanning process as an aircraft moves by a distance equal to the speed in one second 
(Wehr and Lohr, 1999). Due to the movement in flying direction, the scanning lines, 
which are obtained across flying direction, appear in a Z shape, which is termed as saw 
tooth or zigzag pattern (Baltsavias, 1999). As shown in Figure 2, all scanning lines, 
which are formed by movement of oscillating mirror in one direction (left to right or right 
to left) are parallel to each other, however, none of these are exactly perpendicular to the 
flying direction. Figure 2 is an exaggerated view of the actual scanning mechanism. In 
reality, the across track spacing (DS) between two successive points in a scan line is not 
uniform and is minimum at the centre and maximum at the ends. 

Apart from the Z shaped pattern, it is possible to generate many more patterns 
(Jenkins, 2006) by different type of sensors (Baltsavias, 1999); this study is  
performed using Optech’s airborne LiDAR scanner model ‘ALTM 3100EA’ which 
creates bidirectional Z shape (zigzag) pattern. The characteristics and criticality of the 
relevant parameters of ‘ALTM 3100EA’ model are discussed in Section 5. 

An aircraft, after covering one flight strip, navigates back to the starting point of the 
next parallel strip through a 180° level turn or horizontal course reversal. For any strip, 
which is essentially not the first strip, aircraft navigates in opposite direction than that of 
the last strip and thus covers the complete AOI in finite number of strips. Turning  
from one flight line to the next flight line can be performed by consecutive turning,  
non-consecutive turning, or hybrid turning (Dashora and Lohani, 2013a). 

As stated earlier, flying operations are the most critical part of airborne data 
collection as during this period, the required quality of data is ensured by adopting the 
appropriate flight planning parameters. Moreover, it takes considerable resources 
amongst all project operations. Furthermore, flying an aircraft includes expensive 
logistics requirements, severe risks and consequently accounts for higher cost. Apart 
from that, unlike conventional topographic survey practices performed on ground, 
airborne survey cannot be repeated without a justified reason due to intricacies and cost 
involved. Therefore, minimising the duration of flight is the only desirable solution for 
exploiting the real potential of the airborne surveys. The next section presents the 
expression of flight duration with minimum derivations and analysis and then leads to the 
constraints imposed due to the LiDAR survey requirements. 

3 Objective function and constraints 

Figure 3 shows the turning by consecutive mechanism on parallel flight strips, each has a 
width equal to the effective swath (B). The original AOI is expressed by map coordinates 
(x, y). The flying takes place at an angle θ (also called flying direction), which is positive 
in counterclockwise direction with respect to the x-axis or Easting axis of map. Flying 
operation starts at point S and finishes at point E. Therefore, the flight duration consists 
of the time required to travel over the flight strips (i.e., strip time) and time required to 
complete turns between the flight lines or flight paths (i.e., turning time). 
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Figure 3 Schematic view of AOI, flight strips and turnings (see online version for colours) 

 

Source: Dashora (2013) 

3.1 Objective function 

Flight duration is the sum of the strip time and turning time (TT). Strip time is determined 
by estimating the total length of the all flying strips and dividing it by the speed of the 
aircraft. The length of a flying strip is calculated by rotating the original AOI by flight 
direction and dividing it into rectangular strips, each of width equal to the effective 
swath. Therefore, the rotation of AOI, calculation of number of flight lines and the flight 
duration are expressed as: 

cos sin
.

sin cos
X θ θ x
Y θ θ y
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (3) 

Minimum number of actual number of integer flight lines: 

max minY Yn
B

⎡ − ⎤⎛ ⎞= ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
 (4) 

( )
1

, ,
n

L R
i i i

i
T

L θ X X
T T

V
= +
∑

 (5) 

where 

Li length of ith flight line (flight path on ith flight line on ground) 

TT total turning time required for ‘n – 1’ turns or horizontal course reversals  
(or 180° level turns) 

Ymax maximum value of Y coordinate (or ordinate) of rotated AOI 

Ymin minimum value of Y coordinate (or ordinate) of rotated AOI 
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L
iX  value of X coordinate of left edge (or left end) of ith flight strip (or flight line) in 

rotated AOI 
R
iX  value of X coordinate of right edge (or left end) of ith flight strip (or flight line) in 

rotated AOI. 

The length and location of centre line of the ith strip and the corresponding length of 
turning for given θ, are dictated by the size of the effective swath (B) as it affects the 
number of strips [equation (4)]. Unlike the formulation for strip time as shown above, the 
derivation of relationship for turning time is complex and cumbersome. Therefore, for the 
conciseness of the discussion, the formulation and algorithm to determine the turning 
time is adopted from the technical report of turning time calculation (Dashora and 
Lohani, 2013a). Details of the algorithms for calculating the turning time are presented in 
appendix. 

3.2 Constraints 

The data captured by the ALS should fulfil certain qualities. In this paper, constraints 
related to the data density, overlap, spacing of data points in along track and across track 
directions, errors in data, simultaneous photographic data acquisition, scanner product, 
and safety regulations are considered and mentioned in the discussion below. 

1 Minimum and maximum data density: It is evident from the explanation of ALS 
mechanism that in one second duration a scanner effectively covers an area equal to 
the product of effective swath and speed (BV). Furthermore, during the same time 
period, it fires and collects the 3D information for F number of pulses. Therefore, the 
‘data density (ρ)’ (also known as ‘point density’) can be written as: 

.Fρ
BV

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (6) 

 The density of data collected, however, should be in the range of minimum data 
density (ρL) and maximum data density (ρU), which are specified by a user. 
Therefore, the constraints on data density are written as: 

.L Uρ ρ ρ≤ ≤  (7) 

 Tolerance in data density (τ max) connects the maximum and minimum data density 
by following relationship (Dashora, 2013): 

( )max1 .U Lρ ρ τ= +  (8) 

2 Minimum overlap: Mapping agencies like United States Geological Survey (USGS, 
2010) recommends a minimum of 10% overlap on all parts of terrain surface. As a 
result, at no part of terrain the overlap should be lesser than the minimum overlap  
(Pmin), which is, therefore, the limiting overlap at the highest point of terrain. A 
maximum overlap (Pmax) may also be specified which will be limiting overlap  
at the lowest elevation of terrain. Contrary to overlap, the data density reaches  
its maximum and minimum values at the highest and lowest points of terrain, 
respectively. Dashora (2013) provides an algorithm that considers theoretical 
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relationships between the data density (ρ), overlap (P), terrain elevation (dt), and 
flying height (H). According to the algorithm, instead of bounding the data density 
(ρ) by its upper bound value (ρU), the tolerance in data density (τρ) is restricted by a 
maximum value (τmax). The algorithm is given in the form of pseudo code as: 
a given: 3D information of terrain (dt) with known accuracy 

• tolerance in data density (τρ) constrained in a range from τmin to τmax 
b select: flying height (H) and half scan angle (φ) 
c calculate: relief ratio PR = dt / H 

• tolerance in data density τρ ≥ PR / (1 – PR) 
• maximum overlap fraction at datum P = 1 – (1 – PR) (1 – Pmin) 
• swath at datum Bs = 2Htanφ 
• effective swath B = (1 – P)Bs 

d check the constraint: calculated τρ should be in the range specified  
(τmin to τmax) 
• termination: if constraint is not satisfied, repeat with different values of 

flying height (H) and half scan angle (φ). 

3 Spacing of data points: Equation (6) is a general equation representing data density 
independently of the type of scanning pattern, as it is a function of area covered in 
unit time (one second duration). However, within this area (BV), the uniformity of 
the 3D data is dictated by the spacing between the successive and similar points in 
longitudinal (along-track) and lateral direction (across-track), respectively. In order 
to achieve uniformity in spread of data points (to avoid data clustering), the across 
track spacing and along track spacing should be of comparable magnitude (USGS, 
2010). Therefore, the ratio of absolute difference between the along track spacing  
(DA) and across track spacing (DS) to the along track spacing (DA) should be less than 
or equal to some user defined threshold on spacing (εd). Accordingly, the constraint 
on the spacing of the LiDAR data points is written in a generic form as: 

.A S
d

A

D D ε
D
−

≤  (9) 

 The spacing in the along track and across track directions can be considered by many 
criterions like average, maximum or minimum. For Z shape pattern of scan lines, the 
average values of along track spacing and across track spacing are calculated as 
(Baltsavias, 1999): 

2A
VD

f
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (10) 

2 .s
S

fBD
F

=  (11) 

4 Planimetric and altimetric errors in data: The planimetric and altimetric errors in 
LiDAR data are restricted by maximum allowable values of respective errors, which 
are decided by a user as per the application. The calculation of the errors for the 
LiDAR data involves propagation of random errors in various measurements by 
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scanner, IMU, GPS, and spatial arrangement between these measuring units. The 
procedure of calculation is adopted from the error calculation report (Dashora and 
Lohani, 2013b). 

p Hσ e≤  (12) 

v Vσ e≤  (13) 

 where 

2 2
p pP X Yσ σ σ= +  (14) 

pv Zσ σ=  (15) 

pXσ  1σ error in x-direction of local tangent plane at a point 

pYσ  1σ error in y-direction of local tangent plane at a point 

pZσ  1σ error in z-direction perpendicular to local tangent plane at a point 

eH maximum allowable 1σ planimetric error (or horizontal) in local tangent plane 
at a point 

eV maximum allowable 1σ altimetric (or vertical) error in local tangent plane at a 
point. 

5 Scanner product: This category of constraints includes all constraints, which are 
imposed by the physical limitations of LiDAR or other scanners mentioned by the 
scanner manufacturer. For example, in case of ALTM3100EA scanner instrument, 
the scanner product is given by: 

1,000.f ≤φ  (16) 

6 Safety regulations: Amongst all safety regulations, the minimum eye safe distance 
(ESD) for the laser pulse, and minimum flying height or Hmin (according to air traffic 
control or ATC standards) are considered. Maximum of the eye safe distance (ESD) 
and minimum flying height (Hmin) should be added to maximum elevation of terrain 
(hmax) and the flying height (H) should be more than the calculated distance values 
as: 

( )( )max minmax , .H h H ESD≥ +  (17) 

ESD depends upon the LiDAR scanner and generally mentioned by the 
manufactures. However, for India, a minimum of 305 metres (1,000 feet) flying 
height is recommended (DGCA, 2010). 

7 Simultaneous photographic data acquisition: According to recent practice, along 
with LiDAR data, photographic or image data are also captured using airborne 
digital camera (Landtwing and Whitcare, 2008). As flight planning process is 
optimised for the LiDAR data acquisition, the photographic data capture is 
accommodated with additional constraints. Following four requirements are  
framed as constraints (Dashora, 2013): 
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a Camera and LiDAR sensor selection: Dashora (2013) derived a relationship for 
calculating the maximum half scan angle (φMax) of LiDAR sensor that restricts 
the value of half scan angle, for the given FOV of camera (φopt). It should be 
noted that half scan angle, can be programmed by a flight planner before data 
acquisition. Consequently, the FOV of LiDAR scanner, which is equal to twice 
of the half scan angle, is decided by the flight planner for LiDAR scanner. The 
relationship, which ensures the minimum side lap of images captured by camera 
and minimum strip overlap of LiDAR data, is given by (Dashora, 2013): 

1 1
tan tan .

1 2
ecy opt

Max
e

P
P

− ⎛ − ⎞⎛ ⎞ ⎛ ⎞≤ ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠⎝ ⎠

φ
φ  (18) 

For a camera of 44° FOV, equation (18) calculates the maximum half scan angle 
value equal to 18.6°. However, if a camera (camera come with fixed FOV) is 
selected during the flight planning; it allows the calculation of maximum half 
scan angle of the LiDAR scanner. Consequently, after calculating the maximum 
half scan angle value for LiDAR scanner, this constraint is not needed to be 
considered in the solution process as henceforth the maximum half scan angle 
can be considered as the computed one or as the one recommended by the USGS 
(i.e., 20°). 

b Ground sampling distance (GSD): GSD of captured image should be less than 
or equal to the user defined value of maximum GSD (GSDMax). Therefore, 

.MaxGSD GSD≤  (19) 

c Exposure interval: The photographs on a flight line are captured by successive 
exposures of camera. The time period between the two successive exposures  
of camera is termed as ‘exposure interval’ (Grendzdörffer, 2008). Therefore,  
the distance travelled by an aircraft during the exposure interval (in seconds) 
between two successive exposures of a camera should be more than the length 
of the area captured by a pair of stereo images along the flight direction. The 
resulting inequality relationship is (Grendzdörffer, 2008): 

( )1 cx px
ei

GSD P n
t

V
⎛ ⎞−

≤ ⎜ ⎟
⎝ ⎠

 (20) 

( )1 .cx ecx ecx RP P P P= + −  (21) 

d Horizontal accuracy of orthoimage: A digital map (or orthoimage) is prepared 
from the captured images. For the desired GSD of orthoimage (ortho GSD), 
GSD of image should be constrained by the following empirical relationship 
(Dashora, 2013): 

(0.884) orthoGSD GSD≤  (22) 

 where 

p

c

Hs
GSD

f
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (23) 

sp size of a pixel of airborne digital camera 
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fc focal length of camera 
npx number of pixels in camera in along track direction 
φMax maximum allowable value of half scan angle 
φopt camera FOV 
Pcx endlap (or overlap in along track dierction) between two consecutive 

images at datum 
Pecx minimum endlap (or overlap in along-track direction) between two 

consecutive images (RICS, 2010) 
Pecy minimum sidelap (or overlap in across-track direction) between two 

consecutive images (RICS, 2010) 
Pe minimum overlap (in across-track direction) between two adjacent strips 

of LiDAR data. 

4 Constrained minimisation of flight duration 

4.1 Identification of design variables of flight planning problem 

It is evident from the expressions of objective function [equations (3) to (6)], that for 
given AOI, data specifications and other environmental variables, the flight duration  
is a function of half scan angle (φ), flying height (H), speed of aircraft (V), and flying 
direction (θ). However, the constraints, in addition to these four variables, are also 
dictated by the scanning frequency (f), and PRF (F). Therefore, there are six variables 
that influence the minimisation of flight duration under constraints. The remaining 
variables are either characteristics of sensors (LiDAR scanner, camera, GPS, IMU) or 
environmental variables. Environmental variables, which represent the user defined 
requirements of data or user defined preference for flying operations (i.e., maximum bank 
angle, or cushion period), remain constant for a given problem of flight planning. Values 
of environmental variables are shown in Table 1. The next section discusses about the 
characteristics of sensors used in this study. 
Table 1 Data requirements in optimisation problem 

Parameter Symbol Value 
Minimum data density ρL 11 points/m2 
Maximum data density ρU 13 points/m2 
Maximum tolerance in data density τmax 30% 
Tolerance of spacing constraint εd 10% 
Minimum overlap Pe 10% 
Maximum altemetric error eV 0.10 m 
Maximum planimetric error eH 0.15 m 
Maximum GSD GSDMax 0.15 m 
Minimum endlap Pecx 60% 
Minimum sidelap Pecy 25% 
Maximum bank angle βmax 25º 
Cushion period tC 30 seconds 
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4.2 Characteristics of sensors (GPS, IMU, LiDAR scanner, camera) 

The selection of a suitable and appropriate optimisation scheme for flight duration 
minimisation requires a comprehensive understanding of the characteristics of the 
variables involved and their observation by the sensors. Information about the navigation 
sensors (IMU and GPS units) is important for evaluation and control of the error. Further, 
the spatial interrelationship between the LiDAR scanner and IMU unit should also be 
known. Therefore, it is assumed that the latest calibration reports of all sensors are 
available. The values of precision parameters are selected from the paper by Glennie 
(2007) for the calculation of the propagated errors in the LiDAR data (Dashora and 
Lohani, 2013b). Details of the error calculation are beyond the scope of this paper. 
However, it should be noted that the flying height (H) and half scan angle (φ), which are 
decision variables in optimisation process, participate in the error calculation. 
ALTM3100 EA LiDAR scanner, which is manufactured by Optech Inc., is used in this 
study. Similarly, Applanix DSS 322, which is a medium format digital airborne camera, 
is selected. Following Tables 2 and 3 show the salient and relevant features of 
ALTM3100 EA scanner and Applanix DSS 322 camera. 
Table 2 Specifications of ‘ALTM 3100EA’ LiDAR scanner 

Values 
Parameter 

Range Least count 

Flying height (H) 80–3,500 m Continuous 
Scanning frequency (f) 1–70 Hz 1 Hz 

Scanning angle (φ) 1–25° 1° 

PRF (F) {33, 50, 70, 100} kHz (if 80 ≤ H ≤ 1,100 m) 
 {33, 50, 70} kHz (if 1,100 < H ≤ 1,700 m) 
 {33, 50} kHz (if 1,700 < H ≤ 2,500 m) 
 {33} kHz (if 2,500 < H ≤ 3,500 m) 

Source: Optech (2006a) 

Table 3 Specifications of ‘Applanix DSS 322’ camera scanner 

Parameter Value 

Pixel size (sp) 9 microns 
Number of pixels along-track (npx) 4,092 
Number of pixels across-track (npy) 5,436 
Focal length (fc) 60 mm 

FOV across-track (φc) 44° 

Exposure time* (tet) 1/125–1/4,000 seconds 
Exposure interval (tei) 2.5 seconds 

Note: *Slower shutter speed (higher exposure time) not recommended. 
Source: Optech (2006b) 

The speed of an aircraft for airborne LiDAR data acquisition can vary in a large range, 
i.e., 10–140 knots (5.14 to 72 m/s) (Saylam, 2009). Specific to the ALTM 3100EA 
scanner, latest practices prefer Cessna aircraft or helicopter. The recommended range of 
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speed of an aircraft (aircraft and helicopter) and the least count of scanning frequency  
and scanning angle are obtained by private communications with Mariusz Boba and  
Jake Carroll. 

4.3 Selection of optimisation method for minimisation problem 

Amongst the six variables of design vector of optimisation, three variables namely the 
half scan angle (φ), scanning frequency (f) and PRF (F) are the features of a LiDAR 
scanner and thus these are addressed as scanner parameters. The remaining three 
variables (flying height, flying speed and flying direction) are related to flying operation 
and therefore, these are termed as the flying parameters. The salient characteristics of the 
scanning parameters, flying parameters, flight duration and constraints are as following: 

1 Scanner parameters are discrete parameters. More specifically, the PRF is a 
discontinuous parameter which is decided according to the flying height. However, 
flying parameters are continuous parameters. Therefore, the objective function  
(flight duration) and constraints are function of discrete as well as continuous 
variables. 

2 Flight duration is a sum of the strip time and turning time. The strip time is the 
summation of the time taken to cover individual strips of varying length. For an 
arbitrary shaped AOI, the strip time is discontinuous mathematical functions. 
Moreover, on the other hand, the turning time is a function of the flying speed and 
maximum banking angle. During flying operations, the maximum banking angle 
remains constant in practice. The flying speed is a continuous variable. As an aircraft 
has to turn to one of the flight lines which are finite in number, are regularly  
spaced and have pre-decided locations, the turning mechanism (consecutive,  
non-consecutive or hybrid turnings) makes the flight duration discontinuous. 
Switching between the parallel flight lines for covering all flight lines in minimum 
time is equivalent to the problem of travelling on parallel edges and shifting from 
one edge to the other in minimum time. The problem of travelling on parallel edges 
and switching between these is non-solvable in polynomial time using classical 
combinatorial optimisation techniques (Benavent et al., 2005). 

3 The scanner and flying parameters appear as non-separable variables in the 
expressions of flight duration and constraints, where the latter are implicit  
non-linear mathematical functions. 

4 The error in 3D coordinates has an inverse relation with the fight duration with 
respect to the changes in flying height and scan angle (i.e., with the increase in flying 
height and scan angle the flight duration will decrease but the errors increase, and 
vice versa. 

As per the characteristics of variables, applicable constraints and the objective  
function discussed above, the problem of optimisation in the current case is a mixed 
integer non-linear problem (MINLP). However, the non-linear implicit equations of 
mathematically discontinuous objective function and constraints, which are defined in 
terms of discrete and continuous variables, limit the use of conventional (classical) 
optimisation methods. Additionally, the existence of derivatives and unimodal property 
of objective function is also not guaranteed in such problems. In view of the non-linear 
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single-objective constrained optimisation problem with discontinuous objective function 
and constraints, which are defined in terms of non-separable discrete and continuous 
variables, the evolutionary algorithms can be found useful. 

Recently, Rodrigues and Ferreira (2012) combined the GA and local search method 
for solving the shortest path of travel on edges (or rural postman problems). Moreover, 
the exploration and development of GA in the last two decades at the Kanpur Genetic 
Algorithm Laboratory (KanGAL) in IIT Kanpur is a strong motivational reason to use it 
as a tool for optimisation of complex flight planning problem. Furthermore, the  
real-coded genetic algorithms (RGA) code is available online at KanGAL’s website  
for solving the single objective optimisation problem. However, in spite of their 
revolutionising development and implementation for real life applications at KanGAL 
and world over in the last few years, these are not yet explored for flight planning and 
flight duration constrained minimisation problem. Furthermore, for non-linear functions, 
a classical method demands an initial point or solution of design variables which should 
be in the vicinity of the desired optima. 

On the other hand, a general notion is that an optimisation problem may take 
significantly longer time for convergence. Moreover, for convergence to the global 
optima, the time required by GA of infinite scale cannot be accommodated in practical 
sense. Conversely, the potential of the classical methods for fast convergence, due to their 
intelligent search procedure in a local neighbourhood of initial point, cannot be ignored. 
Therefore, it is wise to use a hybrid algorithm that utilises the potentials of both classical 
and evolutionary methods and in turn compensates for the pitfalls of both sides. There are 
a number of classical methods available in the literature with different applicability. 
However, as explained in the previous section, the flying speed and various turning 
mechanisms performed on finite number of flight lines makes the flight duration a 
discontinuous function. A slight variation in flying speed may change the turning 
mechanism from one type to another type. Therefore, a classical method which does not 
require assumptions of continuity and existence of the derivatives of the objective 
function is desired. Fernandes et al. (2011) and Costa et al. (2012) presented hybrid 
optimisation algorithms that combine GA and various classical methods. Fernandes et al. 
(2011) combined the branch and bound (B&B) method with GA to solve the MINLP 
problem. The study by Costa et al. (2012) devised Hybrid Genetic Pattern Search 
Augmented Lagrangian (HGPSAL) algorithm by integrating the GA with Hooke and 
Jeeve’s (HJ) method, which is a derivative free pattern search method, and constraints are 
handled by the augmented Lagrangian method. Considering the nature of the objective 
function of flight planning problem, hybrid approach of two-step procedure using the HJ 
method and GA is proposed for the flight planning problem in this study. Next section 
explains the GA and HJ method briefly. As the proposed method is not ever implemented 
and tested for the flight planning problem, a simulation study is conducted for the flight 
planning problem which is presented in the subsequent section and later the proposed 
approach is applied on the flight planning problem on an actual test site with defined data 
requirements. 
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5 Two-step procedure of optimisation 

5.1 Introduction to genetic algorithms 

Genetic algorithms (GA) are amongst the most popular evolutionary methods. GA are 
advanced statistical methods that are independent of the initial estimates of parameters. 
Furthermore, these are not limited by the restrictive assumptions like unimodality, 
continuity of design variables (parameters), objective functions (or fitness function), 
constraints, and the existence of derivatives of objective functions or constraints 
(Goldberg, 1989). 

The search procedures in GA start with the multiple numbers of the trial values of 
parameter vectors (also known as population of design vector or parameter vector), in 
contrast to the conventional optimisation technique which begins with a single initial 
value of the design vector. The value of objective function is utilised to generate a 
population for the next search using the probability transition rules instead of the 
derivatives, auxiliary knowledge, or deterministic rules. A simple GA that yields good 
result is usually composed of three operators: reproduction, crossover, and mutation. 
Reproduction is a process in which the individual trial design vectors (vector of design 
variables) are selected to participate in the next generation of offspring as parents, 
according to their objective function values. In a minimisation problem, the design 
vectors with a lower value of objective function have a higher probability of contributing 
towards the production of offspring in the next generation. Crossover follows the 
reproduction and proceeds in two steps. First, the members of newly produced vectors are 
mated at random and secondly each pair of design vector undergoes crossing over by 
random swapping. Although the reproduction and crossover efficiently search and 
recombine good extant notions, occasionally they may also lose some potential genetic 
material. Such irrecoverable loss is protected by mutation. Mutation is occasional random 
alteration of the value of a parameter in a design vector (Goldberg, 1989). 

5.2 HJ method 

Explanation and implementation of HJ method is adopted from Kaupe (1963). After 
explanation of the method in a generic sense in the forthcoming discussion, it is modified 
for the flight planning problem with flying height (H), flying direction (θ) and the flying 
speed (V) as variables. 

For HJ method, the initial point or guess (p0), which is an estimate of the optimal 
solution in multidimensional parameter space, is a prerequisite. Moreover, for the first 
iteration, a step length (Δ1) for each dimension (or variable) of optimisation problem is 
predefined. The HJ method performs optimisation as explained in the following steps: 

1 At the start of the optimisation process, the given initial point or guess (p0)  
is considered as the current position for the first iteration. In the process of 
optimisation, in the kth iteration, the current position and step length are denoted  
by pk–1 and Δk, respectively. 

2 The HJ method, in the kth iteration, explores the parameter space by shifting the 
current position (pk–1) by a step length (Δk) along a variable’s coordinate axis in  
both negative and positive directions. At the shifted positions, the objective function 
values are evaluated. If a shift by step length gives a superior result of objective 
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function, the current position (pk–1) is updated by step length to occupy the new 
position (pk). This process is repeated for all direction axes. 

3 In Step 2, if improvement in objective function value is recorded, Step 2 is repeated 
for the next iteration with the same step length. 

4 In case of no improvement or inferior result, the current position is not updated  
(or current position itself becomes new position for the next iteration). The HJ 
method, at this stage, reduces the step length (Δk = pk – pk–1) of kth iteration by a 
predefined factor (rHJ) to calculate the step length of the next iteration. The factor 
(rHJ) used for reduction of step length should be close and lesser than one for 
exhaustive exploration and smooth transitioning through the parameter space. 

5 The above three steps are repeated in succession till an improvement in the value of 
the objective function is found below a certain threshold. Moreover, the algorithm is 
also terminated intermediately if the maximum allowable number of iterations is 
reached. 

For the flight duration minimisation, the step length vectors (Δ1) for three variables are 
calculated by dividing the range of individual variables by the population size. The 
following sections implement the suggested two-step procedure for the simulated AOI in 
sequential manner, i.e., the results obtained by GA are refined by HJ method which is a 
classical pattern search method. The algorithm of the two-step procedure, which is 
precisely used in this paper, is shown below by pseudo code. 

5.3 Pseudo code of two-step procedure of optimisation 

5.3.1 First step: optimisation by GA 

1 Initialisation 
• define the population count (number of samples) and number of maximum 

generations 
• initialise the population. 

2 Regeneration 
a fitness function and constraint evaluation: calculate the values of objective 

function and constraints 
b selection and generation of population: 

• using the values of fitness function and constraints, rank the individual 
sample of population 

• form a new population by the cross-over, mutation, and elite preservation 
on population samples of current generation 

c generation counter: count the number of generation. 

3 Termination of GA 
• if the number of generations is equal to the maximum generation, terminate the 

GA and accept the current values of parameters as results of optimisation by GA 
• else repeat the process from the ‘regeneration’ mentioned in point 2. 
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5.3.2 Second step: refinement of GA result by HJ method 

4 Initial point, step length, and maximum iterations 
• input the results of GA as initial point for HJ method 
• define the step length 

5 Pattern search 
• search the optimal point in neighbourhood (left and right) of initial point by step 

length in each dimension 
• if value of objective function is better, accept the shifted position as optimal 

solution for current iteration 
• if no improvement in objective function, reduce the step length size 
• count the iteration number 

6 Termination 
• if the number of iteration is equal to the maximum iteration or the changes in 

parameters are negligible, terminate the HJ method and accept the parameters of 
current iteration as the result 

• else repeat the procedure from the ‘pattern search’ mentioned in point 5 to  
point 6. 

After implementing the method of two-step procedure for the simulated AOI, the method 
is applied on an actual test site. 

6 Simulation study for the flight planning problem 

In view of the nature of objective function and characteristics of variables of design 
vector specific to the flight planning problem, a simulation study is first conducted on  
an arbitrary shaped AOI. The arbitrarily shaped simulated AOI, which occupies 
approximately 4 km2 area on map, is shown in local map coordinates in Figure 4. The 
difference between the maximum and minimum elevation point is assumed to be  
200 metres. 

A thorough investigation with the possible configurations of RGA code has been 
done for the flight planning problem for simulated AOI (Dashora et al., 2013). 
Optimisation parameters or variables of design vector in optimisation problem are 
considered continuous variables, i.e., integer variables (half scan angle, scanning 
frequency) are obtained by rounding the continuous variable to the nearest integer. 
However, as shown in Table 2, for ALTM 3100EA scanner, the discrete variable like 
PRF is a discontinuous variable and is a function of flying height (H) which is a 
continuous parameter. A continuous random variable (uF) is generated in the range [0 1] 
and mapped to discrete values of PRF as following: 

( )
( )
( )
( )

1.00 80 1,100
0.75 1,100 1,700
0.50 1,700 2,500
0.25 2,500 3,500

F

F
F

F

F

u H
u H

u
u H
u H

⎧ ⎫≤ ≤
⎪ ⎪< ≤⎪ ⎪= ⎨ ⎬

< ≤⎪ ⎪
⎪ ⎪< ≤⎩ ⎭

 (24) 
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33 kHz 0.00 0.25
50 kHz 0.25 0.50
70 kHz 0.50 0.75
100 kHz 0.75 1.00

F

F

F

F

u
u

F
u
u

≤ ≤⎧ ⎫
⎪ ⎪< ≤⎪ ⎪= ⎨ ⎬< ≤⎪ ⎪
⎪ ⎪< ≤⎩ ⎭

 (25) 

Figure 4 AOI for simulation study (see online version for colours) 

 

The results presented in the report by Dashora et al. (2013) reveal that optimisation 
parameters as continuous variables, sampling by Latin hypercube sampling (LHS), and 
elite preservation by BRCR and BRCN strategies with population size of 200 can 
efficiently determine the optimal solution. Relevant and brief description on these 
strategies is presented here; however, detailed descriptions of these strategies  
for configurations can be referred from Dashora et al. (2013). LHS achieves the  
multi-dimensional uniformity and is a space filling method (Deutsch and Deutsch, 2012). 
Elite preservation strategies, namely BRCR and BRCN, stand for ‘best ever replacing a 
candidate randomly’ and ‘best ever replacing a candidate by niching’, respectively. The 
first one is BRCR, wherein a sample from current generation is selected randomly and 
replaced by ‘best ever’. For the second strategy, first 20% samples of population of 
current generation are randomly selected. Amongst these samples, the sample which is 
nearest to the ‘best ever’ in terms of Euclidian distance is replaced by the ‘best ever’. The 
former strategy of elite preservation achieves optima with less computational effort, 
however, is suspected to loose the diversity and may detect an inferior solution. On the 
other hand, latter strategy (BRCN) preserves the diversity in the population but requires 
more number of computations compared to former one (BRCR). Statistical measures like 
maximum, minimum and average values of objective function are used to characterise the 
performance of an algorithm. Moreover, in addition to the statistical figures, the number 
of outliers and the number of feasible results for an algorithm are also observed. The 
study mentioned in Dashora et al. (2013) determined the configuration(s) that can be 
universally accepted for the flight duration minimisation problem. For the purpose of the 
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completeness of the suggested two-step procedure, the results of best configurations of 
algorithmic strategies, which are listed in Dashora et al. (2013), are directly adopted and 
presented in Table 4. 
Table 4 Statistical results of simulation of test problem with algorithms ABRCR to ABRCN 

Algorithm Minimum
(seconds) 

Maximum
(seconds) 

Average
(seconds) 

Standard dev.
(seconds) 

Outliers/ 
feasible results 

ABRCR 
(RCV + LHS + BRCR) 

1,941.770 1,948.097 1,944.136 1.804 1/30 

ABRCN 
(RCV + LHS + BRCN) 

1,942.317 1,949.325 1,944.609 2.069 0/30 

GA successfully resolved MINLP of flight problem which classical methods could not 
handle efficiently. Following are the critical observations: 

a GA, being free of any assumption and without any estimate about the initial point, 
could reach very close to the global optima. The solution obtained by GA can be 
used as initial guess or initial point for the classical method. 

b The scanner parameters, which are either integer variables or discrete variables,  
are detected by the GA with higher confidence as their values are constants over 
multiple runs of GA. However, the flying parameters (flying height, flying speed and 
flying direction), which are mathematically continuous variables, display variation 
from run to run. 

c None of the algorithms is free of outliers. In addition to that, the standard deviation 
of the flight duration, which is the measure of consistency for an algorithm, also 
shows variation from run to run. Even increasing the population size cannot improve 
its consistency or reduce the standard deviation. 

As a result of the above observation, the scanner parameters (half scan angle, scanning 
frequency, PRF) can be considered constant and classical method can be used to further 
optimise the flying parameters (flying height, flying speed, flying direction) for  
the convergence. Therefore, after rejecting the outliers, the solutions obtained by  
the algorithms ABRCR and ABRCN for two problems with the population size of 200, are 
supplied as the initial guesses for the HJ method. During the iterations in HJ method, a 
solution is accepted if it provides less value of flight duration and satisfies all constraints. 

Figures 5 and 6, respectively, illustrate the progression of GA and HJ over 
generations and iterations for a representative run. 

As GA detects the feasible zone which should be optimal too, Figure 5 shows the 
oscillations in the value of the ‘best ever’ candidate for initial generations. Once feasible 
zones are thoroughly explored and feasible zone is detected, GA starts convergence to 
solution which is most likely optimal. 

The solution obtained by the GA is improved by the HJ method till convergence is 
achieved. In Figure 6, according to the initial values of flight planning parameters, which 
are obtained by GA, the flight duration is around 1,943 seconds and gradually it reduces 
and finally converges to a value of around 1,942 seconds by HJ method. Although the 
improvement is not substantial, however, there is no further tangible improvement 
possible in flight duration values as convergence has been achieved. Therefore, HJ 
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method ensures that improved solution is optima that is initially detected by GA and later 
refined by the classical method. 

Figure 5 Convergence of flight duration values for a representative run by the GA 

 

Figure 6 Convergence of flight duration values for a representative run by the HJ method 

 

The resulting statistics of the objective function is presented in Table 5. The minimum, 
maximum and average values of flight duration for test problem, as shown in Table 5, are 
lower in comparison to their counterparts obtained by GA in Table 4. This improvement 
is due to the local search by HJ method in the vicinity of the GA solution. Moreover,  
HJ method obtains the value of the objective function by convergence over iterations. 
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Figure 6 shows the convergence of HJ method for one of the initial guesses, obtained by 
GA. However, it is interesting to note that due to the improvement in the results of GA by 
HJ method, the standard deviation of the HJ results are sometimes higher than the initial 
guess provided by GA solutions. 
Table 5 Statistical results of simulation of test problems P2 and P4 with hybrid algorithm 

Algorithm Minimum 
(seconds) 

Maximum 
(seconds) 

Average 
(seconds) 

Standard dev. 
(seconds) 

ABRCR 
(RCV + LHS + BRCR) 

1,941.619 1,947.964 1,943.218 1.921 

ABRCN 
(RCV + LHS + BRCN) 

1,941.086 1,948.352 1,943.349 2.026 

It may be noted that though there is an insignificant improvement by HJ method, the 
purpose of this discussion is to show the utility of GA supported by classical method for 
reaching the minima with convergence. 

7 Implementation of two-step procedure for actual test site 

7.1 Details of AOI site data requirements, and sensors 

The AOI of selected actual site is Little Smith Creek (LSC) which is situated in 
Mackenzie valley of Canada. The coordinates of AOI vertices and data requirements are 
mentioned by Department of Indian Affairs and Northern Development (DIAND), North 
Territories Region (Government of Canada) (MERX, 2012). AOI of LSC occupies 
approximately 55 km2 on map in UTM coordinates and the difference of maximum and 
minimum elevation across the LSC AOI is found to be approximately 57 metres on the 
Google Earth. The LSC AOI is shown in Figures 7 to 8, on Google Earth and as a UTM 
plot, respectively. Survey specifications as adopted by DIAND for LSC AOI are shown 
in Table 6. 

Figure 7 Google Earth image of LSC AOI located in Mackenzie valley (Canada) (see online 
version for colours) 
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Figure 8 AOI of LSC shown in UTM map projection (see online version for colours) 

 

Table 6 Specifications of LiDAR and photographic data for LSC AOI 

S.N. Specifications Value 

1 Minimum data density 1.5 points/m2 
2 Altimetric accuracy (90% CI or at 1.645σ level) 15 cm 
3 Maximum GSD of orthoimage data 20 cm 

Source: MERX (2012) 

Considering the maximum altimetric error (15 cm at 90% confidence interval or at 
1.645σ), the maximum allowable altimetric error (1σ) is restricted to 9.11 cm, by using 
the normal distribution tables. The maximum planimetric error (1σ) is limited to two 
times the altimetric error (i.e., 18 cm). Using the relation shown by equations (18), the 
maximum image GSD of size 17.5 cm is estimated by multiplying the 20 cm orthoimage 
GSD size by a factor of 0.884. The mentioned online specification by MERX (2012) also 
writes that a uniform data density is desired. However, specifications do not contain any 
criterion on the maximum data density. In the view of this, with 10–15% tolerance in data 
density, a maximum data density of 1.725 points/m2 is considered. Moreover, the 10% 
tolerance in average across-track spacing and average along-track spacing is allowed. 
Regarding the images and LiDAR data overlaps, standard specifications that are 
mentioned in Table 1 for simulated AOI, are used. Applanix DSS 322 camera model, 
which has 44° across-tracks FOV, is deployed. Considering stringent requirements on the 
errors, Applanix POSAV 610 unit is selected as IMU. The precision values of roll, pitch 
and yaw for post processing mode of data are obtained as ±0.0025°, ±0.0025°, and 
±0.005°, respectively, from specifications of instrument which are available online 
(Applanix, 2012). 
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7.2 Statistical performance of GA 

Simulations are performed for 30 runs with ABRCR and ABRCN algorithms. Initially, flight 
planning is performed with 10% tolerance in data density. However, algorithms ABRCR 
and ABRCN failed to detect a feasible solution. Therefore, tolerance in data density is 
increased to 15%. Following results, as shown in Table 7, are obtained by GA. 
Table 7 Statistical results of simulation for LSC AOI with algorithms ABRCR and ABRCN 

Algorithm Minimum 
(seconds) 

Maximum 
(seconds) 

Average 
(seconds) 

Standard dev. 
(seconds) 

Outliers/ 
feasible results 

ABRCR 3,304.78 3,457.65 3,366.58 41.23 2/30 
ABRCN 3,196.92 3,255.57 3,230.59 20.16 0/30 

Results in Table 7 show that both algorithms ABRCR and ABRCN can perform under the 
specified requirements. It is also observed that algorithm ABRCR detects two flying 
directions for LSC AOI. This is due to the fact that the flight durations in two directions 
are similar. Contrary to this, the algorithm ABRCN, though detects a single flying direction, 
shows higher value of standard deviation. Therefore, in view of the performance as listed 
above, both algorithms ABRCR and ABRCN should be attempted for flight planning 
problems and the better result should be used. According to the flying height obtained, 
LSC AOI is relatively flat as the relief ratio (PR) is less than 10%. The high variations in 
the scanning frequency and aircraft speed are due to the adopted value of tolerance in 
data density (15%) for a minimum data density of 1.5 points/m2 which is very small 
quantity. Moreover, the scan frequency (f) and the aircraft speed (V) show considerable 
variation while the half scan angle (φ) show less variation. The results obtained by GA 
are employed as the initial guess to the HJ method. 

7.3 Simulation performance of refinement of GA results by HJ method 

If GA results are improved by HJ method, results of latter method (HJ method) are 
accepted as refinement over the results provided by former (GA). The statistics of the 
results obtained by the two-step procedure, which is a hybrid method, are shown in  
Table 8. As shown in Table 8, minimum, maximum and the average of the flight duration 
values have improved over the results of GA. Due to this improvement, which occurs to 
some of the values, the standard deviation has become larger. 
Table 8 Statistical results of hybrid algorithm for LSC AOI 

Algorithm Minimum 
(seconds) 

Maximum 
(seconds) 

Average 
(seconds) 

Standard dev. 
(seconds) 

ABRCR 3,174.15 3,457.65 3,263.67 76.14 
ABRCN 3,196.91 3,255.57 3,230.57 20.15 
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8 Flight plan of AOIs with optimal parameters obtained by two-step 
procedure 

The obtained parameters of flight planning by the two-step procedure for the simulated 
AOI and LSC AOI are shown in Table 9. Out of all results of two-step procedure, the 
best results that provide the minimum flight durations for the simulated AOI as well as 
LSC AOI are selected and flight plans are drawn, as shown in Figures 9 to 10, 
respectively. Flight plans are showing the flight strips for the two AOIs. Point S in the 
figures show the starting point of aerial operation on map for data acquisition and the 
arrow indicates the flying direction on the first flight line which is originating from  
point S. 
Table 9 Flight planning parameters for AOIs by two-step procedure of optimisation 

AOI name φ 
(deg) 

f 
(Hz) 

H 
(m) 

V 
(m/s) 

θ 
(deg) 

F 
(kHz) 

FD 
(seconds) 

Simulated AOI 7 70 886.3 45.9 9.875 100 1,942. 6 
LSC AOI 18 38 1,156.6 62.1 110.36 70 3,174.2 

Figure 9 Flight plan for simulated AOI shown in local map projection (see online version  
for colours) 

 

It is interesting to observe in Figure 10 shows that two-step procedure of optimisation 
detects the flight direction along the longest direction of LSC AOI. The longest direction 
is reported more economical by other authors also than any other direction, as it results in 
minimum number of turns (Read and Graham, 2002; Piel and Populus, 2007). However, 
also for an AOI as for simulated AOI in Figure 9, the two-step procedure of optimisation 
detects the most optimal direction for the given data requirements. 
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Figure 10 Flight plan for LSC in UTM map projection (see online version for colours) 

 

9 A note on minimum number of runs for an algorithm 

An algorithm, with certain population count and probable number of outliers, should be 
run a minimum number of times and the best results thus obtained should be used as the 
initial value to the classical method. It is expected that with the initial values of starting 
point, the classical method will converge to the local optimum, which should be at least 
the same or better than the optimum reported by the GA. 

Considering the two possibilities that a solution obtained by GA is either an outlier or 
a correct one, the probability of obtaining at least one correct solution as the successful 
event can be determined. For at least one correct solution with ps probability, the required 
number of runs k is calculated as: 

( )
( ) ( )
ln 1

ln ln
s

o t

p
k

r r
⎡ ⎤⎛ ⎞−

= ⎢ ⎥⎜ ⎟−⎝ ⎠⎢ ⎥
 (26) 

where 

ro number of runs 

rt number of runs that result in outliers. 

Therefore, out of 30 runs, if two runs provide results which are outliers, a minimum of 
four runs are required for the 99.99% probability that these four runs will contain at least 
one correct result. Therefore, the minimum integer numbers of runs required for the test 
problem corresponding to two algorithms (ABRCR and ABRCN) are 3 and 1, respectively. 
The calculation of minimum numbers of runs shown above is important for AOI which 
has large number of flight lines and thus demands higher computational time. 
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10 Conclusions 

This paper describes the flight planning problem for airborne LiDAR and simultaneous 
photographic data acquisition in the form of objective function and constraints. Flight 
duration, which is the objective function, is taken as the sum of the strip time and turning 
time. Due to turning from one flight line to another, flight duration is a discontinuous 
function. The variables involved in the objective function and constraints are studied and 
classified into the scanner parameters and the flying parameters. Scanner parameters are 
found to be integer and discrete parameters whereas the flying parameters are continuous 
parameters. Furthermore, it is noted that due to the absence of any estimate of solution, 
the classical methods of optimisation cannot be used. As a result, GA, which is an 
evolutionary algorithm, are proposed as an optimisation technique. On the other hand, 
due to the very large time required by GA for the convergence, a two-step procedure 
comprising of GA and HJ method of classical optimisation is attempted. For a study 
conducted with two-step procedure for the simulated AOI, it is observed that GA detects 
the optima with higher confidence in scanner parameters and varying flying parameters 
over multiple runs. The minimum, maximum, average and standard deviation of the 
objective function with the number of outliers are observed. The solutions obtained by 
GA by multiple runs with constant scanner parameters are provided as initial point to 
classical method for optimising the flying parameters. HJ method is found to further 
improve the optimal results. The improvement is indicated by the reduction in the 
maximum and minimum values of the objective function. The two-step procedure is 
implemented on an actual test site situated in Mackenzie valley of Canada with different 
data requirements. The suggested approach successfully obtained the results by GA 
followed by HJ method. Finally, for larger areas, which may need a large number of 
flight lines, a procedure is given to calculate the minimum number of runs for acceptable 
results. The results obtained in this study prove that the suggested approach of flight 
planning using GA is successful and can be applied for the similar problems. This is a 
novel attempt to use GA for flight planning and has potential for commercial 
applications. 
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