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Application of MGGP in Predicting Bearing strength of a Strip Footing Resting on the 

Crest of a Marginal Soil Hillslope 

 

 

Abstract 

A set of finite element investigations are performed to examine the maximum bearing strength 

of strip footings positioned on the crest of a cohesive-frictional marginal soil hillslope. In this 

regard, the influence of contributing geometrical and geotechnical parameters on the maximum 

bearing strength of the footing are illustrated. It is revealed that the nearness of slope face has 

negligible influence on the bearing strength of footing if it is located at a setback distance 

beyond six times the footing width. Further, using multi-gene genetic programming technique, 

a predictive relationship between the maximum bearing strength and the contributory factors 

is established and validated through relevant experimental findings. The hyper-parameters of 

the MGGP model are suitably optimized, as indicated by the coefficient of correlation attaining 

high magnitudes. A sensitivity analysis based on local perturbation is conducted to recognize 

the importance ranking of the contributory parameters. It is revealed that the friction angle of 

slope material predominantly influences the evaluation of maximum bearing strength for strip 

footing on slopes, followed by other contributing factors.  

 

Keywords: Strip footing on slope, Finite element analysis, Maximum bearing strength, 

MGGP, Sensitivity assessment 

 

1. Introduction 

Maximum bearing strength of a footing is the ultimate load sustained without undergoing shear 

failure or exceeding the allowable limit of settlement. This entity is important for foundation 

engineers to design a suitable (safe and economic) foundation for variety of infrastructures. 

The maximum bearing strength depends on the shear strength parameters of the foundation soil 

(friction angle, φ, and cohesion, c) as well as controlled by the footing size, shape, and its 

embedment depth. Based on several simplified assumptions, Terzaghi (1943) pioneered an 

expression to assess the maximum bearing strength of strip footing on a semi-infinite horizontal 

ground, which was expressed in terms of c and φ and some bearing strength factors (BCFs), 

i.e. Nc, Nq and Nγ. Meyerhof (1951) extended Terzaghi’s proposal by reckoning the failure line 

extending up to the ground level, thereby proposing a modified set of BCFs. Further, Skempton 

(1951) conducted field and laboratory investigations to assess Nc for finding the bearing 



strength of footings of various dimensions embedded in saturated clay. Thereafter, other 

investigators (Hansen 1970; Vesic 1973) had proposed general expressions for estimating 

bearing strength of shallow footings accommodating depth, shape, load inclination and 

compressibility effects in the bearing strength factors. 

 

In urbanized hilly terrains, footings of infrastructures are often constructed on or near the slope 

crests. Such can be commonly observed in the foundations of electric transmission and telecom 

towers, bridge abutments, and overhead water tanks. In comparison to the flatter terrains, the 

maximum bearing strength of footings situated at the slope crest are lower owing to the partially 

developed passive zone underneath the footing due to its intersection with the slope face. The 

passive resistance reduces significantly for steeper slopes. In this regard, during the 1970s and 

1980s, researchers have experimentally investigated the maximum bearing strength of strip 

footings placed near the crest of a sandy slope and furnished a set of modified BCFs (Shields 

et al. 1977; Bauer et al. 1981). For similar scenario, several researchers have identified that 

development of plastic zones is also affected by the footing shape (Castelli and Lentini 2012), 

whether strip, square or circular (Azzam and El-Wakil 2015; Acharyya and Dey 2017). The 

maximum bearing strength of footings on the slope comprising marginal soil and the related 

failure mechanism is also explored by few researchers (Leshchinsky 2015; Acharyya et al. 

2020).  

 

With the growing demands of populations, urbanization in the hilly terrains has been on the 

rise all over the world. The north-eastern provinces of India especially cover hilly areas 

supporting a large share of the building infrastructures (single or multi-storeyed) on or near the 

crest of the slopes. In case of common low-rise infrastructures, adoption of strip footing is 

mostly prevalent. The hill-slopes of north-east India predominantly comprises marginal soil 

whose strength properties are dictated by both cohesion and friction, and hence such soils are 

colloquially termed as cohesive-frictional or c-φ soils. It is important to understand the effect 

of slope inclination and setback distance on the normalized maximum bearing strength of strip 

footing positioned near slope face [given as qu/γHs where, Hs is the slope height of slope, γ is 

the unit weight of slope material, and qu is the ultimate bearing capacity (or, UBC)]. This can 

be commonly achieved using a limit equilibrium analysis (LEA) by equilibrating the driving 

and resisting forces or moments (Castelli and Motta 2009). On the contrary, continuum analysis 

through finite element analysis (FEA) employing coupled stress-deformation approaches 

provide a better perspective (Chakraborty and Kumar 2013). Slope instability, triggered 



naturally or by some applied external force, is largely governed by the displacement of the 

slope face that plays an instrumental role in realistically deviating from the assessment of limit-

equilibrium based safety factor. However, it is also to be noted that conducting FEA for 

assessing the stability of foundation on slopes for each and every isolated case is tedious and 

time-demanding. It would be prudent to rather develop a database of governing parameters and 

their quantitative influence on the stability, and employ the database to develop a set of 

mathematical expressions that could be easily used in simple calculating engines by any 

common applicant to gain the preliminary information on the stability of foundation on slopes.  

 

In the present times, various soft computing or machine learning algorithms are utilized for this 

purpose. Although, jargon-wise, there are a plethora of learning techniques different from each 

other in their functionality and algorithms, yet all of them finally produces a set of simplified 

mathematical expressions that is commonly stated to be the architecture of the solution. In the 

current research, MGGP (or, multi-gene genetic programming) is used to generate the 

predictive relationship between the UBC of footings on the slope and the contributory 

parameters. MGGP is capable to overcome the restrictions of dimensionality, regression, and 

empirical analyses. It aids in the robust choice of algorithm parameters such the model 

performs as a best descriptor of variability while achieving reasonable predictability (Pattanaik 

et al. 2017; Mishra et al. 2017). Both genetic programming (GP) and MGGP has been used in 

several practical civil engineering problems namely Prediction of unsaturated hydraulic 

conductivity curve (Johari et al. 2006), unconfined compressive strength of soft soil (Narendra 

et al. 2006), settlements of foundation (Rezania and Javadi 2007), local scouring adjacent to 

hydraulic structures (Guven and Gunal 2008), cyclic stress-strain behaviour of sand 

(Shahnazari et al. 2010), lateral load capacity of piles (Gandomi and Alavi 2012), landslide 

induced displacements (Chen et al. 2016), assessment of pavement performance (Shahnazari 

et al. 2012) and uniaxial compressive strength of rock (Armaghani et al. 2018). It is noted that 

the MGGP has not yet been utilized for predicting the stability of footings on hillslopes.  

 

This paper reports the devising of a MGGP-based predictive relationship to assess the 

maximum bearing strength of a strip footing located on a hillslope comprising marginal soil. 

The dataset for the MGGP model will be populated from finite element (FE) analysis of strip 

footing on slope crest. Along with the detailing of the developed FE model, a description of 

various parameters affecting the response of FE model is also provided. Further, the 

development of the MGGP-based predictive relation through the optimization of its various 



hyper-parameters and its performance is elucidated through various statistical evaluators. The 

developed MGGP-based predictive relation is validated against relevant experimental 

investigations. Finally, a local perturbation based sensitivity study is carried out to identify the 

importance ranking of the input parameters on the developed MGGP model. 

 

2.  Problem Statement and Adopted Methodologies 

The present study focusses on evaluating the maximum bearing strength of a strip footing 

located at various positions on a hillslope (as depicted in Figure 1). The bearing strength is 

affected by several parameters, i.e. c and φ of the slope material, width of footing (B), setback 

distance (b, the distance between the slope face and nearer edge of the footing; expressed in 

terms of footing width as a ratio b/B), depth of embedment of footing (Df ; expressed as a ratio 

of embedment depth to footing width, i.e. Df /B) and the slope inclination angle (β). The 

reasonable ranges of these parameters as adopted in the current research are provided in Table 

1. In general, it is observed in many hillslopes in north-eastern parts of India (Sarma et al. 2014, 

2018, 2020a), the slope material has very high cohesive strength and are unlikely to fail. Most 

of the failures have been noted in the slopes having cohesive strength below 80 kPa. In such 

slopes, the frictional characteristics remains mostly on the lower side, mostly the friction angle 

is below 25º. For slopes with higher sandy and silty content, the friction angle can get as high 

as 40º, while the corresponding cohesive strength remain on the lower side, mostly below 30 

kPa. Accordingly, the ranges of shear strength parameters are decided as given in Table 1. 

Literature suggests that slopes with inclinations within the range 10º-40º are more likely to 

attract urbanization, making them more susceptible to fail (Sarma et al. 2020b). Due to paucity 

of open spaces, it is a common practice in hillslopes to construct infrastructures supported on 

strip or combined footings with larger length-to-width ratios. In such case, it is not expected to 

have a strip footing more than 2 m width (Acharyya and Dey, 2021), and hence, a range of 0.5 

m (for wall foundations) to 2.0 m (for foundations of buildings and transmission towers) is 

considered in the present study. Excavation of pits for shallow foundations in hillslopes is 

always a risky task, and hence, it is not a customary practice to consider depth of open 

excavations of shallow foundations more than 2 m in the hillslopes. In case the foundation 

design remains unsatisfactory with the depth of excavation being less than 2 m, alternative 

foundations have to be explored. Hence, in compliance to the classification of shallow 

foundations (Murthy 2008), a normalized depth of embedment is considered up to the value of 

1. In most of the instances, the infrastructure in the hillslopes are built by preparing a horizontal 

bed at the crest of the slope. The nearness of the infrastructure to the face of the slope would 



affect the performance and bearing strength of the adopted footing. Hence, to study this 

influence and identify the threshold beyond which the slope does not impart its effect on the 

bearing strength of the footing, a normalized setback distance of 0-10 is used. … 

 

 

Fig. 1 Typical positions of strip footing in a marginal soil slope  

 

Table 1 Ranges of geometrical and geotechnical parameters adopted in the study 

                                           Parameters MGGP notation Range 

Geotechnical 

parameters 

c (kPa) X1 10-80 

φ (°) X2 10-40 

Geometrical 

parameters 

B (m) X3 0.5-2 

b/B X4 0-10 

β (°) X5 10-40 

Df/B X6 0-1 

 

In the present study, all the possible variations in the individual input parameters (c, φ, B, b/B, 

β, Df/B) within their feasible engineering ranges are included for conducting the FE 

simulations. However, it is to be yet noted that the output parameter might be considered 

idealized as it is an outcome of the finite element simulations following a specific constitutive 

model and compatibility behavior. At the same time, even though the input parameters are 

considered in their corresponding ranges, yet each set of input parameters lead to a specific and 

deterministic output magnitude. In this process, the uncertainties or variabilities commonly 

encountered in the field, i.e. either epistemic or aleatoric, does not get incorporated in the 

analyses. There are several avenues by which variability and uncertainty can percolate in the 

real-life scenarios of foundations on hillslopes. In the present study, the hillslope is considered 

homogeneous in each analyses. However, the shear strength parameter generally exhibits 



spatial variability. Variability can emerge in the real field scenarios due to the actual behavior 

of the hillslope material, which is restrained in the present analysis by the usage of a specific 

constitutive model. In the present study, the slope inclination is also considered identical 

throughout the height of the slope; however, it is understood that the same might noticeably 

vary as natural hillslopes hardly follow a specific pattern of inclination throughout. These 

differences in the input parameters, added to the measurement uncertainties, can lead to a 

magnitude of the bearing capacity that might be different than the estimations provided by the 

FE simulation. It is possible to incorporate some of the variabilities in the analyses by adopting 

a stochastic analysis employing random variables or random fields for the relevant parameters. 

However, such adoption is significantly resource and computation demanding, which is beyond 

the scope of the present study. Thus, the findings of the present study of formulating MGGP 

models remain restrained by the deterministic solution of bearing capacity of strip footing on 

slopes within the reasonable engineering ranges of the input parameters. 

 

2.1 Description of finite element modelling  

In the present study, the FE modelling is adopted to generate the input-output database required 

for the development of the MGGP model. As mentioned earlier, the realistic option is collating 

a database from laboratory-scale or prototype experiments so that variabilities are imbibed in 

the dataset. However, conducting a very large number of such controlled experiments is 

resource demanding and infeasible in most cases. Hence, in order to generate the data pool 

required to develop the MGGP model, considering a plane-strain condition, a two-dimensional 

(2D) finite element (FE) framework is developed to numerically model and analyse the 

problem using PLAXIS-2D v2015.02 (PLAXIS 2015). Conforming to Figure 1, multiple 

numerical models were prepared. Any such numerical model should be free from boundary 

effects. In this case, the stress-deformation response of the footing and the slope face should 

be free from any interference from the left lateral and the bottom boundary. As illustrated in 

Figure 2, it is conceived that the pressure bulb representing the significant stress isobar (i.e. 

0.1q, where q is the failure stress), originating beneath a loaded strip footing, should not be 

intersected by the edges of the domain. Through this procedure, the optimum dimensions of 

the model are determined for various geometrical configurations. Figure 3 illustrates the 

application of boundary conditions, in which ‘standard fixity’ is applied. Accordingly, in the 

FE model, the lowermost boundary is considered rigid, thereby displacement fixities in all 

directions are employed at the bottom edge of the model. The far lateral edges are free to 



deform in the vertical direction, while it is restrained from horizontal deformation. For allowing 

unhindered deformation of the slope face, no fixities are given on the same. 

 

 

Fig. 2 Typical diagram exhibiting the choice of model dimension (not to scale) 

 

For conducting FEA, sufficient number of finite elements are used to discretize the model 

domain. For obtaining as reasonable estimates of displacements and stresses as possible, 15-

noded triangular elements comprising larger numbers of Gauss points and nodes are chosen. 

PLAXIS-2D program produces the FE meshes with the support of ‘robust triangulation 

technique’ employing automatic discretization as per pre-described meshing schemes, termed 

as ‘very fine’, ‘fine’, ‘medium’, ‘coarse’ and ‘very coarse’ as per their relative element size. 

As per necessity, according to the user-defined ‘mesh coarseness factor’, meshing from each 

predefined scheme can be progressively refined. The adopted mesh should be optimal and 

adequately refined to achieve the best possible numerical results. Figure 3 illustrates the typical 

meshing arising from the choice of the preliminary ‘fine’ meshing scheme, which is further 

refined at locations wherever stress concentration is anticipated to develop. 

 

 

Fig. 3 Typical meshing scheme and boundary fixities employed on a FE model 

 



In the current simulation, the constitutive behaviour of hillslope material is represented by 

Mohr-Coulomb, or MC, model (Naderi and Hataf 2013). It is an elastic-perfectly plastic model 

that is characterized using three strength parameters (φ, c, and the dilatancy angle ψ) and two 

stiffness parameters (ν and E i.e. Poisson’s ratio and Modulus of elasticity, respectively). The 

slope material is assumed following ‘associated flow rule’, described by the dilative coefficient 

/ 1     (Drescher and Detournay 1993; Xiao-Li et al. 2017). Literature reveals that the 

maximum bearing strength is negligibly influenced by variation in soil unit weight i.e. γ 

(Acharyya and Dey 2017), and hence, a constant γ = 16 kN/m3 is considered for the hillslope 

material. The rigid rough strip footing is considered made of M20 concrete, whose behaviour 

is considered following the linear elastic (LE) constitutive model, having γc = 25 kN/m3, Ec = 

22 GPa and νc = 0.15, corresponding to the unit weight, modulus of elasticity and Poisson’s 

ratio of concrete, respectively. Suitable interface element is provided at the concrete-soil 

boundary, whose stiffness matrix is developed using the Newton-Cotes integration points (Nasr 

2014). The elastic modulus and shear strength parameters of the interface element are 

considered identical to that of the adjacent soil elements. The interface strength reduction factor 

(Rinter) are chosen to be 1, such that the strip footing exhibits a rough base without any slippage 

between the footing and soil nodes.   

 

2.2 Description of multi-gene genetic programming (MGGP) technique 

Genetic programming (GP) mimics the Darwinian principle of natural selection. It is a 

symbolic regression technique that generates programs to execute a problem, wherein the 

outcomes are revealed in terms of tree structures (Searson 2009, 2010). Random population of 

individuals are generated to attain high variability, which in a hierarchical tree structure 

comprises functions and terminals, thereby representing a mathematical expression. The 

function set consists of typical programming operations, typical mathematical functions, 

simple arithmetic operations, domain-specific operators, logical functions or any other 

necessary mathematical operators. The terminal set consists of arguments of the operators and 

comprises numerical and logical constants as well as variables. A standard GP tree, illustrating 

a simple function   1 2(3/ )f x x x  , is shown in Figure 4. The representative structure of GP 

consists of nodes, or elements, belonging to both terminal (Constants like 3 and variables like 

x1, x2) and functional sets (Mathematical operator). 

 



 

Fig. 4 A typical tree structure of a GP model representing a mathematical function  

 

MGGP operates on scaled symbolic regression and is considered to be an advanced and robust 

variant of GP. It has the ability to amalgamate the model structure selection as in traditional 

GP with the capability of parameter estimation akin to classical regression techniques. In 

contrast to GP, every symbolic model in MGGP is a weighted linear arrangement of the outputs 

from a huge quantity of trees (Wang et al., 2016). A MGGP structure comprises gene, 

chromosome or gene-tree, individuals, fitness evaluator, evolutionary operators, gene 

interaction, hierarchical structure, parallelism and dynamic adaptation. Every tree in the stated 

population is represented as a ‘gene’. A gene signifies a distinct program or solution to a 

problem, while a combination of multiple genes forms a chromosome or gene-tree. At the 

outset of the MGGP algorithm process, the maximum number of genes and maximum depth of 

trees are pre-set to constrain the complexity of the predictive model. One or multiple gene-trees 

are used by MGGP to calibrate the corresponding coefficients of the gene-tree structure with 

the aid of statistical regression techniques such as least squares, or others. An individual 

expression is characterized by multiple genes within a chromosome. Each individual in the 

population is assessed by the performance or evaluation of its constituent genes. At each step, 

the generated population is evaluated for its prediction capability. The fitness measure is taken 

into account for making a decision about the retention or modification of the said population. 

Fitness is primarily quantified by the error between the estimated and predicted magnitudes. If 

the desired fitness is not achieved, a series of evolutionary operations are conducted at the gene 

level, including reproduction, crossover and mutation, thereby allowing for the evolution of 



multiple programs (through replacement or generation) within each individual. This process is 

repeated until the desired fitness is achieved. An illustrative representation of the modelling 

steps is highlighted through Figure 5. Genes within an individual can interact and cooperate to 

mutually solve the problem. Thus, a hierarchical structure is created where genes interact at 

different levels of abstraction. In line with the weighted structure, MGGP can exploit 

parallelism and concurrency by executing multiple genes simultaneously or in parallel. MGGP 

enables dynamic adaptation of the number and composition of genes within individuals 

throughout evolution. As an end-product, MGGP produces a set of equations which are linear 

combinations of non-linear terms, and the same is developed without having a-priori functional 

structure. In a nutshell, in contrast to GP, MGGP offers a more robust approach to arrest the 

nonlinearity associated with a phenomenon (Noh et al., 2021).  

 

Fig. 5 An illustrative description of the MGGP algorithm 

 

A standard multi-gene model is portrayed in Figure 6, which denotes a function 

   0 1 1 2 2 2 3  8 sin 3 5/ cosy w w x x w x x       
 

 comprising an output variable  y

and three dependent input variables (x1, x2 and x3). The model comprises nonlinear algebraic 

and trigonometric operators, although it is linear with regard to the individual operators 

associated with the coefficients w0, w1 and w2. The linear coefficients for each gene are assessed 

with aid of least squares method. A multitude of population and generations are verified to 

decipher the minimal error in the model. The permissible number of genes and the tolerable 



gene depth directly impacts the extent of the search space. The maximum number of genes and 

tree depth are decided by the user for a particular problem. The programs are executed until 

the tolerance is achieved in successive iterations. Fitness function assesses the generated 

equations to deliver the best expressions. The basic mathematical expression of MGGP is 

mentioned as per Hii et al. (2011):  

0

1

n

i i

i

Y d G d


            (1) 

where, di is the ith weighting coefficient, Gi is the magnitude of ith gene and function of input 

variables, d0 is the bias, n is the number of genes and Y is the predicted output. … 

 

 

Fig. 6 A typical tree structure of a MGGP model representing a mathematical function  

 

GPTIPS is an extensively used platform for the assessment of GP models. It is efficient in 

producing symbolic nonlinear models for predictor response data. GPTIPS is functioned by 

MGGP which contains the flexibility and capability to arrest nonlinear characteristics of GP 

with aid of ‘classical linear least squares parameter estimation’. In the current investigation, 

multi-gene symbolic regression operator is utilized to minimize the difference (in terms of 

RMSE, i.e. root mean squared error) between the simulated and predicted normalized bearing 

capacities. Following a 70:30 ratio, the simulated datasets are randomly categorized into 

training and testing sets respectively (Pattanaik et al. 2017). The training data are utilized for 

genetic development, while the testing data checks the efficiency of the mathematical 

formulations obtained from MGGP. The performance of the MGGP tree structure is 

investigated with varying population, in which the coefficient of correlation (R2) is utilized for 

the assessment of model prediction wherein the population corresponding to the peak R2 is 

chosen as the optimum population. 

 



3. Validation of Numerical Model  

The developed FE model is validated against the findings from relevant laboratory experiments 

performed by Keskin and Laman (2013). In the said experimental investigation, the bearing 

strength of a strip footing positioned on a sandy slope was assessed as a function of setback 

distances, slope inclination angles and footing widths. For validation purpose, exact 

geometrical dimensions of the experimental setup are replicated in the FE model. The width of 

strip footing is taken as 70 mm resting on the slope crest with b = 0 (i.e. at the edge); the 

inclination of slope being 30°. In accordance to the experiment, φ and γ of the cohesionless soil 

are considered 41.8° and 17 kN/m3, respectively.  

 

Firstly, a mesh convergence study is performed for discerning the optimum mesh configuration 

for the analysis (as per Acharyya and Dey 2019). Figure 7 depicts that a global ‘medium’ 

meshing, having a non-dimensional element size of 0.07, leads to an optimum configuration 

for the simulation. As a consequence, for validation study as well as for rest of the numerical 

analyses, the same meshing arrangement is considered. Figure 8 depicts the tolerable 

agreement between numerically obtained pressure-settlement plot with that obtained from the 

experimental investigation, there by representing the overall accuracy of the generated 

numerical model.   

 

 

Fig. 7 Optimal mesh configuration from mesh convergence curve 

 



  

Fig. 8 Validation of FE model with respect to experimental investigations  

 

4. Results and Discussions 

4.1 Parametric investigation using finite element modelling 

In the current research, the earlier-stated parameters affecting the bearing strength of strip 

footing on slopes are varied to identify their influence on the bearing strength assessment. 

Figure 9 depicts the typical outcomes from the parametric study, which are revealed in terms 

of the normalized UBC with the setback distance of the strip footing. It can be noted from 

Figure 9(a) and Figure 9(b) that increase in c and φ of the hillslope material increases the 

normalized UBC, owing to the improvement in the shear strength of the slope material. Figure 

9(c) indicates that an increase in β results in the decrement of the bearing strength, as the 

resistance of foundation soil undergoing outward lateral movement reduces due to increase in 

slope angle. Moreover, for steeper slopes, the progress of the passive zone towards the slope 

face becomes significantly curtailed due to the unavailability of the soil material. Figure 9(d) 

highlights that increase in footing width improves the bearing strength, owing to the fact that a 

large sized footing provides more contact area as well as results in larger load-spreading within 

the foundation soil. Figure 9(e) reflects that the enhancement in the embedment depth of the 

footing would lead to enhanced bearing strength, primarily due to the augmented confinement 

over the footing embedded at larger depths. Furthermore, from all the plots, it can be inferred 

that for b/B ≥ 6, the presence of slope face has no impact on the UBC of the footing, thereby 

the footing performs as if it is placed on a plane ground. More details of the parametric study 

can be found in Acharyya and Dey (2019). The parametric study is conducted for the entire 



ranges and combinations of parametric magnitudes as indicated in Table 1, thereby generating 

a large pool of 2021 datasets to be used in the subsequent MGGP analyses.  

 

 (a)  (b) 

 (b)  (d) 

 (e) 

Fig. 9 Typical influence of contributing parameters on the normalized bearing strength of strip 

footing on a slope: (a) Cohesion of hillslope material (b) Friction angle of hillslope material (c) 

Inclination of hillslope (d) Width of strip footing (e) Embedment depth of footing 

 

4.2 Outcomes and performance of developed MGGP model 

The prepared dataset of 2021 combinations is used to create the MGGP model for the present 

study by suitably modifying the GPTIPS toolbox available in MATLAB vR2015b (Mathworks 

2015). The hyper-parameters of the algorithm were substantiated over the range of their 

corresponding values and, finally, their optimal combination were identified. The ‘build’ 

method that signifies the technique of initializing the first-generation tree structures is explored 



through three techniques, namely (a) ‘Full’, (b) ‘Grow’ and (c) ‘Ramped half-and-half’, out of 

which the ‘Grow’ method is observed to be the best possible approach. The individual gene 

depth is varied in a range 1-7, while the number of genes is varied between 1 to 10. The 

probabilities of all the three primary operations i.e. mutation, crossover and the direct crossover 

(M-C-D) are explored within a range 0-1 at a uniform interval of 0.1. For the best population 

selection, the tournament size is varied in the range 10%-100%. The elite fraction, representing 

the fraction of the total population exempted from participating in the genetic operations, is 

varied in the range 0.05-0.3 at a uniform interval of 0.05. Lastly, the population size and 

number of generations are varied in the ranges 5-120 and 10-60, respectively. The optimal 

algorithm parameters used in modelling are finally identified as: Build method – Grow, 

Tournament size – 100%, Population size – 750, Number of generations – 50, M-C-D 

probability – 0.3, Elite fraction – 0.15, Maximum gene depth – 3 and Maximum genes – 5. For 

determination of the best parameter, a single parameter was altered, while the rest of the others 

have been maintained constant, and subsequently, the corresponding optimum value was 

adopted. Three repetition runs have been accomplished for individual parameter combination 

to remove random correlations. Figure 10 depicts the optimum magnitudes of the algorithm 

parameters. Keeping direct and elite fraction at their optimum magnitudes, the optimum values 

of population is determined. Lastly, the optimum magnitude of generation is recognized with 

aid of the average correlation coefficient (R2). The average correlation coefficient of three trials 

has been taken as a pointer to decipher the capability of the developed MGGP model.  

 

 (a)  (b) 



 (c)  (d) 

 (e)  (f) 

 (g) 

Fig. 10 Optimal magnitudes of the algorithm parameters selected for MGGP analyses 

 

The model evaluation has been finalized on the entire data set to obtain the best model using 

the estimated optimum algorithm parameters. Equation 2 provides the final relationship 

obtained between the influencing parameters and the normalized UBC (qu/γHs) using the 

MGGP technique. The value of R2 has been found to be 0.997 for the present model, thereby 

indicating its efficiency in successfully predicting the UBC of strip footing on slopes.  
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where, X1 … X6 are as per the notation given in Table 1.  



 

Out of 2021 datasets (Acharyya and Dey, 2019), 1414 sets (i.e. 70%) and 607 (i.e. 30%) 

datasets are used for training and testing of the MGGP model, respectively. Figure 11 

represents the capability of the generated MGGP model in terms of the similarity of simulated 

outcomes (from the FE analyses) to that of the predicted normalized UBC (from the MGGP 

model). The training performance indicates capability of the model towards generalization, 

while the testing performance represents predictive capability of the model. It can be noted 

from Figure 11 that the model exhibits superior potential in both generalizing and predicting, 

as observed from the high magnitudes of the correlation of regression (R2) representing 

appreciable agreement between simulated and predicted outcomes. The observations suggest 

that the developed MGGP model can be efficiently considered in assessing the maximum 

bearing strength of strip footing placed on the crest of a slope comprising marginal soils.  

 

 (a) 



 (b) 

Fig. 11 Performance of the MGGP model during training and testing phases 

 

Furthermore, apart from the coefficient of regression (R2), the performance of the developed 

MGGP model (as in Equation 2) is examined through various statistical criteria, namely, Nash–

Sutcliffe efficiency (NS), Index of Agreement (d) and Modified Index of Agreement (dModified) 

(Legates and McCabe, 1999). The expressions for each of these statistical evaluators are 

provided in Equations 3-6. The correlation-based methods (R2, NS, d and dModified) can identify 

the predictive capability of the developed model (Legates and McCabe 1999). It is obvious that 

a high magnitude for R2, NS, d and dModified (limited up to 1) designate high predictive capability 

of the model. The performance of Equation 2 is inspected with statistical parameters through 

both the training and testing datasets. The values of statistical evaluators are tabulated in Table 

2, which reveals that the magnitudes of the statistical evaluators are very close to 1, thereby 

reconfirming that the developed MGGP model is highly efficient in predicting the UBC of strip 

footing positioned on crest of a marginal soil slope. 
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where, ys and yp symbolise the simulated and predicted values of normalized maximum bearing 

strength. 
sy  and py represent the mean values of the simulated and predicted normalized 

maximum bearing strength, and N represents the total number of data samples. 

 

In the present study, the accuracy index of the MGGP model is assessed by mean relative error, 

root mean square error and mean absolute error, as presented in Table 3. The magnitudes of 

accuracy index parameters signify the high fitness of prediction.  

 

Table 2 Statistical evaluators exhibiting the performance of developed MGGP model 

Statistical evaluator Training Testing 

R2 0.996 0.997 

NS 0.996 0.997 

d 0.999 0.999 

dModified 0.995 0.991 

 

Table 3 Accuracy index of the developed MGGP model 

Parameters Magnitudes 

Mean Relative Error = 
1

1 N
s p

i s

y y

N y


  0.06 

Mean Absolute Error = 
1

1 N

s p

i

y y
N 

   1.86 

Root Mean Square Error = 

2

1

( )
N

p s

i

y y

N




 

2.57 

 



 

Fig. 12 Comparison of outcomes obtained from FE model and MGGP model 

 

Figure 12 illustrates the comparison of the results found from the FE analysis and predicted 

from the MGGP model. It is seen that there is a substantial match between the outcomes 

obtained from the FE and MGGP models. It proves the fact that the proposed MGGP model 

has a high capability and accuracy to predict the qu/γHs. 

 

The developed MGGP-based predictive expression (Equation 2) is further compared with some 

experimental observations reported in literature (El-Sawwaf, 2010) and are presented in Table 

4. It is to be noted herein that the experimental investigations referred herein (and mostly all 

others available in literature) comprise cohesionless slopes, hence only the friction angle is 

considered for the shear strength parameter. Hence, even with the complete absence of one 

contributing parameter (which played a significant role in developing the MGGP model), the 

closeness of the normalized bearing strength obtained from the prediction and experimental 

observations lead to the confidence on the efficacy of the developed model. 

 

Table 4 A comparative of proposed MGGP model with respect to experimental observations 

Parameters Considered qu/γHs from the 

experimental investigation 

(El-Sawwaf 2010) 

qu/γHs from the 

proposed 

MGGP model 

c = 0, φ = 43°, B = 0.08 m, b/B = 0, β 

= 33.69°, Df/B = 0 

2.12 2.40 

c = 0, φ = 37.5°, B = 0.08 m, b/B = 0, 

β = 33.69°, Df/B = 0 

1.25 1.55 



c = 0, φ = 34°, B = 0.08 m, b/B = 0, β 

= 33.69°, Df/B = 0 

0.51 0.83 

 

It is to be noted herein that the MGGP prediction equation is based on the FE simulations that 

comprised the effect of both the shear strength parameters (c and φ). The FE model was 

validated with the experimental results by Keskin and Laman (2012) so that the quality and 

verity of the data pool generated from FE simulations be well established. The data pool is 

further used to generate the MGGP prediction model whose efficacy is tested by comparing 

the predictions with the small-scale experimental investigations conducted by El-Sawaaf 

(2010). Although most of the parameters used by El-Sawaaf (2010) for various experiments 

(as given in Table 4) conform to the ranges of the corresponding parameters chosen to create 

the data pool (as given in Table 1), yet there are two major deviations. The experiments by El-

Sawaaf (2010) considered cohesionless soil slopes, i.e. c = 0. As the MGGP prediction model 

is developed based on the effect of both the shear strength parameters, mismatch can originate 

between the experimental assessments and MGGP predictions on account of completely 

disregarding one of the shear strength parameters. However, it is supposed that the major 

reason of the deviations between the findings, as seen in Table 4, is primarily due to scale 

effects. It may be noted that the width of the footing considered in the small-scale experiments 

by El-Sawaaf (2010) is only 0.08 m, which is far smaller than the conventional real-scale 

footing sizes. Hence, a significant scale-effect is supposed to be induced in the small-scale 

experiments. The same has been also clearly mentioned by El-Sawaaf (2010) in regard to the 

scale effects arising from the dimensional scaling down of the footing sizes in the small-scale 

experiments while the grain size in the same small-scale experiments remain untouched. This 

leads to the mismatch in the footing width/grain size ratio between the prototype/field sized 

experiments and the small-scale experiments. It may be noted that the FE simulations in the 

present study considered the footing width in the range of 0.5-2 m, i.e. in accordance to the 

size of the real prototype foundations, and the same is used to develop the MGGP predictions. 

However, in absence of the experimental literature involving such large sized footing, the 

efficacy of MGGP predictions had to be sought out based on the small-sized experimental scale 

footings. Hence, the primary of the differences in the results can be attributed to the scale effect 

percolated in the actual experimental behavior. Nevertheless, the outcomes of the comparison 

are not found to be largely distant, and in a nutshell, can be attributed to the scale effect and 

extrapolation of MGGP prediction equation beyond the range for which it was originally 

developed. It might be interestingly noted that the difference is more pronounced for the case 



when the footing is resting on the cohesionless material with lowest internal friction angle (φ 

= 33.69º), which might be due to a phenomenal change in the failure mechanism of the small 

sized footing on the relatively loose sand. Each of these minor effects could not be inculcated 

in the MGGP prediction model. 

 

4.3 Sensitivity assessment 

Sensitivity assessment is carried out to illustrate the comparative significance of the input 

parameters on the prediction of normalized UBC of strip footing on the slope crest. The 

technique adopted herein is termed as the ‘Local Perturbation Technique’ or ‘Local Sensitivity 

Analysis’ and is one of the acclaimed conventional sensitivity analysis techniques owing to its 

easiness. In this approach, the influence of one single input parameter is studied on the variation 

of the output while the remaining input parameters remain fixed (Dey and Basudhar 2021; 

Chavan and Kumar 2018; Acharyya and Dey 2019; Li et al. 2023). The point-based local 

perturbation considering each data independent of the other is followed in this study to 

ascertain the sensitivity in a conventional manner. Herein, the input parameters are altered from 

+20% to -20% of their mean value and their effect on the variation of the model prediction is 

recorded. It is to be noted that when one of the input parameters were varied, the others were 

maintained constant at their mean values. Figure 13a describes the percentage change in 

prediction of qu/γHs to the percentage change in input parameters as an outcome of the 

sensitivity analysis; X1 … X6 are as per the notation given in Table 1. The negative sign, as 

depicted in Figure 13, indicates the decrease in the magnitude of the corresponding parameters 

below their mean values. It is observed that the friction angle of hillslope material, φ (i.e. X2), 

is by far the most significant input parameter as it has maximum effect on the predicted 

maximum bearing strength, followed by the effects of B and b/B (i.e. X3 and X4, respectively), 

β and c (i.e. X5 and X1, respectively), and Df/B (i.e. X6). For better visualization of the 

remaining parameters, a local perturbation diagram is provided by Figure 13b after removing 

the plot for X2 from Figure 13a.  

 



 (a) 

 (b) 

Fig. 13 Importance ranking of input parameters obtained through sensitivity studies 

 

5. Rationality of Present Study 

In the present study, it is worth mentioning that the data comes from the synthesis of software. 

The geo-parameters, within their individual ranges, are used as input to finite element analyses 

that follows a predefined constitutive behavior, thereby yielding the load-settlement responses 

that are further synthetized to assess the maximum bearing strength of footing on slope. The 

individual range of the input parameters were so chosen that their combinations (comprising 

specific magnitudes of each of the parameters) encompass the generic variations that can occur 

in the real-field soils. All the individual parameters were given equal weightage of occurrence, 

i.e. in other words, they follow a ‘uniform’ distribution. However, it is understandable that each 



of these parameters, when assessed from the field, can have different non-uniform distributions, 

either due to the errors and uncertainties associated with their estimation or due to the inherent 

spatial variability and inhomogeneity in the material present in the field. Error in field 

measurement is a pertinent avenue by which discrepancies creep into the scientific solutions. 

Field measurements need to yield the best results and such errors in measurements are 

necessary to be avoided at all circumstances. However, apart from measurement errors, the 

parameters themselves can have a range of values due to the inherent geological uncertainties. 

It is necessary to incorporate such uncertainties in the soft computing, and one of the best way 

is to include it through a probabilistic and uncertainty-based approach. Application of Monte-

Carlo techniques is quite common in such cases, wherein the parameters are chosen from their 

statistical distributions to solve a deterministic problem in each iteration. Hence, in such cases 

as well, the currently developed scheme can be successfully used. Hence, as long as the range 

of uncertainty in field measurements is still within the range of the parameters considered 

herein for the development of the MGGP model, the proposed approach holds its rationality 

and can be suitably used. 

 

6. Conclusions and Recommendations 

Based on the numerical simulations and multi-gene genetic programming (MGGP) based 

prediction, the following conclusions are drawn from the present study: 

 For a strip footing located at the crest of a marginal hillslope, the bearing strength is 

higher for slope material having higher strength parameters and for footings with higher 

widths and embedment depths, while the same reduces for higher slope inclinations.  

 The bearing strength of strip footing on slopes is substantially influenced by setback 

distances lesser than six times the footing width (i.e. S/B < 6), beyond which the 

response corresponds to that of a strip footing resting on a semi-infinite horizontal 

ground.  

 Given the high magnitudes (> 0.99) of all the statistical evaluators during the testing 

phase, the performance of the MGGP-based predictive expression, developed to assess 

the bearing strength of a strip footing resting on the crest of a hillslope, is adjudged to 

be excellent. Furthermore, the appreciable closeness of the bearing capacities obtained 

from the predictive expression to that of the experimental observations successfully 

validates the developed MGGP model.  



 Based on local-perturbation based sensitivity analysis, the angle of internal friction of 

the hillslope material is found to have the highest importance ranking in terms of its 

sensitive influence on the bearing strength of strip footing on slopes, sequentially 

followed by other parameters, namely the footing width, setback ratio, cohesion of 

hillslope material, slope inclination and embedment depth of footing. For a perturbation 

of 20% about the mean value of friction angle, the normalized bearing strength varies 

to an extent of 60%, while the variation is in the tune of 5%-15% for the similar 

perturbation in other parameters.  

 

7. Limitations of the Present Research 

In the current research, M-C model is considered to represent the soil domain. The M-C soil 

model assumes the same elastic modulus (E) throughout the soil depth, i.e. the modulus of 

elasticity is stress-independent. However, it is understandable that stress-dependency is an 

inherent outcome of geological formations. In such case, the applicability of the Hardening soil 

(HS) model or any other stress-dependent models, considering variation of elastic modulus 

with depth of soil, can be suitably explored. It is also worth mentioning that the MGGP model 

expression derived herein is established by considering input parameters in certain ranges and 

are considered independent of each other. It is suggested that the developed expression should 

be used with caution if the parameters are beyond the ranges of input parameters mentioned in 

the manuscript. In the future, the concept of spatial variability of soil parameters could be 

considered to get more realistic outcomes of such geotechnical engineering problems.  
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