

A One Week Online Faculty Development Programme (3rd – 7th June, 2024) on **Recent Advances and Research Scope in Geotechnical Engineering** Department of Civil Engineering, Jorhat Engineering College, Assam, India

The Arena of Landslides and Slope Instabilities An Overview of Landslide Analyses Approaches

Arindam Dey Department of Civil Engineering & Center for Disaster Management and Research IIT Guwahati

Introductory Remarks and Recap

3

Slope Instabilities and Landslides

Movement of mass of rock, debris or earth down a slope

Classification of Landslides: Types of Failure

Varnes, 1978; Cruden and Varnes, 1996

Classification of Landslides: Velocity of Failure

Velocity Class	Description	Velocity (mm/sec)	Typical Velocity	Probable Destructive Significance
7	Extremely Rapid	5 x 10 ³	5 m/sec	Catastrophe of major violence; buildings destroyed by impact of displaced material; many deaths; escape unlikely
б	Very Rapid	5 x 10 ¹	3 m/min	Some lives lost; velocity too great to permit all persons to escape
5	Rapid		1.8 m/hr	Escape evacuation possible; structures; possessions, and equipment destroyed
4	Moderate	- 5 v 10 ⁻³	13 m/month	Some temporary and insensitive structures can be temporarily maintained
3	Slow	5 x 10 ⁻⁵	1.6 m/war	Remedial construction can be undertaken during movement; insensitive structures can be maintained with frequent maintenance work if total movement is not large during a particular acceleration phase
2	Very Slow	5 4 10	1.0 hi year	Some permanent structures undamaged by movement
	Extremely SLOW	— 5 x 10 ⁻⁷	15 mm/year	Imperceptible without instruments; construction POSSIBLE WITH PRECAUTIONS
	V \	,		Cruden and varnes, 1996

h

Landslides: CAUSE and TRIGGER

Causes of Landslide

Landslide Triggers

- Rainfall
 - Sudden intense rainfall
 - Mostly lead to erosion induced shallow landslides
 - Predominantly renders surface runoff than percolation
 - Prolonged heavy rainfall
 - Mostly lead to deep-seated landslides
 - Allow deeper percolation of water within the slope
- Seismicity
 - Stress induced due to seismic shaking
 - Generation of pore water pressure
- Toe-excavation (in many instances)
 - Inhabitation
 - Transport route development

Typical Examples of Slope Instability

Varunavat Parvat Landslide Uttarkashi, Uttarakhand 24 September 2003

10

Typical Examples of Slope Instability

Malegaon Mudslide Malegaon, Pune, Maharashtra 30 July 2014

Typical Examples of Slope Instability

Banderdewa Mudslide Arunachal Pradesh 2013

Typical Examples of Slope Instability

2013

Typical Examples of Slope Instability

Some Landslides in Guwahati

13

Typical Examples of Slope Instability

Landslide just now at Gauripur, North Guwahati

Landslide near Narayana Hospital, 2020

14

Gauripur Landslide, Opposite to IIT Guwahati 2020

15

Typical Examples of Slope Instability

16

Debris Flows, Nepal, 2021

17

Assam Flood and New Haflong Debris Flows 2022

18

Chamoli Glacier Outburst, Chamoli, 2021

Typical Examples of Slope Instability

Rockfall at Guwahati-Shillong Road

20

Rockfall at Sangla Valley, Himachal Pradesh, 2021

21

<u>Cliff Topple, Brazil, 2021</u>

Typical Examples of Slope Instability

Landslide in Sonapur 2011

Earthquake Induced Landslide

- Palu, Indonesia, 2018
 - Sulawesi earthquake

• M7.5

23

Near Pula

https://www.facebook.com/story.php?story_fbid=2078834212430957&id=100009131949023 https://www.facebook.com/profile.php?id=100009131949023

24

Earthquake Induced Landslide

• Palu, Indonesia, 2018

Typical Examples of Slope Instability

23

Seismic Slope instability in Saiphum, Mizoram

Typical Examples of Slope Instability

Slope instability due to faulty excavation technique in North Guwahati due to Steep Excavation

26

27

Sirmaur Valley Landslide, Himachal Pradesh, 2021

28

Glacier Wall Breakoff, Kinnaur, HP, 2021

29

Avalanche at Kedarnath, 2021

30

Landslide Analysis Approaches

- Target objectives of slope stability analysis
 - Understand the development and formation of natural slopes and the processes responsible for different natural features
 - Assessment of the possibility of landslides involving natural and existing engineered slopes
 - Assessment of the stability of slopes under both short-term and longterm scenarios subjected to various causal factors
 - Analyze the landslides and understand their failure mechanisms subjected to triggering factors (precipitation, seismicity and toe cutting)
 - Enable the redesign of failed slopes and planning and design of preventive and remedial measures wherever necessary

32

Landslide Analysis Approaches

33

Landslide Analysis Approaches

Local Scale Analyses

Factor of Safety / Factor of Uncertainty

- Based on the concept of static equilibrium
 - Define the 'Factor of Safety' of a slope
 - FoS = Strength / Stress developed
 - State of stability
 - FoS > 1 → Stable
 - FoS < 1 → Failed</p>
 - ► FoS \approx 1 → Incipient failure
 - Higher FoS covers for the higher uncertainty in the strength parameters considered

36

Infinite Slopes

• Infinite Slope - Extend over long distances and great heights

3

Infinite Slope and Analysis

• Infinite Slopes - Extend over long distances and great heights

Translational Shallow Slip Analysis for Infinite slopes

Infinite Slope and Analysis

- Infinite Slopes Extend over long distances and great heights
 - Translational Shallow Slip Analysis for Infinite slopes

Dry Cohesionless Slopes

Homogeneous Saturated c-φ Slopes with Phreatic Surface at Slope Face

Homogeneous Saturated Sandy Slopes

Glacio-Lacustrine Deposits

- Varved clays in glaciatic environment
 - Deposition of alternating layers of silt and clay due to annual glaciatic movement in the snow-clad mountains

Finite Slopes and Analyses

• Finite slope – Local scale slopes bounded by surfaces in finite measurable dimensions

41

Finite Slope and Analyses

- Slope Stability Analysis
 - Rotational slips No rigid base stratum
 - Compound slips Presence of rigid base stratum

42

Finite Slope and Analyses

- Slope Stability Analysis
 - Various types of failure surfaces

43

Finite Slope Stability Analyses

• Conventional Finite Slope Stability Analysis

44

Finite Slope Stability Analyses

• Culmann's Method with Planar Failure Surface ($c-\varphi$ soils)

45

Finite Slope Stability Analyses

• Swedish Circle Method (*c* soils)

46

Finite Slope Stability Analyses

• Friction Circle Method (Graphical approach: $c - \varphi$ soils)

47

Finite Slope Stability Analyses

- Method of Slices $(c \varphi \text{ soils})$
 - Discretize the active/moving soil mass into many vertical slices
 - Treat individual slice as failing unit which has interaction with adjacent slide

	11-06-2024	RARSGE, FDP, JEC, 2024	48	
	F	$\underbrace{\text{Discrete Slope Stability Analyses}}_{W \\ K_h W \\ H_L \\ Z_L \\ M' + U_\alpha \\ W \\ K_h W \\ H_H \\ K_h W \\ K_h \\ K_h W \\ K_h $	Indeterminate: (2n-2)-n = n-2	
$F \\ S_a \\ S_m \\ U_a \\ U_\beta \\ W \\ N'$	 factor of safety available strength C + N' tanφ mobilized strength pore water force surface water force weight of slice effective normal force 	$Z_{L} = left interslice force$ $Z_{R} = right interslice force angle$ $\theta_{L} = left interslice force angle$ $\theta_{R} = right interslice force angle$ $h_{L} = height to force Z_{L}$ $h_{R} = height to force Z_{R}$ $\alpha = inclination of slice base$ $\beta = inclination of slice top$ $\frac{Unknowns}{1}$ $\frac{1}{1}$ $\frac{Vac}{1}$ $$	Variablesafetyorce at base of each slice, N' of normal force, N' rce at base of each slice, S_m force, Z on of interslice force, θ of interslice force (line of thrust)	
Q k _v k _h	 external surcharge vertical seismic coefficient horiz. seismic coefficient 	$\delta = \text{inclination of surcharge} \\ \delta = \text{width of slice} \\ h = \text{average height of slice} \\ h_c = \text{height to centroid of slice} \\ \end{bmatrix} \frac{6n-2}{\text{Indetermination of slice}} $	aber of unknowns :e: (6n-2)-4n = 2n-2	

49

Finite Slope Stability Analyses

- Various types of 'Methods of Slices' developed over time
- A Group of Limit Equilibrium Approaches
 - Mainly differs on the variation of assumptions related to interslice forces

	Force Equilibrium			
Method	vertical	horizontal	Equilibrium	
Ordinary method of slices (OMS)	No	No	Yes	
Bishop's simplified	Yes	No	Yes	
Janbu's simplified	Yes	Yes	No	
Lowe and Karafiath's	Yes	Yes	No	
Corps of Engineers	Yes	Yes	No	
Spencer's	Yes	Yes	Yes	
Bishop's rigorous	Yes	Yes	Yes	
Janbu's generalized	Yes	Yes	No	
Sarma's	Yes	Yes	Yes	
Morgenstern-Price	Yes	Yes	Yes	

Finite Slope Stability Analyses

- Ordinary Method of Slices
 - Circular slip surface
 - ✤ Neglects all interslice forces [3(*n*-1) number unknowns neglected]
 - Over-determined [n-2-3(n-1) = -(2n-1)]
 - Only moment equilibrium is satisfied

$$F = \frac{\sum_{i=1}^{n} (C + N' \tan \phi)}{\sum_{i=1}^{n} A_1 - \sum_{i=1}^{n} A_2 + \sum_{i=1}^{n} A_3}$$

 $A_{1} = (W(1 - k_{v}) + U_{\beta} \cos \beta + Q \cos \delta) \sin \alpha$ $A_{2} = (U_{\beta} \sin \beta + Q \sin \delta) \left(\cos \alpha - \frac{h}{R} \right)$ $A_{3} = k_{h} W \left(\cos \alpha - \frac{h_{c}}{R} \right)$

51

Finite Slope Stability Analyses

- Bishop's Simplified Approach
 - Circular slip surface
 - ♦ All interslice shear forces are zero → only normal interslice forces are considered
 - Over-determined [n-2-(n-1) = -1]

Horizontal force equilibrium is NOT satisfied

Overall moment equilibrium is satisfied

Finite Slope Stability Analyses

- Janbu's Simplified Approach
 - Slip surface need NOT be circular
 - ♦ All interslice shear forces are zero → only normal interslice forces are considered
 - Over-determined [n-2-(n-1) = -1]
 - Horizontal force equilibrium is not satisfied

Moment equilibrium is NOT satisfied

$$F = \frac{\sum_{i=1}^{n} [C + N' \tan \phi] \cos \alpha}{\sum_{i=1}^{n} A_4 + \sum_{i=1}^{n} N' \sin \alpha}$$

$$A_4 = U_\alpha \sin \alpha + W k_h - U_\beta \sin \beta - Q \sin \delta$$

Finite Slope Stability Analyses

- Generalized Limit Equilibrium (GLE) Approach
 - For individual slices
 - Satisfies Force Equilibrium
 - Satisfies Moment Equilibrium
 - For global system
 - May or May NOT satisfy both force and moment equilibrium simultaneously
 - It is a congregation of iterative analysis
 - Janbu's generalized approach
 - Spencer's method
 - Morgenstern-Price method
 - etc...

Finite Slope Stability Analyses

• Stability Charts by various researchers

55

Finite Slope Stability Analyses

Interpretations from a Finite Slope Stability Analysis

• Slope stability by various available limit equilibrium methods

Methods	Factor of safety
Culman's method of plane surface failure	6.4
Failure under undrained conditions	0.65
Friction circle method	2.846
Method of Taylor's stability no	2.268
Ordinary method of slices	2.014
Bishop's simplified method of slices	1.43
Bishop and Morgenstern method	1.025
Morgenstern method for rapid drawdown	
Spencer's method	0.57

11-06-2024

Methods	Factor of safety
Morgenstern and price	2.721
Ordinary method of slices	2.612
Bishop's simplified method	2.726
Janbu's simplified method	2.559
Spencer's method	2.723

Landslide Analysis on a Local Scale

• Slope Stability Limit Equilibrium Analysis

3D Limit Equilibrium Analysis

Huang and Tsai (2000), extends Bishop's simplified procedure, all inter-column forces are ignored, Moment equilibrium is considered about two mutually perpendicular horizontal axes and the Factor of Safety minimized considering sliding direction.

Infinite / Finite Slopes

Geometry or Mechanism???

11-06-2024

RARSGE, FDP, JEC, 2024

Infinite Slope Geometry with Infinite Failure Mechanism

11-06-2024

RARSGE, FDP, JEC, 2024

60

Infinite Slope Geometry with Finite Failure Mechanism

61

Finite Slope Geometry with Finite Failure Mechanism

11-06-2024

RARSGE, FDP, JEC, 2024

62

Finite Slope Geometry with Infinite Failure Mechanism

63

Translational Stability of MSW Landfill

64

Translational Stability of MSW Landfill

Decision on Infinite / Finite Slope Type

Mechanism dominates Geometry

Seismicity Induced Landslide Analyses

68

Pseudostatic Slope Stability Analysis

69

Pseudo-static Slope Stability Analysis

Issues in seismic slope stability analysis

- Location of the critical slip surface
 - Static and pseudo-static failure surfaces are not the same

Hill-Slope Stability: Hydraulic and Seismic Effects

• Effect of hydraulic and pseudo-static conditions on the stability of hill slope

Chakraborty and Dey, NESGC, 2016

	φ	15	20	25	30	35	40
c							
0		0.232	0.314	0.403	0.498	0.603	0.723
10		0.343	0.436	0.533	0.639	0.755	0.885
20		0.416	0.515	0.618	0.728	0.848	0.981
30		0.485	0.585	0.691	0.805	0.928	1.065
40		0.554	0.653	0.76	0.876	1.002	1.143
50		0.623	0.723	0.829	0.944	1.072	1.216
60		0.693	0.792	0.898	1.013	1.141	1.286
70		0.763	0.861	0.967	1.082	1.209	1.354
80		0.833	0.931	1.036	1.151	1.278	1.422

Static Dry

Static with water table

Pseudo-Static with water table

72

Pseudo-dynamic Slope Stability Analysis

Pseudo-dynamic analysis incorporates amplification
 FoS governed by nature and magnitude of pre-defined amplification

73

Topographic Amplification in Slopes

• Slope face acts as reflective boundary

Seismic Slope Stability Analysis

• Equivalent linear and Nonlinear dynamic time-history analysis

75

Seismic Slope Stability Analysis

• Equivalent linear and Nonlinear dynamic analysis

Landslide Analysis

• Continuum Analysis

Stress-Deformation Analysis Continuum Modelling

- Finite Element MethodFinite Difference Method
 - Strength Reduction Method (Griffiths and Lane, 1999)

78

Buildings on Slopes: Foundation Interaction

Rainfall Induced Slope Stability Analyses in a Local Scale

80

Rainfall Induced Slope Stability

- Involves two steps
 - Transient Seepage Analysis (SEEP/W) Finite Element Method
 - Slope stability analysis (SLOPE/W) Morgenstern–Price Method Limit Equilibrium Method
 - SEEP/W and SLOPE/W modules of GeoStudio Software Suite (GeoSlope 2007)

Matric Suction (\u03c6) (kPa)

Suction (ψ) (kPa)

UHCC

82

Rainfall Induced Slope Stability

- Slope Geometry and Initial in-situ condition
 - Maximum suction to a limit of 80 kPa (in order to resemble the natural water content of the soil)

83

Rainfall Induced Slope Stability

• Factor of Safety degradation with time

84

Rainfall Induced Slope Stability

• Pore pressure profile for the two types of soil

85

Rainfall Induced Slope Stability

• Factor of Safety

Rainfall Induced Slope Stability

• Pore pressure profile for the two types of soil

87

Rainfall Induced Slope Stability

• Factor of Safety degradation with time and the pore pressures developed at the moment of the failure

88

Rainfall Induced Slope Stability

• Factor of Safety degradation with time and the pore pressures developed at the moment of the failure

Rock Slope Stability Analyses

90

Discontinuity In Rock: Complex Structure

Source: Google image

91

Rock Slope Failure: An Intricate Mechanism

93

Kinematic Approach

• Possibility of translational failures to the formation of daylighting wedges or planes

• Assumptions in this method:

Limit Equilibrium Method

- FOS same along the predefined surface;
- Rigid body above the slip surface;
- Joint persistence and spacing are neglected
- Intricate internal deformation and fracturing neglected in 2-D rigid block

95

Continuum or Equivalent Continuum Approach

• Finite-difference and finite element methods

- Equivalent continuum method used
- Estimation of equivalent rock mass parameter
- Homogeneous system
- Shear strength reduction technique used to get FOS
- Appropriate for the analysis of rock slopes that are comprised of massive intact rock, weak rocks, or heavily fractured rock masses

Discontinuum Modeling

- * For blocky rock slopes, structural failure occurs due to anisotropy created by the joints,
- Discontinuum deformation analysis (DDA) and Discrete element method (DEM) are useful to predict the behavior of jointed rock slopes
- * Consideration of stress-strain interactions, with the incorporation of explicit joints.

DDA formulated by Shi and Goodman (1985, 1989)

- □ working principle of DDA similar to FEM
- Isolated blocks are bounded by discontinuities to represent the jointed slope
- Advantage of being able to model large deformations and rigid body movements

Distinct element method developed by Cundall (1971)

Treat a discontinuous rock mass as an assembly of quasirigid, and later deformable, blocks

- Interacting through deformable joints of definable stiffness
- Proficient of simulating large displacements due to slip, or opening

Explicit Joint Element Model (Goodman et al., 1968)

- Zero thickness
- Rectangular element
 - Four nodes and eight degrees of freedom
- Normal displacement and tangential displacement
- Interface stresses related to relative displacements governed by constitutive relation
- Uncoupled tangential and normal stiffness. The shear and normal deformations are independent of each other
- If the joint normal stress is tensile in any element both stiffness is set equal to zero for the element.
 - This simulates opening of the joint.
- If the joint shear stress exceeds the shear strength then relative displacement occurs

98

Static Stability Analysis of Jointed Rock

• A Sikkim Himalayan case study: North Sikkim Highway

IMPORTANCE OF STUDY AREA

Shear Strength Reduction Technique to Assess SRF

$$c_f = \frac{c}{SRF}$$
 $\phi_f = \tan^{-1}(\frac{\tan\phi}{SRF})$

Critical SRF 1.14 is less than minimum FOS of 1.5 (Hoek and Bray, 1981)

Dynamic Stability Assessment of Jointed Rock Slope

• A Garhwal Himalayan case study: National Highway-58

IMPORTANCE OF STUDY AREA

National Highway-58 in Uttarakhand, India is one of the major roads in western Himalayas

Earthquake history of Uttarakhand showing location of seismic epicenters

Pseudo-Static Slope Stability Analysis

subjected to Maximum Credible Earthquake (MCE) for the region.

Time History Analysis

Dynamic loading: Uttarkashi earthquake (16th October 1991)

Rayleigh damping 5% damping has been used

Time History Analysis Results: Which joint is failing?

Variation of factor safety along different joint set belonging to joint class J1

0.15 -

0.10

0.05 -

0.00

-0.05

-0.10

0

5

10 15

20 25 30 35

Time (sec)

Horizontal displacement (m)

RARSGE, FDP, JEC, 2024

Time History Analysis Results: Which part of joint is failing?

Displacement contour of the slope near the termination of seismic shaking

0.000

-0.010

0.015

0.020

0.025

-0.030

15 20 25

Time (sec)

Vertical displacement (m)

Shear strain developed after the application of dynamic load

Amplification of Seismic Wave Within the Jointed Slope

- Seismic wave amplification within the rock slope is an important factor for instability of rock slope
 - Harp and Jibson, 2002; Sepulveda *et al.*, 2005; Sepulveda and Serey, 2009; Gischig *et al.*, 2015

105

Amplification of seismic wave

- Amplification within the rock slope mainly depends on three factors, geometry of the slope, material contrasts and the internal fracture of the material
- □ Joints can open up due to tensile stress, trapping of energy

Amplification of seismic wave in intact rock and jointed rock

- Presence of joint results in higher amplification of the seismic wave
- FEM explicit joint model accurately captured the amplification of the seismic wave

Probabilistic Approaches

Why probabilistic study??? Uncertainties.....

- Einstein and Baecher in 1982 stated the following words of wisdom:
 - * "In thinking about sources of uncertainty in engineering geology, one is left with the fact that uncertainty is inevitable. One attempts to reduce it as much as possible, but it must ultimately be faced. It is a well recognized part of life for the engineer. The question is not whether to deal with uncertainty, but how?"

Soil sample collected from SPT

- Einstein and Baecher in 1982 stated the following words of wisdom:
 - Collective experience (both from practice and research) suggests that it may be time for a shift to an uncertainty-based perspective which may be, on the whole more convenient in terms of safety, performance and economy

Deterministic Analysis of Landslides

• Deterministic framework of analysis

- Natural tendency to define soil property by a single value
- Defines a specific safety factor
- Obtaining the analytical safety factor based on soil parameters is NOT GUARANTEED

- No parameters affecting landslides are deterministic
 - ✤ All are uncertain in their determination
 - ✤ All are uncertain in their effect and functioning
 - Heterogeneity and Uncertainty are the inherent properties of soil parameters

Probabilistic Analysis

Probabilistic Approach
 Distributed Soil Property

Spatial Variability of Himalayan Soil Profiles

Singh (2013)

11-06-2024

RARSGE, FDP, JEC, 2024

Spatial Variability in Himalayan Bedding Planes and Faulting

Kothyari et al. (2010)

113

Variability of Rainfall across Himalayas

• Substantial spatial and temporal variation

114

Spatial Variability of Soil Properties

- Salient variable parameters
 - Shear strength parameters
 - Permeability characteristics
 - Geological and geomorphological variability
 - Rainfall distribution
 - Seismicity and seismic amplifications

Geophysical Investigation

- Seismic Refraction Method (SRS)
 - Operates on the velocity of wave propagation of the soil medium
 - Generates an array of reflected and refracted waves
 - Based on first arrival of waves in the receivers

Results

- Velocity of wave propagation in the medium
- Thickness of the stratification

116

Geophysical Investigation

- Seismic Refraction Survey (SRS)
 - * Based on refraction of generated waves through various soil layers
 - Restrictive limitation
 - Each of the successive soil layer should have higher velocity than the shallower layer
 - Improper for arbitrarily formed subsoil stratigraphy

http://www.cflhd.gov

117

SRS at Failed RajBhawan Site, Assam

Geophysical Investigation

- Electrical Resistivity Tomography (ERT)
 - Depends on the current flow generated due to the differences in the electrical resistance of different soils (dielectric constant)
 - Depends on salt concentration and water content of soils

Electrode spacing

118

Variation in apparent resistivity of soils

119

ERT at Failed RajBhawan Site, Assam

11-06-2024

RARSGE, FDP, JEC, 2024

Geophysical Investigation

- Multichannel Analysis of Surface Waves (MASW) Active and Passive Surveys
 - Shear wave velocity profiling of soil substrata
 - * Operates on the dispersive capacity of soils

MASW Survey at a Failed Rajbhavan Site

122

Probabilistic Analysis of Landslides

Some Important Statistical Parameters of Probability

- > To incorporate uncertainty in soil properties
 - Literature suggests to consider soil properties as continuous random variables

 $\mu_{s} = \int_{0}^{\infty} s f_{s}(s) ds$

• For example, undrained shear strength of soil (S) in kPa

Mean or expected value:

Variance:
$$\sigma_s^2 = E[(s-\mu_s)^2] = \int_{-\infty}^{\infty} (s-\mu_s)^2 f_s(s) ds$$

Standard deviation: $\sigma_s = \sqrt{\sigma_s^2}$

 $=\sqrt{\sigma_{z}^{2}}$

Coefficient of variation (COV): $COV = \frac{\sigma_z}{\mu}$

- Multiple random variables:
 - For example, drained shear strength of soil
 - Cohesion, c and angle of internal friction, φ
 - If C and Φ both are random variable

Joint probability density function, $P(a < C < b, c < \Phi < d) = \int_{-\infty}^{\infty} f_{C,\Phi}(c,\phi) d\phi dc$

Covariance: $Cov[C, \Phi] = E[(C - \mu_c)(\Phi - \mu_{\phi})] = E[C\Phi] - \mu_c \mu_{\phi}$ **Cross-correlation coefficient:** $\rho_{c\phi} = \frac{Cov[C, \Phi]}{\sigma_c \sigma_{\phi}}$ $-1 \le \rho \le 1$

11-06-2024

124

Probabilistic Analysis

125

Statistical Distributions

- Devore Probability and Statistics for Engineers and Scientists (Cengage Learning, USA)
- Bury Statistical Distributions in Engineering (Cambridge University Press, London)
 - Discrete Probability Distributions
 - Binomial
 - Poisson
 - Hypergeometric
 - Negative binomial
 - Continuous Probability Distributions
 - Normal / Gaussian
 - Truncated Normal / Gaussian
 - Exponential
 - Gamma
 - Weibull
 - Lognormal
 - Beta
 - Extreme value distributions

126

Probabilistic Approaches for Slope Stability Analysis Random Variable Approach

1. Approximate method

- FORM, MVFOSM, SORM
- Reliability index (β) is estimated by solving an optimisation problem
 - Failure probability is evaluated using $P_f = \Phi(-\beta)$
- Besides the simplicity of FORM, it gives accurate results for slopes with small failure probability
- FORM is incapable of considering inherent spatial variability in soil properties (Griffiths et al., 2007)
 - Either over-estimation or under-estimation of the probability of slope failure under different conditions

2. Monte Carlo Simulation based method

• The total number of failures occurring in all the trial values of random variable is counted, and the failure probability is estimated as

$$P_f = \frac{n_f}{N}$$

Probabilistic Slope Stability Analysis

• Slope Geometry and soil parameters

Method adopted	Factor of Safety
Limit Analysis (Chen, 2007)	1.0
Ordinary Method of Slices	0.987
Bishop's Simplified	1.025
Janbu's Simplified	0.98
Spencer's Method	1.022
Morgernstern-Price Method	1.022
Strength Reduction Method in FLAC ^{2D}	1.01

128

Probabilistic Slope Stability Analysis

- Soil parameters as Random Variables
 - Cohesion and Angle of internal friction
 - Normal Distribution
 - Negatively cross-correlated
 - Cross-correlation coefficient: -0.7 (Wolff 1985; Cherubini, 2000)

Property	Cohesion, c	Angle of Internal Friction, φ	
Expected Value or Mean	12380 Pa	20 ⁰	
Coefficient of Variation	15 %	10 %	
Standard Deviation	1857 Pa	2 ⁰	
Probability Distribution of Friction (Degrees) component			

Effect of variation of Coefficient of variation (CoV) and Coefficient of cross-correlation

- Slope/W module of Geostudio v2018
- Morgenstern-Price LEM
- Only the shear strength parameters c and φ are modelled as random variables
- Characterized by a Lognormal distribution with no spatial variation of soil Mean cohesion (c) = 45 kPa and angle of internal friction (ϕ) = 20⁰
 - CoV is varied from 0.05 to 1
 - 2000 number of MCS
- Unit weight (γ) = 20 kN/m³ ٠

Undrained condition

• Deterministic (Morgenstern-Price LEM) FoS = 1.3

4

Schematic of slope geometry considered for present study

129

0.4

0.5

Factor of Safety

130

Effect of variation of Coefficient of variation (CoV) and Coefficient of cross-correlation

Drained condition

• Deterministic (Morgenstern-Price LEM) FoS = 2.1

131

Effect of variation of slope inclination

Toe-excavated hill slopes

- Present study deals with only vertical toe excavation
- Slope/W module of Geostudio v2018
- Deterministic study (LE based Morgenstern-Price method)
 - c and φ values are varied from 0-70 kPa and 15°-40° respectively
- Probabilistic Study (LE based Morgenstern-Price and MCS)
 - Mean c = 40 kPa and mean $\varphi = 27.5^{\circ}$, Log-normal pdf, CoV (0.2 0.4)
- Slope height (H) = 20 m, 30 m and 40 m
- Different slope inclinations (such as, $i = 30^\circ, 40^\circ, 50^\circ, 60^\circ$)
- The range of parameters considered for this exercise typically represents the commonly encountered hillslope materials in the NE region of India
- A typical monograph (comprising a set of tables)
- Slopes considered safe from deterministic analysis can also be subjected to failure
 - E.g., for H = 20 m, $i = 40^{\circ}$ and a CoV = 0.4 and $b_t = 5$ m
 - Deterministic FoS = **1.505**
 - High *Pf* of **8.74%**

132

Reliability Index,	Probability of failure,	Performance
β	$P_f = \Phi(-\beta)$	level
1	0.16	Hazardous
1.5	0.07	Unsatisfactory
2	0.023	Poor
2.5	0.006	Below average
3	0.001	Above average
4	0.00003	Good
5	0.0000003	High

Note: $\Phi(.)$ is standard normal cumulative distribution function.

U.S. Army Corps of Engineers (1997)

Toe-excavated hill slopes

• For a typical slope section (having 40 m height and 40° inclination)

Probabilistic Assessment of Toeexcavated Hill Slope Supported By Sheet Pile Wall And SPAR System

Probabilistic Analysis of Toe-Excavated System

- Sigma/W coupled with Slope/W
- Mean c = 40 kPa, Mean $\varphi = 27.5^{\circ}$
- Unit weight (γ) = 18 kN/m³ (deterministic)
- The FEM based stability analyses of the virgin slope
 - Deterministic FoS of 1.472
 - Probability of failure (9.45%) for CoV = 0.4
- Due to excavation (*bt* = 10 m) deterministic FoS reduced from 1.472 to 1.101 and *Pf* increases from 9.45% to 45.5%

Schematic diagram of slope excavation

11-06-2024

RARSGE, FDP, JEC, 2024

136

Probabilistic Analysis of Toe Excavated Slope with Sheet Pile Retention Systems

Sheet Pile Retention Systems

11-06-2024

RARSGE, FDP, JEC, 2024

Probabilistic Analysis of Toe-excavated Slope with Sheet Pile Anchor Retention Systems

Retention Component	Material Model	Axial modulus (kPa)	Cross- sectional area (m ²)	Moment of inertia (m ⁴)
Sheet pile wall	Structural beam element	2x10 ⁸	0.002	0.0005
Anchor	Structural bar element	2x10 ⁸	0.00126	-

- First layer of anchors (length 8.1 m)
 - Inclination of 20° with the horizontal
 - Pre-stressed (800 kN)
 - At a depth of 2.4 m from the top
- Second layer of anchors (length 8.1 m)
 - Inclination of 20° with the horizontal
 - At the mid-height of the second layer of excavation
 - Pre-stressed (600 kN)
- Third layer of anchor (length 5.9 m)
 - Inclination of 20° with the horizontal
 - At the mid-height of the excavation
 - Pre-stressed (500 kN)

11-06-2024RARSGE, FDP, JEC, 2024138Probabilistic Analysis of Toe-excavated Slope with
Sheet Pile Anchor Retention Systems

Probabilistic Analysis of Toe-excavated Slope with Sheet Pile Anchor Retention Systems

Without spatial variation	Deterministic FoS	$P_f(\%)$
Virgin	1.472	9.45
Unsupported excavation	1.101	45.5
Excavation with SP wall	1.163	36.8
Excavation with SPAR system	1.414	12.9

- SPAR retention measure substantially reduces the P_f of the cut slope
- P_f is substantially influenced by the correlation length

11-06-2024

- For the cut slope retained by the SPAR system, depending on Θ,
 P_f varies from zero to 12.9%
- The results indicate that the cut slope retained by SPAR has negligible probability of failure for a large range of Θ
 - Up to a value of $\Theta = 0.2$, the chosen slope geometry is absolutely stable without any chance of failure

Random Finite Element Analysis For Toe Excavation Induced Slope Instability

Random Field Theory:

Correlation Function and Correlation Length

Stationarity or statistical homogeneity:

- The mean, covariance and higher order moments are constant in space
- The correlation between two points only depends on the relative distance between them does not depend on their orientation relative to each other
- Upon the simplifying assumptions that the random field is stationary, we need to know three parameters in order to characterized the field:
 - Mean
 - CoV
 - How rapidly the field varies in space
- ✤ The last can be characterized using a correlation function
- The correlation function represents the variation of spatial correlation as a function of spatial separation length between two locations
- Correlation function characterized by *correlation length* or *scale of fluctuation* (Vanmarcke, 1977)
- The correlation length (θ) represents the spatial range over which the soil property shows a relatively strong spatial correlation

141

Sample realizations of X(t) for two different SoF(Griffiths and Fenton, 2007)

Probabilistic Slope Stability Analysis

• Spatial Correlation Structure:

0.8

0.6

0.4

0.2 15

Ellipsoidal Markovian correlation

$$\boldsymbol{\rho}(\tau) = \exp\left\{-\sqrt{\left(\frac{2\tau_x}{\theta_x}\right)^2 + \left(\frac{2\tau_y}{\theta_y}\right)^2}\right\}$$

-15 -15

 $\Theta_x = \Theta_y = 5.0$ m over a field of dimension 15 m

143

Probabilistic Analysis of Landslides

- A typical example of parameter distribution
 - * Simulation of spatial variability of soil shear strength parameters (c, ϕ)
 - Isotropic correlation Formation of parameter pockets
 - Anisotropic correlation Formation of stratified layers

Probabilistic Slope Stability Analysis

• Probability of failure depends on correlation length

Random Finite Element Method (RFEM)

- A typical 2H:1V slope section, having a height (*H*) of 40 m and a crest length (*H*/2) of 20 m
- The vertical cut of horizontal width (b_t) 10 m
- A random field is overlaid upon a FE mesh, each mesh behaves as a random variable
- The set of random variables is characterised by joint pdf
- Completely accounts for *spatial correlation* and *local averaging*
- No presumptions regarding the location and shape of critical slip surface
- 2D spatial variation of the shear strength parameters in the slope domain in *Rslope2d* is characterized by an exponentially decaying (*Markovian*) correlation function

 (2|k|)

$$\rho(k) = \exp\left(-\frac{2|k|}{\theta}\right)$$

- Number of MCS
 - 4000 in Rslope2d

Random Finite Element Method (RFEM)

- LEM based probabilistic study
 - Slope section is safe with a low value of P_f having a performance level 'above average', for Θ up to 0.7
- RFEM analysis shows
 - Slope section is safe, having a low value of P_f with a performance level 'above average', for Θ up to 0.5
- P_f of the cut slope for $\Theta = 1$ and CoV = 0.4, are 0.23%, 2.1% and 5.83% for $\rho_{c\varphi}$ values of -0.5, 0 and 0.5 respectively

Rslope2d

Probabilistic Assessment of Seismic Response of Cut Slopes

148

Randomness in Earthquake Coefficients

- Horizontal pseudo-static force, $F_h = \frac{a_h W}{g} = k_h W$
- Vertical pseudo-static force, $F_v = \frac{a_v W}{g} = k_v W$
- The mean cohesion (c) = 45 kPa
 - Log-normal pdf with a CoV value of 0.1
 - Unit weight of soil (γ) = 20 kN/m³

Pseudo-static acceleration coefficients	$k_{\rm h} = 0.18,$	$k_v = 0.09$	$k_{\rm h} = 0.16,$	$\mathbf{k}_{\mathrm{v}} = 0.08$	$\mathbf{k}_{\mathbf{h}} = 0$	$.12, k_v = 0.06$
	Constant	Random	Constant	Constant Random		Random
Deterministic FoS	0.791	0.791	0.826	0.826	0.905	0.905
RI	-2.475	-2.128	-1.983	-1.777	-1.013	-0.899
P _f (%)	99.25	98.15	97.2	96.4	86.1	83.55
Pseudo-static acceleration coefficients	$k_{\rm h} = 0.10, k_{\rm v} = 0.05$		$k_{\rm h}^{}=0,k_{\rm v}^{}=0$			
	Constant	Random				
Deterministic FoS	0.947	0.947	1.263			
RI	-0.523	-0.449	1.916			
P _f (%)	72.35	69.65	1.25	1.263 1.916 1.25		

Non-linear Dynamic Approach

- For dynamic analysis, the Poisson's ratio (v), damping ratio (ξ) and maximum shear modulus (G_{max}), for the slope material, is considered to be 0.334, 0.1 and 5 MPa respectively.
- The maximum P_f is approximately 1.17%
- A pseudo-static analysis of the same slope section (for $k_h = 0.12$, $k_v = 0.06$) gave a high P_f value of 86.1%

A typical earthquake time history recorded during the 1971 San Fernando earthquake

149

Variation of probability of failure with time during earthquake occurrence

Analysis of Toe Excavation Induced Slope Instability under Earthquake Condition

Pseudo-static Approach

• The horizontal and vertical pseudo-static acceleration coefficients is considered in this section as **0.12g and 0.06g**, respectively; corresponding to Zone-IV (IS 1893 Part 1: 2002) and a $P_f = 68.2\%$ is obtained

Non-Linear Dynamic Approach

• A maximum probability of failure of **51.2%** occurred during the entire duration of earthquake motion

150

Pseudo-static condition

Earthquake time history

Variation of *Pf* with time

Analysis of Toe Excavation Induced Slope Instability under Earthquake Condition

• SPAR System

- The cut slope structure reinforced with SPAR shows a P_f value of as high as 15.1%
- Low P_f for a Θ up to 0.2 under dynamic excitation, and hence safe upon excavation under static as well as dynamic condition

Earthquake time history

151

Variation of probability of failure with time

ROCKFALL

Rockfall Analysis using Rocfall, Rocscience

Theng slope along the North Sikkim Highway that connects Chungtang town to Tung

Slope Designation	Height of the slope (m)	Angle of the slope (°)	Friction angle (°)	Tangential res
RS1	141	35-60	35	Friction angle
RS2	346	45-75	30	Slope roughn
PS3	258	50.80	30	Number of ro
R55	250	50-80	50	Vertical veloc
KS4	244	45-65	35	Rotational ve
				Initial Rotatio

Parameters	Value
Tangential restitution	0.65
Friction angle	30°
Slope roughness	0
Number of rocks thrown	500
Vertical velocity	0
Rotational velocity	0
Initial Rotation	0

154

Stochastic Parameters

Stochastic parameters	Type of distribution	Mean	Standard deviation	Maximum	Minimum
Horizontal velocity	Truncated normal distribution	0.1	0.01	0.11	0.09

155

Stochastic Parameters

Stochastic parameters	Type of distribution	Mean	Standard deviation	Maximum	Minimum
Coefficient of restitution	Truncated normal distribution	0.5	0.05	0.55	0.45

Results from Stochastic Analysis

Slope Designation	Height of the slope (m)	Angle of the slope (°)	Friction angle (°)
RS1	141	35-60	35
RS2	346	45-75	30
RS3	258	50-80	30
RS4	244	45-65	35

Results from Stochastic Analysis

Slope Designation	Height of the slope (m)	Angle of the slope (°)	Friction angle (°)
RS1	141	35-60	35
RS2	346	45-75	30
RS3	258	50-80	30
RS4	244	45-65	35

Results from Stochastic Analysis

Slope Designation	Height of the slope (m)	Angle of the slope (°)	Friction angle (°)
RS1	141	35-60	35
RS2	346	45-75	30
RS3	258	50-80	30
RS4	244	45-65	35

Results from Stochastic Analysis

Slope Designation	Height of the slope (m)	Angle of the slope (°)	Friction angle (°)
RS1	141	35-60	35
RS2	346	45-75	30
RS3	258	50-80	30
RS4	244	45-65	35

Results from Stochastic Analysis

• Maximum values of parameters as a function of height of slope

Rock slope section	Location of maximum bounce height	Location of maximum kinetic energy
RS1	0.37 H	0.41 H
RS2	0.3 H	0.72 H
RS3	0.3 H	-NA-
RS4	0.69 H	0.55 H

161

Rockfall Mitigation Systems

- Essential for preventing any damage to life and property
- Designed in the software Rocfall
- Two variable sensitivity analysis is performed for finding optimum location of barrier
- Variable used for sensitivity analysis
 - Location of barrier
 - Inclination of barrier

Rock slope section	Optimum location of barrier from left side of slope section (m)	Optimum inclination of barrier	Impact energy on barrier (kJ)
RS1	64	30°	124
RS2	129.35	30° to 90°	73.91
RS3	50.38	50°	214.16
RS4	120.35	30° to 90°	43.78

Optimal Barrier Configuration

Regional Scale Analysis

Rainfall Induced Landslide Hazard Zonation Mapping of Guwahati, Assam

163

Landslide Studies for Guwahati City

- Landslide Studies concerning Guwahati city:
 - Saikia et. al., 1996, 2002
 - Combined Landslide Hazard Evaluation Factor (LHEF)
 - Rainfall intensity
 - Earth Cutting
 - Soil erosion Weathering
 - Geological formation
 - Drainage density
 - Land use land cover human interference
 - Slope Angle relative relief
 - Soil Characteristics Geotechnical properties
 - Geotechnical factors Slope stability analysis of homogenous slopes with GWT
 - Landslide susceptibility map

Landslide Studies for Guwahati City

• Landslide Studies concerning Guwahati city

- Phukon et. al., 2013
- Analytical Hierarchical Process (AHP) (Saaty, 1980)
- Five probable causal factors that triggered the past landslides were considered and used for pair-wise comparison
- Landslide susceptibility map

165

Landslide Studies for Guwahati City

• Landslide Studies concerning Guwahati city

- Dutta and Sarma, 2013
- Landslide Susceptibility Zoning
- Of the Kalapahar hillock within Guwahati city
- Different thematic maps, as causative factors were used for the

Landslide Studies for Guwahati City

• Landslide Studies concerning Guwahati city

- Bhusan *et al*. 2014
- Landslide Hazard Zonation (LHZ) map of Guwahati city
- Analytical Hierarchical Process (AHP) (Saaty, 1980)
- Various thematic parameters
- Depending on their role in causing slope instability
- Based on the database prepared from satellite images acquired during 2009-2011

167

Landslide Studies for Guwahati City

- Congregation of thematic maps to develop
 - Landslide Susceptibility map
 - Landslide Hazard Zonation map
 - Semi heuristic method
 - Weight factors based on lithology
 - Soil and Rock given almost similar weights
 - Hydrogeology surface indications
 - Dry Damp Wet Dripping Flowing
- What are/were missing?
 - * A strong geotechnical perspective
 - * Landslide triggering rainfall patterns
 - * Influence of antecedent conditions
 - * Temporal recurrence and likelihood

168

Study Area - Guwahati City

• Geomorphology

- Three prominent geomorphological feature
- Residual hills altitude ranging 100–300 meter above MSL
- Low-lying alluvial plains varying altitudes of 49–56 meter
- Marshy wetlands

8 major hill series:

- (1) Nabagraha and Sunsali hill series
- (2) Japorigog hill
- (3) Sonaighuli and Jutikuchi hill series
- (4) Narakashur hill
- (5) Nilachal hill
- (6) Fatasil hill
- (7) Jalukbari hill
- (8) Khanapara hill
- (9) Agyathuri hills

169

Characterization of Hillslope Soils

Characterization of Hillslope Soils

• Sample collection

0.00

80

11-06-2024

Clay Size		Soil Characteristics	Sa 20 1	ikia (2010; 11) – SOIL	Saikia (201 2011) – SO 2	0; IL	Chetia and Sreedeep (2013)	Experin Results 1	nental – SOIL	Experimental Results – SOIL 2	
		Referred as	RS	с	PGSS		RSC_CS	RSC_E	(P1	PGSS_EXP2	
		Specific Gravity	2.4	14	2.64		2.62	2.68		2.68	1
		In-situ bulk density	1.6	55	1.79			1.92		1.77	1
		In-situ dry density	1.4	19	1.63			1.50		1.57	
		Liquid Limit	49		39		46	47		35*	
		Plastic Limit	27		Non – Plas	tic	27	27		Non – Plastic	
		Fines Content	72	7	7 45	uic.	74	77.9		26.75	
		Natural Moisture	12	./	7.45		/4	77.8		36.75	
0.00	1	Content	11	.00	10.00			27.72		12.69	
		In-situ Volumetric Water Content	16	.60	16.52		-	41.68		15.39	
10)		Void Ratio	0.7	78	0.62			0.78		0.71	
		Porosity	0.4	14	0.38			0.44		0.41	
		In-situ degree of Saturation	38		43		-	95		47.79	1
		Saturated Permeability (m/s)	1.8	36×10 ⁻⁷	1.2×10 ⁻⁶			10 ⁻⁶		10 ⁻⁵	
				Maxir	mum		Minimum			Average	
Sit	e na	me		infiltrati	on rate		infiltration r	ate	infil	tration rate	
				×10 ⁻⁶ (m/s)		×10 ⁻⁶ (m/s	5)	×1	L0⁻⁵(m/s)	
Ch	unsa	li hill		0.9	55		0.867			0.911	
No	onm	ati hill 1		1.7	75		0.160			0.955	
No	onm	ati hill 2		7.3	86		6.70			4.02	
Ка	ilash	nagar hill 1		2.12			1.83		1.97		
Ka	ilash	nagar hill 2		0.828		0.614			0.721		
Sh	ree r	nagar Kailash nagar hi		0.5	66		0.462			0.514	
Pu	nnya	nagar hill		4.5	59		4.48			4.53	
Inc	lunu	r kharghuli		113	.5		9.00			1.45	0
Ka	mak	hva hill		0.6	61		0.58			0.623	
Sh	antip	our hill		1.5	59		1.08			1.33	
	r Content, θ	0.5		• E * C Fi	xperime hetia and itted SW	nt d S 7C0	Data (MPS Greedeep (2) C used in S	-1; E0 013) EEP/'	C-5) W mc	odel	
ter 0.3 -						see (PPa)					
		0.1 4		50 Matri	1(c Suctio)0 n ((y, kPa)	150		200	Shear stre
		- 94					F				

c=16.73.1994;0=30.38°

250

200

150

100

Regional Scale: Landslide Susceptibility - Hazard

• Regional Scale Analysis

- Landslide Hazard Zonation and Landslide Susceptibility Studies
 - SHALSTAB, TRIGGRS, SINMAP, Physically Based Models
 - GIS platform for Digital Elevation Models (DEM)

Slope Map

Steady-State Recharge Map

173

Regional Scale: Landslide Susceptibility - Hazard

- Regional Scale Analysis
 - Landslide Hazard Zonation and Landslide Susceptibility Studies
 - SHALSTAB, TRIGGRS, SINMAP, Physically Based Models
 - GIS platform for Digital Elevation Models (DEM)

174

Regional Scale: Landslide Susceptibility - Hazard

Regional Scale: Landslide Susceptibility - Hazard

Steady-state recharge map required to initiate instability (SHALSTAB output) 175

Stability Index (SI) Map (SINMAP output)

Regional Scale: Landslide Susceptibility - Hazard

Very stable initial condition

176

Suction within the unsaturated soil renders very high shear strength to the hillslopes

The stability of the slopes decreases to a marginally stable condition due to rainfall infiltration

Addresses the possibility to simulate different rainfall scenarios and its effect on the stability condition of the study region

177

TRIGRS model for Guwahati city (Regional scale)

- Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model (TRIGRS) - (Baum et al., 2002; Savage et al., 2004)
 - FORTRAN code
 - Transient pore pressure response to rainfall infiltration
 - Temporal and spatial distribution of shallow rainfall-induced landslides
 - Decrease in the factor of safety values
 - Infiltration process is approximated as one-dimensional vertical flow
 - Each cell of the grid is considered as a vertical soil column
 - Simple runoff routing process
 - Drain excess surface water to adjacent downslope cells
 - Implementation of complex storm events

Topographical Data – DEM

- ALOS World 3D 1-arc second resolution digital surface model (DSM)
 - Sapan Aerospace Exploration Agency (JAXA) Advanced Land Observing Satellite (ALOS)
- CartoDEM 1/3-arc second resolution
 - Indian Space Research Organisation National Remote Sensing Centre

179

Topographical Data – DEM

TRIGRS model for Guwahati city (Regional scale)

• Input data (ALOS–3D DEM 1 Arc Sec)

- Thematic data
 - Digital Elevation Model Topography of study area
 - Slope map
 - Aspect map
 - Depth of Soil formation map
 - Ground water level map
- Rainfall Applied surface infiltration
- Soil Parameters
 - Cohesion (N/m²)

 - Saturated Permeability (k_{sat})
 - Soil Diffusivity (*D_o*)
 - Saturated Volumetric Water Content, $\boldsymbol{\theta}_{s}$
 - Residual Volumetric Water Content, $\boldsymbol{\theta}_r$
 - α parameter (Gardner, 1958)

181

TRIGRS model for Guwahati city (Regional scale)

TRIGRS model calibration

• TRIGRS – SEEP/W comparative analysis

182

183

TRIGRS model calibration

184

TRIGRS model calibration

185

TRIGRS model calibration

186

TRIGRS model calibration

187

TRIGRS model for Guwahati city (Regional scale)

• Calibrated Soil Parameters

188

• Output

- Factor of Safety map of the study area
- Evaluation and Validation of the FoS map
- Landslide Inventory
 - "Rapid Visual Screening Potential Landslide Areas of Guwahati" (Goswami, 2013)
 - July, 2012 Assam State Disaster Management Authority (ASDMA)
 - Location of landslide occurrences in the month of June, 2012
 - Landslide prone areas in the form of GPS Latitude-Longitude coordinates
 - ✤ 347 locations referred as RVS-points

189

TRIGRS model for Guwahati city (Regional scale)

190

TRIGRS model for Guwahati city (Regional scale)

26º 04' 35.45" N

TRIGRS model for Guwahati city (Regional scale)

26° 14′ 39.76″ N

26[°] 14' 49.33" N

191

192

Rainfall event triggering landslide in Guwahati

• Detailed Rainfall record

- TRMM Daily (24-hour) rainfall data
 - 1998 2015, July
 - The yearly reports of landslide occurrence

193

Rainfall event triggering landslide in Guwahati

Year	No of days with Rainfall	Cumulative Rainfall (mm)	No of days for Daily Rainfall (10mm - 25 mm)	No of days for Daily Rainfall (25mm-50mm)	No of days for Daily Rainfall (50mm - 80mm)	No of days for Daily Rainfall (80mm - 100mm)	No of days for Daily Rainfall > 100mm	Max Daily Rainfall (mm)	Max Cumulative Rainfall within 48 hours (mm)	Max Cumulative Rainfall within 72 hours (mm)	Landslides Reported
1998	170	3185	39	20	6	8	4	148	238	263	У
1999	179	2978	47	32	11	0	1	106	144	190	
2000	171	3058	26	26	9	2	5	144	157	169	
2001	178	2404	43	25	8	0	0	70	101	138	
2002	178	2878	44	26	7	2	2	104	158	180	
2003	179	2881	51	15	7	3	4	147	237	313	У
2004	167	3647	38	27	9	7	4	223	316	363	У
2005	180	2977	42	22	15	2	1	106	153	186	
2006	159	1973	41	16	6	0	1	108	109	124	
2007	169	3466	38	24	8	4	6	185	202	254	У
2008	182	2731	47	34	6	1	0	91	122	152	
2009	148	2265	29	14	10	2	2	119	136	141	
2010	171	3356	46	29	11	5	1	105	181	226	
2011	156	2229	51	19	6	1	1	101	185	202	
2012	152	2877	34	28	10	1	2	131	209	212	У
2013	151	2457	38	25	9	0	1	104	150	185	
2014	146	2513	33	29	3	3	2	190	347	362	У
2015	143	2547	37	22	8	1	3	111	173	234	
Maximum	182	3647	51	34	15	8	6	223	347	363	
Average	166	2801	40	24	8	2	2	127	184	216	
Minimum	143	1973	26	14	3	0	0	70	101	124	

11-06-2024

RARSGE, FDP, JEC, 2024

0.9

Rainfall event triggering landslide in Guwahati

- TRIGRS simulation
 - Rainfall events of
 - October, 2004 (3-10-2004 to 8-10-2004)
 - June, 2012 (20-6-2012 to 26-6-2012)
 - September, 2014 (20-9-2014 to 25-9-2014)

Max-Min FoS of RVS points Daily Rainfall (mm/day) - Avg FoS of RVS points

Effect of Antecedent Condition

- TRIGRS simulation
 - * Rainfall events of
 - June, 2012 (01-6-2012 to 26-6-2012)

196

- Rainfall events of
 - June, 2012 (01-6-2012 to 26-6-2012)
 - March-April 2010

197

- Rainfall events of
 - June, 2012 (01-6-2012 to 26-6-2012)
 - March-April 2010

198

- Rainfall events of
 - June, 2012 (01-6-2012 to 26-6-2012)
 - March-April 2010

199

- Rainfall events of
 - June, 2012 (01-6-2012 to 26-6-2012)
 - March-April 2010

200

Effect of Rainfall Pattern

- Cumulative rainfall of
 - 400 mm distributed over 5 days

Effect of Rainfall Pattern

- Cumulative rainfall of
 - 400 mm distributed over 5 days

202

203

Effect of Rainfall Pattern

• Cumulative rainfall of

• 400 mm distributed over 5 days

204

Rainfall Data

- Tropical Rainfall Measuring Mission (TRMM) 3-hourly rainfall data
- TRMM Daily (24-hour) rainfall data
 - ✤ 1998 2018, July

Goddard Earth Sciences Data and Information Services Center (GES DISC)

• Monthly Rainfall Data of Kamrup District

♦ 1901 - 2002

www.indiawaterportal.org/met_data

Indian Meteorological Department Guwahati, Daily (24–hour) Rainfall Data
* 1969 – 2012

205

<u>Rainfall Data</u>

- Tropical Rainfall Measuring Mission (TRMM) 3-hourly rainfall data
- TRMM Daily (24-hour) rainfall data

✤ 1998 – 2018, July

Goddard Earth Sciences Data and Information Services Center (GES DISC)

206

Landslide Hazard

• Rainfall Intensity – Duration – Frequency

207

Landslide Hazard

• Combining the FoS maps for generating the landslide recurrence map

Rainfall Intensity in mm/day		Rainfall Return Period						
		2 year	5 year	10 year	20 year	50 year		
_	24 hour	142	186	215	243	278		
ratior	36 hour	107	140	163	184	211		
Rainfall Dur	48 hour	87	115	133	151	174		
	60 hour	74	98	114	129	149		
	72 hour	65	87	101	114	132		

208

Landslide Hazard

• Combining the FoS maps for generating the landslide recurrence map

Rainfall intensity (mm/hr) corresponding to -		Return period in years							
		3	4	5	10	20	50	100	
e s)	6	18.1	19.4	20.4	23.3	26.1	29.7	32.5	
lgui	12	11.1	11.9	12.6	14.5	16.2	18.6	20.3	
a s t (h	24	6.8	7.3	7.8	9.0	10.1	11.6	12.7	
n of ven	36	5.1	5.5	5.8	6.8	7.7	8.8	9.6	
atio all e	48	4.2	4.5	4.8	5.6	6.3	7.2	7.9	
Jurs	60	3.6	3.9	4.1	4.8	5.4	6.2	6.8	
I	72	3.1	3.4	3.6	4.2	4.8	5.5	6.0	

209

Landslide Hazard Map of Guwahati City

- FoS maps are combined to form a landslide hazard map
 - Location of probable landsliding
 - Within specified Return Period

210

Landslide Hazard Map of Guwahati City

- FoS maps are combined to form a landslide hazard map
 - Location of probable landsliding
 - Within specified Return Period

211

Landslide Hazard Map of Guwahati City

- FoS maps are combined to form a landslide hazard map
 - Location of probable landsliding
 - Within specified Return Period

Probabilistic Regional Analysis

- Probabilistic Approach
 - Distributed Soil Property
 - Statistics of the distribution
 - Probability of Failure

212

213

Probabilistic Regional Analysis

• Probability Distribution of the soil parameters

Site name	Maximum infiltration rate ×10 ⁻⁶ (m/s)	Minimum infiltration rate ×10 ⁻⁶ (m/s)	Average infiltration rate ×10 ⁻⁶ (m/s)	Site name	Maximum infiltration rate ×10 ⁻⁶ (m/s)	Minimum infiltration rate ×10 ⁻⁶ (m/s)	Average infiltration rate ×10 ⁻⁶ (m/s)
Chunsali hill	8.68	4.42	6.55	Chunsali hill	0.955	0.867	0.911
Noonmati hill 1	3.51	0.051	2.01	Noonmati hill 1	1.75	0.160	0.955
Noonmati hill 2	3.06	1.4	2.23	Noonmati hill 2	7.36	6.70	4.02
Kailash nagar hill 1	3.14	0.21	1.67	Kailash nagar hill 1	2.12	1.83	1.97
Kailash nagar hill 2	0.81	0.614	0.444	Kailash nagar hill 2	0.828	0.614	0.721
Shree nagar Kailash nagar hill	2.93	0.911	1.92	Shree nagar Kailash nagar hill	0.566	0.462	0.514
Punnya nagar hill	6.33	0.98	4.84	Punnya nagar hill	4.59	4.48	4.53
Jyoti ban	8.4	1.12	2.53	Jyoti ban	17.5	11.1	1.43
Indupur kharghuli	12.9	1.9	7.82	Indupur kharghuli	113.0	9.00	10.1
Kamakhya hill	9.46	1.35	5.78	Kamakhya hill	0.661	0.58	0.623
Shantipur hill	17.9	1.9	9.91	Shantipur hill	1.59	1.08	1.33

Soil Parameter	Maximum	Minimum
Cohesion, c´ (kPa)	20	5
Angle of Internal Friction, ϕ^\prime (°)	31 ⁰	25°
In-situ unit weight γ _s (kN/m³)	19.0	16.5
Saturated Permeability, k_s (m/s)	10-5	10-6

<i>c'</i> (kPa)	φ ′ (°)	γ₅(kN/m³)	<i>k_s</i> (m/s)	<i>D_o</i> (m/s)	Ø s	B _r	α
10	27º	18.5	2.5×10 ⁻⁶	2.5×10 ⁻⁵	0.45	0.05	0.8

214

Probabilistic Regional Analysis

• Probability Distribution of the soil parameters

21.5

Probabilistic Regional Analysis

• Probability of Failure Maps – Direct Representation of the associated Risk

216

Probabilistic Regional Analysis

• Probability of Failure Maps – Direct Representation of the associated Risk

217

Probabilistic Regional Analysis

• Probability of Failure Maps – Direct Representation of the associated Risk

218

Probabilistic Regional Analysis

• Probability of Failure Maps – Direct Representation of the associated Risk

219

Rainfall Induced Landslide Susceptibility Map of Arunachal Pradesh

- Study area: Arunachal Pradesh
 - Northeastern state of India, located in the foothills of the eastern Himalayas with an area of 83,743 sq. km.
 - Elevation ranges from mountains that are 7,000 meters above the (M.S.L.) to the towns in the plains with an elevation of fewer than 100 meters.
 - The slope gradient ranges from 0° in flat areas to 84.5° in nearly vertical cliffs, indicating a wide variability across different regions of the state.
 - The average rainfall received by the state is about 3000 mm with some areas up to 4000 mm.
 - The region is susceptible to landslides due to its topographic and extreme climate conditions.
 - July month experiences maximum rainfall, while December being the month of least rainfall
 - Five tributaries of the River, Brahmaputra that flows through the region named Siang, Subansiri, Lohit, Kameng and Tirap.

220

Rainfall Induced Landslide Susceptibility Map of Arunachal Pradesh

221

Rainfall Induced Landslide Susceptibility Map of Arunachal Pradesh

• Methodology and work flow

222

Rainfall Induced Landslide Susceptibility Map of Arunachal Pradesh

• Methodology and work flow

Rainfall Induced Landslide Susceptibility Map of Arunachal Pradesh

223

• Methodology and work flow

224

Rainfall Induced Landslide Susceptibility Map of Arunachal Pradesh

- Way forward
 - Consideration of collated multi-hazard scenarios to develop a comprehensive hazard zonation maps of the areas
 - Flood
 - Rainfall
 - Seismicity
 - Rockfall and Debris flows
 - Anthropogenic activities
 - Glaciatic effects and snow avalanches in the northern parts

Landslide Susceptibility Mapping (LSM) Using Deep Learning (DL) Techniques

- Study area
 - Darjeeling Gangtok
 - Elevation
 - Min 82 m above MSL
 - Max 3206 m above MSL
 - Slope
 - $Min 0^{\circ}$
 - Max 81°
 - Rainfall > 3000 mm/year

Landslide Susceptibility Mapping (LSM) Using Deep Learning (DL) Techniques

• Methodology

- Dense Neural Networks (DNN)
 - Fully connected layers where each neuron is connected to every neuron in the next layer.
- Recurrent Neural Networks (RNN)
 - Specialized neural networks for processing sequential data, where the output from previous time steps is fed back into the network, allowing it to learn dependencies over time.
- Long Short-Term Memory Networks (LSTM)
 - RNNs with gates to manage long-term dependencies and prevent vanishing gradients.
- ✤ Gated Recurrent Units (GRU)
 - Simplified LSTMs with fewer parameters, using gates to control information flow.

12-06-2024

227

logy

Highly Dissected Hills and Mass Wasting Products

Moderately Dissected H

Waterbodies-Other Waterbody - River

Read Plain

Morphological Features

12-06-2024

Geological Features

12-06-2024

229

Hydrological Features

230

Land Cover Features

231

Structure of Co-NET

Feature Importance

- Method Mutual Importance
 - Data Dependent
 - Model Independent

LCFs and their corresponding Importance Indices

Features	Importance Index
TRI	0.162
Distance to Transportation infrastructure	0.133
Slope	0.104
Distance to First order streams	0.103
Distance to Fifth order streams	0.065
Elevation	0.056
Drainage Density	0.046
Distance to Stream	0.040
NDVI	0.038
Hillshade	0.033
Relative Relief	0.032
Distance to Fault	0.025
SPI	0.022
Distance to Second Order Streams	0.018
Lineament Density	0.016
Distance to Fourth Order Streams	0.015
Distance to Third Order Streams	0.015
Geology	0.014
NDWI	0.013
Geomorphology	0.012
Soil Type	0.012
Aspect	0.007
TWI	0.002
LULC	0.000
Curvature	0.000
Distance to Lineament	0.000

Landslide Susceptibility Maps

Food for Thought: Stress-Dependent Shear Stiffness

K _{max} = 70	(for 90% RD)
-----------------------	--------------

D _r (%)	K _{max}
30	34
40	40
45	43
60	52
75	59
90	70

G _{max} =	1000	K _{max}	(σ _m')	0.5
--------------------	------	-------------------------	-----------------	-----

Y (m)	Mean Effective Stress (p') (kPa)	Gmax (kPa)	
0	377.07278	1359285	
2.994	356.15244	1321040	
5.988599	316.13035	1244604	
8.983797	276.18214	1163311	
11.97959	236.2711	1075978	
14.99368	196.25286	980631.9	
18.0036	156.32157	875200.4	
21.0024	116.58449	755820.1	
24.0006	76.869038	613724.9	
27	37.125764	426516.4	
30	17.075766	289259.8	
	0	0	

/ Nepal Gorkha EQ motion

235

Food for Thought: Stress-Dependent Shear Stiffness

236

Influence of Stress-Dependent Shear Stiffness

237

Influence of Stress-Dependent Shear Stiffness

238

Influence of Stress-Dependent Shear Stiffness

12-06-2024

239

Stress-Based FOS

Geocell-Reinforced Slope

240

(b)

12-06-2024

241

Stress-Based FOS

242

Acknowledgments

• Students

• Collaborators

• Dr. Chiranjib, Dr. Arup and full team for this FDP Program

11-06-2024

