
Deep Learning Approach for Efficient
Mobile Edge Computing

Thesis submitted to the
Indian Institute of Technology Guwahati

for the award of the degree

of

Doctor of Philosophy
in

Computer Science and Engineering

Submitted by

Anirban Lekharu

Under the guidance of

Prof. Arijit Sur
and

Dr. Moumita Patra

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati
August 4, 2023

https://https://anirbaniitg.github.io/
https://www.iitg.ac.in/arijit
https://www.iitg.ac.in/arijit
https://www.iitg.ac.in/arijit
http://www.iitg.ac.in/cse/
http://www.iitg.ac.in

Copyright © Anirban Lekharu 2023. All Rights Reserved.

https://https://anirbaniitg.github.io/

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati

Guwahati - 781039 Assam India

Prof. Arijit Sur

and

Dr. Moumita Patra

Department of Computer Science and Engineering

IIT Guwahati

Email : arijit@iitg.ac.in and moumita.patra@iitg.ac.in

Certificate

This is to certify that this thesis entitled, “Deep Learning Approach for Efficient Mo-

bile Edge Computing”, being submitted by Anirban Lekharu, to the Department of

Computer Science and Engineering, Indian Institute of Technology Guwahati, for partial

fulfillment of the award of the degree of Doctor of Philosophy, is a bonafide work carried

out by him under my supervision and guidance. The thesis, in my opinion, is worthy of

consideration for award of the degree of Doctor of Philosophy in accordance with the regu-

lation of the institute. To the best of my knowledge, it has not been submitted elsewhere

for the award of the degree.

..............................

Prof. Arijit Sur

Professor

..............................

Dr. Moumita Patra

Assistant Professor

Date: August 4, 2023

Place: Guwahati

https://www.iitg.ac.in/arijit
https://www.iitg.ac.in/arijit
https://www.iitg.ac.in/arijit
http://www.iitg.ac.in/cse/
https://https://anirbaniitg.github.io/
http://www.iitg.ac.in
http://www.iitg.ac.in/arijit/
http://www.iitg.ac.in/arijit/

Declaration

I certify that:

� The work contained in this thesis is original and has been done by myself

and under the general supervision of my supervisor.

� The work reported herein has not been submitted to any other Institute

for any degree or diploma.

� Whenever I have used materials (concepts, ideas, text, expressions, data,

graphs, diagrams, theoretical analysis, results, etc.) from other sources, I

have given due credit by citing them in the text of the thesis and giving

their details in the references. Elaborate sentences used verbatim from

published work have been clearly identified and quoted.

� I also affirm that no part of this thesis can be considered plagiarism to the

best of my knowledge and understanding and take complete responsibility

if any complaint arises.

� I am fully aware that my thesis supervisor is not in a position to check for

any possible instance of plagiarism within this submitted work.

Date: August 4, 2023

Place: Guwahati
(Anirban Lekharu)

https://https://anirbaniitg.github.io/

Dedicated to

My Family & Friends

For their unconditional love, blessings and constant inspiration

Acknowledgements

The completion of this dissertation was made possible by a great many individ-

uals. I owe a debt of gratitude to everyone who supported me in preparing this

doctoral thesis in its current form.

I want to start by sincerely thanking my supervisors, Prof. Arijit Sur and Dr.

Moumita Patra, for their unwavering support, inspiration, endless patience, and

valuable guidance throughout this journey. I sincerely appreciate them pointing

out my errors and keeping me focused on my PhD work. Prof. Sur and Dr.

Patra not only paved the basis for my advancement as a research scientist but

also significantly altered my personality, aptitude, and nature. I was privileged

to have such mentors who allowed me the independence to explore on my own

while also providing me with the guidance to correct my course when my steps

faltered.

I also want to extend my sincere thanks to the members of my doctoral commit-

tee, Dr. Vijaya Saradhi, Dr. Pinaki Mitra, Prof. Partha Sarathi Mandal, and

Dr. Palash Ghosh, for their insightful remarks and recommendations that helped

me to increase the calibre and clarity of my work. I appreciate the anonymous

reviewers who provided constructive criticism of my research work in numerous

forums since it allowed me to improve the quality of my work.

I wish to express my gratitude to Prof. Jatindra Kumar Deka, the head of the

Department of Computer Science and Engineering at IITG, for permitting me to

use the facilities and resources while pursuing my PhD. I appreciate the technical

and administrative assistance provided by the Department of Computer Science

and Engineering faculties and staff for the successful completion of my research

project. I also like to thank the Academic Affairs office employees for their

assistance in handling my grant requests and application submissions.

I want to convey my appreciation to the Ministry of Human Resource Develop-

ment, Government of India, for the financial assistance provided throughout my

years of doctoral study; without it, this research would not have been possible.

Additionally, I would like to thank the IITG Welfare Board and the Department

of Computer Science and Engineering for providing me with travel grants so I

could present my research.

I am grateful to my friends Alakesh Kalita, Hemanta Baruah, Debanjan, Suraj,

Yashdeep, Hemraj, Menaxi, Nidhi, and Vanshali for their encouragement and

support in helping me overcome any challenges I have encountered at work or

elsewhere. Many conversations and the exchange of ideas have advanced our

research. I would to mention a few seniors of my Lab Brijesh Singh, Sibaji

Gaj, Satish Kumar, Nilkanta Sahu, Prasen Sharma, Shuvendu Rana who guided

and helped me as their own young brother during every phase of my PhD. I

also want to express my gratitude to other junior members of my Lab for their

unwavering assistance and support, in particular, Alik Pramanik, Sonal Kumar,

Sandipan Sarma, Akshay, and Avinash. My time at IIT Guwahati was made

memorable by you. I would like to mention few undergraduate Lab members

Mouli, Annanya, Pranav and Saket for their unconditional love and support.

Last but not least, I want to express my gratitude to the Almighty God and

my family, including my wife Panchali, parents, brother, and in-laws, for their

constant support, love, warmth, and profound inspiration over the years. My

wife, Panchali, deserves special thanks for her unwavering faith in me, which has

made the voyage extremely joyful, secure, and comfortable. I want to express

my gratitude to my parents for being a consistent source of support and care. I

am at a loss for words to thank them adequately.

Abstract

Mobile data traffic has increased enormously in recent years with an increase in mobile

and smart devices. Global mobile data traffic is set to increase manifold in the coming years.

With the rise in mobile data traffic and heterogeneous mobile devices, substantial improve-

ment has been achieved in wireless media technology in terms of providing a varied range

of multimedia services. These multimedia services are often resource-hungry and require

high-speed data and low-latency transmission. High-speed networks like the Fifth Genera-

tion (5G) networks help in faster data delivery resulting in less congestion at the backhaul

links and higher transmission capacity. Integrating Mobile Edge Computing (MEC) into the

cellular architecture provides advantages like intelligent and efficient context-aware caching,

video adaptations for content delivery, live transcoding, lower energy consumption and many

more. With MEC in the picture, the internet and its multimedia content are brought closer

to the end-users. A cellular network can now be described as a three-layer architecture

consisting of the Core Network, MEC server within the purview of a given Base Station

(BS) and end-users/edge devices.

With the exponential rise in mobile video traffic and dynamic request patterns, main-

taining a decent Quality of Experience (QoE) for end-users is challenging for content service

providers. MEC provides an opportunity for caching the most requested content closer to

the end-users, thereby reducing the overall traffic cost and access delay. Therefore, the

primary objective of such a caching strategy is to increase the cache hit rate at the edge

server, aiming to improve the end-users’ overall QoE. In recent scientific literature, it has

been observed that various heuristic and Machine Learning-based caching strategies at the

MEC server, have been presented. However, most of the existing caching techniques are

not adaptive enough to handle diverse and complicated requests across temporal and geo-

graphical dimensions Intuitively, the above problem can be formulated as a multi-objective

optimization problem. To solve such a hard problem, learning-based solutions have recently

gained popularity, especially using Deep Learning (DL) techniques. Keeping the massive

success of DL techniques in mind, in this dissertation, Deep Reinforcement Learning (DRL)

is used to design an efficient and robust caching mechanism at the MEC server. The five

major contributory works presented in this thesis can be summarized as follows.

It has been observed that most of the existing edge caching methods needs to consider the

category or the genre of video content being watched by the end-users. The first contribution

of this thesis considers the user profile, which frequently changes in different time slots of the

day. For this, a DL-based content-aware caching model (called DCache) has been proposed,

which is deployed at the MEC server. This model considers different users viewing profiles

at different time slots of a day to predict the popularity of a video content (movie, for our

example) for efficient network caching. To do this end, a two-step model architecture has

been proposed to predict genre-based movie popularity index. The first step predicts the

most prevalent movie genre at different time slots of the day. And the next step, predicts

the movies’ future views in different time slots of the day.

The users’ preference for viewing a particular video (multiple bitrate representations)

for a wide range of users might vary depending on the dynamic network conditions. For

example, a specific user with an HD device with higher network bandwidth may demand

higher resolutions or HD videos. But the same is not valid for users with low network band-

width, causing significant delay due to high network congestion and thus the degradation

of users’ QoE. Under such a scenario, Adaptive Bit-Rate (ABR) streaming have been em-

ployed as a solution in the content delivery networks to improve users’ overall QoE. To this

end, in the second contributory chapter, a Reinforcement Learning (RL)-based ABR caching

mechanism at the MEC server within the purview of a single BS has been proposed. This

work introduces a novel joint optimization framework using RL called ABRCache, which

improves the overall QoE for a video streaming session and reduces the traffic load on the

backhaul links and the overall access delay simultaneously. In addition, ABRCache handles

the variations in bandwidth pertaining to different mobility models with the inclusion of a

Long Short Term Memory (LSTM) module.

However, most of the caching models based on a single dedicated BS are not efficient

enough to handle the diverse and complex nature of video request patterns from hetero-

geneous end-users. To further improve the caching performance, the third contributory

chapter presents a collaborative caching called ColabCache, where MECs within a given

cluster collaborate to serve the requested content. Existing collaborative caching strategies

use transcoding at the MEC server, which is computationally expensive. In ColabCache,

a novel Deep Reinforcement Learning (DRL) using Asynchronous Advantage Actor Critic

Network (A3C) network for caching at the edge server has been proposed. ColabCache in-

troduces a novel cache admission and eviction policy based on the calculated Priority Score

of video segments concerning all MEC servers in the cluster.

The final contributory chapter is divided into two parts. The first part of the final chapter

focuses on caching the video content in a federated manner. Most learning-based caching

models are generally trained in a centralized way, which over-consumes the network resources

during training and transmission of video requests. Therefore, a Federated Learning (FL)-

based caching framework called FedCache has been proposed. In FedCache, user data is not

centrally collected; instead, the model is trained on the individual data of each user, and

the central server aggregates the updates from each user. The second part of this chapter

focuses on users’ viewing experience for a video streaming session. QoE management using

a fixed set of rules may not always guarantee optimal bandwidth utilization, video quality

enhancement and accurate buffer estimation, especially in the face of severely varying and

often unpredictable bandwidth fluctuations. To handle these issues across a wide range

of varying network conditions and QoE parameters, a Deep Neural Network (DNN)-based

model is proposed that selects the appropriate video bitrates to maximize the overall QoE

of a user for a video streaming session. Finally, the thesis is concluded by summarizing the

significant contributions and proposing some relevant future research directions.

Contents

Certificate iv

Declaration vi

Dedication viii

Acknowledgement x

Abstract xii

Contents xvi

List of Figures xxii

List of Tables xxiv

List of Algorithms xxvi

List of Symbols xxviii

List of Acronyms xxx

1 Introduction 2

1.1 Characteristics of MEC . 6

1.2 Motivation of the Research Work . 7

1.3 Thesis Objectives . 10

1.4 Thesis Contributions . 11

1.4.1 Content Aware Caching based on the Users Viewing Profile (DCache) 11

1.4.2 QoE-Aware Adaptive BitRate Caching (ABRCache) 12

1.4.3 Collaborative Video Caching in a Clustered Edge Network (ColabCache) 12

1.4.4 A Decentralized Caching Mechanism using Federated Learning (Fed-

Cache) . 14

xvi

1.4.5 Prediction Model for Content Delivery in Adaptive Video Streaming

(LASH) . 14

1.4.6 Summary of Contributions . 15

1.5 Organization of the Thesis . 17

2 Background and Literature Survey 20

2.1 Mobile Edge Computing . 20

2.1.0.1 MEC Reference Architecture 21

2.1.0.2 Deployment Scenarios . 23

2.2 Adaptive Video Streaming . 25

2.3 Literature Survey . 27

2.3.1 Edge Caching Within Single BS . 27

2.3.1.1 Heuristic Based Approaches 27

2.3.1.2 Machine Learning Based Approaches 28

2.3.2 Edge Caching Amongst Multiple Base Station 29

2.3.2.1 Heuristic Based Approaches 29

2.3.2.2 Machine Learning Based Approaches 30

2.3.3 Improving the QoE for Content Delivery 31

2.3.4 Limitations of Existing Works . 32

2.4 Datasets . 34

2.5 Summary . 35

3 Content Aware Caching based on the Users Viewing Profile 36

3.1 Introduction . 37

3.2 System Overview . 39

3.2.1 Long Short Term Memory for Popularity Prediction 41

3.3 Proposed Model . 42

3.3.1 Problem Formulation . 44

3.3.2 Architecture of Proposed DCache Model 46

3.3.2.1 Data Pre processing . 46

3.3.2.2 Slot-wise Genre prediction model using LSTM 47

3.3.2.3 Total Request Count prediction model using LSTM+DNN . 50

3.3.2.4 Caching Decision and the Evaluator Module 51

3.4 Experiments and Results . 54

3.4.1 Implementation and Experimental Setup 55

3.4.1.1 Evaluation Metrics . 55

3.4.1.2 Evaluation of Slot-wise Genre Prediction Model 56

3.4.1.3 Evaluation of Request Count Prediction Model 57

3.4.1.4 Cache Hit Rate . 57

3.4.1.5 Backhaul Usage . 58

3.4.1.6 Access Delay . 60

3.4.1.7 Training Cost . 60

3.5 Summary . 61

4 QoE-Aware Adaptive BitRate Caching 62

4.1 Introduction . 63

4.2 System Overview . 65

4.3 Proposed Model . 67

4.3.1 Problem Formulation . 67

4.3.1.1 Video Quality . 68

4.3.1.2 Buffering Time . 68

4.3.1.3 Access Delay . 69

4.3.1.4 Switching Factor . 69

4.3.1.5 Backhaul Traffic . 69

4.3.2 Architecture of Proposed ABRCache 72

4.3.2.1 ABR Module . 74

4.3.2.2 Cache Manager . 75

4.4 Experiments and Results . 77

4.4.1 Dataset . 78

4.4.2 Comparison Against Overall QoE Reward 79

4.4.3 Comparison Against ABR Metrics . 80

4.4.4 Comparison Against Caching Metrics 80

4.4.5 Ablation Study . 82

4.5 Summary . 85

5 Collaborative Video Caching in Clustered Edge Network 88

5.1 Introduction . 89

5.2 System Overview . 92

5.3 Proposed Model . 95

5.3.1 Problem Formulation . 95

5.3.2 Proposed Actor-Critic (A3C) model of ColabCache 100

5.3.2.1 Architecture of ColabCache 100

5.3.2.2 Caching Algorithm . 102

5.3.2.3 Training of ColabCache . 104

5.3.2.4 Choice of Algorithm . 104

5.3.2.5 Computational Complexity 104

5.4 Experiments and Results . 105

5.4.1 Dataset . 106

5.4.2 Evaluation of ColabCache for various Segment Duration 108

5.4.3 Cache Hit Rate (CHR) . 109

5.4.4 Backhaul Traffic . 110

5.4.5 Access Delay . 112

5.4.6 Video Quality and Jitter . 112

5.4.7 Re-buffering . 113

5.4.8 Impact of Total Number of Users . 113

5.4.9 Ablation Study . 114

5.4.10 Popularity Vs Redundancy . 115

5.5 Summary . 115

6 Federated Caching and Prediction Model for Content Delivery 118

6.1 Federated Learning-based Caching . 119

6.1.1 System Overview . 121

6.1.2 Proposed Model . 124

6.1.2.1 Problem Formulation . 125

6.1.2.2 Architecture of FedCache 127

6.1.3 Federated Learning-based Training 128

6.1.4 Experiments and Results . 130

6.1.4.1 Evaluation Against various Cache Size 131

6.1.4.2 Evaluation Against Cache Hit Rate 132

6.1.4.3 Evaluation Against Backhaul Traffic 133

6.1.4.4 Evaluation Against Access Delay 133

6.2 Prediction Model for Content Delivery . 135

6.2.1 Proposed Model . 137

6.2.1.1 Objectives of LASH ABR Model 138

6.2.1.2 Input Space . 140

6.2.1.3 Actor-Critic (A3C) Network 140

6.2.1.4 LASH Architecture . 141

6.2.1.5 Training Phase . 142

6.2.2 Experiments and Results . 143

6.2.2.1 Ablation Studies . 143

6.2.2.2 Evaluation of Proposed LASH Model 145

6.2.2.3 Comparison for QoE HD Reward Model 145

6.2.2.4 Comparison for QoE Linear Reward Model 146

6.2.3 Comparison for QoE Log Reward Model 147

6.2.3.1 Comparative study between various QoE models 148

6.3 Summary . 149

7 Conclusions and Future Perspectives 152

7.1 Summary of Contributions . 152

7.1.1 Content Aware Caching based on the Users Viewing Profile 152

7.1.2 QoE-Aware Adaptive-Bit Rate Caching 153

7.1.3 Collaborative Video Caching in a Clustered Edge Network 153

7.1.4 Federated Caching and Prediction Model for Content Delivery 154

7.1.5 Prediction Model for Content Delivery in Adaptive Video 155

7.2 Future Works . 155

7.2.1 Content Aware cost efficient caching using Federated Learning 155

7.2.2 Deep Learning for Efficient Resource Allocation in V2X Communica-

tion Networks . 156

References 158

Publications Related to Thesis 172

List of Figures

1.1 Cellular Architecture With MEC Integrated 4

1.2 Network Architecture for Video Content Delivery using MEC 6

2.1 MEC Framework [1] . 22

2.2 MEC Reference Architecture [1] . 24

2.3 MEC Deployment Scenarios [2] . 25

2.4 Working Principle of DASH [3] . 26

3.1 Hypothetical Scenario of Content Aware Caching in MEC 40

3.2 Overview of LSTM for Genre Prediction . 41

3.3 Overview of Proposed DCache Model for Content-Aware Caching 43

3.4 Statistical Analysis of Slot-wise Breakdown of Genre Vector at Different Time

Slots of a Day . 48

3.5 Proposed Architecture for Slot Wise Genre Prediction Model 49

3.6 Proposed Architecture for Total Request Count Prediction Model 50

3.7 Performance of Slot-wise Genre Prediction Model m∗
1 56

4.1 An Overview of DASH Video Caching in MEC For Multiple Bitrates 66

4.2 RL-based Model for QoE-Aware Content Caching at the MEC Server 71

4.3 Proposed Architecture of RL-based ABR Module 74

4.4 Proposed Architecture of RL-based Cache Manager 75

4.5 Pattern of Video Request following Zipf Distribution 78

4.6 A Car and a Train Traveling from North to South in Belgium with the Mea-

sured Throughput . 79

4.7 Performance of the Proposed ABRCache Against ABR Reward, Video Qual-

ity, and Smoothing Penalty for 4-second Segment with 4 GB Cache Size . . . 81

4.8 Performance of the Proposed ABRCache Against Cache Hit Rate, Backhaul

Traffic, and Access Delay for 4-second Segment with 4 GB Cache Size 82

5.1 A Representation of Clustered BS within the Target Region 92

xxii

5.2 A Hypothetical Scenario for Collaborative Caching using Clustering of MEC

Servers for DASH Videos . 94

5.3 Proposed Architecture of Actor Network for RL-based A3C Network 101

5.4 Video Request Frequency for the Iflix dataset 105

5.5 CHR Achieved by ColabCache with respect to the Cluster Size for 2-sec

Segment Duration, 256 MB Cache Size on Iflix Dataset 106

5.6 Graphical Representation of ColabCache in a Cluster of 7 MEC Servers and

their Corresponding Observed Values over a Time Period. 107

5.7 Performance of Proposed ColabCache Against Various MEC Cache Size (MB) 109

5.8 Performance of the Proposed ColabCache against Cache Hit Rate, Backhaul

Traffic and Access Delay for Random Zipf Dataset 110

5.9 Performance of the Proposed ColabCache against Cache Hit Rate, Backhaul

Traffic and Access Delay for Random Iflix Dataset 111

5.10 Performance of Proposed ColabCache Against Different Number of Users . . 113

5.11 Scatter Plot of Normalized Redundancy and Popularity 116

6.1 A Hypothetical Scenario of Edge Caching using Federated Learning 121

6.2 Overview of Federated Learning-based Edge Caching 124

6.3 Proposed Architecture of FedCache using A3C Network 127

6.4 Federated Learning-based Training among 5 different Users 130

6.5 Comparison of Average Reward for various Caching Schemes 131

6.6 Comparison of Average Reward Against Various MEC Cache Sizes (GB) . . 132

6.7 Performance of the proposed FedCache against Cache hit, Access Delay and

Backhaul Traffic for 10-sec segment with 256 GB cache size 134

6.8 Block Diagram for Performing QoE Management [4] 136

6.9 Proposed LASH Deep Neural Architecture with RL 138

6.10 Comparing LASH on QoE metrics with BB [5] and Pensieve [6] QoEHD model146

6.11 Comparing LASH on QoE metrics with BB [5] and Pensieve [6] QoELinear

model . 148

6.12 Comparing LASH on QoE metrics with BB [5] and Pensieve [6] QoELog model149

List of Tables

1.1 Real-world MEC servers [7] . 5

3.1 Comparison of RMSE for Model 1 . 57

3.2 Cache Hit Rate Against MEC Cache Size (GB) 58

3.3 Cache Hit Rate Against MEC Cache Size (GB). The best results are shown

in Red and the second best in Blue . 58

3.4 Computation of Slot-wise Backhaul Usage (TB) 59

3.5 Backhaul Usage (TB) Against MEC Cache Size (GB). The best results are

shown in Red and the second best in Blue 59

3.6 Access Delay (sec) Against MEC Cache Size (GB). The best results are shown

in Red and the second best in Blue . 60

3.7 Computation of Training Cost (Minutes) for Various Deep Learning Models . 61

4.1 Comparison of Total QoE Reward Against various Cache Size and Segment

Duration’s. The best results are shown in Red and the second best in Blue . 79

4.2 Comparison of ABRCache Against Various Cache Sizes and Segment Dura-

tion. The Best results are shown in Red and second best results in Blue . . . 84

4.3 Comparison of ABRCache Against Different Number of Dense Layers and

Neurons . 84

5.1 Comparison of ColabCache Against Different Segment Sizes. The best results

are shown in Red and the second best in Blue 108

5.2 Comparison of ColabCache With and Without Clustering 114

6.1 Comparison of FedCache Against Various Cache Size. The best results are

shown in Red and the second best in Blue 132

6.2 Video Quality Scores of HD Videos . 140

6.3 Comparative study of LSTM and 1DCNN 144

6.4 QoEHD Reward for Various Transportation. The best results are shown in

Red and the second best in Blue . 145

xxiv

6.5 QoELinear Reward for Various Transportation. The best results are shown in

Red and the second best in Blue . 147

6.6 QoELog Reward for Various Transportation. The best results are shown in

Red and the second best in Blue . 147

6.7 Comparative Results for various QoE models. The best results are shown in

Red and the second best in Blue . 150

List of Algorithms

1 DCache for Content Popularity Prediction . 52

2 DCache for Caching Strategy . 53

3 Training in ABRCache Model . 72

4 Cache Decison() Module for ABRCache . 73

5 Clustering Algorithm . 93

6 ColabCache Caching Policy . 103

7 FedCache Training Policy . 129

xxvi

List of Symbols

χt Average Reward

δ Access Delay

γ Delay in the backhaul link

ϕ̂t+1
ci

Predicted Movie Views

ÔSi
t+1 Predicted slot-wise genre vector for si slot

D Set of Neihboring MEC server

J Jitter

L Predicted List of Movies

M Set of MEC Servers in a Cluster

Phit Probability of Cache Hit Rate

V Set of Movies

−→
G avg Slot-Wise Genre Vector

−→
M Movie Genre vector

τt Throughput

ϱ Backhaul Traffic

ζ Current Buffer Size

b Available Bitrates

Fci Content Popularity Score

xxviii

K Cache Size of MEC Server

Km Cache Size of mth MEC server in a collaborative environment

kbij Size of Video Content cbij

M Total number of MEC Servers

n Total number of videos

p, p̂ Actual and Predicted Values

R(t) Re-buffering time

r Number of Arriving Requests

U Total Number of Users

vbij Video quality of jth segment of ith video

wbm
ij Cache decison variable for Cluster Miss

xbmij Cache decison variable for neighbor hit

ybij Binary Cache Decision Variable

zci Total number of views for movie ci

Acronyms

1DCNN 1D Convolutional Neural Network.

3GPP 3rd Generation Partnership Project.

5G Fifth Generation.

A3C Asynchronous Advantage Actor Critic Network.

ABR Adaptive Bit-Rate.

API Application Programming Interfaces.

BPTT Back Propagation Through Time.

BS Base Station.

CAGR Compound Annual Growth Rate.

CAM Caching Module.

CCS Core Content Server.

CDM Cache Decision Module.

CDN Content Delivery Network.

CFS Customer-Facing Service.

CHR Cache Hit Rate.

CM Cache Memory.

CNN Convolutional Neural Network.

CRM Content Request Module.

xxx

CS Core Server.

DASH Dynamic Adaptive Streaming over HTTP.

DL Deep Learning.

DNN Deep Neural Network.

DQN Deep Q-Network.

DRL Deep Reinforcement Learning.

ETSI European Telecommunications Standards Institute.

FC Fully Connected.

FIFO First-In-First-Out.

FL Federated Learning.

HD High Definition.

ILP Integer Linear Programming.

ISG Industry Specification Group.

IT Information Technology.

LFU Least Frequently Used.

LRU Least Recently Used.

LSTM Long Short Term Memory.

MAE Mean Absolute Error.

MANO Managment and Orchestration.

MEC Mobile Edge Computing.

ML Machine Learning.

MPD Media Presentation Description.

MSE Mean Squared Error.

OSS Operations Support System.

OTT Over-the-Top.

PSNR Peak Signal-to-Noise Ratio.

QoE Quality of Experience.

QoS Quality of Service.

RAN Radio Access Network.

RESNET Residual Neural Network.

RL Reinforcement Learning.

RMSE Root Mean Square Error.

RNIS Radio Network Information System.

RNN Recurrent Neural Network.

UE User Equipment.

UPF User Plane Function.

“A person who never made a mistake never tried anything new.”

∼Albert Einstein

1
Introduction

In recent times, driven by the pervasive growth in the popularity of mobile devices along with

the drastic advancement of network infrastructure and wireless bandwidth, there has been

an exponential rise in mobile data traffic. According to a survey done in [8], mobile data

traffic increased sevenfold globally between 2017 and 2022. It grew at a Compound Annual

Growth Rate (CAGR) of 46 % between 2017 and 2022, reaching 77.5 exabytes per month

by 2022. The survey also stated that by 2023, the number of mobile devices worldwide is

expected to grow up to 13.1 billion. Video traffic currently accounts for 66% of the total

mobile data traffic, which is projected to grow up to 77% by 2026 [9]. This rapid rise in video

traffic is due to the proliferation of a wide range of multimedia services and applications such

as Over-the-Top (OTT) video streaming services (Netflix, Amazon Prime, YouTube, etc.).

1

Introduction

Along with the growth of mobile devices, there are significant advancements in wireless

communications for mobile networks. The development of wireless technologies presents a

wide range of multimedia services and applications that requires high-speed data rates and

low-latency transmissions. In order to meet the traffic needs of diverse and resource-hungry

multimedia services, the Fifth Generation (5G) networks help provide faster data delivery,

resulting in higher transmission capacity and lesser traffic congestion at the backhaul links.

This futuristic high-speed network has to ensure higher bandwidth capacity, lower latency

and lower energy consumption [10]. The core and mobile edge networks are the two most

essential components of the 5G architecture [11].

Mobile Edge Computing (MEC) [2], [7], [12], [13] strengthens the mobile networks by

incorporating cloud computing capacities within the Radio Access Network (RAN). MEC

was developed by European Telecommunications Standards Institute (ETSI) [14]. With the

integration of MEC between the Core Server (CS) and the RAN, the 5G architecture can

provide low latency, proximity, high bandwidth, real-time radio network information and

location awareness [15]. With the deployment of the MEC servers, the internet, with its

multimedia content, is brought closer to the end-users. The use case of such an approach can

be listed as [16]: 1) Firstly, the Content and Context Aware Caching at the MEC servers

helps in reducing the backhaul traffic, thus improving the latency for a video streaming

Session and 2) Secondly, in Video Adaptations the MEC servers could capture the real-time

network conditions from the various end-users through the Radio Network Information

System (RNIS) that can aid in delivering the appropriate bitrate of a video segment during

the entire video streaming session. Thus, the MEC servers, which are hosted closer to the

end-users, could intelligently store the content based on the context and popularity of the

data.

The definition of MEC as provided by ETSI is as follows:

2

Mobile Edge Computing provides an IT service environment and cloud comput-

ing capabilities at the edge of the mobile network, within the RAN and in close

proximity to mobile subscribers.

ETSI defined MEC as:

MEC acts as a bridge between the CS and end-user, enabling the network services to

be closer to the end-user. MEC which is integrated at the Base Station (BS) or nearer to

the BS, improves computations and reduces the backhaul usage, access delay, and system

failure [17] [18]. Figure 1.1 illustrates an essential representation of the cellular architecture

with MEC integrated within the BS.

eNB

MEC

Core Server

End-Devices

Figure 1.1: Cellular Architecture With MEC Integrated

As depicted in Figure 1.1, the BS is connected through the Ethernet/IP to the CS,

supporting a high data transfer rate. This high-speed link is referred to as the backhaul

link in this dissertation. The end-users / User Equipment (UE) are wireless connected to

the BS. With the introduction of MEC into the existing cellular architecture that is placed

between the CS and mobile devices, a new three-layer architecture is defined. This three-

layer hierarchy comprises the CS, MEC and UE. MEC aids in bringing various network

services closer to the end-users that help improve the overall experience of an end-user [19].

The MEC servers, along with storage capacity, also provide highly intelligent CPU/GPU

3

Introduction

MEC server Manufacturer Storage (GB) CPU GPU
Jetson TX2 NVIDIA 32 Quad ARM A57 NVIDIA Pascal

HyperFlex Edge Cisco 128 Intel Xeon /
Edge Cloud Intel 16 to 64 Intel Xeon /

Power S822LC IBM 32 to 1024 Power 8 NVIDIA Tesla P100

Table 1.1: Real-world MEC servers [7]

computation services. Consider the example of a cache replacement strategy using MEC

servers. MEC could collect real-time information about the user preferences and the network

conditions for a given channel and make intelligent decisions by predicting which segments

to be replaced in the cache to maximize the overall cache hit ratio, thereby reducing the

network traffic in the backhaul link [17] [18].

Table 1.1 presents a configuration listing of the MEC servers with respect to CPU, GPU

and storage capabilities. From the table it can be seen that the storage capacities of the

MEC servers is between 16 GB and 1024 GB. Such huge capacities of MEC servers could

be utilized to cache popular content which are expected to increase manifold in the coming

future. MEC servers not only provides ample space for caching but also has the ability to

provide deep learning computations for making intelligent decisions. For example, Nvidia

Jetson TX2 is a high-end GPU server which is specially designed for delivering artificial

intelligence services in the edge network [7].

Figure 1.2 illustrates the Network architecture for video content delivery using the MEC.

In order to provide lower latency or lower access delay for accessing content, MECs are

situated in close proximity to the BS. Whenever a user requests content, it is first searched

in the MEC server; if found, a cache hit occurs for the given content, and the UE can

directly fetch it. Otherwise, when there is a miss for the requested content, the content is

retrieved from the CS. Under such a scenario, the access delay increases and also, if there

are a lot of misses, then the backhaul usage increase, which may lead to congestion between

the CS and MEC.

4

Characteristics of MEC

B
A

C
K

H
A

U
L

CORE SERVER

BS

BS

MEC
MEC

Figure 1.2: Network Architecture for Video Content Delivery using MEC

1.1 Characteristics of MEC

MEC can be characterized by the following criteria [20]:

� Proximity: MEC being placed at close proximity to the BSs that is closer to the UEs,

adds the advantage of processing big data for serving resource-hungry services.

� Lower Latency: With MEC services being deployed closer to the UEs, time taken to

access a given content directly from the MEC server is less, as network route from the

CS is avoided.

� Location: As MEC servers receive the network and channel conditions from the UEs,

it helps to get the location of the edge devices which help in providing better services.

� Network Context Information: The MEC servers receive the real-time network data

from RNIS. This real-time information helps in predicting the network bandwidth and

estimating the congestion in the radio cell, which helps in making intelligent decision

for caching and content delivery based on video adaptations.

5

Introduction

With MEC in the picture, content and service providers are left with a challenging task to

deliver a satisfactory Quality of Experience (QoE) to the end-users during peak traffic hours

with the continued exponential growth of mobile data traffic. The primary goal in achieving

this is to design a caching mechanism which is effective for the edge server that caches

the most popular or often requested content. An efficient caching mechanism ensures that

very few requests are forwarded to the core network like the internet, and instead, as many

requests are serviced from the edge server. Therefore, the overall traffic at the backhaul link

reduces, along with the access delay in retrieving the requested content. Numerous heuristic

and Machine Learning (ML)-based caching strategies have been introduced in recent times

that aim to improve the overall cache hit rate at the MEC server. Additionally, improving

the end-users overall QoE, or viewing experience, is the other goal.

1.2 Motivation of the Research Work

Despite the rise in cellular infrastructure and wireless data transmission speeds, delivering

a satisfactory QoE to various latency-sensitive applications remains a challenging task for

cutting-edge cellular networks. Providing an adequate user experience remains an open

research problem at the edge network with the exponential growth of mobile video traffic.

Due to a high degree of temporal variability in mobile video traffic, the traffic congestion

between the CS and BS (the backhaul link) increases during peak traffic hours. The network

is under-utilized during off-peak hours [21]. Optimal utilization of the MEC servers storage

could be achieved by efficiently caching the most popular video content. An efficient caching

mechanism at the network edge improves the overall Cache Hit Rate (CHR), which results

in the reduction of traffic congestion in the backhaul link along with access latency.

Over the years, there have been many developments in heuristic-based caching [13] [22].

Even though these algorithms are simple and compact, many still try to find the patterns in

data and use various mathematical frameworks and analytical models to achieve better cache

efficiency. Traditional caching strategies such as Least Least Recently Used (LRU) [23],First-

In-First-Out (FIFO) and Least Frequently Used (LFU) [24] are unable to provide an efficient

6

Motivation of the Research Work

caching strategy as the number and dynamicity of the request grows. However, with the

advent of big data and ML-based techniques [25–27] to understand data and its features,

caching at the edge server is expected to provide an optimal solution. Meanwhile, the idea

of video caching is currently being expanded from video-level to segment-level (consisting

of multiple bitrate) [16] [28] and [29]. The users’ preference for viewing a particular video

(multiple bitrate representations) for a wide range of users might vary depending on the

dynamically changing network conditions. For example, a specific user with an High Defi-

nition (HD) device with high-speed network conditions may demand higher resolutions or

HD videos. But the same is not valid for users with low network bandwidth, as the delay

incurred will be too large, resulting in the degradation of users’ QoE. Under such a scenario,

Adaptive Bit-Rate (ABR) streaming solutions like Dynamic Adaptive Streaming over HTTP

(DASH) [30] have been employed in the content delivery networks to improve users’ overall

QoE. In DASH, a particular video is split into segments of various time durations (for exam-

ple, 2, 4, 6, and 8 seconds durations [3]). Every video segment (of particular time duration)

consists of multiple bitrates/representations (for example, 240p, 360p, 480p, 720p, 1080p,

etc.). Due to heterogeneous user demands, it is challenging to calculate and predict a video

segment’s most popular (frequently requested) bitrate in advance. Proactively predicting

the segments and storing those popular segments in the MEC server’s cache reduces the BS

network load.

It has been observed that most of the previous caching schemes based on a single BS

such as [25,31,32] are not adaptive enough to handle such diverse and complicated requests

across temporal and geographical dimensions. Thus, to further improve the caching per-

formance at the edge node, collaborative caching [33–35] has been introduced recently. In

collaborative caching, MEC servers collaborate amongst themselves through the high band-

width fronthaul links to serve the requested videos. In collaborative caching, decisions must

be made considering factors such as past request patterns and current network conditions.

However, a collaborative caching mechanism faces several challenges. Firstly, in contrast

to non-collaborative caching, a collaborative caching strategy also has to decide the MEC

7

Introduction

server at which the content should be cached. Thus, another degree of complexity is added

to the caching decision. Secondly, for DASH videos, caching multiple representations will

increase the overhead with respect to the storage capacity of an MEC server. Finally, de-

signing an efficient caching mechanism that efficiently utilizes the available computational

and storage resources to improve the overall caching efficiency at the edge nodes.

Most of the existing caching schemes, expandability becomes a concern for the archi-

tectures when number of clients and the information they generate grows. Furthermore,

these existing caching systems are built for overly regulated scenarios where users must

share their personal information to an edge server, which relies massively on the central

server. Such learning-based caching models are generally trained in a centralized way, which

over-consumes the network resources during training and transmission of the video requests.

Therefore, to further improve the overall system performance, decentralized caching through

Federated Learning (FL) [36–38] has been explored more recently. FL-based caching at the

edge server efficiently offloads the computation task from the CS to the end-users. In FL,

a model is trained at the user’s end instead of the edge server, where the user data is not

needed to be transferred to the servers. Moreover, along with designing an efficient caching

methodology for storing the most popular content at the edge server, content delivery is

another important use case of MEC [39] [40]. ABR streaming, for example DASH is a very

well-known adaptive streaming solution, where videos are broken down into segments and

bitrates are selected based on the network conditions. The primary challenge for service

providers in an ABR streaming is to deliver a satisfactory QoE to the end-users.

Therefore, both content and service providers are left with a challenging task to deliver a

satisfactory QoE to the end-users during peak traffic hours with the continuous exponential

growth of mobile data traffic. Thus, it can be said that designing an efficient caching

strategy in such a dynamic scenario is a challenging task. Thus, the primary objective of

this dissertation improve the overall caching efficiency at the MEC and provide a satisfactory

QoE to the end-users.

8

Thesis Objectives

Improving the caching efficiency at MEC using deep learning approaches and op-

timizing various parameters related to caching (such as CHR, backhaul traffic and

acess delay) and QoE (such as video quality, re-buffering, video quality switching).

Thesis Goal:

1.3 Thesis Objectives

Motivated by the above observation, the main objectives of this dissertation are as follows:

� Content Aware Caching based on the Users Viewing Profile: Proposing a deep learning

model for content-aware caching at the MEC server based on the users viewing profiles

at different time-slots of the day.

� QoE-Aware Adaptive BitRate Caching: Developing a joint optimization framework

using Deep Reinforcement Learning (DRL) that improves the overall QoE of the end-

users by focusing and giving equal weightage to both the ABR and caching mechanism

at the MEC.

� Collaborative Video Caching in a Clustered Edge Network: Proposing a DRL based

Collaborative Caching strategy in clustered edge networks, where BSs are clustered

based on geographical locations.

� Decentralized Caching Mechanism using Federated Learning: Designing a decentralized-

based caching mechanism using FL, where data from users is not centrally collected;

rather, the model will be trained on the individual data of each user.

� Prediction Model for Content Delivery in Adaptive Video Streaming: Finally, the

content delivery for a video streaming session is investigated, and a Deep Neural

Network-based model is proposed that chooses the proper video bitrates to maximize

the user’s overall QoE.

9

Introduction

1.4 Thesis Contributions

To improve the caching efficiency at MEC, we propose various deep learning based caching

mechanism pertaining to the availability of MEC storage capacity, variations of number of

users along with dynamic network condition. In th next subsection, we briefly present each

of the proposed deep learning-based caching strategies along with content delivery.

1.4.1 Content Aware Caching based on the Users Viewing Profile

(DCache)

In our first contributory chapter, we propose a deep learning-based content-aware caching

called DCache at the MEC server. The proposed learning-based caching strategy focuses

on the users’ viewing profiles at different times of the day. A time-slot-based hypothetical

popularity index has been introduced as a “genre vector” to fulfill the heterogeneous end-

users (users with various viewing preferences like action, comedy, drama, etc.) demands at

different time slots of the day. For simplicity of the design, it has been restricted initially

for the Movie database. In this work, “genre vector” essentially signifies what genre is

prevalent at what time of the day. The ultimate goal is to find a time-slot (of the day)

based popularity index of the videos (Movie for our case). The MEC caches are then

updated so that a higher number of movie requests can be met. In addition, a novel two-

step model has been proposed to predict the popularity of movies. The proposed DCache

model uses a stream of video requests from various end-users as input data for caching the

most popular video content at the MEC server. For experimental purposes, we have used

the MovieLens [41] [42] dataset in our proposed work. The first step of the model is based

on Long Short Term Memory (LSTM) and it predicts the most prevalent movie genre at

different time slots of the day. The second step of the proposed model predicts the movies’

future views in different time slots of the day using a combination of LSTM and Deep Neural

Network (DNN). The efficiency of the proposed DCache model, has been evaluated against

CHR, backhaul traffic and access delay. The CHR results, along with the other evaluation

10

Thesis Contributions

metrics show that DCache significantly outperforms the performance of existing caching

policies.

1.4.2 QoE-Aware Adaptive BitRate Caching (ABRCache)

In the second contributory chapter, a QoE-aware ABR caching mechanism named ABR-

Cache at the MEC server using DRL is proposed. In this work, a Reinforcement Learning

(RL)-based joint optimization framework is proposed to improve the overall QoE of the

end-users by efficient and appropriate utilization of both the ABR and caching mechanism

at the MEC server. The DRL-based framework uses three types of modules namely ABR,

Planner and Evictor to optimally select the most appropriate and popular bitrate based

on segment-level popularity and caches it accordingly. In addition, ABRCache handles the

variations in bandwidth pertaining to different mobility models. The proposed model, com-

bined with LSTM, can determine and extract patterns from the time-series data analysis of

variable bandwidth input data.

The proposed model is trained at the MEC server which consists of the ABR module

and the Cache manager. The cache manager consists of the Planner and Evictor module,

which decides whether to cache a particular video segment or not? The experiments are

performed based on the standard DASH [43] video dataset and network bandwidth [44] logs.

In the simulation setup, the request from the users for DASH video segments follows Zipf

distribution. ABRCache outperformed existing strategies both heuristics and ML-based.

As the cache size increases, the overall reward for the proposed ABRCache also increases.

Therefore, the overall performance of the proposed model is expected to increase with an

increase of the cache size in the MEC server.

1.4.3 Collaborative Video Caching in a Clustered Edge Network

(ColabCache)

It is observed that caching strategies based on single BS are not robust and adaptive enough

to handle diverse and growing mobile video data traffic. Hence, in the third contributory

11

Introduction

chapter, a DRL-based Collaborative Caching strategy (ColabCache) in clustered edge net-

works is proposed. The BSs are clustered based on geographical locations. Collaborating

MEC servers in the clustered edge network caches the video content based on their segment

level popularity. A novel cache admission and eviction policy is proposed, unlike the previ-

ous works, which primarily use simple eviction policies such as LRU and LFU. ColabCache

collaborates amongst the clustered MEC servers to make caching decisions based on the

calculated Priority Score of video segments with respect to all MEC servers in the cluster.

In addition, ColabCache is independent of the size of media library at the CS. The pro-

posed model is independent of the total number of videos in the media library, and hence

the performance is optimal even when the media library is continuously increasing.

For DASH video streams storing all the representations is not efficient. Hence, only the

popular/frequently requested representation of the video segments are cached at the MEC

servers. For collaboration, MEC servers are grouped into clusters based on their geographical

proximity. Each MEC server collaborates with the other MEC servers in its cluster, referred

to as its Neighbours in the proposed work. Each user requests and receives video contents

from the BS closest to them (with respect to signal strength), referred to as the user’s Home

BS. For experimental purpose, EUA-Dataset [45] is used which contains the geographical

locations of MEC servers. Along with this, the Iflix [46] movie streaming dataset is also

used. The actor network of the DRL framework takes several input features related to

the popularity of content along with various network parameters to generate policies πθ for

deciding the target BS to store the requested video content. The performance of proposed

ColabCache model have been evaluated against CHR, backhaul traffic and access delay ,and

compared with some of the existing state-of-the-art ML and heuristic based approaches.

Substantial improvement is observed for the proposed model.

12

Thesis Contributions

1.4.4 A Decentralized Caching Mechanism using Federated Learn-

ing (FedCache)

In most of the existing caching schemes, expandability becomes a concern for the architec-

tures when number of clients and the information they generate grows. Furthermore, these

existing caching systems are built for overly regulated scenarios where users must share

their personal information to an edge server, which relies massively on the central server.

Therefore, in the first part of the final contributory chapter, a hierarchical Federated Rein-

forcement Learning-based Content Caching FedCache strategy is presented to address these

issues. For the first time, a Asynchronous Advantage Actor Critic Network (A3C) DRL net-

work has been trained in a Federated way for making caching decisions at the edge server.

FedCache offers a scalable solution for training diverse request patterns by transferring the

training process to the UEs instead of centrally at the edge server. The proposed model

uses Iflix [46] dataset for evaluating caching scenarios.

The proposed architecture of DRL-based FedCache consists of a novel Caching Module

(CAM) using A3C network. FedCache primary objective is increasing the CHR. Experi-

mental results reveal that, as the cache size of MEC server increases from 64 GB to 128

GB, the CHR increases by almost 21%. Therefore, more popular video segments could be

stored as the cache size increases, resulting in higher CHR. FedCache performance increases

by almost 5% and 12% for cache size of 64 GB and 256 GB respectively when compared

with the next best strategy AviC [25].

1.4.5 Prediction Model for Content Delivery in Adaptive Video

Streaming (LASH)

In the second part of the final contributory chapter, DL-based content prediction model for

adaptive video streaming called LASH. QoE management using a fixed set of rules may not

always guarantee optimal bandwidth utilization, video quality enhancement and accurate

buffer estimation, especially in the face of continuously varying and often unpredictable

13

Introduction

bandwidth fluctuations. To handle these issues across a wide range of varying network

conditions and QoE parameters, ML strategies are being used in recent times. However, it

has been observed from existing literature that both heuristics and ML-based approaches

fail to satisfy the three important QoE verticals (perceived video quality, buffering time and

video quality switches) simultaneously. Hence, in this work a LSTM-DNN based on DRL

has been devised which is trained with a large set of input parameters. These parameters

essentially model the dynamic control rules for handling varying network conditions and

end user demands. Thus, a more efficient QoE management model can be achieved. The

proposed DRL architecture starts learning the control policy for adaptive algorithm and

gradually keeps on improving the reward signal measured in terms of QoE. The proposed

model maximizes the overall QoE by satisfying the three QoE verticals such as overall video

quality, re-buffering and video quality switches simultaneously. The model is trained over

the standard HSDPA dataset [47].

1.4.6 Summary of Contributions

In this dissertation, deep learning based approaches for content management along with

content delivery is presented. A chapter-wise summary of contributions is narrated as

follows.

� Chapter 3 contributions is summarized as:

– A time-slot-based hypothetical popularity index has been introduced as a “genre

vector” to fulfill the heterogeneous end-users (users with various viewing prefer-

ences like action, comedy, drama, etc.) demands at different time slots of the

day.

– A novel two-step model has been proposed to predict the popularity of movies.

The first step predicts the most prevalent movie genre. And in the second step,

the proposed model predicts the movies’ future views in different time slots of

the day.

14

Thesis Contributions

– The next significant contribution is proposing a cache storing and replacement

strategy learned using the “genre vector”.

� Chapter 4 contributions is summarized as:

– To improve the overall QoE for a video streaming session and to reduce the traffic

load on the backhaul links, we introduce a novel joint optimization framework

using DRL.

– The variations in bandwidth pertaining to different mobility models is handled

by the proposed QoE-aware caching model.

– A novel hierarchical architecture comprising of ABR, Planner and Evictor mod-

ule is proposed to maximize the overall QoE.

� Chapter 5 contributions is summarized as:

– A novel DRL-based collaborative caching mechanism using A3C for clustered

MEC server is presented.

– A collaborative caching framework is proposed that collaborates amongst the

clustered MEC servers to make caching decisions based on the calculated Priority

Score of video segments.

– The collaborative caching model is independent of the total number of videos in

the media library, and hence the performance is optimal even when the media

library is continuously increasing.

� Chapter 5 contributions is summarized as:

– A FL-based caching model is proposed that offers a scalable solution for training

diverse request patterns by transferring the training process to the UEs instead

of centrally at the MEC server.

– The Federated caching model measures segment-level popularity and trains the

A3C network to learn which and how many segments to be evicted from the local

cache, to cache a new segment.

15

Introduction

– Propose a content prediction model for ABR streaming that predicts the optimal

bitrate of video segments.

– The proposed content prediction model maximizes the overall QoE by optimizing

various parameters simultaneously.

1.5 Organization of the Thesis

The overall organization of the thesis is outlined as follows:

Chapter 1: Introduction

This Chapter introduces Mobile Edge Computing and content caching and delivery,

address the motivation of this dissertation considering the research gaps in the recent

literature. A brief chapter-wise contributions are presented, followed by summary of

contributions and thesis organization.

Chapter 2: Background and Literature Survey

This Chapter provides detailed background on Mobile Edge Computing followed by

the discussion on state-of-the-art works related to caching and content delivery using

both heuristic and deep learning approaches. The chapter is concluded with a sum-

mary of research gaps of the existing literature.

Chapter 3: Content Aware Caching based on the Users Viewing Profile

In first contributory Chapter, a two-step deep learning model for content-aware caching

at the MEC server based on the users viewing profile at different periods of the day is

proposed.

Chapter 4: QoE-Aware Adaptive Bit- Rate Caching

The next contributory Chapter introduces a QoE-Aware caching mechanism, which

jointly optimizes both ABR and caching parameters simultaneously. The proposed

16

Organization of the Thesis

model uses DRL to solve the above problem improving the overall QoE for a video

streaming session along with traffic load on the backhaul links.

Chapter 5: Collaborative Video Caching in Clustered Edge Network

The third contributory Chapter presents a novel caching mechanism to further im-

prove the caching performance, where multiple BSs collaborate amongst themselves.

A novel cache admission and eviction policy based on the priority of video segments

is proposed using DRL.

Chapter 6: Federated Caching and Prediction Model for Content Delivery

In the fourth and final contributory Chapter, a decentralized based caching mecha-

nism using Federated Learning is proposed. Further, a deep learning based content

prediction model for adaptive video streaming is presented to improve the overall QoE

of a video streaming session.

Chapter 7: Conclusions and Future Perspectives

The thesis is concluded in this Chapter, along with some possible future research

scopes .

;;=8=<<

17

“The way to get started is to quit talking and begin doing.”

∼Walt Disney

2
Background and Literature Survey

This chapter initially gives a brief description of MEC deployment. As a significant part

of this thesis concerns ABR; therefore, a system-level framework and an example scenario

of adaptive video streaming is presented. After that, a thorough analysis of the works that

considered caching at the MEC server is presented. In addition, comprehensive details about

the dataset that was utilised to perform caching in this dissertation are presented.

2.1 Mobile Edge Computing

Mobile Edge Computing (MEC) is recognised as a critical technology to introduce application-

oriented capabilities into the core of a carrier’s network and to explore a wide range of

new use cases, particularly those requiring low latency. MEC is an essential component

19

Background and Literature Survey

in the 5G architecture that extends cloud computing capacity to the edge of cellular net-

works closer to the UEs, resulting in ultra-low latency, near proximity, context awareness,

and high throughput. ETSI Industry Specification Group (ISG) (Industry Specification

Group) is considered the home of technical standards for MEC and has published various

specifications. For instance, the Managment and Orchestration (MANO) of MEC applica-

tions [48, 49], the Application Enablement Application Programming Interfaces (API) [50],

the Service APIs [51], and the User Equipment (UE) application API [52] are examples of

specifications. The service APIs provide the ability for applications to access underlying

network data and capabilities, whereas MANO and application enablement functions help

to enable service environments in edge data centres. Applications can use these standardised

APIs to obtain contextual information and real-time awareness of their local surroundings,

which is one of the core value-adding capabilities of the MEC specification. Next, a brief

description of the high-level functional entities of MEC framework is presented followed by

the MEC reference architecture.

2.1.0.1 MEC Reference Architecture

Figure 2.1 illustrates the high-level functional entities involved in the MEC framework. The

entities are divided into three different categories, namely, network-level, host-level, and

system-level entities. The MEC host and the accompanying MEC host-level management

entity comprise the MEC host level. The MEC platform, the MEC apps, and the virtual-

ization infrastructure constitute the remainder of the MEC host.

The 3rd Generation Partnership Project (3GPP) cellular network, the local networks,

and the external networks constitute linked external entities of the network level. Local area

networks, cellular networks, and external networks such as the Internet are all connected

through this layer. The MEC system-level management is on top of everything and, by

definition, has a broad view of the entire MEC system. The MEC system comprises the

MEC hosts and MEC management required to operate MEC applications inside an operator

network or a portion of the operator network.

20

Mobile Edge Computing

MEC

PLATFORM

MEC

Applications

MEC

APP

MEC

APP

VIRTUALIZATION

INFRASTUCTURE
MEC HOST

UE

Third

Party

M
E

C

S
ys

te
m

 L
e

v
e

l

M
E

C

H
o

st
 L

e
v

e
l

N
e

tw
o

rk
s

MEC System-Level Management

MEC

Host-Level

Management

3GPP

Network

Local

Network

External

Network

Figure 2.1: MEC Framework [1]

As illustrated in Figure 2.2, the MEC reference architecture specifies the functional

entities in more depth. It shows how they relate to one another, providing a more detailed

understanding of MEC systems. The MEC reference architecture can be partitioned into

Host and System level.

� MEC Host Level: The virtualization infrastructure and MEC platform together make

up the MEC host, which offers processing, storage, and network resources for MEC ap-

plications. The virtualized infrastructure has a data plane that carries out the forward-

ing instructions sent to the MEC platform and directs traffic between the networks,

services, and applications. The MEC platform’s fundamental baseline functionalities

are required to direct traffic between applications, services, and networks and receives

21

Background and Literature Survey

the traffic forwarding rules from the MEC platform manager, MEC applications, and

MEC services. The Mp3 reference point helps the MEC platform communicate with

other MEC platform. The Mp1 reference point provides service registration, service

discovery, and communication support for services. The data plane of the virtualized

infrastructure receives instructions from the MEC platform via the Mp2 reference

point on how to route traffic across applications, networks, services, etc. Managing

the virtualized resources for the MEC applications falls under the purview of the VIM

(Virtualized Infrastructure Manager). Allocating and releasing virtualized compute,

storage, and network resources offered by the virtualization infrastructure constitutes

management activities.

� MEC System Level: The MEC system’s primary functionality is served by the MEC

orchestrator, which has access to all of the resources and capabilities of the MEC

network. Additionally, by instructing virtualized infrastructure managers on how to

handle the apps, the orchestrator prepares the instantiation processes. The Operations

Support System (OSS) is the highest-level management system that can help the MEC

system get the MEC apps running in the desired place on the network. The Customer-

Facing Service (CFS) portal and the clients in the UE send requests to the OSS to

start and stop the MEC applications UE. The MEC orchestrator receives the requests

that the OSS approves for further processing. The CFS serves as a point of entry

for third parties and can be used to oversee the ordering, choosing, and provisioning

of MEC applications. The MEC-related clients and apps use the user application

lifecycle management proxy (user app LCM proxy) function to make service requests

for the applications’ on-boarding, instantiation, and termination.

2.1.0.2 Deployment Scenarios

A variety of solutions are available for the physical deployment of MEC servers depending on

different operational, performance, or security-related requirements, which are mentioned

in the White Paper published by ETSI [2].

22

Mobile Edge Computing

MEC

PLATFORM

MEC

APP

MEC

APP

MEC

APP

VIRTUALIZATION

INFRASTUCTURE

MEC HOST

Mp2

Mp1Mp1

OTHER

MEC

PLATFORM

OTHER

MEC

HOST

Mp3

Virtualization

Infrastructure ManagementMm7

MEC

Platform Manager
Mm5

MEC

Orchestrator

Mm3

Mm4

Operations

Support System

Mm1

Mm2

Mm6

User App

LCM

Proxy

Mm8

Mm9

UE

APP

CFS

Portal

Mx1

Mx2 M
E

C

S
ys

te
m

 L
e

ve
l

M
E

C

H
o

st
 L

e
v

e
l

Figure 2.2: MEC Reference Architecture [1]

1. MEC and the User Plane Function (UPF) collocated with the BS. (Used in Our

Proposed Work)

2. MEC collocated with a transmission node, possibly with a local UPF.

3. MEC and the local UPF collocated with a network aggregation point.

4. MEC collocated with the Core Network functions (i.e. in the same data centre)

As illustrated in Figure 2.3, the options for the physical deployment of MEC demonstrate

how MEC can be adaptably implemented in various locations, from close to the BS to the

core Data Network. The UPF is deployed and utilised to direct traffic towards the network

and the targeted MEC applications in all deployments. In this dissertation, we assumed

the first scenario throughout our proposed experimental setup, where MEC and the BS are

collocated to simulate realistic network scenarios.

23

Background and Literature Survey

Core

Network

N3

N3 N6

N6
UPF

UPF

MEC

MEC

1.
UPF

MEC

Core

Network

2.

MEC

UPF

Core

Network

3.

AMF/SMF AMF/SMF

UPF UPF

Core Network

MEC

MEC

4.

Figure 2.3: MEC Deployment Scenarios [2]

2.2 Adaptive Video Streaming

In this dissertation, we considered Dynamic Adaptive Streaming over HTTP (DASH) [43] as

the streaming solution for evaluating the proposed content caching and delivery mechanism.

DASH is codec independent and works with various standard video codecs such as MPEG,

AVC, SVC, H.264, and other codes. The DASH dataset available at [53] breaks down

videos into various segment duration (1, 2, 4, 6, 10, 15) seconds. Every video segment (of a

particular duration) consists of multiple bitrates/representations (240p, 480p, 720p, 1080p,

etc.). We can generate segments of various duration using the DASH Encoder [54]. Wowza’s

integrated CDN, Akamai, Microsoft Azure, and Amazon CloudFront are some of the CDNs

for live streaming that offers DASH support which is cost-effective and scalable.

Figure 2.4 illustrates the working principle of DASH [3]. The video content stored in a

DASH server is broken down into various segments of multiple representations. The Media

Presentation Description (MPD) contains information about the available video representa-

tions in the DASH server. UE parses through the MPD and fetches the appropriate video

24

Adaptive Video Streaming

SEGMENT1 SEGMENT2 SEGMENT4SEGMENT3

Representation 1

MPD DELIVERY

HTTP PROTOCOL

MEDIA PRESENTATION

 DESCRIPTION

 (MPD)

SEGMENT

SEGMENT

SEGMENT

SEGMENT

SEGMENT

SEGMENT

SEGMENT

SEGMENT

 VARIOUS REPRESENATION

OF THE BIG BUCK BUNNY VIDEO

SEGMENT

SEGMENT

SEGMENT

SEGMENT

SEGMENTS

HTTP CLIENT

MPD PARSER

SEGMENT PARSER

 MEDIA

 PLAYER

 BUFFER

 MEASUREMENT

ADAPTATION STRATEGY

Segment Throuhput

 Measurement

Representation 2

Representation 3

DASH CLIENT
DASH SERVER

Figure 2.4: Working Principle of DASH [3]

representation based on available network conditions. Such a dynamic adaptation control

strategy enables the end-users to experience an enhanced QoE for a video streaming session.

In the contributory chapters of this dissertation, such as Chapter 4, 5, and 6, we considered

the DASH videos for content caching and delivery at the MEC server.

The bitrates corresponding to the video resolution considered in this dissertation are

240p → 300kbps, 480p → 1200kbps, and 720p → 1850kbps. This is consistent with the

YouTube video requirement [55]. The videos are in DASH format, where every video is

broken down into segments of various seconds. Such types of consistency regarding video

resolutions were used for the experimental evaluation of the proposed works, which could

be changed to any number and type while re-training the proposed models.

25

Background and Literature Survey

2.3 Literature Survey

This section presents a literature survey of various caching strategies at the MEC server.

We categorized the caching techniques into two types: 1) Caching within a Single BS and 2)

Caching amongst Multiple BS. Both these types of caching focus on heuristic and ML-based

approaches.

2.3.1 Edge Caching Within Single BS

2.3.1.1 Heuristic Based Approaches

Most of the existing caching strategies used simple heuristic-based mechanisms such as

Least Recently Used (LRU) and Least Frequently Used (LFU), and their variants [23],

and [24] for caching popular content in the MEC server. However, LRU and LFU caching

strategies are not robust enough to handle diverse video requests, which have increased

drastically at present. Therefore in recent years, various caching strategies that focus on

the context of video have been studied extensively. In order to ease and reduce the costly

transmissions from the BSs to UEs by controlling the backhaul network congestion, some of

the most popular contents need to be cached at the femto base stations and the UEs [56].

The authors in [57] proposed a heuristic-based approach to select the most popular video

segments for caching. A joint optimization strategy based on video caching and real-time

transcoding is formulated. Chang Ge et al. [13] presented a video caching strategy, which

aims at improving the QoE. The proposed scheme performs a two-stage caching mechanism

where videos are sorted based on their content-level popularity. Each content is then sorted

based on the segment-level popularity. Segments with the least popularity are deleted, with

at least one representation for every segment being present in the cache. In [58] Suoheng

Li et al. proposed PoPCache, a caching algorithm based on the popularity of content. The

popularity of the requested content is measured. If its popularity score is more than the

existing content in the local cache, PoPCache replaces the content with the least popular

score in the cache. Otherwise, no content is evicted from the current cache. Berger et al. [31],

26

Literature Survey

proposed AdaptSize an adaptive, size-aware caching policy for the Content Delivery Network

(CDN) servers Hot Object Cache (HOC). AdaptSize is based on the Markov cache model,

which adapts to the varying request sequences from heterogeneous end-users. A dynamic

size threshold is used by AdaptSize’s admission control to determine whether or not to accept

video segments into the cache. It assigns a low probability of admission to video chunks

which are large. High bitrate chunks are frequently prevented from accessing the cache

by AdaptSize’ s admission control, which has a negative impact on performance. Chenglin

Li et al. [29] presented a QoE-driven cache placement policy for adaptive streaming. The

strategy considers videos’ rate-distortion (R-D) characteristics and the coordination among

edge servers using Integer Linear Programming (ILP) to optimally place the various bitrates

of multiple videos in the cache.

2.3.1.2 Machine Learning Based Approaches

The heuristics or the fixed-based rule for content caching could hardly adapt to the huge

volumes of streaming data along with network parameters to study the feature patterns

of the data collected at the MEC server. To handle the big data, numerous deep learning

models [59] are being introduced in the recent times for improving the computations capacity

and also to extract more accurate and precise feature patterns from the data collected. [60]

mentioned that the three V’s model portray the characteristics of big data namely, volume,

variety and velocity. Here volume, represents the huge amount of data, variety, signifies

the variations of different data types and velocity, refers to the rate at which data is being

streamed. Therefore, in the near future it is expected that DL models along with the

big data framework plays an important role in shaping and designing intelligent network

architecture that learns complicated and diverse network information and finally improve

the overall working principle of the network. In [61], Arvind et al. proposed DeepCache,

which uses Object Characteristics Predictor to predict the future popularity of content. The

caching policy of the DeepCache is based on LRU. In RLCache [32], a cache admission policy

for content caching is proposed at the CDN using Deep Learning. RLCache uses a large

27

Background and Literature Survey

set of features like object size, recency, and frequency of access to calculate and predict the

object popularity based on traces like video, images, and webpages collected from Akamai’s

CDN server [62]. Zahaib et al. [25], proposed AViC a caching policy based on prediction of

video request and the presence of highly unpopular chunks called singletons. AViC avoids

caching the video contents, which are singletons, so that the cache is not filled with the

least popular chunks. Again, the authors in [63] proposed a DRL-based framework with

the Wolpertinger architecture for caching at the BS. Without prior knowledge of content

popularity, the proposed framework maximizes the long-term cache hit rate. Sadeghi et

al. [64] proposed a scalable DRL-based framework using hierarchical caching in CDN. The

work uses a hyper-Deep Q-Network (DQN) model to learn the parameters for training an

optimal cache replacement policy.

2.3.2 Edge Caching Amongst Multiple Base Station

Most of the above-mentioned caching mechanisms use a single MEC server within a given

BS for making caching decisions. The continuous increase of mobile video traffic of het-

erogeneous end-users has led to high variations in video request patterns across temporal

and geographical dimensions. The diverse and dynamic nature of the request patterns has

revealed that dedicated caching models based on a single MEC need to be more robust for

such dynamic and complicated context-aware content. Thus, to further improve the caching

performance at the edge node, caching amongst multiple BS, called collaborative caching,

has been explored recently. In collaborative caching, MEC servers collaborate amongst

themselves through the high bandwidth links to serve the requested videos.

2.3.2.1 Heuristic Based Approaches

The authors of [65] suggested a cooperative caching method in an effort to reduce the over-

all cost that the content producers would have to bear. They solved the said optimization

problem using ILP. The proposed model did not consider the popularities of content for

making caching decisions. Again in [66], the authors proposed a cooperative hierarchical

28

Literature Survey

caching strategy called CHC. CHC caches the content both at BBU (Baseband Unit) and

RRHs (Remote Radio Head). Such caching policies ensures minimizing the latency/capacity

for an edge based caching model. Tran et al. [33] proposed a collaborative-based caching

mechanism for adaptive streaming. They formulated a caching policy at the MEC server

using ILP. The collaborative caching mechanism in this work deploys two primary mech-

anisms, one is for caching and the other for processing (transcoding). In [67], Baccour et

al. proposed a heuristic-based collaborative caching mechanism at the MEC server. The

authors presented a collaborative caching and transcoding mechanism at the MEC server,

which proactively caches the content based on the popularity.

2.3.2.2 Machine Learning Based Approaches

However, heuristics or the fixed-rule-based caching mechanism for a cooperative caching

policy is not very much efficient. As the number of collaborating MEC increases, the overall

framework becomes more complex and will not be robust enough to handle such big data that

varies across heterogeneous users. With heuristic-based approaches solving multi-objective

optimization problems becomes challenging. Therefore, Guo et al. [68] proposed a collab-

orative caching mechanism for adaptive bitrate streaming using transcoding at the edge of

the network. Another collaborative-based caching for vehicular edge network is presented

by Guanhua Qiao et al. [69]. The authors proposed a Deep Deterministic Policy Gradient

(DDPG) method for jointly optimizing the content placement and delivery in vehicular edge

networks. Fangxin Wang et al. [34] proposed multi-agent DL-based caching mechanism us-

ing RL called MacoCache. MacoCache improves the caching performance by minimizing

the viewing latency and the traffic cost at the same time. [35] proposed another DL-based

collaborative caching strategy using DQN at the MEC. The authors formulated a joint

optimization problem for content caching and transcoding at the edge server. The above

discussed caching mechanism focused on a centralized collaborative training approach. In

this dissertation, we also explore decentralized caching mechanism called Federated Learn-

ing (FL). FL [36–38] has been introduced recently to improve the caching performance at

29

Background and Literature Survey

the edge server and efficiently offloads the computation task from the central server to the

end-users. In FL, a model is trained at the user’s end instead of the edge server, where the

user data is not needed to be transferred to the servers. Zhengxin Yu et al. [36] proposed a

FL-based caching strategy called FPCC, which carries out training in a decentralized way

using stacked auto-encoder. FPCC primary objective is to increase the caching efficiency

and reduce the users request response time. In [37] Wang et. al proposed a Federated

DRL-based caching mechanism called FADE for a decentralized cooperative based caching

mechanism. In this work, the BSs train in a federated way for making a caching decision.

Zhengxin Yu et al. [70] proposed a Mobility-aware Proactive edge Caching scheme based on

FL, called (MPCF). MPCF employs a Context-aware Adversarial AutoEncoder to predict

the highly dynamic content popularity and multiple vehicles collaboratively learn a global

model.

2.3.3 Improving the QoE for Content Delivery

With MEC in the picture, both content and service providers are left with a challenging task

to deliver a satisfactory QoE to the end-users during peak traffic hours with the continuous

exponential growth of mobile data traffic. Therefore, in this dissertation along with video

caching strategies we also explored optimal video delivery for adaptive video streaming using

DRL. Literature reveals that research based on adaptive video streaming have progressed

and primarily grouped into two classes of strategies namely, heuristics [71–74] and ML-

based [6,75,76] approaches to maintain uninterrupted high quality video viewing experience.

ABR strategies like [73] and [77] are based on bandwidth measurement. C Liu et al. [77]

proposed a rate adaptation strategy for adaptive video streaming called RAHS that captures

the variations in the bandwidth and fetches the most relevant bitrate of the video segment.

The ABR strategy in RAHS, being over aggressive may encounter frequent bitrate switches

when fluctuation within the network parameters is high. ABR strategies that rely only on

bandwidth measurement, without any prior information about the client buffer status, may

result in buffer underflow as there may not be sufficient playback buffer to handle the next

30

Literature Survey

video segment. In [71] Huang et al. mentioned that the bitrate of a video segment fetched by

the client is a function of current buffer status. However, such buffer-based approaches [71]

and [78] fails to adequately solve the buffer underflow problem that solely depends on the

buffer occupancy of the client and is unaware of the bandwidth fluctuations. In order to rule

out the possibilities of buffer outages and frequent switching of video quality arising out of

ABR strategies mentioned, works like [74] and [79] considers both the buffer occupancy and

the bandwidth of the network. The ABR strategy in [74] is a combination of both buffer

and bandwidth. It fetches a higher video quality whenever both the current play-out buffer

and the available network bandwidth is adequate for upgradation. Similarly, when both the

buffer occupancy and the instantaneous bandwidth is not sufficient enough, it selects the

next lower quality video.

ML-based strategies, provide an edge over the heuristics-based approaches as it can han-

dle a large number of input data simultaneously for the often unpredictable varied network

conditions of heterogeneous end-users. Different system parameters describing frequently

changing network characteristics and diverse requirement for heterogeneous end users are

considered as input feature of the neural network for designing the ABR model. Lekharu et

al. [80] proposed a LSTM based model for forecasting the video bitrate, buffer and switch-

ing independently. The major problem with this model is that it fails to optimize theQoE

verticals simultaneously while modeling an ABR strategy to improve the QoE of a video

streaming session. To handle this issue, Pensieve [6] is proposed, that models the ABR

algorithm by a DRL model. Pensieve’s gain in performance with respect to the overall QoE

reward obtained, comes from minimizing the re-buffering penalty.

2.3.4 Limitations of Existing Works

From, the above related literature survey we observed the following issues:

� It has been observed that most of the previous work fails to consider the category or

the “genre” of video content being watched by the end-users. In addition, it is very

common that user profile frequently changes at different times of the day.

31

Background and Literature Survey

� Most of the caching strategies discussed above failed to optimize the traffic generated

at the backhaul links while improving the overall QoE. Existing works either focus

on the ABR part or the caching part. Such standalone strategies may not constantly

improve the overall experience of the end-users.

� In previous caching schemes, caching under a single BS is not adaptive enough to

handle diverse and complicated requests across temporal and geographical dimen-

sions. However, it also has to decide the MEC server at which the content should be

cached in a collaborating environment. Thus, another degree of complexity is added

to the caching decision. Also, while considering ABR content for caching, multiple

representations will increase the overhead concerning the storage capacity of a MEC

server.

� It is also observed that most of the collaborative caching mechanisms discussed above

deploy transcoding at the MEC server, which is computationally costly. Transcoding

a video from a higher to a lower bitrate at the MEC server requires significant time,

and computational resources might rapidly deplete the available resources on the edge

servers.

� Almost all the previous policies for caching deploy standard algorithms like LRU, LFU,

and its variants for content eviction. It is also observed that relatively less attention

is paid to policies evicting the least popular content.

� In most existing caching systems, the centralized server collects user information and

local data for training a caching model. Hence, as the number of content requests

increases, the diversity in request patterns also increases, thus making the model less

scalable and adaptive to the ever-changing dynamic scenarios. Such learning-based

caching models are generally trained in a centralized way, which overconsumes the

network resources during training and transmission of the video requests.

� Finally, in content delivery scenario for a video streaming session, it has been observed

that both heuristics and ML-based approaches fail to satisfy the three important

32

Datasets

QoE verticals (perceived video quality, buffering time and video quality switches)

simultaneously.

2.4 Datasets

The proposed models in this dissertation have been evaluated against various standard

datasets related to content popularity, network bandwidth logs, etc. The details of these

datasets are mentioned as follows:

� MovieLens: The MovieLens [41] [42] dataset consists of 26, 000, 000 ratings done by

1, 62, 541 users between January 09, 1995 and November 21, 2019 for 62, 423 movies.

Each chosen user had given ratings for at least 20 movies. Information related to the

users such as age, sex and occupation are present in the MovieLens dataset. Along

with the user’s data, the dataset also contains information related to a movie such as

Movie-ID, genre, year, day of the year, month and day.

� Iflix: Iflix [46] movie streaming dataset consists of information related to users pro-

file, viewing time, information related to movie content (such as show time, genre,

video id). The dataset also identifies psychographic and demographic tags about some

Iflix users.

� 4G Bandwidth Traces: The 4G bandwidth logs consists of bandwidth traces for

users traveling in different transportation. Jeroen et al. [44] collected the network

throughput logs in the city of Ghent, Belgium, for different types of transportation

such as foot, bicycle, bus, tram, train, and car.

� EUA: The EUA-Dataset [45] contains the geographical locations of the MEC servers.

The EUA-Dataset maintains a set of edge servers and user locations. The edge servers

dataset consists of information such as ⟨SiteID − Latitude − Longitude − Name −

State− Licensing − AreaID − PostCode⟩.

33

Background and Literature Survey

2.5 Summary

This chapter presents background concepts on MEC framework and its physical deployment

along with a brief introduction on DASH. In addition, a short description of the datasets

based on content popularity and network bandwidth is discussed, which is used in performing

experiments related to the contribution of this dissertation. Finally, related works based

on content caching and content delivery is presented. The literature is primarily grouped

into two main categories: heuristic-based and ML-based. In the related literature, we first

discussed about simple heuristics-based caching strategies within a single BS. But with

the increase in diverse video requests along with the volume of content being generated is

unable to provide an efficient caching model that could study the feature pattern of the

data. For handling such big data, various DL-based models have been introduced recently,

which can extract more accurate and meaningful patterns from the data. However, the

exponential growth of mobile video data has led to high variations across temporal and

geographical dimensions. Dedicated caching models based on single MEC is not robust

enough for handling such dynamic context-aware content. Therefore, collaborative caching

strategies amongst multiple BS have been explored more recently. In collaborative caching,

multiple BS collaborate in making caching decisions. Brief literature on FL is presented

along with collaborative caching strategy. In FL, the caching model is trained on the users’

local data instead of the central server. Thus offloading the computation task from the

central server to the end-users. Finally, we present literature on content delivery to the

end-users, which focuses on improving the overall QoE for a video streaming session.

With this background and related literature, this thesis’s first contribution will be dis-

cussed in the next chapter, where the first caching strategy focuses on an efficient video

content-aware cache replacement strategy based on the video content popularity. The pop-

ularity is measured in various time slots of the day through a deep learning-based model.

;;=8=<<

34

“The best way to predict your future is to create it.”

∼Abraham Lincoln

3
Content Aware Caching based on the Users

Viewing Profile

In this chapter, we discuss the first contribution to improve the caching efficiency at the

MEC server by considering the users viewing profiles at different time slots of the day. For

this, we propose a novel two-step model to predict the popularity of movies. Movies are

grouped based on different “Genre”, and the popularity of every movie is calculated based

on the number of views recorded for the movie. A DL-based model for caching at the MEC

servers based on the content popularity at different time slots of a day is proposed. The

proposed model has been extensively evaluated using the standard MovieLens [41] dataset.

35

Content Aware Caching based on the Users Viewing Profile

3.1 Introduction

MEC can provide low-latency, high bandwidth, real-time radio network information, and

location awareness for boosting the performance of modern resource-hungry services [15].

Consider the example of a cache replacement strategy using MEC servers, where the RNIS

provided by the MEC can collect real-time information about the user preferences and

the network conditions within a given BS. The MEC servers can decide in advance on an

optimal cache replacement policy to maximize the overall cache hit rate, thereby reducing

the backhaul usage of the network. The idea behind content-aware caching is to cache the

most requested video content. To achieve this objective, two different types of strategies

based on caching exist, namely, Proactive Caching [81] and Reactive Caching [82]. In

Proactive Caching, the caching strategy at the MEC servers or the edge nodes predicts the

popularity of video content. It caches the most frequently requested content even before the

requests from the clients have arrived. Whereas, in Reactive Caching, the decision whether

to cache a given video content is taken only when the request for the given content arrives.

As mentioned in the literature survey of Chapter 2, the costly transmissions from the

BSs to UEs could be eased up and reduced by caching the most popular content at the

MEC server and minimizing backhaul network congestion. Suoheng Li et al. [58] introduced

a cache replacement strategy based on content popularity called Popularity-Driven Content

Caching (PopCaching). PopCaching is modelled to learn the popularity of content in the

near future and decides whether to cache a given content. Xing Chen et al. [57] proposed

a heuristic-based approach to select the most popular video segments for caching. The

authors considered three critical components for measuring the video request probability,

namely, 1) popularity of a video, 2) preference of the users, and 3) features of various

video representations. A joint optimization strategy based on video caching and real-time

transcoding is formulated to solve the problem. However, the traditional heuristic or fixed-

rule-based strategies are not efficient and robust enough to handle large volumes of data

generated at the MEC. Therefore, ML-based approaches have been explored more recently to

improve the computational capacity and extract more accurate and precise feature patterns

36

Introduction

from the collected data. Kyi Thar et al. [83] proposed a DL-based model called DeepMEC to

predict the popularity of the videos based on the number of requests received. The authors

in [61] proposed DeepCache, a DL framework for content caching. DeepCache uses LSTM to

predict object characteristics such as content popularity and then applies DeepCache with

LRU as an eviction algorithm for content caching. In [32], the authors proposed RLCache,

a robust learning-based strategy of cache admission for content delivery. RLCache uses

object size, recency, and frequency of access to train the model with LRU as the eviction

algorithm.

It has been observed that most of the existing caching strategy fail to consider the

category or genre of videos/movies being watched by the end-users. Besides, it is very

common that user profile frequently changes in different time slots of the day. For example,

news and devotional programs may be more frequent choices in the morning, while sports is

frequently requested/chosen in the daytime. Hence, the variations in users’ viewing profiles

through a time-based genre analysis are considered to improve the popularity prediction

model. This work presents a DL-based model for content-aware caching based on the users’

viewing profiles at different time periods of the day.

The significant contributions of this chapter is summarized as follows:

� A time-slot-based hypothetical popularity index has been introduced as a genre vec-

tor to fulfill the heterogeneous end-users’ (users with various viewing preferences like

action, comedy, drama, etc.) demands at different time slots of the day. For sim-

plicity of the design, it has been restricted initially for the Movie database. In this

work, “genre vector” essentially signifies what genre is prevalent at what time of the

day. The ultimate goal is to find a time-slot (of the day) based popularity index of

the videos (Movie in our case). The MEC caches are then updated so that a higher

number of movie requests can be met.

� A novel two-step model has been proposed to predict the popularity of movies. The

first step of the model predicts the most prevalent movie genre at different time slots

of the day. And in the second step, the proposed model predicts the movies’ future

37

Content Aware Caching based on the Users Viewing Profile

views in different time slots of the day.

� The next significant contribution is proposing a cache storing and replacement strategy

learned using the “genre vector” defined earlier.

The proposed model outperforms three existing state-of-the-art caching strategies (Deep-

MEC [83], DeepCache [61] and RLCache [32]) along with three baseline works (LRU, LFU

and FIFO) in terms of access delay, backhaul usage, and the cache hit rate .

The rest of the chapter is organized as follows. In Section 3.2 illustrates the system

overview of the proposed work. Section 3.3 describes the proposed model for content

popularity-based caching at MEC servers. Section 3.4 presents a comparative set of ex-

perimental results along with the dataset for the proposed model against recent literature.

Finally, the chapter is concluded in Section 3.5.

3.2 System Overview

In the conventional Cellular RAN setting, various end-users are connected with BS, which

provides them the requested video content from the Core Content Server (CCS). The CCS is

connected with BS through Backhaul Link. The MEC servers are co-located with every BS in

a cellular RAN. MECs can run various ML-based algorithms to help the BS efficiently serve

multiple requests from heterogeneous end-user devices. For example, Nvidia Jetson TX2 is

a high-end GPU server specially designed to deliver artificial intelligence services in the edge

network [2]. In recent times, MEC servers deployed at the edge of RAN have used efficient

caching mechanisms to store popular video content to improve the overall cache hit rate,

reducing network congestion in the backhaul links. Figure 3.1 depicts a hypothetical example

of such a MEC setting. The MEC consists of three essential modules, namely, Content

Request Module (CRM), Cache Decision Module (CDM) ,and Cache Memory (CM). The

CRM module receives video requests from heterogeneous end-users within a given BS. CRM

then forwards the requests to the local cache, and the request log is sent to the CDM.

These request logs are then used for training a popularity-based caching model. If the

38

System Overview

Figure 3.1: Hypothetical Scenario of Content Aware Caching in MEC

requested content is present in the MECs cache, the MEC server immediately sends the

desired content to the end-users. Otherwise, the content is fetched from the CCS and

returned to the respective user. Now, intuitively, the caching mechanism with respect to

the overall cache hit rate can be improved by storing the most popular video content in

a given time frame. The popularity of the video content can be predicted from previous

(historical) data sequences and present popularity information. In general, the proposed

deep architecture has been trained in an offline manner. The learned parameters (pre-

trained coefficients) are updated for the MEC server’s testing model in a regular interval

since a part of the input data is online in this case. The frequency of such updates depends

on the average changing frequency of the video content (Movies, in our case). The changing

of video frequency refers to the fact that the requested videos change as time progresses,

and new videos are added to the CCS in a particular time slot of the day. A DL-based

popularity prediction scheme is devised to improve the caching mechanism in this work.

39

Content Aware Caching based on the Users Viewing Profile

The details of data preparation and model training are discussed in detail in Section 3.3.

MEC stores the content in its local cache according to the list of the most popular content

predicted by the proposed caching model.

LSTM

Cell 0

LSTM

Cell 1

LSTM

Cell 2
LSTM

Cell 3

LSTM

Cell 4

LSTM

Cell 5
LSTM

Cell 6

O
u

tp
u

t
L

a
ye

r
S

iz
e

 =
1

8

P
re

d
ic

te
d

 S
lo

t
G

e
n

re
 V

e
ct

o
r

D
a

y
 7

P
re

d
ic

te
d

 S
lo

t
G

e
n

re
 V

e
ct

o
r

D
a

y
 0

P
re

d
ic

te
d

 S
lo

t
G

e
n

re
 V

e
ct

o
r

D
a

y
 1

P
re

d
ic

te
d

 S
lo

t
G

e
n

re
 V

e
ct

o
r

D
a

y
 2

P
re

d
ic

te
d

 S
lo

t
G

e
n

re
 V

e
ct

o
r

D
a

y
 3

P
re

d
ic

te
d

 S
lo

t
G

e
n

re
 V

e
ct

o
r

D
a

y
 4

P
re

d
ic

te
d

 S
lo

t
G

e
n

re
 V

e
ct

o
r

D
a

y
 5

P
re

d
ic

te
d

 S
lo

t
G

e
n

re
 V

e
ct

o
r

D
a

y
 6

Figure 3.2: Overview of LSTM for Genre Prediction

3.2.1 Long Short Term Memory for Popularity Prediction

Recurrent Deep Neural Network (DNN) like LSTM [84] [85] are used to model sequence

learning problems efficiently. LSTM could learn the temporal dependency from a sequential

data through Back Propagation Through Time (BPTT) algorithm. In our work, LSTM

considers the slot-wise genre vector of the last seven days to predict the most prevalent

movie genre in a particular time slot of the day. The working principle of LSTM is illustrated

in Figure 3.2, which considers the genre vector
−−−→
SGV ij at different time slot j of the last ith

days. The LSTM model learns an approximate function given by the Equation (3.1) and

predicts the most prevalent movie genre at a particular time of the day.

40

Proposed Model

−−−→
SGV ij = f(

−−−→
SGV (i−1)j,

−−−→
SGV (i−2)j,,

−−−→
SGV (i−7)j) (3.1)

In this work, we model the popularity of the content (in our experiment, it is Movie).

Now the popularity of the “movie” may change over time. Intuitively, popularity can be

defined locally (in a present time window, for example, in the current month or week) or

temporally (considering over a long time, for instance, in the last five years, etc.). Again,

a movie with a particular genre may be prevalent in a specific time window of day (for

example, “family drama” may be more demanding in the evening, whereas “Horror” movies

may be preferred late at night, etc.). Observing such spatio-temporal characteristics of

the popularity (of a movie), LSTM could be used to model the popularity, considering its

efficacy in modelling the sequential data.

3.3 Proposed Model

The proposed DCache model uses a stream of video requests from various end-users as

input data for caching the most popular video content in the MEC server. Efficient caching

models could be deployed in MEC servers for providing services to different OTT streaming

services like Netflix, Amazon Prime Video, YouTube, etc. For experimental purposes, we

have used the MovieLens [41] [86] dataset in our proposed work.

� Input Stream: In our proposed work DCache, a stream of requests (for a real sce-

nario) is pre-processed to be used as input data. In other words, the stream of requests

are converted to a dataset having mainly four parameters, namely, a) UserID: A spe-

cific ID that is always assigned to a user who requests the movie, b) Movie-Id: A unique

ID for every movie/video hosted by the OTT services, c) Timestamp: The time when

a given movie is rated ,and d) Tag: Tags denotes ratings/number of views/comments

given for a particular movie/video. The MovieLens dataset consists of parameters

mentioned above.

41

Content Aware Caching based on the Users Viewing Profile

Stream of Video

Requests

Input Data

(Timestamp, UserID, MovieID, Tags)

Data PreProcessing

DataCleaner_1 DataCleaner_2

DataCleaner_1 DataCleaner_2
Model 1

LSTM

Model 2

(LSTM+DNN)

Evaluator

Cache_Strategy Evaluation

Slotwise

Genre

Predicted

Genre

Figure 3.3: Overview of Proposed DCache Model for Content-Aware Caching

� Data Pre-processing Module: As illustrated in Figure 3.3, the data pre-processing

module consists of two sub-modules, namely:

1. DataCleaner 1 considers features ofMovieLens dataset like timestamp, MovieID,

userId, ratings and the genres of a movie and creates a movie genre vector
−→
M .

2. DataCleaner 2 module combines the output of Model 1 with various input fea-

tures from the MovieLens dataset like previous views of a given movie, times-

tamp, MovieID, and the movie genre vector. This processed data is then fed into

Model 2.

� Slot-wise Genre Prediction Module (Model 1): Model 1 is the first step of the

proposed two-step model for predicting the movies’ popularity, taking input features

prepared by DataCleaner 1. It predicts the most prevalent genre of content at six

42

Proposed Model

different time slots of the day using LSTM architecture.

� Total Request Count Module (Model 2): Model 2 predicts the total request count

for a movie using a combined neural network comprising LSTM and DNN. It takes

the slot-wise predicted genre vector and the previous views of the movie for the last

seven days processed by the DataCleaner 2 module as input.

� Evaluator Module: The caching decision strategy collects the final list L of predicted

views from theModel 2. The movies are then cached in the MEC server in decreasing

order of their popularity until the cache is full.

The efficacy of the proposed model is measured using the cache hit rate, backhaul usage,

and the access time taken to retrieve a given movie.

3.3.1 Problem Formulation

In our proposed work, content refers to a movie from the MovieLens dataset. Let us assume

that the number of movie requests arriving at a designated BS is given by R = {r1, r2,rk}

where rk is the number of arriving requests. V = {c1, c2,cn}, be the sets of movies which is

being requested. Whenever a request rci for a movie ci arrives at the BS at time t, the MEC

server within the BS first checks whether the incoming request rci from a user is present in

its local cache or not. If the movie ci is present in the MEC server’s local cache, it is sent

to the user without delay. Otherwise, the requested movie is fetched from the CCS with a

delay of γ. kci for ci ∈ V is the size of each movie ci and the capacity of each BS is denoted

by K. Therefore, the size of all the movies kci to be cached in the MEC server cannot be

more than the total cache size K, which is denoted by the Equation (3.2):

n∑
i=1

kci ≤ K (3.2)

A cache decision variable ytci decides whether or not to cache a given movie of size kci at

time t at the MEC server of size K as mentioned in Equation (3.3) for a set of movies V.

43

Content Aware Caching based on the Users Viewing Profile

n∑
i=1

ytcikci ≤ K (3.3)

ytci ∈ {0, 1}, where y
t
ci
is 0 when the movie is not cached and 1 when cached. Access delay

for retrieving the requested movie at time (t + 1) is given by Equation (3.4) as mentioned

in [83].

δt+1 =
n∑

i=1

(
(1− ytci) γ ∗ kci

)
ϕ̂t+1
ci

(3.4)

where γ is the latency for retrieving the movie of size kci from CCS and ϕ̂t+1
ci

is predicted

number of request for the movie ci in future time (t+1) . The access time could be efficiently

minimized by maximizing the probability of cache hit at the MEC servers. In our proposed

work, we formulate the optimization problem as maximizing the cache hit rate for the movies

at the MEC server defined by Equation (3.5):

Maximize Phit

Phit =

∑
t∈T

n∑
i=1

ytcir
t
ci∑

t∈T

n∑
i=1

rtci

subject to

n∑
i=1

ytcikci ≤ K (3.5)

To find an optimal solution to our formulated optimization problem, we need to efficiently

predict the expected request count ϕ̂t+1
ci

, for the movie set V. Due to the large solution space,

it is not feasible to exhaustively search for an optimal solution. Therefore in this work, we

employed a combination of two DL models LSTM and DNN, to search for the solution space

in order to accurately determine the values of ϕ̂t+1
ci

. In the following subsection, we discuss

DCache, our proposed model for predicting expected request counts and caching strategy.

44

Proposed Model

3.3.2 Architecture of Proposed DCache Model

3.3.2.1 Data Pre processing

In the first module of our proposed model, we process the data from the MovieLens dataset

and divide it into slots and genres, which is then fed into the slot-wise genre prediction

model. Content popularity is defined as the ratio of the number of requests received for a

movie to the total number of requests obtained for a given period. In this work, we have

assumed that a viewer always rates the movie when he/she has watched the movie. With

this assumption, the content popularity is calculated by the number of times a movie is

rated, divided by the total number of ratings for all the movies. In other words, to calculate

the content popularity for a given time slot, we measure the number of requests received for

a movie ci in a slot s0 to the total number of requests Ns0 received for the given slot. Let

us consider zci be the total number of views for a movie ci in a slot s0. Then the content

popularity Fci is given by Equation (3.6):

Fci =
zci

Ns0∑
i=1

zci

(3.6)

For the data preparation, we first group every movie into a genre represented by a movie

genre vector
−→
M . A total of 18 classes of the genre are present, some of which are represented

by
−→
M as shown in (3.7)

−→
M =<′ Action′,′Adventure′, ..′War′,′Western′ > (3.7)

A movie can be marked with multiple genres. To represent the movie with the movie

genre vector
−→
M , 1 indicates that the movie belongs to a particular genre; else, it is 0. The

profile of various users viewing different movies and shows changes at different times of the

day. We consider the time “t” in days in a slot-wise manner. We divided the entire day into

different slots, as one would not expect a particular movie to be viewed throughout the day.

Therefore, we consider the changes in the users viewing patterns. We divided each day into

45

Content Aware Caching based on the Users Viewing Profile

six slots of four hours each i.e.

S =< s0, s1, s2, s3, s4, s5 > (3.8)

Every slot in S consists of movie genre vectors of all those movies viewed in the given

slot. To calculate which genre is prevalent in a given slot we measure the weighted average

slot-wise genre vector
−→
G s0

avg over all movie request zc of a slot s0 represented by (3.9)

−→
G s0

avg =

Ns0∑
i=1

−→
M s0

ci
zci

Ns0∑
i=1

zci

(3.9)

where, c ∈ {1, 2, ...ns0} represents the total number of movies viewed in slot s0 and zci is

the number of views recorded for movie ci.
−→
G s0

avg consists of averaged weighted views of all

the movies in the slot s0 and the genre having the highest value is the most prevalent genre

in that slot for a given day. Figure 3.4 presents an analysis of the slot-wise genre vector at

different time slots of the day. The analysis represents the genre of a movie that is most

viewed in a particular slot of the day. For example, Figure 3.4(a) shows that in the first time

slot (from 12 midnight to 4 am), the most watched category of movie is Drama. Similarly,

in other time slots of the day Figure 3.4(b) (from 8 am to 12 noon) and Figure 3.4(c) (from

4 pm to 8 pm), the most watched category of movie is Comedy and Action respectively.

Therefore, it is evident from the analysis that user profile changes in different time slots of

the day.

3.3.2.2 Slot-wise Genre prediction model using LSTM

As illustrated by Figure 3.2, LSTM can efficiently handle the long-term dependencies in

time series problems. Therefore, in our proposed work LSTM is used in Model 1 to predict

the slot-wise Genre vector Ôsd
t+1 of future slots. We consider the window size to be seven,

i.e., genre vector of the last seven days.

46

Proposed Model

(a) Genre Vector from 12 midnight to 4 am (b) Genre Vector from 8 am to 12 noon

(c) Genre Vector from 4 pm to 8 pm

Figure 3.4: Statistical Analysis of Slot-wise Breakdown of Genre Vector at Different Time Slots
of a Day

D =< D0, D1, D2, D3, D4, D5, D6 > (3.10)

Figure 3.5 depicts the working principle of Model 1. The input feature Xt of Model 1

denoted by Equation (3.11) consists of the average weighted genre vector
−→
G sd

avg of the six

slots for the last seven days.

Model 1(Xt) = Dt

−→
G sd

avg

for d ∈ {0, 1, 2, 3, 4, 5} (3.11)

The input feature Xt is then fed to a LSTM model to predict the slot-wise genre vectors

of future slots Ôsd
t+1. For instance, for predicting the genre vectors of day D7’s slot s4 whose

timing is from 4 PM to 8 PM, the LSTM model uses slot s4’s genre vectors for the last

47

Content Aware Caching based on the Users Viewing Profile

Figure 3.5: Proposed Architecture for Slot Wise Genre Prediction Model

seven days from D0 to D6. Loss function used in Model 1 is Mean Squared Error (MSE)

which is the most common loss function used in regression problems. MSE is the squared

difference between the actual value p and predicted value p̂ denoted by Equation (3.12):

H(p, p̂) =
1

N

N∑
i=1

(pi − p̂i)2 (3.12)

The model takes as input the average weighed genre vector of the six different slots of a

day for the last seven days and predicts the seventh day’s genre vector. The predicted genre

vector indicates the most prevalent genre in the given time slot of a day. For the slot-wise

genre prediction model using LSTM a window of size 7 is kept, with 18 input features which

are the genre vector of all the movies in the MovieLens dataset. The output Ôsd
t+1 along

with input features from the MovieLens dataset is fed to the next model Total Request count

prediction model (Model 2) which is discussed in the following subsections.

48

Proposed Model

Figure 3.6: Proposed Architecture for Total Request Count Prediction Model

3.3.2.3 Total Request Count prediction model using LSTM+DNN

In this module, we trainModel 2 (m∗
2) a combination of LSTM and DNN for predicting the

number of requests or view counts ϕ̂t+1
ci

which will be received for each movie in a given slot.

To train model m∗
2, two different types of input are used: sequential and instantaneous. For

the sequential input, we consider previous views
−→
PVidj input feature for i

th video in djth slot,

where d is the number of slots and j is the number of days. The previous views vector
−→
PV

for 0th slot and ith movie can be represented as (3.13):

−→
PVi0j =< PVi0(j−1),PVi0(j−2),PVi0(j−7) > (3.13)

We consider a window size of the last seven days for the previous views input features.

As illustrated in Figure 3.6, the
−→
PV being sequential is fed into the LSTM network. The

instantaneous inputs like the movie genre vector
−→
M and predicted slot-wise genre vectors

Ôsd
t+1 are fed into a DNN. The trained model m∗

2 takes the input as shown in (3.14):

49

Content Aware Caching based on the Users Viewing Profile

Model 2(Xt) =<
−→
PVidj,

−→
M, Ôsd

t+1 > (3.14)

The outputs obtained from these layers are combined using a merge net. Five more

hidden layers are used between the merge net and the output layer. A different loss function

Huber Loss and Adam optimizer is used for training model m∗
2. Huber Loss is mostly used

in regression problems, an absolute error that becomes quadratic when the error is small.

Huber Loss combines the good properties of the MSE and Mean Absolute Error (MAE).

Huber loss approaches MSE when e ∼ 0 and MAE when e ∼ ∞ (for larger numbers.)

H(p, p̂) =

1

2
(p− p̂)2, if |p− p̂| ≤ e.

δ|p− p̂| − 1

2
e2, otherwise.

(3.15)

Model 2(m∗
2) takes as input two types of input features, namely 1) sequential input

features, consisting of the last seven days of views of a given movie and 2) instantaneous

data consisting of slot-wise genre vector predicted from the previous model and the movie

genre vector. Therefore, a total of 43 input features are fed into the second model. The

Evaluator module uses the predicted views list to measure the proposed model’s efficacy by

calculating the cache hit rate, access delay, and backhaul usage. Finally, model m∗
2 predicts

the views of movies in the future stored in a list L. The entire process for predicting movies’

view count is described in Algorithm 1.

3.3.2.4 Caching Decision and the Evaluator Module

The overall cache decision strategy is described in Algorithm 2. Model m∗
2 predicts the final

list of predicted views. The list consists of slot-wise predicted views of movies which is listed

as:

L = {ls0 , ls1 , ls2 , ls3 , ls4 , ls5}

50

Proposed Model

Algorithm 1: DCache for Content Popularity Prediction

Input : Slot-wise genre vector of movies
−→
G s

avg, Movie Vector
−→
M , Views in the last

Seven days
−→
PVidj

Output: Predicted request counts ϕ̂t+1
ci

1 Request Arrival R = {rci1 , r
ci
2 ,r

ci
q } ;

2 ▷ Train Model 1 (m∗
1) (LSTM) predicting the slot-wise Genre Vector;

3 m∗
1.train();

4 for slots s← 0 to 5 do

5 for data m1 ←
−→
G s

avg do
6 optimizer ← Adam;
7 p̂ = m∗

1(data m1);
8 loss = MSE(p̂, p);
9 loss.backward() ▷ Back Propagation ;

10 optimizer.step() ▷ Updates the parameters;

11 end

12 end
13 ▷ Train Model 2 (m∗

2) (LSTM+DNN) predicting views of movies;
14 m∗

2.train() ;

15 for data m2 ← Ôs
t+1,
−→
M,
−→
PVidj do

16 optimizer ← Adam;
17 p̂ = m∗

2(data m2);
18 loss = SmoothL1(p̂, p);
19 loss.backward() ▷ Back Propagation ;
20 optimizer.step() ▷ Updates the parameters;

21 end

22 Finally store the predicted request counts ϕ̂t+1
ci

in a list L

The movies in the slot-wise list lsj are then sorted in descending order of content pop-

ularity so that 20% of movies with the highest popularity index is considered. According

to Pareto-principle, 20% of the most popular movie receives 80% of the requests. Equation

3.16 indicates that from the predicted list L of every slot, we consider only the top 20%.

Csj
c = 0.2 ∗ lsj for j ∈ {0, 1, 2, 3, 4, 5} (3.16)

Along with the Pareto-principle, the caching strategy also ensures that the movies cached

in the MEC server do not exceed the storage size K. The caching strategy defined in

Algorithm 2 stores the sorted predicted list of movies in the MEC server in a slot-wise

manner. The predicted list of movies Cs0
c for slot 0 (s0) represents the predicted movies in

51

Content Aware Caching based on the Users Viewing Profile

Algorithm 2: DCache for Caching Strategy

1 ▷ Caching Strategy ;
2 L = {ls0 , ls1 , ls2 , ls3 , ls4 , ls5} slot-wise predicted list of movies;
3 for j = 0, 1, 2, 3, 4, 5 do
4 C

sj
ci = 0.2 ∗ lsj ▷ C

sj
ci consists of predicted list in sorted order;

5 while C
sj
ci do

6 if
n∑

i=1

k
lsj
ci ≤ K then

7 Cache ←− Cache + C
sj
ci ;

8 end

9 end
10 while r

sj
ci do

11 if (ci present in C
sj
ci) then

12 MEC Cache −→ ci;
13 Calculate Phit, Pbackhaul, Delay

14 end
15 else
16 Main Content Server −→ ci;
17 Calculate Phit, Pbackhaul, Delay

18 end

19 end
20 Cache ←− Cache - C

sj
ci ▷ Delete Cache of slot sj ;

21 end

the first slot of the day (12 midnight - 4 am). Initially, the movies listed by Cs0
c are cached

in the MEC server one by one until the cache space is full. Next, we consider the predicted

list of movies Cs1
c from the next slot 1 (s1) for caching. All the movies from the previous

slot 0 (s0) are deleted before caching the new movies. Caching is performed similarly for

the subsequent slots by deleting the previous slot’s movies and caching the present slot’s

movies until the cache is full. The strategy ensures that the movies viewed frequently in

a given time slot of the day are stored in the cache, and the least popular videos are not

considered for caching. If a user requests r
sj
ci for a movie ci is present in the predicted list

C
sj
ci , the movie is directly fetched from the MEC cache. Otherwise, the requested movie ci,

if not present in C
sj
ci , is fetched from the main CCS.

52

Experiments and Results

3.4 Experiments and Results

The efficiency of the proposed DL model DCache, has been evaluated by performing an ex-

tensive set of experiments based on the standard MovieLens dataset [41] [42] and compared

with caching strategies like LRU [87], LFU [88], FIFO [89], DeepMEC [83], DeepCache [61]

and RLCache [32]. To evaluate the performance of the proposed model for content popu-

larity, we used the MovieLens dataset for training, testing, and validating. In our proposed

work, we used the movies and the ratings file from the MovieLens dataset in order to pre-

pare the data in slot-wise genre format. The movies file contains the data in the following

format:

< movieID, title, genres >

whereas data in the ratings file has the following format:

< userId,movieId, tag, timestamp >

Data from both these files are used to generate the slot-wise genre vector
−→
G s

c for c ∈

{1, 2, 3, ..n} and s ∈ {0, 1, 2, 3, 4, 5}, containing a total of 18 input features being fed to

Model 1. Data before 2017 is used for training, and post 2017 is used for testing. We

need the movie popularity information that is not present in the MovieLens dataset for our

proposed work. With the lack of a publicly available dataset, we made certain assumptions

while calculating the popularity of a given movie. We assumed that a viewer always rates

the movie when he/she has requested the movie. Similar assumptions are made by the

authors in [36], [90], and [91] which stated that, “Whenever a user gives rating for a movie,

we set the movie as requested by the users”. With this assumption, the movie’s popularity

is calculated by the number of times a movie is rated, divided by the total number of ratings

for all the movies.

53

Content Aware Caching based on the Users Viewing Profile

3.4.1 Implementation and Experimental Setup

The proposed DCache architecture for content-aware caching is implemented using PyTorch

at the DGX workstation, which consists of a Tesla V100 GPU card with 5120 Cuda Cores

and a GPU memory of 32 GB. We also tested our models in a CPU server with 128 GB

CPU memory. For a fair comparison, a similar experimental setup has been used. The

RLCache [32] and DeepCache [61] model is simulated and tested in MEC environment

identical to the proposed DCache model for various hyper-parameters settings.

3.4.1.1 Evaluation Metrics

To evaluate the efficacy and correctness of the proposed DCache model, the following metrics

were used.

� Cache hit rate Phit denoted by Equation (3.17) measures the probability that the

requested movie is present in the local cache of the MEC server. If the requested

movie cti is present in the cache it is a hit. Else it is considered to be a miss.

Phit =

∑
t∈T

n∑
i=1

ytcir
t
ci∑

t∈T

n∑
i=1

rtci

(3.17)

� Backhaul usage calculates the network traffic in the backhaul links between the CCS

and the MEC server. Equation (3.18) measures congestion or the usage in the backhaul

links.

Pbackhaul =
∑
t∈T

n∑
i=1

kci(1− ytci)r
t
ci

(3.18)

where kci is the size of the movie ci, r
t
ci
is the number of request for the movie ci at

time t.

� Access delay measures the latency or the time taken in retrieving a requested movie

from the MEC server. Equation (3.4) is used to measure the overall access delay.

54

Experiments and Results

3.4.1.2 Evaluation of Slot-wise Genre Prediction Model

(a) Train Loss Vs Epoch (b) Window Size vs Test Loss

(c) Window Size vs RMSE

Figure 3.7: Performance of Slot-wise Genre Prediction Model m∗
1

In this subsection, we discuss the performance of Model 1(m∗
1) for predicting the most

prevalent genre in a particular time slot of the day. To measure the performance of m∗
1 using

LSTM, evaluation metrics such as Root Mean Square Error (RMSE) is used. RMSE is a

measure to calculate the difference between the observed and predicted values. Along with

RMSE, we also calculate the train and test loss during the training of Modelm∗
1 with varying

window sizes. Figure 3.7 illustrates the performance of the slot-wise genre prediction model

(m∗
1). Figure 3.7(a) presents the training loss obtained, which reduces at every epoch. We

vary the window size Ws to determine how further we need to look back in the past few

days to predict the most prevalent genre. The window sizeWs is altered from 1 to 9. Figure

3.7(b) and 3.7(c) represents the test loss and RMSE respectively against the varying window

size. Window size Ws = 7 obtained the best minimum RMSE value of 0.1523. Therefore,

we employed Ws = 7 in our proposed model DCache for m∗
1. We also compare m∗

1 with

55

Content Aware Caching based on the Users Viewing Profile

Table 3.1: Comparison of RMSE for Model 1

Model
Window size
(Ws = 3)

Window size
(Ws = 7)

Window size
(Ws = 9)

Test Loss RMSE Test Loss RMSE Test Loss RMSE
RNN (m∗

1) 0.1121 0.28595 0.03151 0.1599 0.0310 0.15688
LSTM (m∗

1) 0.0350 0.16339 0.03000 0.1523 0.03169 0.15710

another sequential model using Recurrent Neural Network (RNN). Table 3.1 shows that m∗
1

using LSTM provided a better RMSE value than the model using RNN with a minimum

RMSE score of 0.1523 for a window size of Ws = 7.

3.4.1.3 Evaluation of Request Count Prediction Model

The Request Count Prediction Model Model 2 (m∗
2) predicts the list of views for all the

movies in various time slots of the day. The proposed model (LSTM+DNN) was compared

with DL models such as DNN, 1D Convolutional Neural Network (1DCNN), and Residual

Neural Network (RESNET). The efficacy of the proposed model was compared against the

cache hit rate. Table 3.2 presents the cache hit rate for the DL models. The proposed

model with LSTM and DNN outperforms the other deep models substantially and by a

margin of almost 23%. The proposed model considers sequential and instantaneous data

separately, and with the use of LSTM, it can learn and memorize the features in a much

enhanced manner. The simple DNN model and the RESNET model with five layers could

not capture the sequential data even though various layers were added to the model. Even

after convolving through the features, 1DCNN could not efficiently learn the data patterns.

Therefore, the proposed LSTM model captures the historical relationship among the various

features of the data instead of the only last input data, and with its various gates, surpasses

the other models in terms of the cache hit rate.

3.4.1.4 Cache Hit Rate

The evaluation of the proposed DCache model is performed on the final predicted list

L = {ls0, ls1, ls2, ls3, ls4, ls5} of the predicted request count for the movies. The predicted list

L consists of the request in descending order of content popularity in a slot-wise manner.

56

Experiments and Results

Table 3.2: Cache Hit Rate Against MEC Cache Size (GB)

Models
Cache Hit Against MEC Cache Size (GB)

500 GB 600 GB 700 GB 800 GB 900 GB 1 TB
DNN 15.9 18.78 21.59 24.33 26.98 29.6
1DCNN 16.16 19.09 21.9 24.65 27.29 29.85
RESNET 15.94 18.85 21.71 24.47 27.13 29.76
Proposed
(LSTM+DNN)

20.38 23.52 26.72 30.07 33.41 36.82

Table 3.3 presents a comparative study of the cache hit rate of the proposed DCache model

against the caching strategies namely, LRU, LFU, FIFO, DeepMEC [83], DeepCache [61]

and RLCache [32]. DCache outperforms LRU, LFU and FIFO in case of cache hit rate by

almost 21% for 700 GB cache size. DCache cache hit rate increases by almost 16% when

compared with DeepMEC [83] and by 12% when compared with RLCache [32]. The cache

hit rate further increases significantly when the cache size of the MEC is increased. In our

experimental setup we consider a maximum of 1 TB cache size, even though MECs have

higher storage and computational capacities as mentioned earlier. The proposed DCache

also provides a better cache hit rate for a lower cache capacity like 500 GB, which was not

true for other DL models as evident from Table 3.2.

Table 3.3: Cache Hit Rate Against MEC Cache Size (GB). The best results are shown in Red
and the second best in Blue

Models
Cache Hit Against MEC Cache Size (GB)

500 GB 600 GB 700 GB 800 GB 900 GB 1 TB
LRU 19.553 20.96 21.87 22.46 22.86 23.12
LFU 20.003 21.26 22.09 22.62 22.93 23.15
FIFO 18.82 20.34 21.39 22.11 22.6 22.93
DeepMEC [83] 15.23 18.56 20.89 24.01 28.11 30.4
DeepCache [61] 16.16 17.15 17.8 18.2 18.48 19.1
RLCache [32] 17.01 20.37 23.65 26.74 29.69 32.44
Proposed
DCache

20.38 23.52 26.72 30.07 33.41 36.82

3.4.1.5 Backhaul Usage

The cache hit rate at the MEC server directly affects backhaul usage or the network traffic at

the backhaul links. Whenever a given movie’s request is not present in the MEC cache, the

57

Content Aware Caching based on the Users Viewing Profile

Table 3.4: Computation of Slot-wise Backhaul Usage (TB)

Slots Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5
Backhaul Usage

(TB)
301.64 235.68 170.6 160.19 182.422 240.94

Table 3.5: Backhaul Usage (TB) Against MEC Cache Size (GB). The best results are shown in
Red and the second best in Blue

Models
Backhaul Usage (TB) Against MEC Cache Size

500 GB 600 GB 700 GB 800 GB 900 GB 1 TB
LRU 1691.5 1661.08 1642.59 1630.19 1621.91 1616.45
LFU 1682.03 1655.58 1638.14 1627.23 1620.32 1615.86
FIFO 1706.76 1674.76 1652.83 1637.72 1627.39 1620.69
DeepMEC [83] 1764.90 1723.99 1661.09 1576.87 1512.03 1448.85
DeepCache [61] 1710.35 1759.76 1747.24 1738.42 1732.46 1720.8
RLCache [32] 1690.2 1660.15 1610.22 1465 1416 1361.01
Proposed
DCache

1673.96 1607.94 1540.82 1471.68 1399.98 1328.39

request is forwarded to the CCS to fetch the requested movie, increasing backhaul traffic.

Whereas the requested movie, if found in the MEC cache, is directly sent to the client. Such

actions by the MEC server reduces any additional traffic in the backhaul links. Therefore,

the better the cache hit rate, the lesser the network congestion at the backhaul links. Table

3.4 represents the backhaul traffic generated for every slot in a day. The backhaul traffic

generated in Slot 0 from midnight 12 am to 4 am in the morning is maximum while it

is relatively lower in Slot 2 (8 am to 12 noon) and Slot 3 (12 noon to 4 pm). Table 3.5

illustrates that the proposed DCache model has much lower and improved backhaul usage

compared to LRU, LFU and FIFO. The backhaul traffic reduces by almost 18% compared

with heuristic-based caching strategies that further reduce with the increase of cache size.

With DCache the backhaul usage also reduces by 12% when compared with DeepMEC.

Proposed DCache also outperforms DeepCache and RLCache with respect to backhaul

usage. For measuring every movie’s size, we considered that many online streaming apps

like Amazon Prime Video play movies at a data consumption rate of 0.46GB/hour for the

best quality video. So, for a 2-hour movie, it would consume almost 1 GB. Hence, in our

work, we consider the movie size to be 1 GB.

58

Experiments and Results

Table 3.6: Access Delay (sec) Against MEC Cache Size (GB). The best results are shown in Red
and the second best in Blue

Models
Access Delay (sec) Against MEC Cache Size

500 GB 600 GB 700 GB 800 GB 900 GB 1 TB
LRU 17.32 17.016 16.82 16.69 16.60 16.55
LFU 17.22 16.95 16.77 16.66 16.59 16.54
FIFO 17.47 17.14 16.92 16.77 16.66 16.59
DeepMEC [83] 18.29 17.65 17.00 16.14 15.48 14.83
DeepCache [61] 18.04 17.83 17.7 17.62 17.55 17.41
RLCache [32] 17.86 17.04 16.43 15.78 15.13 14.54
Proposed
DCache

17.14 16.46 15.77 15.07 14.33 13.6

3.4.1.6 Access Delay

Whenever the cache hit rate increases, the average delay for retrieving a given movie also

decreases. As a result, the system performs better with reduced access delay and improves

the Quality of Service (QoS) provided to the end-users. Nowadays, most streaming solu-

tions use HTTP-based adaptive streaming mechanisms with a slightly higher latency range

between 15-45 seconds. In our experimental setup, we considered a delay of 0.01 ms in re-

trieving a movie. Table 3.6 presents the access delay in seconds while satisfying various users

requesting in retrieving the contents. The proposed DCache mechanism outperforms the

caching strategies LRU, LFU and FIFO and provides a much lower access delay by almost

18%. The access delay for DCache in retrieving a given content is better than DeepMEC,

DeepCache and RLCache. The access delay further reduces when an increase of MEC cache

size.

3.4.1.7 Training Cost

Table 3.7 lists out a comparative study for the training cost (in minutes) between the various

DL models. Although the simple DNN model with four hidden layers takes less time than

the proposed DCache model, DCache outperforms the performance of DNN by almost 20%.

Table 3.7 also illustrates that the training cost of the proposed DCache is far less than the

other Deep models 1DCNN and RESNET.

59

Content Aware Caching based on the Users Viewing Profile

Table 3.7: Computation of Training Cost (Minutes) for Various Deep Learning Models

Schemes
80 K Iteration 160 K Iteration 240 K Iteration 320 K Iteration
Time
(min)

Train Loss
Time
(min)

Train Loss
Time
(min)

Train Loss
Time
(min)

Train Loss

DNN 17.4 0.86 40.03 0.841 53.75 0.834 74.45 0.793
1DCNN 46.24 0.56 92.66 0.549 137.42 0.544 182.8 0.515
RESNET 53.16 0.40 107.01 0.35 160.48 0.331 217.12 0.29
Proposed DCache 21.84 0.061 47.82 0.031 74.02 0.021 100.84 0.016

3.5 Summary

The first contributory chapter proposes a DL-based content-aware caching model DCache.

Network operators can perform video caching efficiently by integrating MEC into the cellular

architecture. The cache present in the MEC server immediately replies with the requested

movie to the end-users if present in the cache. Else it fetches the movie from the CCS. In

doing so, the overall delay and network traffic at the backhaul link decrease with increased

cache hit rate. In this work, to achieve this goal, we proposed DCache for performing

caching at the MEC server based on the content popularity where each day is divided into

slots of prevalent genres of movies. We consider various input features obtained from the

standard MovieLens dataset to predict the expected request counts in the future. The

movies’ expected request counts are used for caching the movies, with the most requested

movie stored first into the MEC cache server in a slot-wise manner. DCache outperforms

standard caching mechanisms like LRU, LFU, FIFO, DeepMEC, DeepCache and RLCache

with respect to cache hit rate, backhaul usage and access delay with a constraint on the

cache size.

It has been observed while designing caching strategy, users’ viewing experience or QoE

is not taken into consideration. This results in the degradation of users’ QoE as the de-

lay incurred is too significant for users with low network bandwidth. Therefore, the next

contributory chapter proposes an ABR-based caching mechanism at the MEC server. The

proposed work focuses on the joint optimization of QoE and caching performance.

;;=8=<<

60

“We should not give up and we should not allow the problem to

defeat us.”

∼A P J Abdul Kalam

4
QoE-Aware Adaptive BitRate Caching

In this chapter, we present the second contribution that jointly optimizes the QoE and

caching performance. To maintain a decent QoE for end-users, we must consider diverse

parameters like content popularity, network conditions, etc. In this work, we propose a

QoE-aware ABR caching mechanism at the MEC server using RL. The proposed model

predicts content popularity while maintaining the end-user’s preferred video quality. An

efficient caching mechanism is devised in the MEC server to provide a decent QoE among

the end-users. The primary goal of our RL-based framework is to increase the cache hit rate

and reduce the backhaul traffic while maintaining a satisfactory QoE. The efficacy of the

proposed model is evaluated against 4G [44] network traces and Zipf [92] [93] popularity

distribution.

61

QoE-Aware Adaptive BitRate Caching

4.1 Introduction

MEC services have emerged as a crucial means of easing the heavy traffic load placed on

network operators by the enormous volumes of mobile video traffic generated frequently by

heterogeneous devices with varying levels of processing power. Media (image, text, audio,

video, etc.) content placed on edge caches helps the network respond faster to the varying

requests from UEs. Optimal utilization of the MEC servers storage could be achieved by

efficiently caching the most popular video content, as the network is under-utilized during

off-peak hours [21]. An efficient caching mechanism at the network edge improves the overall

cache hit rate, which results in the reduction of traffic congestion in the backhaul link along

with access latency. Let us consider a hypothetical example of video caching at the MEC

server, where a user with high-speed network bandwidth requests higher resolutions or HD

videos. But the same is not valid for users with low network bandwidth, as the delay

incurred will be too large, resulting in the degradation of users’ QoE with frequent re-

buffering events. Under such a scenario, ABR streaming solutions like DASH [30], have

been employed in the content delivery networks to improve users’ overall QoE [3], [72],

and [94]. The standard DASH dataset mentioned by Lederer et al. [43] and available at [53]

breaks down a video into various segment duration (1, 2, 4, 6, 10, 15) seconds. Every video

segment (of a particular time duration) consists of multiple bitrates/representations (for

example, 240p, 360p, 480p, 720p, 1080p, etc.). Due to heterogeneous user demands, it is

challenging to calculate and predict the most popular (most requested) bitrate of a video

segment in advance. Proactively predicting the popularity of segments and storing those

popular segments into the MEC server’s cache reduces the network load on the BS.

In [58] Suoheng Li et al. proposed PoPCache, a caching algorithm based on the pop-

ularity of content. The popularity of the requested content is measured. If the popularity

score is more than the existing content in the local cache, PoPCache replaces the content

with the least popular score in the cache. Otherwise, no content is evicted from the current

cache. However, simple caching solutions, such as RLCache [32] and PoPCache [58] not

including QoE optimization in the caching mechanism, harm the overall QoE of the user.

62

Introduction

Therefore, more recently ABR-based caching solutions have been introduced to improve the

overall QoE along with caching performance. Hence, Chang Ge et al [13] presented a video

caching strategy, which aims at improving the QoE. The proposed scheme performs a two-

stage caching mechanism where videos are sorted based on their content-level popularity.

Each content is then sorted based on the segment-level popularity. Segments with the least

popularity are deleted, with at least one representation for every segment being present in

the cache. Zahaib et al. [25] proposed AViC a caching algorithm for Adaptive Bitrate video.

AViC avoids caching the highly unpopular video chunks called singletons, so that the cache

is not filled with the least popular chunks. Again, Berger et al. [31] proposed AdaptSize

an adaptive, size-aware caching policy for the CDN servers. It assigns a low probability of

admission to video chunks which are large.

The literature review in chapter 2 revealed that while the overall QoE was improved,

most caching methods did not successfully optimize the traffic generated at the backhaul

links. Almost all the previous frameworks for caching deploy standard algorithms like LRU,

LFU, and its variants for content eviction. It is also observed that relatively less attention is

paid to policies evicting the least popular content. Most of the existing work either focuses

on the ABR part [71], [95] or the caching part [32], [58]. Such standalone strategies may not

constantly improve the overall experience of the end-users. Considering such scenarios, in

this chapter, we propose a joint optimization framework using RL that enhances the overall

QoE of the end-users by focusing and giving equal weightage to both the ABR and caching

mechanism at the MEC. The main contributions of this chapter are summarized below:

� To improve the overall QoE for a video streaming session and to reduce the traffic load

on the backhaul links, we introduce a novel joint optimization framework using RL

called ABRCache. The proposed RL-based framework uses three types of modules,

namely ABR, Planner, and Evictor to optimally select the most appropriate and

popular bitrate based on segment-level popularity and caches it accordingly.

� In addition, ABRCache handles the variations in bandwidth pertaining to different

mobility models using the LSTM module. Combined with LSTM, the proposed model

63

QoE-Aware Adaptive BitRate Caching

can determine and extract patterns from the variable bandwidth sequential input data.

� A novel hierarchical architecture comprising the three modules (ABR, Planner, and

Evictor) is presented. We propose a linear reward function that maximizes the users’

overall QoE by improving the caching performance at the MEC server and simultane-

ously reducing the network load on the backhaul links.

� The Evictor module uses a novel approach to evict the least popular segment from

the local cache by calculating the segments’ short, medium, and long-term popularity.

The proposed ABRCache model selects the least popular segment and removes it from

the cache.

The performance of the proposed ABRCache model is evaluated against both caching

and QoE metrics. The QoE is estimated by determining the perceived video quality and

switching effects. Whereas caching policy was evaluated using metrics such as cache hit

rate, backhaul traffic, and access delay. Extensive sets of experiments were performed, and

the proposed model ABRCache outperformed both heuristics and ML-based state-of-the-art

models.

The rest of the chapter is organized as follows: In Section 4.2, an overview of caching

scenario with adaptive streaming at the MEC server is illustrated. The proposed model using

RL for QoE-aware adaptive bitrate caching is presented in Section 4.3. The experimental

setup, along with comparative results, is described in Section 4.4. Finally, Section 4.5

provides a summary of this chapter with directions toward future work.

4.2 System Overview

The MEC server is collocated with a BS [2] to simulate realistic network scenarios. ETSI

has also defined the role of MEC’s capability for traffic steering. Using the Mp2 reference

point to configure the data plane, the MEC platform manages traffic steering in a generic

MEC architecture. Traffic is routed among applications, networks, services, etc., with the

Mp2 reference point between the MEC and the data plane. The BS and MEC servers serve

64

System Overview

Figure 4.1: An Overview of DASH Video Caching in MEC For Multiple Bitrates

requests from various heterogeneous end-users having a wide range of processing capabilities.

The CCS resembles the Origin Server as mentioned in [33] and [34], where different media

contents are hosted. The BS is connected to CCS through the backhaul links. The MEC

server stores the video content in the DASH format. In our proposed work, we have used

DASH as the streaming solution. A given video is broken down into segments of various

duration like 1, 2, 4, 6, 10, and 15 seconds in the MEC server. For example, for a 5-

minute video, the video is broken down into 75 segments of 4 seconds each. Now, every

segment consists of multiple bitrates representations. We have considered three types of

video resolutions in our proposed work, namely 240p, 480p, and 720p, where pixel (p) is

the measured video resolution. The MEC server stores the most popular content based

on its popularity level to improve the overall system performance. Consider an example

of content caching at the MEC server, where a user requests a video with a particular

65

QoE-Aware Adaptive BitRate Caching

resolution (say 480p). The ABR module of the proposed ABRCache decides on the optimal

bitrate supported by the network bandwidth of the requested user. Suppose the selected

optimal bitrate of the video segment is present in the local cache of the MEC server (Cache

Hit). In that case, the request is directly sent to the respective user. Otherwise, in case of

a Cache Miss, the request is directed to the CCS through the backhaul links. The primary

objective of a caching mechanism is to forward a minimum number of requests (minimizing

cache misses) to the CCS, thereby reducing the traffic congestion at the backhaul links. The

details of the proposed ABRCache model are discussed in detail in section 4.3.

4.3 Proposed Model

The proposed model uses 4G bandwidth logs and DASH video dataset. In our proposed

work, we considered the 4G bandwidth logs, which consist of bandwidth traces for users

travelling in different transportation. The data in [44] belongs to different types of UE

with varying mobility (for example, train, bus, tram, car, bicycle, foot). The data collected

pertains to different BSs where the UEs move during the simulation. However, data training

happens at a single server where all these data belonging to the different BSs are collected.

Hence, concepts like hand-offs are handled at the BSs, and we are only concerned with the

data received at the server’s end. The video segments’ request follows the most popular

Zipf or the power-law distribution. Traffic models generated by Zipf distribution have been

applied to various caching models such as [33] and [93,96,97].

4.3.1 Problem Formulation

Video cached in MEC server follows the DASH format, where every video is broken into

equal-sized segments. Let us assume the duration of every segment is denoted by p + 2

seconds where p = {0, 2, 4, 6}. These segments of equal-sized duration’s are encoded into

three types of video resolutions (240p, 480p and 720p). Let us assume V be the set of videos

cached in the MEC server, where V = {c1, c2...cn} and n is the total number of videos. For

66

Proposed Model

a video ci of Zci duration, let there be jci number of total segments where jci is calculated

as Equation (4.1)

jci =
Zci

(p+ 2)
(4.1)

Now, every segment consists of three different bitrates b = {b1, b2, b3}. The size (the space a

particular video segment of a given bitrate will occupy in the cache) of a video segment with

different bitrates is different. The total averaged QoE reward for our proposed ABR-Caching

mechanism primarily depends on five factors, namely, video quality, switching factor, cache

hit rate, access delay, and backhaul traffic.

4.3.1.1 Video Quality

Let us assume that at time t, rt number of requests arrives at the MEC server. vbij denotes

video quality perceived by an user for the jth video segment of ith video having bitrate b. We

denote Q(vbij) as a QoE metrics, where Q(vbij) maps that bitrate b to the quality perceived

by a user MPC [98] and PENSIEVE [6]. Therefore, our objective is to maximize the overall

video quality denoted by Equation (4.2) for all the r requests within a given time T .

Q(vbij) = vbij(1) + vbij(2) ++ vbij(rt)

=
∑
vij∈V

rt∑
d=1

vbij(d)
(4.2)

4.3.1.2 Buffering Time

To provide a stutter-free viewing experience to the end-users, we need to minimize the re-

buffering time R(t) for all r requests. The re-buffering event at time stage t is given by

Equation (4.3)

R(t) = max(0, (δ − T (t))) (4.3)

where, δ denotes the access delay, and T (t) is the buffered video playback duration at time

t of the end-user.

67

QoE-Aware Adaptive BitRate Caching

4.3.1.3 Access Delay

Access delay δ is the time taken to retrieve a video segment cbij from the MEC server. Let us

assume ybij be a binary decision variable which denotes that the requested jth video segment

of ith video with bitrate b is present in the local cache of MEC. ybij is 1 when the requested

video is present in the cache, else it is 0 when not present. When the requested video is not

in the cache, it is retrieved from the CCS with a latency of γ in the backhaul links between

the MEC server and CCS. Equation (4.4) represents the access delay.

δ =
rt∑

d=1

(1− ybij(d))γ (4.4)

4.3.1.4 Switching Factor

The frequent switching of the bitrates b between the consecutive video segments j and

j + 1 degrades the users viewing experience. The difference between the bitrates of the

consecutive segments for the entire video denotes the total switching that occurred during

a video streaming session. The switching factor should be minimized, which is given by

Equation (4.5)

rt∑
d=1

|vbi(j+1)(d)− vbij(d)| (4.5)

4.3.1.5 Backhaul Traffic

The backhaul traffic indicates the network traffic generated in the backhaul links between

the MEC server and the CCS. An efficient caching mechanism at the MEC caches the most

popular or the most frequently requested video. In doing so, most of the requests will be

fetched from the MEC instead of the CCS through the backhaul links, thereby reducing the

congestion at those links. Backhaul traffic is defined in terms of load/volume as mentioned

in [33]. Therefore, backhaul traffic is measured in terms of GB for the proposed ABRCache

model. Let us assume that kbij be the size of video segment cbij with bitrate b for the jth

68

Proposed Model

segment. The backhaul traffic is measured by Equation (4.6):

ϱ =
rt∑

d=1

(1− ybij(d))kbij (4.6)

Therefore, our proposed RL-based model ABRCache minimizes the backhaul traffic and

access delay by maximizing the cache hit rate at the MEC server. Along with this objective,

our proposed model improves the overall QoE of a user by maximizing the perceived video

quality and minimizing the switching penalty. A linear reward function is proposed jointly

for enhancing the overall performance of the ABR and caching mechanism.

An RL-based model is defined by a state space xt, an action space at and the state-action

pair (xt, at). The state-action pair is defined by Equation (4.7)

π : π(xt, at)→ [0, 1] (4.7)

where, π(xt, at) is the probability that for the input state xt, action at is taken. In our

proposed work, there are many (xt, at) pairs. As a result, it isn’t easy to design an efficient

model. We employed A3C (Actor-Critic) [99] network, an RL-based method for training

our proposed model. A3C consists of two networks, namely, actor and critic network. The

actor network defines the state-action policy π(xt, at), whereas the critic network rewards

the policy defined by the actor network. These two networks train the proposed RL-based

ABRCache model to maximize the overall QoE reward χ by predicting the expected overall

reward χ̂t by estimating the gradient. The Advantage function Aπθ(x, a) of the policy

gradient method [100] defines the state policies πθ(xt, at) by the actor network in case of

an A3C network. As described in [99], the advantage function for a given experience when

there is a transition from state xt to xt+1 is given by Equation (4.8)

A(xt, at) = χt + µV πθ(xt+1; θv)− V πθ(xt; θv) (4.8)

The three modules, the ABR, Planner and Evictor modules simultaneously train the pro-

posed RL-based ABRCache model to improve the overall reward χt concerning both ABR

69

QoE-Aware Adaptive BitRate Caching

Figure 4.2: RL-based Model for QoE-Aware Content Caching at the MEC Server

and Caching parameters. The reward function is defined by Equation 4.9.

χt = φ1 · vbij(t) − φ2 · R(t) − φ3 · |vbi(j+1)(t) − vbij(t)| − φ4 · δ(t) − φ5 · ϱ(t) (4.9)

A block diagram of A3C network describing the proposed ABRCache model is presented

in Figure 4.2. For measuring the importance of future rewards, µ is the discount factor.

The critic network parameters are represented by θv. V πθ(·; θv) is the estimate of vπθ(·),

where vπθ(·) represents the expected reward obtained by following the policy πθ. The critic

network learns an estimate of vπθ(s) from the observed rewards. The first three terms are

related to ABR strategy when the requests for a particular video arrives. The objective

of the ABR module is to maximize the overall viewing experience considering the network

conditions and the client’s buffer occupancy. The following two terms are related to the

caching mechanism at the MEC server handled by Planner and Evictor module. These two

modules simultaneously maximize the cache hit rate and decrease the service load on the

BS’s backhaul links during peak hours.

70

Proposed Model

Algorithm 3: Training in ABRCache Model

1 Let λ be the total number of requests r1, r2, .., rλ ;
2 b = b1, b2, b3 = Number of video quality level ;
3 for rλ, λ = 1, 2...d do
4 Input: xABR

t = (τt, nt, ζt, rt, n
b1
rt , n

b2
rt , n

b3
rt)

5 Output: bitrate vbij of video ci to be sent to the user

6 if (segt in MEC) Cache then
7 segt → User (U)
8 Calculate reward χt

9 end
10 else
11 CCS → segt
12 Cache Decision()

13 end

14 end

4.3.2 Architecture of Proposed ABRCache

Figure 4.2 represents the block diagram of the proposed RL-based ABRCache A3C network.

The proposed model is trained at the MEC server, which consists of the ABR module and

the Cache manager. The cache manager consists of the Planner and Evictor module, which

decides whether to cache a particular video segment. The workflow of the training procedure

for the proposed RL-based ABRCache model is described in Algorithm 3 and Algorithm 4.

Algorithm 3 presents a detailed description of how the ABR module performs the training.

The ABR module takes user requests and network conditions as input. ABR module then

decides the bitrate b for the requested segment. To decide whether to cache the missing

segment into the MEC server’s local cache, Cache Decision() is defined in Algorithm 4.

The Cache Decision() module presented in Algorithm 4 states that the Planner decides

on the Admission/Eviction of segt. The requested segment segt will be delivered to the

user and won’t be cached if the Planner module decides to “Don’t Admit.” In the event of

caching segt, the Planner needs to evict some segments to be replaced by the new incoming

segment. The MEC server’s available cache space is considered for caching the missing

segment segt. If space is available, the requested missing segment segt is simply cached.

The least popular segments are evicted in the event of the non-availability of cache space.

71

QoE-Aware Adaptive BitRate Caching

Under such a scenario, the Evictor module has popularity information of all the segments.

The segments with the least popularity value will be evicted until space is available to

admit the more popular segments. The critic network evaluates the state policy πθ(st, at)

defined by the actor-network by measuring the reward χt. The actor and the critic network

maximizes the overall reward as defined in Equation (4.9).

Algorithm 4: Cache Decison() Module for ABRCache

1 Function Cache Decison():
2 Input: xPlanner

t = (τt, at(ABR), n
b1
rt , n

b2
rt , n

b3
rt , avg

b1
p , avg

b2
p , avg

b3
p)

3 Output: OPlanner: Decides on Admission / Eviction of segt
4 kbij → Size of segt
5 if (OPlanner == DON ′TADMIT) then
6 Calculate reward χt.

7 else
8 if (sbij ≤ K) then
9 segt → MEC Cache

10 else
11 while (K < sbij) do
12 Evict()

13 OPlanner → Evict()

14 Function Evict():
15 for i in range(1, w) do
16 for j in range(1, z) do

17 xEvictori
t = (avgbsh, avg

b
md, avg

b
lg)

18 OEvictori : Denotes the segment that needs to be removed of type i.

19 return OEvictori ;

20 Calculate reward χt.
21 Function ABRCacheTrain():
22 ActorNetwork → πθ(xt, at)
23 πθ(xt, at)→ Critic Network
24 A(st, at)→ Experience calculated as in (4.8) when there is a transition from st

to st+1

25 CriticNetwork → χt

26 Maximize χt

27 return

72

Proposed Model

b
t-1

Figure 4.3: Proposed Architecture of RL-based ABR Module

4.3.2.1 ABR Module

As illustrated in Figure 4.2, the ABR module receives various video requests from the

users and decides the bitrate of the video segment. The most appropriate bitrate of

the video segment is then delivered to the end-users based on the network condition.

As part of proposed ABRCache model, the ABR module takes input as xt where xt =

(τt, nt, ζt, b(j−1), n
b1
rt , n

b2
rt , n

b3
rt), where τt is the past throughput, nt is the number of chunks

left, ζt is the current buffer size, b(j−1) is the last segment bitrate, nb1
rt is number of segments

of bitrate b1 in cache, nb2
rt is number of segments of bitrate b2 in cache and nb3

rt is number

of segments of bitrate b3 in cache. The ABR module decides the appropriate bitrate for

the requested video segment considering the user demand and present network condition.

ABR module is a neuronal model comprising of a LSTM and a DNN network, as depicted

in Figure 4.3. The bandwidth (τt) is considered time series data and is fed to the first

hidden layer through a LSTM module. LSTM learns the previous patterns of the varying

bandwidth data and helps model an efficient caching strategy. Other input parameters are

directly fed to another hidden layer. The outputs from these layers are combined using a

hidden layer with 64 neurons. The first hidden layer’s output is fed to another hidden layer

73

QoE-Aware Adaptive BitRate Caching

b
t-1

Figure 4.4: Proposed Architecture of RL-based Cache Manager

with 32 neurons connected to the final fully connected output layer. The output layer gives

the final action of selecting an appropriate bitrate corresponding to the resolutions 240p or

480p, or 720p. The predicted bitrate becomes one of the inputs to the Cache Manager.

4.3.2.2 Cache Manager

The Cache Manager determines whether or not the selected segment of a particular bitrate

is present in its cache. If the segment is available, it is instantly retrieved from the MEC

server’s local cache and transmitted back to the user. Otherwise, the Cache Manager fetches

the segment from the CCS and delivers it to the requesting user. Now, the Cache Manager

decides whether to store the missing segment into the MEC cache (called Cache Decison())

or not. In the event of caching the requested missing segment, it decides which segments

to be evicted. We need a control policy to make our caching decisions. An RL-based agent

74

Proposed Model

handles this control policy. The Cache Manager has two main working modules, namely

Planner and Evictor module as depicted in Figure 4.4.

The Planner module decides on the Admission / Eviction of the requested video segment.

If it decides not to admit the incoming segment, no segment is added to the cache, so eviction

is not required. The Planner module receives the bitrate of the video segment decided by

the ABR module. It maintains bandwidth information of the user for the past t time steps

and has some overview information regarding the cache. The Planner module takes input

xt = (τt, at(ABR), n
b1
rt , n

b2
rt , n

b3
rt , avg

b1
p , avg

b2
p , avg

b3
p , P (xt, at)) and outputs an action array of

the form (ψ1, ψ2, ψ3), where ψi signifies the number of segments to be removed by the ith

evictor. avgb1p , avgb2p and avgb3p is the average popularity of bitrate b1, b2, b3 respectively.

P (xt, at) is the popularity value of the requested segment. To measure the popularity

of a given segment, we calculate the short-term popularity (how many times a segment is

requested in last 100 time steps), the medium-term popularity (how many times a segment is

requested in last 1000 time steps) and the long-term popularity (how many times a segment

is requested in last 10000 time steps). The architecture of the Planner module is shown in

Figure 4.4.

As illustrated in Figure 4.4, the Evictor module finds the least short-term popularity

(P b1
sh) segment, medium-term popularity (P b1

md) segment and long-term popularity (P b1
lg) seg-

ment for all the cached segment of b1 bitrates. Similarly, for the other cached segments of

bitrates, b2 and b3, the least short, medium and long-term popularity segment is searched. z

in Algorithm 4 denotes the number of segments available for a given bitrate b. The popular-

ity scores of these segments are fed as input to a hidden layer of 64 neurons, which is further

connected to another hidden layer of 32 neurons. The final output layer is a fully connected

layer that predicts which segment (240p or 480p, or 720p) to be removed from the local

cache of the MEC server. Finally, the cache manager calculates the proposed ABR-based

caching mechanism’s overall reward χt.

75

QoE-Aware Adaptive BitRate Caching

4.4 Experiments and Results

To evaluate the efficacy of the proposed RL-based ABRCache model, an extensive set of

experiments are performed with respect to evaluation metrics such as QoE rreward, video

quality, smoothing effect, cache hit rate, backhaul traffic, and access delay. The proposed

ABRCache model was trained and tested using the DGX Workstation with GPU Tesla

V100 card having 32 GB GPU memory. The proposed model was also tested in a high-end

CPU driven server consisting of 128 GB CPU memory. The performance of the proposed

ABRCache model was compared against various state-of-the-art caching strategies such as

QoECache [13], RLCache [32], AViC [25], PoPCache [58], AdaptSize [31], Rate Based (RB)

[95], Buffer Based (BB) [71], LRU, and LFU. The comparative strategies were judiciously

selected and grouped into various categories based on the following criterion:

� ABR-based Caching Strategies: QoECache [13], AViC [25], and AdaptSize [31]

are ABR-based caching strategies considered for comparing with the proposed ABR-

Cache model.

� Baseline Strategies: We compare the proposed ABRCache with baseline strategies

such as LRU and LFU. LFU is one of the most widely deployed caching algorithms.

Since our proposed work is a ABR-based caching strategy. Therefore, for a fair com-

parison, we combined LRU and LFU with an adaptive streaming mechanism such as

Buffer Based (BB) [71]. LRU and LFU combined with BB is considered as a baseline

for the evaluation of our proposed work similar to [33].

� Simple Caching and ABR Strategies: To further measure the efficacy of the pro-

posed work, we carried out another set of extensive experiments. Here, we compared

ABRCache with simple caching strategies such as RLCache [32], and PoPCache [58]

and then with only ABR strategies namely Rate Based (RB) [95] and Buffer Based

(BB) [24].

76

Experiments and Results

Figure 4.5: Pattern of Video Request following Zipf Distribution

4.4.1 Dataset

The experiments are performed based on the standard DASH [43] video dataset and 4G

bandwidth [44] logs. Jeroen et al. [44] collected the network throughput logs in the city of

Ghent, Belgium, for different types of transportation such as foot, bicycle, bus, tram, train,

and car. Figure 4.6 illustrates the routes taken by a car and train, respectively, along with

the measured bandwidth. It is observed that throughput falls drastically from point A to

B in Figure 4.6(a) and B to C in Figure 4.6(b) due to tunnels, large buildings, and various

other obstructions. The transportation type significantly impacts the available bandwidth

(car throughput ranged from 0 to 100 Mb/s, whereas it ranged from 0 to 70 Mb/s in train).

Prominent buildings on the right side of the selected route in Figure 4.6(a) hinder the

connection from point A to B. On reaching B, better coverage is achieved, improving the

throughput significantly.

In our proposed work, three types of bitrates are considered. The bitrates corresponding

to the video resolution which are considered in our work ABRCache is: 240p → 300kbps,

480p → 1200kbps, and 720p → 1850kbps. This is consistent with the YouTube video

requirement [55]. Video segment durations of 2 and 4 seconds are considered. In our

simulation setup, request from the users follows Zipf distribution. Zipf request typically

77

QoE-Aware Adaptive BitRate Caching

follows a popularity distribution called the Pareto Principle (80-20 rule), where 80% of

content requests are for the 20% most popular content. In our proposed work, we model

the distribution similarly. In our work, as depicted in Figure 4.5, we assigned around 80%

of the request for the 20% most popular content. Whereas, for the remaining 80% of the

least popular content, we assign around 20% of the request. We assume that the delay (γ)

is 1 ms between the CCS and the MEC within a given BS and the cache size to be 2 GB

and 4 GB.

A

B

C

(a) Selected Route in a Car and Measured Bandwidth
over Time

A

B

C

(b) Selected Route in a Train and Measured Band-
width over Time

Figure 4.6: A Car and a Train Traveling from North to South in Belgium with the Measured
Throughput

Table 4.1: Comparison of Total QoE Reward Against various Cache Size and Segment Duration’s.
The best results are shown in Red and the second best in Blue

Schemes
Proposed
ABRCache

QoECache
[13]

RLCache
[32]

AViC
[25]

PoPCache
[58]

AdaptSize
[31]

RB
[95]

BB
[71]

LRU LFU RL DQN

2 GB
2 sec 35.08 32.54 27.30 23.01 24.06 24.90 31.62 31.80 33.03 34.25 31.19
4 sec 34.47 33.82 27.04 29.01 22.93 30.27 28.09 30.60 29.84 32.45 32.14

4 GB
2 sec 37.44 34.56 34.11 23.52 25.49 28.8 35.28 34.13 35.92 36.59 33.57
4 sec 38.26 34.94 32.26 28.9 25.13 33.94 32.12 34.22 32.78 35.69 34.85

4.4.2 Comparison Against Overall QoE Reward

Table 4.1 presents a comparative study of the total averaged QoE Reward χt as mentioned

in Equation 4.9. The performance of ABRCache is compared against various segment

durations (2 and 4 seconds) with MEC cache sizes of 2 GB and 4 GB. ABRCache outper-

formed existing strategies like QoECache [13], RLCache [32], AViC [25], PoPCache [58],

AdaptSize [31], Rate Based (RB) [95], Buffer Based (BB) [71], LRU, and LFU for different

combinations of video segment durations and MEC cache sizes. Table 4.1 illustrates that

78

Experiments and Results

as the cache size increases, the overall reward for the proposed ABRCache also increases.

As a result, an increase in the cache size in the MEC server is anticipated to improve the

proposed model’s overall performance.

4.4.3 Comparison Against ABR Metrics

The proposed ABRCache model, along with enhancing the overall QoE reward χt, also

improves the individual ABR and caching metrics simultaneously. The performance of the

proposed ABRCache model against various metrics such as average ABR reward, perceived

video quality, and smoothing effect is depicted in Figure 4.7. The ABR reward is calculated

by considering the first three terms of the QoE reward χt of Equation (4.9). Figure 4.7(a),

4.7(b) and 4.7(c) represents the ABR metrics concerning 4 GB cache size with a segment

duration of 4 seconds each. The overall perceived video quality and the smoothing/switching

penalty are calculated as Equation (4.2) and (4.5), respectively. As illustrated in Figure

4.7(a), ABRCache outperforms the ABR reward against the other competing strategies.

The proposed model significantly surpasses the other strategies with respect to overall video

quality as depicted in Figure 4.7(b) for 4-second duration. Smoothing penalty is one of the

other ABR metrics which measures the number of times the video quality changes for a

video streaming session. Figure 4.7(c) shows that the proposed 4-second segment duration

model outperforms various strategies. Therefore, it is evident from the pictorial illustration

that the proposed scheme, along with improving the overall QoE score, also improves the

other ABR metrics.

4.4.4 Comparison Against Caching Metrics

The caching performance of the proposed ABRCache model is presented in Figure 4.8

for 4-second duration. The proposed model significantly outperforms existing strategies

concerning cache hit rate, access delay, and backhaul traffic for various combinations of MEC

cache sizes and video segment durations. Figure 4.8(a) represents the performance of the

proposed model against cache hit rate for 4-second duration. It is observed that ABRCache

79

QoE-Aware Adaptive BitRate Caching

AB
RC

ac
he

Q
oE

Ca
ch

e

RL
Ca

ch
e

AV
iC

Po
PC

ac
he

Ad
ap

tS
iz

e

RB BB LR
U

LF
U

QoE-Aware Caching Strategies

0

5

10

15

20

25

Av
er

ag
e

AB
R

Re
w

ar
d

23.92

20.24

16.79

19.61

13.20

19.54 20.23

22.84 22.47 22.06

Comparison Against 4 sec segment durations with 4GB MEC Cache Size

(a) ABR Reward

AB
RC

ac
he

Q
oE

Ca
ch

e

RL
Ca

ch
e

AV
iC

Po
PC

ac
he

Ad
ap

tS
iz

e

RB BB LR
U

LF
U

QoE-Aware Caching Strategies

0

5

10

15

20

25

30

Av
er

ag
e

Vi
de

o
Q

ua
lit

y

30.83

23.36

19.97

25.14

15.34

25.23
26.39

23.09

26.06 25.93

Comparison Against 4 sec segment durations with 4GB MEC Cache Size

(b) Video Quality

AB
RC

ac
he

Q
oE

Ca
ch

e

RL
Ca

ch
e

AV
iC

Po
PC

ac
he

Ad
ap

tS
iz

e

RB BB LR
U

LF
U

QoE-Aware Caching Strategies

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e

Sm
oo

th
in

g
Pe

na
lt

y

0.90
1.02

2.30
2.13

1.20

2.10

1.74

1.00

1.79

2.01

Comparison Against 4 sec segment durations with 4GB MEC Cache Size

(c) Smoothing Penalty

Figure 4.7: Performance of the Proposed ABRCache Against ABR Reward, Video Quality, and
Smoothing Penalty for 4-second Segment with 4 GB Cache Size

model presents a better cache hit rate concerning both heuristics and ML-based model along

with standard baseline models such as LRU and LFU. The comparative results for access

delay, which is measured as Equation (4.4), is presented in Figure 4.8(c). The overall delay

in retrieving the video segments is better than other comparative strategies. Also, the total

traffic generated at the backhaul links, which increases as the number of misses in the MEC

server increases, is improved for the proposed ABRCache model in comparison to other

caching models. Figure 4.8(b) illustrates the backhaul traffic of the proposed model along

with other competitive strategies. With its multiple actor-learners, the proposed RL-based

model can interact with the environment efficiently and gather experiences to provide an

optimal solution such that the viewing experience and the caching efficiency are optimized

80

Experiments and Results

simultaneously.
AB

RC
ac

he

Q
oE

Ca
ch

e

RL
Ca

ch
e

AV
iC

Po
PC

ac
he

Ad
ap

tS
iz

e

RB BB LR
U

LF
U

QoE-Aware Caching Strategies

0

10

20

30

40

50

60

Ca
ch

e
H

it
 R

at
e

57.45
54.09 55.03

41.49

55.31 54.07

38.29

53.76

42.92

48.64

Comparison Against 4 sec segment durations with 4GB MEC Cache Size

(a) Cache Hit Rate

AB
RC

ac
he

Q
oE

Ca
ch

e

RL
Ca

ch
e

AV
iC

Po
PC

ac
he

Ad
ap

tS
iz

e

RB BB LR
U

LF
U

QoE-Aware Caching Strategies

0

5

10

15

20

Ba
ck

ha
ul

 T
ra

ff
ic

 (
G

B)

16.07
17.34 16.98

22.09

16.87 17.34

23.30

17.45

21.56

19.40

Comparison Against 4 sec segment durations with 4GB MEC Cache Size

(b) Backhaul Traffic

AB
RC

ac
he

Q
oE

Ca
ch

e

RL
Ca

ch
e

AV
iC

Po
PC

ac
he

Ad
ap

tS
iz

e

RB BB LR
U

LF
U

QoE-Aware Caching Strategies

0

10

20

30

40

Ac
ce

ss
 D

el
ay

 (
se

c)

32.23
34.77 34.06

44.32

33.85 34.79

46.74

35.01

43.23

38.91

Comparison Against 4 sec segment durations with 4GB MEC Cache Size

(c) Access Delay

Figure 4.8: Performance of the Proposed ABRCache Against Cache Hit Rate, Backhaul Traffic,
and Access Delay for 4-second Segment with 4 GB Cache Size

4.4.5 Ablation Study

We compare the proposed A3C-based ABRCache model with a DQN-based model, which

can be considered a baseline model for RL. DQN is one of the first breakthroughs that was

successfully applied in deep learning to RL. Using the Q-function, DQN learns the value

function, and the policy followed is simply taking the action that maximizes the Q-value at

each step. Whereas our proposed model, which uses A3C network, takes all the advantages

of policy and value-based models by exploring and exploiting the solution space efficiently.

The proposed ABRCache model is compared with DQN, and the comparative results for

81

QoE-Aware Adaptive BitRate Caching

the total QoE reward is presented in Table 4.1. Table 4.1 represents the performance of

ABRCache with RL DQN against various segment durations (2 and 4 seconds) with MEC

cache sizes of 2 GB and 4 GB. The proposed model outperforms RL DQN significantly.

Table 4.2 presents a comparative study of the proposed ABRCache against various cache

sizes and segment duration. The performance of ABRCache improves with an increase

in the cache size from 2 to 4 GB. As the cache size of the MEC server increases, more

popular video segments could be stored, resulting in fewer cache misses at the MEC. In

this comparative study, it can be seen that caching strategies RLCache and PoPCache

outperforms ABR strategies RB and BB only with respect to caching metrics such as cache

hit rate, backhaul traffic and access delay. Whereas ABR strategies RB and BB outperform

RLCache and PoPCache against video quality and smoothing penalty. This is because the

primary objective of simple Caching and ABR strategies is only improving cache hit rate and

QoE, respectively. Also, the cache hit rate of approaches such as RLCache and PopCache

is very close to the proposed model.

However, their QoE values, such as video quality and smoothing penalty, are inefficient

compared to the proposed ABRCache. The total average QoE reward, as mentioned in

Equation (4.9), is a combined metric related to caching and QoE parameters. Table 4.1

presents a comparative study of the total averaged QoE reward. It can be seen that strate-

gies which perform fairly only with caching (RLCache and PopCache) and only with ABR

strategies (RB and BB) failed to perform optimally when compared with ABRCache con-

cerning the total averaged QoE reward. Therefore, the caching framework ABRCache is

a superior strategy, ensuring a better cache hit rate and an enhanced viewing experience.

With a higher cache hit rate, the traffic at the backhaul links and access delay in retrieving

the requested video segment improves substantially.

In another set of ablation study for our proposed work, we swept a range of Neural

Network parameters to understand better each configuration’s impact on the overall perfor-

mance of ABRCache measured by the QoE reward. We varied the number of hidden layers

for each module (ABR, Planner, Evictor), and for each dense layer, we varied the number

82

Experiments and Results

Table 4.2: Comparison of ABRCache Against Various Cache Sizes and Segment Duration. The
Best results are shown in Red and second best results in Blue

Cache
Size

Segment
Duration

Evaluation
Metrics

Proposed
ABRCache

QoECache
[13]

RLCache
[32]

AViC
[25]

PoPCache
[58]

AdaptSize
[31]

RB
[95]

BB
[24]

LRU LFU

2 GB

2 SEC

CHR 47.43 45.98 44.73 44.02 45.66 44.65 25 40.75 30.06 36.97
Backhaul (GB) 20.2 22.76 23.83 24.68 22.08 24.58 28.45 25.93 27.11 23.73
Access Delay
(sec)

39.29 40.37 41.30 41.84 40.62 41.38 56.02 43.54 53.02 47.112

ABR Reward 27.27 21.21 17.96 15.41 15.54 16.19 25.78 21.96 25.9 26.99
Video Quality 31.03 23.03 21.6 17.5 16.79 18.1 29.33 23.58 30.24 30.17
Smoothing
Penalty

1.63 1.64 1.72 1.81 1.98 1.72 1.84 1.67 1.81 1.71

4 SEC

CHR 47.2 44.9 45.24 43.56 45.42 43.07 27.18 41.75 31.48 39.56
Backhaul (GB) 20.24 22.5 24.1 25.01 22.8 24.88 24.34 25.86 23.09 22.65
Access Delay
(sec)

39.47 41.18 40.93 44.5 40.81 42.55 54.43 43.54 51.21 45.17

ABR Reward 23.09 20.06 16.57 19.26 18.86 19.17 22.13 20.01 22.64 22.2
Video Quality 31.19 23.26 19.9 20.3 23.26 25.73 26.03 23.15 26.22 25.85
Smoothing
Penalty

1.64 1.66 2.5 2 2.89 2.13 1.88 1.69 1.79 1.82

4 GB

2 SEC

CHR 57.67 53.58 56.11 47.42 52.96 55.98 36.62 53.77 41.04 46.49
Backhaul (GB) 15.98 17.53 16.67 19.86 17.76 16.62 37.87 17.46 22.27 20.21
Access Delay
(sec)

32.06 35.16 33.44 39.83 35.63 33.34 48.01 35.02 44.66 40.53

ABR Reward 24.54 21.48 18.66 13.17 13.54 13.48 22.86 21.03 23.46 23.73
Video Quality 30.84 23.43 21.4 15.5 15.34 15.86 27.04 22.83 29.53 28.08
Smoothing
Penalty

1.08 0.9 1.2 1.3 1.31 1.41 1.69 0.95 1.79 1.85

4 SEC

CHR 57.45 54.09 55.03 41.49 55.31 54.07 38.29 53.76 42.92 48.64
Backhaul (GB) 16.07 17.34 16.98 22.09 16.87 17.34 23.3 17.45 21.56 19.4
Access Delay
(sec)

32.23 34.77 34.06 44.32 33.85 34.79 46.74 35.01 43.23 38.91

ABR Reward 23.92 20.24 16.79 19.61 13.2 19.54 20.23 22.84 22.47 22.06
Video Quality 30.83 23.36 19.97 25.14 15.34 25.23 26.39 23.09 26.06 25.93
Smoothing
Penalty

0.9 1.02 2.3 2.13 1.2 2.1 1.74 1 1.79 2.01

Table 4.3: Comparison of ABRCache Against Different Number of Dense Layers and Neurons

Sl. No
Number of Hidden Layers and Neurons/Layers Training Time

(Mins)
Average QoE

RewardABR Module Planner Module Evictor Module
Config 1

(Proposed)
Hidden -> 2 Layers

64, 32 Neurons
Hidden -> 2 Layers

32, 32 Neurons
Hidden -> 2 Layers

64, 32 Neurons
144.15 28.01

Config 2
Hidden -> 2 Layers

32, 16 Neurons
Hidden -> 2 Layers
16, 16 Neurons

Hidden -> 2 Layers
32, 16 Neurons

142.27 21.45

Config 3
Hidden -> 2 Layers
128, 64 Neurons

Hidden -> 2 Layers
64, 64 Neurons

Hidden -> 2 Layers
128, 64 Neurons

149.73 23.15

Config 4
Hidden → 2 Layers

64, 64 Neurons
Hidden -> 2 Layers

64, 64 Neurons
Hidden -> 2 Layers

64, 64 Neurons
143.42 25.01

Config 5
Hidden -> 4 Layers
64, 64, 64, 64 Neurons

Hidden -> 4 Layers
64, 64, 64, 64 Neurons

Hidden -> 4 Layers
64, 64, 64, 64 Neurons

205 21.29

83

QoE-Aware Adaptive BitRate Caching

of neurons. Table 4.3 presents the results obtained for various configurations. As shown,

performance of the proposed configuration Config-1 gives better results concerning average

QoE reward, where QoE is a linear combination of parameters concerning both caching and

ABR metrics. In this ablation study, results against two hidden layers and a deeper network

(4 layers) are obtained. Firstly, we fixed the number of hidden layers for all three modules

to two. For Config-1 to 4, fixing the number of hidden layers and varying the number of

neurons per hidden layer, we obtained the overall reward, keeping track of the training time

(100K iterations) simultaneously. The results for these configurations for a 2 GB cache size

and 2-second segment duration are presented in Table 4.3. It is observed that in the config-

urations of the proposed model, we obtained a better reward for almost a similar training

time for all four configurations. However, when we make the model deeper (4 hidden layers

for all three modules), the training time increases substantially with decreased QoE reward.

This is due to the fact that as the number of layers increases, the model overfits for which

the model cannot generalize and fits too closely to the training data. As the model com-

plexity becomes higher, it learns the noise along with the training data. Therefore, after

tuning the model for various configurations, it is seen that the proposed model presents a

more optimal solution for Config-1.

4.5 Summary

In the second contributory chapter, we proposes an RL-based QoE-aware adaptive bitrate

caching model ABRCache at the MEC server. The introduction of MEC at the edge of

the network, usually within BS, reduces the load of the network operators and makes it

easy to provide different services (like video on demand, intelligent browsing, etc.) to the

heterogeneous end-users. For an efficient deployment of MEC, caching popular (frequently

requested) video content in the MEC server (within BS) is a requirement. To improve the

overall QoE for a user, the proposed model ABRCache maximizes the total QoE reward,

a function consisting of ABR and caching metrics. Thus, the proposed model maximizes

the perceived video quality and cache hit rate while minimizing the smoothing/flickering

84

Summary

effect, backhaul congestion between the CCS and BS, and access delay simultaneously.

The proposed ABRCache model consists of three modules, namely ABR, Planner, and

Evictor. The RL agent trains the overall ABRCache model to increase the overall QoE

reward. A comprehensive set of experiments demonstrate that the proposed ABRCache

model outperforms existing works like QoECache [13], RLCache [32], AViC [25], PoPCache

[58], AdaptSize [31], Rate Based (RB) [95], Buffer Based (BB) [71], LRU, and LFU.

It has been observed that ABRCache is performing well but can be more efficient if it

considers multiple BSs rather than a single BS. Intuitively, a collaboration among multiple

BSs may improve the performance by handling heterogeneous user requests more efficiently

to improve cache hits and reduce the backhaul congestion. Keep this observation in mind,

in the next contributory chapter, we plan to extend the proposed model to multiple BS

having edge computing facilities. The BS equipped with MEC will collaboratively work

amongst themselves to decide upon caching the most popular segments, thus offloading the

computation task to multiple BS.

;;=8=<<

85

“The biggest risk is not taking any risk. . . In a world that’s changing really

quickly, the only strategy that is guaranteed to fail is not taking risks.”

∼ Mark Zuckerberg

5
Collaborative Video Caching in Clustered

Edge Network

In this chapter, we extend the concept of caching within single BS to caching amongst

multiple BSs, where we propose an RL-based collaborative caching mechanism where the

edge servers cooperate to serve the requested content from the end-users. Specifically, this

research aims to improve the overall cache hit rate at the MEC, where the edge servers

are clustered based on their geographic locations. The main challenge of the underlying

scenario is to meet heterogeneous user demands from multiple collaborative BSs in an ever-

changing network environment. The said task is modelled as a multi-objective optimization

problem and that has been solved using an RL framework by maximizing the cache hit rate

87

Collaborative Video Caching in Clustered Edge Network

while simultaneously reducing backhaul congestion, access delay, and re-buffering time. In

addition, a novel cache admission and eviction policy is defined by calculating the priority

score of video segments in the clustered MEC mesh network.

5.1 Introduction

The diverse request patterns across various edge servers, along with the advent of popu-

lar streaming solutions such as DASH [30], caching the most requested bitrate of a video

segment is challenging task. Most of the previous caching schemes such as [25, 31, 32] are

not adaptive enough to handle such diverse and complicated requests across temporal and

geographical dimensions. Thus, to further improve the caching performance at the edge

node, Collaborative Caching [33–35] has been introduced recently. In collaborative caching,

MEC servers collaborate amongst themselves through the high bandwidth fronthaul links to

serve the requested videos. Whenever a requested content is not present in a MEC server’s

cache, the MEC server will first contact the collaborating MECs for the requested video

instead of directly forwarding the request to the CDN. Tuyen X. Tran et al. [33] proposed a

collaborative caching mechanism for adaptive streaming. They formulated a caching policy

at the MEC server using Integer Linear Programming (ILP). In this work [33], the col-

laborative caching mechanism deploys two primary mechanisms, one is for caching and the

other for processing (transcoding). In collaborative caching, caching decisions must be made

considering various factors such as past request patterns and current network conditions.

However, a collaborative caching mechanism faces several challenges. Firstly, in contrast to

non-collaborative caching, a collaborative caching strategy also has to decide the MEC server

at which the content should be cached. Thus, another degree of complexity is added to the

caching decision. Secondly, for DASH videos, caching multiple representations will increase

the overhead with respect to the storage capacity of the MEC server. Finally, designing an

efficient caching mechanism that efficiently utilizes the available computational and storage

resources to improve the overall caching efficiency at the edge nodes is challenging.

In the literature survey presented in chapter 2, it is observed that most of the existing

88

Introduction

caching strategies [32], [83], [89] are not efficient enough to handle the diverse and complex

nature of video request patterns. Collaborative caching strategies such as [33], [67], [68],

and [69] use transcoding at the MEC server which is computationally expensive. Transcod-

ing a video from a higher to a lower bitrate at the MEC server requires significant time

and computational overhead that might rapidly deplete the available resources on the edge

servers. It is also observed that the eviction policy deployed by most of the above discussed

literature employs either LRU or LFU for evicting the contents. Intuitively, the caching

strategy in a BS under a collaborative environment can be modeled as a dynamic control

problem. In this chapter, we propose a DRL-based Collaborative Caching strategy called,

ColabCache in clustered edge networks. In this collaborative caching environment, BSs are

clustered based on geographical location. Since MEC servers are installed in each BS, we

can assume this is a cluster of MEC servers. These collaborating MEC servers in the clus-

tered edge network cache the video content based on their segment-level popularity. In our

problem statement, we consider four types of video resolutions (240p, 360p, 480p, and 720p),

where the videos are in DASH format [43]. The objective of ColabCache is to formulate an

efficient caching mechanism at the MEC server that maximizes the overall cache hit rate

by placing the most popular videos in the collaborating MEC servers. The increased cache

hit rate at the MEC server reduces the overall congestion at the backhaul links and access

time in retrieving the video content. As the backhaul congestion decreases, re-buffering

events also reduce substantially for a video streaming session improving the viewing ex-

perience of the end users. In order to achieve the objective mentioned above, we design

the reward function of the proposed RL framework to solve the said optimization problem.

The reward function is based on different optimization parameters like cache hit rate, back-

haul traffic congestion, access delay, re-buffering events, and perceived video quality for the

proposed RL-based framework. To evaluate the efficacy of the proposed framework, two

different types of datasets are considered, real and simulated. In the simulated dataset, the

video request is generated using Zipf distribution. We considered the Iflix movie streaming

dataset [46] for the real-world data.

89

Collaborative Video Caching in Clustered Edge Network

To fulfill the above-mentioned objectives, the major contributions achieved in this chap-

ter, are as follows:

� We present a novel DRL-based framework called ColabCache using A3C network for

caching at the edge server. It handles the diversities arising from both temporal and

geographical dimensions in the caching environment by exploring and exploiting the

solution space with its multiple actor learners.

� In addition, we propose a novel RL-based cache admission and eviction policy, unlike

the previous works, which primarily use simple eviction policies such as LRU and LFU.

ColabCache collaborates amongst the MEC servers within a cluster to make caching

decisions based on the calculated Priority Score of video segments with respect to all

MEC servers in the cluster.

� ColabCache unlike most of the previous works, is independent of the size of the media

library at the Core Server. The proposed model is independent of the total number

of videos in the media library, and hence the performance is optimal even when the

media library is continuously increasing.

The performance of the proposed ColabCache is evaluated against various metrics such

as cache hit rate (CHR), backhaul traffic, access delay, video quality and re-buffering events.

Extensive experiments over the Iflix and Zipf dataset reveal that ColabCache outperforms

the existing state-of-the-art strategies substantially.

The remainder of this chapter is organized as follows. In Section 5.2, we present the

overall system model and problem formulation for collaborative caching in clustered edge

networks. We describe the proposed model using RL in Section 5.3. Section 5.4 presents the

experimental results considering both the simulated and real-time datasets. The chapter is

finally summarized in Section 5.5.

90

System Overview

Figure 5.1: A Representation of Clustered BS within the Target Region

5.2 System Overview

In this section, we present an overview of the proposed cluster-based collaborative-caching

model for the 5G MEC network. In our proposed work, 20 Edge Servers have been randomly

sampled from the EUA dataset [45] within the target 120 km2 region. The EUA dataset

contains the geographical locations of the MEC servers. The EUA dataset maintains a set

of edge servers and user locations. The edge servers dataset consists of information such

as ⟨SiteID−Latitude−Longitude−Name− State−Licensing−AreaID− PostCode⟩.

The MEC servers are first grouped into clusters of M -sized mesh networks. The 20 BSs

are clustered according to Algorithm 5 into 3 clusters. A representation of clustered BSs

within the target region is shown in Figure 5.1. Red, blue and black colors mark the

3 different clusters. Algorithm 5 is used to cluster the BSs based on the longitudinal and

latitudinal coordinates for anM -clustered MEC network. The clustering algorithm is similar

to the bottom-up Agglomerative clustering algorithm used for Hierarchical clustering in

unsupervised learning. Initially, each BS is a separate cluster. In each iteration, we select

2 clusters such that (i) the size of the merged cluster does not exceed the maximum cluster

91

Collaborative Video Caching in Clustered Edge Network

size Mo and (ii) the distance between any 2 clusters does not exceed the threshold distance

do. The distance between clusters is the Single-Link distance between them. The single-

Link distance between 2 clusters is the distance between the closest pair of BSs (one in each

cluster). Furthermore, the threshold do is fixed according to the average coverage range of

a BS.

Algorithm 5: Clustering Algorithm

1 Let N be the set of all BSs within the target region
2 Initialize each BS as a separate cluster
3 Calculate pair-wise distances between all BSs
4 while (∃g1, g2 | g1.size+ g2.size ≤Mo) & (Dist(g1, g2) < do) do
5 Let G1, G2 be the clusters with minimum distance satisfying the above condition
6 Merge clusters G1 & G2 to form a new cluster G
7 Compute the distance between G and all other clusters

In a conventional edge caching scenario, a single MEC server is co-located within a BS.

The MEC server is connected to the CCS through the backhaul link. Whenever an end-

user requests a video segment, the requested video segment is first searched in the local

cache of the MEC server. If it is found in the MEC server, a cache hit occurs. Otherwise,

the request is forwarded to the CCS through the backhaul link to serve the requested

content. With a sharp increase in mobile video traffic, every year [9] and [34], the load

on the backhaul links has increased substantially which increases the access delay faced

by the end-users. The need to deliver a stutter-free viewing experience to the end-users

is challenging for network operators during peak traffic hours. Therefore, to reduce the

access delay and the traffic at the backhaul links, the MEC servers serve the video requests

collaboratively. Figure 5.2 illustrates a hypothetical scenario for collaborative caching where

the MEC servers are clustered based on their geographical locations. Furthermore, in DASH,

various representations (say, 240p, 360p, 480p, and 720p) of the same video segment are

present and every video is broken down into p second durations (say, 2 and 4 sec). Therefore,

for DASH video streams storing all the representations is not efficient. Hence, only the

popular/frequently requested representation of the video segments is cached at the MEC

servers. For collaboration, we have grouped the MEC servers into clusters based on their

92

System Overview

geographical proximity. Each MEC server collaborates with the other MEC servers in its

cluster, referred to as its Neighbours in our proposed work. Each user requests and receives

video content from the BS closest to them (with respect to signal strength), referred to as

the user’s Home BS.

360p

360p

1080p

720p

MEC SERVER

360p

360p
720p

720p

1080p

1080p

CLUSTER 1

72
0p

720p

Local Hit
Neighbor Hit

CLUSTER 2

Core Content Server

Backhaul

B
a

ck
h

a
u

l

Figure 5.2: A Hypothetical Scenario for Collaborative Caching using Clustering of MEC Servers
for DASH Videos

As illustrated in Figure 5.2, the possible events which can occur when a user requests a

video in a collaborative caching scenario can be mentioned as:

1. Local Hit: A local hit occurs when the requested representation (say, 360p) of a

video segment is present in the user’s Home BS’s cache.

2. Neighbour Hit: A neighbour hit occurs when the requested representation of a video

segment is not present in the Home BS’s cache, but it is present in a neighbouring

MEC. The request is forwarded to the neighbouring MEC, which replies with the

requested representation.

3. Cluster Miss: In the event of a miss in both the local and neighbour cache of the

MEC server, the requested video segment is fetched from the CS.

93

Collaborative Video Caching in Clustered Edge Network

ColabCache an RL-based collaborative caching strategy aims to maximize the overall

cache hit rate at the edge server, which reduces the backhaul traffic and access delay. Along

with caching efficiency, ColabCache improves the overall viewing experience with improved

video quality and reduced re-buffering events. The A3C network of ColabCache considers

the above problem as a multi-objective optimization problem. The performance of the

proposed model is measured by χt defined by Equation (5.12). The model measures the

popularity of the video segment both locally (in the MEC server) and globally (amongst all

the MEC servers in the cluster network). The popularity of the requested video segments

is considered for caching the content based on the availability of space in the MEC server’s

local cache.

5.3 Proposed Model

In this section, we present the problem formulation of the proposed ColabCache, followed

by the architecture and training of the proposed model.

5.3.1 Problem Formulation

Let us assume that there are M MEC servers denoted by M = {1, 2,,M} within a given

cluster. The MEC servers are clustered according to Algorithm 5. The MEC servers are

equipped with a local cache having a cache memory size (capacity) Km for the mth MEC

server for m ∈ M. The MEC servers within a given cluster are all interconnected to each

other via a fronthaul mesh network. Let us denote V to be the set of all videos. Since we

are considering DASH video streams, each video is broken down into segments of p seconds

duration where p ∈ {2, 4}. In this work, all further analysis can be done with respect to

video segments. Let us consider cij (cij ∈ V) be the requested jth segment of ith video. We

assume that each segment cij has L representations, where L = {240p, 360p, 480p, 720p}.

We denote content cij in representation b (b ∈ L) by cbij. Unless explicitly specified, the

problem is formulated with respect to a time step t.

94

Proposed Model

Figure 5.2 depicts the events of local hit, neighbour hit and cluster miss. For a request

arriving at home MEC server (m ∈M), binary decision variables {xbmij , ybmz
ij , wbm

ij } ∈ {0, 1}

are introduced, which can be described as follows:

1. ybmij = 1 if cbij is present in the local cache of MEC server m, i.e. local hit ; and ybmij = 0

otherwise in case of a miss.

2. xbmz
ij = 1 if cbij is not present in the local MEC m, and is fetched from the neighbouring

MEC server z, i.e. neighbour hit, where z ∈M, z ̸= m; and xbmz
ij = 0 otherwise.

3. wbm
ij = 1 if cbij is not present at any MEC server in the cluster i.e. cluster miss, it is

fetched from the CCS; and wbm
ij = 0 otherwise.

The total size of the video segments to be cached in a MEC server m must not exceed

the total capacity Km which is denoted as Equation (5.1), where kbij is the size of cbij:

∑
cij∈V

∑
b∈L

ybmij · kbij ≤ Km (5.1)

To cache a given video segment cbij into the local cache of the MEC server m we first

compute the ratio ϕbm
ij for the video segment. ϕbm

ij for a segment cbij is the ratio of the number

of requests rbmij received by MEC server m for cbij to the total number of requests received

for all segments in a given time frame denoted by Equation (5.2):

ϕbm
ij =

rbmij∑
ij∈V

∑
b∈L

rbmij
(5.2)

The Priority Score for content cbij in a collaborative environment is represented by P bm
ij ,

denoted by Equation (5.3).

P bm
ij = ϕbm

ij +
∑

z∈Dbm
ij

(
ϕbz
ij ·

b(m, z)

β

)
(5.3)

95

Collaborative Video Caching in Clustered Edge Network

where, Dbm
ij is the set of neighbouring MEC servers which are collaborating with m for

segment cbij. b(m, z) is the link bandwidth between m and z. β is a scaling factor. The

Priority Score P bm
ij represents the value of caching the content cbij at MEC serverm. Caching

some content at a particular MEC server (say m) does not only affect the caching decisions

of m but also of the neighbouring MEC servers which are collaborating with m for segment

cbij. Therefore, the ϕbz
ij values of collaborating MEC servers also contribute to the Priority

Score P bm
ij . The contributions of neighbours are scaled down with weights proportional to

the bandwidth between the MEC server m and the neighbours. The intuition behind these

weights is that larger the bandwidth between two MEC servers, the stronger would be the

collaboration between them and hence more would be the Priority Score.

The Cache Hit Rate (CHR) is the number of local and neighbour hits in a given cluster

to the total number of requests received in a given time frame. The number of requests of

cbij in a given time frame is denoted by rbmij . The CHR is represented by Equation (5.4):

CHR =

∑
ij∈V

∑
b∈L

(ybmij r
bm
ij + xbmz

ij rbmij)∑
ij∈V

∑
b∈L

rbmij
(5.4)

The Peak Signal-to-Noise Ratio (PSNR) is a measure of the quality of video content.

According to [101], PSNR of a video segment encoded in bitrate b can be approximated as

Equation (5.5), where β depends on the amount motion or stillness of the video segment.

PSNR = α log10(b) (5.5)

Jitter, J, is a measure of the variation of the latency in fetching consecutive video seg-

ments. In a network with high congestion, jitter would be high which hurts the user expe-

rience. Let t0 to tn be the times when a user, u, is requesting consecutive video segments

from the BS. For user u, jitter can be calculated as Equation 5.6

96

Proposed Model

J =
n∑

i=1

(δ(ti)− δ(ti−1)) (5.6)

The video re-buffering time R(t) at time stage t is given by Equation (5.7):

R(t) = max(0, (δ − T (t))) (5.7)

where, δ is the Access Delay between the time the request for content cbij is received by

the home BS and the time when cbij is delivered to the end-user. T (t) is the buffered video

time playback at time t at the end-user. The Access Delay δ is calculated as Equation (5.8):

δ = (1− ybmij) ·
(∑

z∈M
z ̸=m

ybmz
ij · γ(m,z) + wbm

ij · γ(m,back)

)
(5.8)

where,

γ(m,back) =
kbij

τ(m, back)
+ ∆(m,back) (5.9)

and,

γ(m,z) =
kbij

τ(m, z)
+ ∆(m,z) (5.10)

where, ∆(m,back) is the traffic delay in the backhaul link from BS m, ∆(m,z) is the traffic

delay between the local BS (m) and neighbour BS (z), and τ(m, back) is the backhaul

bandwidth from BS m. γ(m,z) is the delay in the edge link when the content is fetched from

the neighbour BS in case of a miss in the local BS represented by Equation (5.10). In case

of miss in both the local and neighbour BS the content is fetched from the CCS with a

backhaul delay of γ(m,back) given by Equation (5.9).

To measure the network congestion in the backhaul links between the MEC and the

CCS for a given time frame, Equation (5.11) represents the backhaul traffic ϱ. The backhaul

traffic is generated as a result of cache miss in the cluster-based collaborative MEC network.

97

Collaborative Video Caching in Clustered Edge Network

ϱ =
∑
i∈C

∑
b∈L

wbm
ij · rbmij · kbij (5.11)

Therefore, whenever there is a cluster miss (wbm
ij = 1), the missed video segment is fetched

from the CCS which adds to the network traffic in the backhaul link. The congestion in the

backhaul link rises as the frequency of misses increases in the cluster-based collaborative

network. On the other hand, if there is a hit in the collaborative network (i.e. wbm
ij = 0),

no additional traffic weight is added to the backhaul link, thereby not contributing to the

network congestion in the backbone.

In our proposed work ColabCache, a reward function χt is defined which is governed

by the metrics defined earlier (CHR, access delay, backhaul traffic, and re-buffering events)

along with perceived video quality (q(t)) and jitter (J(t)). χt is represented by Equation

(5.12):

χt = φ1 · q(t)− φ2 · (J(t))− φ3 · ϱ(t) + φ4 · CHR(t)− φ5 · δ(t)− φ6 ·R(t) (5.12)

To design a cluster-based collaborative caching strategy in the MEC network, we for-

mulate an optimization problem and solve it using A3C [99] networks of RL. The proposed

optimization formulation maximizes the overall reward χt by maximizing the CHR, and

video quality and minimizing the backhaul traffic, access delay, jitter and re-buffering events

simultaneously. Therefore, given the availability of resources such as the total capacity of

MEC serversm, Km , and the event of availability of desired video segments C
∆
= {ybmij , xbmz

ij }

in M, the objective is to maximize χt for all time t in solving the problem Ut such that:

98

Proposed Model

Ut : max
C

∑
t∈T

∑
v∈V

χt, (5.13a)

subject to,∑
ij∈V

∑
b∈L

ybmij · kbij ≤ Km ,∀m ∈M (5.13b)

ybmij +
∑
z∈M
z ̸=m

xbmz
ij + wbm

ij = 1 , ∀m ∈M (5.13c)

The constraint (5.13b) expresses the fact that the total size of content cached at a MEC

server m cannot exceed its total capacity Km. Constraint (5.13c) ensures that for each

content request, exactly one of the three possible events occurs (i.e. local hit, neighbour hit

or cluster miss).

5.3.2 Proposed Actor-Critic (A3C) model of ColabCache

In this section, we describe the proposed ColabCache that uses the state-of-the-art actor-

critic A3C [99] network. A3C involves the training of two networks: Actor and Critic

network.

5.3.2.1 Architecture of ColabCache

Figure 5.3 presents a diagrammatic overview of the proposed actor-network of ColabCache.

The actor network of the RL framework takes several input features related to the popular-

ity of content along with various network parameters to generate policies πθ for deciding the

target BS to store the requested video content. The learning agents of ColabCache actor net-

work takes state inputs dt = (
−−→
F (t),

−−−→
FQ(t),X, τ(back),∆(back), τ(edge),∆(edge), K

′, δ, R(t), kbij,L)

to its neural network at time t when video segment cbij is requested.
−−→
F (t) = {

−−−→
Fm(t) |m ∈M},

where
−−−→
Fm(t) is a sequential vector of the number of requests received for segment cbij at BS

m in the last t time slots;
−−−→
FQ(t) = {

−−−−−→
FQm(t) | m ∈ M}, where

−−−−−→
FQm(t) is a sequential

vector of the number of times quality b was requested at MEC server m in the last t time

99

Collaborative Video Caching in Clustered Edge Network

Figure 5.3: Proposed Architecture of Actor Network for RL-based A3C Network

slots. τ(back) = {τ(m,back) | m ∈ M} and ∆(back) = {∆(m,back) | m ∈ M} are the back-

haul bandwidth and backhaul traffic, respectively, between the MEC servers and the CCS

; τ(edge) = {τ(m,z) | m, z ∈ M,m ̸= z} and ∆(edge) = {∆(m,z) | m, z ∈ M,m ̸= z} are

the edge bandwidth and edge traffic respectively between each pair of MEC servers in the

cluster; K ′ = {K ′
m | m ∈ M}, where K ′

m denotes the amount of free space in BS m’s

cache; δ is the access delay; klij is the chunk size for content cij with b
th representation; and

L = {LPSm | m ∈M}, where LPSm denotes the Least Popularity Score in BS m’s cache.

Vector of cache decision variables X = {ybmij | m ∈M} is also fed into the Fully Connected

(FC) layer. This input gives control of redundancy of video content cbij in the cluster to

ColabCache which will learn the best redundancy level to reach optimal performance based

on the request pattern. Thus, it might reduce the redundancy when the request diversity

increases and vice versa. In our proposed ColabCache architecture,
−−−→
Fm(t) and

−−−−−→
FQm(t) are

100

Proposed Model

sequentially fed to the LSTM layer as shown in Figure 5.3 which is then connected to a FC

layer. The other remaining input parameters of dt is fed to another FC layer. The output

from the above FC layers is combined using a MergeNet which is then fed to another FC

layer. The final layer outputs the BS (MEC server) to store the requested content. The

softmax layer consists of m+1 possible outputs (m for the number of BS in the cluster and

one No Cache). Here, m is a hyper-parameter that can be changed for different scenarios.

We set m as seven for our experimental scenario in this work.

For No Cache output, the content would not be cached into any BS as the popularity

score of the requested video segment is significantly less and will be served directly to the

end-users. The critic network neural architecture is similar to that of the actor network, with

the difference being that it takes an additional input, πθ along with other input parameters

as explained in the actor network. The critic network gives the action policy’s expected

future reward, Vη, as output. Adam optimizer is used for training ColabCache.

5.3.2.2 Caching Algorithm

The caching policy for the proposed ColabCache is governed by the Priority Score (P bm
ij) of

video segments with respect to BSs in the cluster given by the Equation (5.3). Algorithm 6

describes the caching policy for the proposed model. Let us assume that a user (U) requests

a video segment cbij from its home BS (m). If cbij is present in the cache of m, it is directly

serviced to the user (U). Otherwise, the requested content cbij is searched in the cache of

neighbour MEC (z). If present, it is sent to U . If cbij is not present in any BS in the cluster,

it is fetched from the CCS. When a local cache miss occurs, the decision of whether to

cache and which BS to cache the content is taken by the proposed ColabCache. ColabCache

takes features mentioned in Section 5.3.2.1 as input and outputs the caching decision. The

output (say, o) can either be (i) No Cache denoting that the content will not be cached

in the cluster or (ii) the Target BS in the cluster to cache the requested content. In the

case of (i), the content is not cached and directly streamed to the user. But in the case

of (ii) P bo
ij is measured, and if MEC server o has space, then the content is stored in o. If

101

Collaborative Video Caching in Clustered Edge Network

there is no space available in o, then the content having the least popularity score is evicted

to make space for the requested content cbij. The proposed model ensures that an optimal

CHR is obtained for the MEC servers, reducing the backhaul traffic, and access delay and

improving the video quality with reduced re-buffering events.

Algorithm 6: ColabCache Caching Policy

1 Let cbij is the requested content at the timestamp t ;

2 if (cbij in Local MEC (m)) then

3 m
cbij−→ User (U) ;

4 else if (cbij not in Local MEC (m)) then
5 for (z ∈M) do
6 if (cbij in Neighbour MEC (z)) then

7 z
cbij−→ m

8 AdmissionModule(cbij)

9 m
cbij−→ User (U)

10 else

11 CDN
cbij−→ m

12 AdmissionModule(cbij)

13 m
cbij−→ User (U)

14 Function AdmissionModule(cbij):
15 o = ColabCache.output
16 if o = No Cache then
17 return cbij ▷ Do not Cache cbij

18 else
19 Admit(o, cbij)

20 return cbij

21 Function Admit(o, cbij):
22 if K ′

o ≥ kbij then
23 cbij → o.cache

24 else
25 LPSo = Least Priority Score in o.cache
26 while P bo

ij > LPSo & K ′
o < kbij do

27 Evict(LPSo) ▷ Delete content from the cache with the least popular score

102

Proposed Model

5.3.2.3 Training of ColabCache

In the network architecture of ColabCache, each MEC server consists of a DRL Agent.

These DRL Agents act as Worker Agents in the RL-based A3C network. In each cluster we

choose that MEC server as the master agent which has the least average distance from all

other servers in the cluster as the Master Agent. During the simulation, worker agents at

the MEC servers interact with the environment by making caching decisions and receiving

rewards. They then calculate the value function and policy loss, used to calculate the

individual gradient at each MEC server. The worker agents then periodically update the

master agent’s network with the gradient values, thus updating the weights in the master

network. The worker agents then reset their network weights to the master agent.

5.3.2.4 Choice of Algorithm

The main idea behind using the A3C network is that the actor network can interact very

efficiently with the environment (for example, exploration vs exploitation and sample effi-

ciency). The critic network with the value function learns from the experience very effec-

tively (for example, estimating reward signals). The significant advantage of A3C network

is that with its multiple actor-learners, it can interact with the environment, gather experi-

ence, and then push their gradient updates to a central target network asynchronously. Our

simulation results also show that the use of A3C network in our proposed work helps to per-

form better when compared with the RL-based model that uses DQN called DRL-CCT [35].

The detailed experimental results are given in the next section.

5.3.2.5 Computational Complexity

In prior DL-based works, the input and output sizes of the learning models are Ω(C +N),

where C is the number of collaborating BSs and N is the total number of videos in the

media library. In the proposed A3C architecture of ColabCache, it can be seen that the

input size of both the actor and critic networks (i.e. the size of dt) is O(C2) where C is

the cluster size and that the output size of either network is C + 1 = O(C). ColabCache

103

Collaborative Video Caching in Clustered Edge Network

is independent of N ; therefore, ColabCache’s performance will hold even when the media

library grows compared to previous literature because smaller input and output sizes lead to

shorter running times. Thus, the proposed work is more practical in the real world, which

is independent of the continuously expanding media library (N).

5.4 Experiments and Results

An extensive set of experiments were performed to evaluate the efficacy of the proposed

ColabCache model against various evaluation metrics such as the CHR, backhaul traffic,

access delay, perceived video quality, jitter and re-buffering events. The performance of the

proposed model has been compared with state-of-the-art Heuristic-based caching strate-

gies such as PoPCache [58], QoECache [13], Learning-based work like AViC [25], and also

Collaborative-based caching such as CoCache [33] ,and DRL-CCT [35] along with baseline

caching strategies FIFO, LRU, and LFU.

Figure 5.4: Video Request Frequency for the Iflix dataset

104

Experiments and Results

Figure 5.5: CHR Achieved by ColabCache with respect to the Cluster Size for 2-sec Segment
Duration, 256 MB Cache Size on Iflix Dataset

5.4.1 Dataset

The proposed model has been trained extensively using both the standard Iflix movie

streaming dataset [46] and the randomly generated dataset (Zipf distribution for video

requests). The randomly generated dataset using Zipf will be referred to as Zipf dataset in

our experimental evaluation. It follows realistic traffic models using the Zipf distribution

which has also been supported in works such as [96] and [97]. With the lack of publicly avail-

able real-world traces of user requests, we have synthetically generated the request traces

from these datasets. Traces from both the datasets consists of timestamp, UserID, VideoID,

chunkID, and bitrate for a given request. Along with that, these traces assume two other

important criteria to follow realistic data traffic models, namely, watch time (the watch

time for the video watching sessions is chosen according to the typical Youtube User En-

gagement Graph) [102] and session start time (the Session start times are chosen such that

the requests follow the real-world network traffic pattern). For the Zipf dataset, VideoID is

chosen according to the Zipf distribution with α = 1.3 and Figure 5.4 represents the video

request pattern for the Iflix dataset. In our proposed model, DASH video streams are used.

We considered segment duration of 2 and 4 seconds along with four types of video resolu-

105

Collaborative Video Caching in Clustered Edge Network

tions (240p, 360p, 480p and 720p). Cache sizes of 256 MB and 512 MB were considered for

the MEC servers. In our proposed work ColabCache, we assumed that hand-off scenarios

do not occur.

Figure 5.5 represents the cache hit rate achieved by ColabCache vs cluster size. Figure

5.5 illustrates that as we move from cluster size 6 to 7, there is an increment of 7% CHR

with an increase in 5 minutes of simulation time. The CHR improves only by 8% as the

cluster size further increases from 7 to 13; however, the simulation time rapidly increases by

85%. As the size of the cluster increases, the rate at which CHR increases slows down, and

the CHR start to flatten. But, the simulation time, which is proportional to the operational

cost of ColabCache, keeps increasing linearly with an increase in cluster size. Therefore, we

fixed the maximum cluster size, M0, to be seven in our proposed model.

Figure 5.6: Graphical Representation of ColabCache in a Cluster of 7 MEC Servers and their
Corresponding Observed Values over a Time Period.

Figure 5.6 illustrates a graphical representation of the proposed ColabCache in a clus-

tered network consisting of seven MEC servers. The observed values concerning the indi-

vidual metrics related to χt over a time period is presented by f(ϱ, CHR, δ,R).

106

Experiments and Results

5.4.2 Evaluation of ColabCache for various Segment Duration

Table 5.1: Comparison of ColabCache Against Different Segment Sizes. The best results are
shown in Red and the second best in Blue

Random Video Request Generated Using Zipf Distribution

Segment

Duration

Evaluation

Metrics

Proposed

ColabCache

DRL-CCT

[35]

CoCache

[33]
FIFO LRU LFU

PopCache

[58]

QoECache

[13]

AViC

[25]

CHR 56.24 50.1 47.75 43.49 44.22 46.79 44.95 46.3 47.33

Backhaul Traffic (GB) 13.78 15.72 16.2 17.6 17.41 16.77 17.08 16.71 16.31

Access Delay (ms) 38.18 42.51 43.88 46.83 46.06 44.05 46.3 45.35 43.37

Re-buffering (sec) 4.29 4.7 4.17 4.63 4.61 4.58 4.7 4.59 4.57

PSNR (dB) 47.92 45.82 45.33 44.84 44.78 44.48 44.0 45.61 44.23

2 sec

Jitter (ms) 18.09 20.93 20.32 22.35 22.4 21.43 21.3 22.07 19.76

CHR 56.32 49.99 47.88 43.51 44.21 47.03 45.17 46.16 46.91

Backhaul Traffic (GB) 13.81 15.77 16.18 17.63 17.47 16.75 17.07 16.78 16.47

Access Delay (ms) 76.05 84.63 87.31 93.35 92.01 87.61 91.97 90.59 86.84

Re-buffering (sec) 7.99 8.94 8.55 8.74 8.98 8.78 9.19 10.01 9.26

PSNR (dB) 47.97 46.09 45.41 45.01 44.96 44.74 44.36 45.74 44.48

4 sec

Jitter (ms) 32.78 37.57 36.93 41.58 40.61 38.48 39.2 41.6 35.42

Iflix Dataset

Segment

Duration

Evaluation

Metrics

Proposed

ColabCache

DRL-CCT

[35]

CoCache

[33]
FIFO LRU LFU

PopCache

[58]

QoECache

[13]

AViC

[25]

CHR 47.21 38.17 35.69 31.31 31.59 33.96 31.31 36.04 31.88

Backhaul Traffic (GB) 16.05 18.77 19.02 20.35 20.34 19.84 20.31 19.32 20.5

Access Delay (ms) 44.32 50.6 51.34 54.42 54.41 52.65 54.6 51.65 55.05

Re-buffering (sec) 4.77 5.57 5.65 5.84 5.78 5.57 5.32 5.59 5.57

PSNR (dB) 47.42 46.22 45.36 44.53 44.55 45.07 44.32 45.63 44.53

2 sec

Jitter (ms) 21.97 24.44 25.11 26.24 26.33 25.74 25.67 25.86 26.44

CHR 47.15 37.88 35.78 31.13 31.52 34.13 31.13 36.02 32.23

Backhaul Traffic (GB) 16.13 18.95 19.17 20.55 20.5 19.95 20.52 19.49 20.68

Access Delay (ms) 88.95 102.1 103.63 109.96 109.32 105.81 110.16 104.01 111.02

Re-buffering (sec) 8.97 10.54 10.67 11.4 11.09 11.05 10.28 10.96 11.6

PSNR (dB) 48.76 46.3 45.62 44.63 44.77 45.28 44.54 45.72 44.78

4 sec

Jitter (ms) 43.59 47.68 48.94 51.88 51.3 50.76 49.99 50.01 52.19

Table 5.1 presents a comparative study of ColabCache with both heuristic as well as

ML-based caching strategies for 2 and 4-sec segment duration with a MEC cache size of

256 MB. The comparison was made against popular and recent state-of-the-art works such

as PoPCache [58], QoECache [13], AViC [25], CoCache [33], DRL-CCT [35], FIFO, LRU

and LFU. It is observed that ColabCache outperforms all the caching strategies concerning

CHR, backhaul traffic, access delay, video quality (PSNR), jitter and re-buffering for both

107

Collaborative Video Caching in Clustered Edge Network

Figure 5.7: Performance of Proposed ColabCache Against Various MEC Cache Size (MB)

Iflix and Zipf dataset. The CHR for 2-sec segment duration with a cache size of 256 MB

is better by almost 12% for Zipf and by 23% for the Iflix dataset. The increase in CHR

has led to a substantial reduction in the backhaul traffic and access delay by 12% and 15%

for the Zipf dataset and by almost 14% and 17% for the Iflix dataset respectively. The

re-buffering events have improved marginally, providing a stutter-free viewing experience

with an enhanced video quality of almost 4.6% and the jitter value reducing by almost 14%.

The results obtained for the 512 MB cache size with a segment duration of 2 sec for both

datasets are depicted in Figure 5.8 and 5.9.

5.4.3 Cache Hit Rate (CHR)

The caching policy defined by Algorithm 2 improves the overall CHR as more requests are

serviced from the local or the neighbour MEC cache instead of the CCS. As presented in

Table 5.1, the CHR for Zipf dataset increased by almost 12% for 256 MB cache size when

compared with the next best-performing strategy DRL-CCT [35]. Similarly, for the Iflix

dataset, there is a rise of 23% CHR when compared with DRL-CCT. For the 2-sec segment

duration and 512 MB cache size, the CHR performance for both the dataset is illustrated

in Figure 5.8(a) and 5.9(a). Intuitively, ColabCache outperforms the previous heuristic-

based caching strategies because DL-based strategies can better adapt to the diverse request

patterns received by MEC servers. ColabCache uses a broader variety of input features

108

Experiments and Results

(a) Cache Hit Rate (b) Backhaul Traffic (GB)

(c) Access Delay (ms)

Figure 5.8: Performance of the Proposed ColabCache against Cache Hit Rate, Backhaul Traffic
and Access Delay for Random Zipf Dataset

which allows the model to learn a better caching strategy and hence, performs better than

the DL-based strategy DRL-CCT. Figure 5.7(a) illustrates the fact that as the MEC cache

size increases, CHR also increases considerably. Cache sizes of 128, 256 and 512 MB are

considered for evaluation. It is observed that as the cache size increases, the CHR improves

substantially, as more video segments could be stored in the local cache of the MEC server.

5.4.4 Backhaul Traffic

The traffic generated between the MEC server and CCS is referred to as the backhaul traffic

denoted by Equation (5.11). As CHR increases, the video request is serviced more fre-

109

Collaborative Video Caching in Clustered Edge Network

(a) Cache Hit Rate (b) Backhaul Traffic (GB)

(c) Access Delay (ms)

Figure 5.9: Performance of the Proposed ColabCache against Cache Hit Rate, Backhaul Traffic
and Access Delay for Random Iflix Dataset

quently from the local cache of the MEC cluster. Hence, fewer requests are forwarded to

the CCS through the backhaul link, and the backbone’s congestion reduces considerably.

Table 5.1 and Figure 5.8(b) and 5.9(b) justifies the claim. The backhaul traffic for Colab-

Cache improved significantly for both datasets. The backhaul traffic for the 2-sec segment

duration with MEC cache size of 256 MB drops by almost 12% for the Zipf dataset when

compared with DRL-CCT. In the case of Iflix dataset, the backhaul traffic reduces by 14%

for 256 MB cache size. 5.8(b) and 5.9(b) represents the comparative illustration of backhaul

traffic for cache size of 512 MB with 2-sec segment duration. There is a significant drop in

the backhaul traffic as the cache size increases from 128 MB to 512 MB depicted by Figure

110

Experiments and Results

5.7(b) for the proposed ColabCache.

5.4.5 Access Delay

Access delay δ given by Equation (5.8) is the total time between the reception of a video

request and its delivery to the end-users. In a collaborative caching environment, as M

number of MEC servers collaborate to service the requested content, very few requests are

forwarded to the CCS in case of a cache miss in all the MEC servers. Therefore, the delay

also reduces as CHR increases for the proposed model. The delay for 2 and 4-sec segment

duration for 256 MB cache size are presented in Table 5.1. Figure 5.8(c) and 5.9(c) portray

the access delay for a 2-sec segment duration with 512 MB cache size. The delay for 2-sec

segment duration and 256 MB MEC cache size reduces by 10% and 12% for the Zipf and

Iflix respectively. It is observed that the access delay also reduces as cache size increases

which is depicted in Figure 5.7(c).

5.4.6 Video Quality and Jitter

To measure the quality of video content, the PSNR metric is used, denoted by Equation

(5.5). Table 5.1 presents a comparison of video quality for ColabCache with respect to both

heuristics and ML-based strategies. The PSNR improved by almost 5% when compared

with DRL-CCT for 2-sec segment duration with a MEC cache size of 256 MB for the Zipf.

As for the Iflix dataset, the PSNR improved by 3%. The lower re-buffering and access delay

allow streaming at higher bitrates, thus improving overall video quality.

Jitter J measures the variations of latency while fetching consecutive segments denoted

by Equation (5.6). With reduced congestion at the backhaul links, there is substantial

improvement in the jitter value for the proposed collaborative caching model. The jitter

value J for 2 and 4-sec segment duration for a MEC cache size of 256 MB is tabulated in

Table 5.1. The jitter value reduced by almost 12% for the Zipf dataset and by 10% for the

Iflix dataset.

111

Collaborative Video Caching in Clustered Edge Network

Figure 5.10: Performance of Proposed ColabCache Against Different Number of Users

5.4.7 Re-buffering

The performance of ColabCache for re-buffering is presented in Table 5.1. ColabCache

outperformed all the existing caching schemes for various combinations of segment duration

and MEC cache size. The reduction of re-buffering can be attributed to the decrease in

access delay because lower access times lead to faster content fetches and, thus, decrease

the total re-buffering time. With re-buffering significantly better than other strategies, the

end-users can enjoy a stutter-free viewing experience. The re-buffering events were observed

for both the Zipf and Iflix dataset. The proposed model, along with improving the caching

metrics, also focused on providing a stutter-free viewing experience as the CHR increases

and backhaul traffic and access delay reduced substantially.

5.4.8 Impact of Total Number of Users

The results in Table 5.1 and Figure 5.8 and 5.9 correspond to 80 users streaming content in

the network. To measure the impact of different numbers of users streaming simultaneously

at time t, ColabCache is compared against metrics such CHR, backhaul traffic and access

delay. Figure 5.10 illustrates the performance of the proposed model when the total number

of users varies from 40 to 100 for 2-sec segment duration and 256 MB cache size on the

Iflix dataset. The CHR reduces slightly for ColabCache as the number of users increases,

and it tends to flatten from 80 to 100. This reduction in CHR is expected because the

112

Experiments and Results

Table 5.2: Comparison of ColabCache With and Without Clustering

Random Video Request Generated Using Zipf Distribution
Segment
Duration

MEC
Cache Size

Proposed
ColabCache

CHR (%)
Backhaul

Traffic (GB)
Access

Delay (ms)
Re-buffer
(sec)

2 SEC 256 MB
With

Clustering
56.24 13.78 38.18 4.29

Without
Clustering

53.48 14.34 41.09 5.81

Iflix Dataset
Segment
Duration

MEC
Cache Size

Proposed
ColabCache

CHR (%)
Backhaul

Traffic (GB)
Access

Delay (ms)
Re-buffer
(sec)

2 SEC 256 MB
With

Clustering
47.21 16.05 44.32 4.77

Without
Clustering

40.37 17.89 49.90 6.27

number and diversity of requests are increasing with the increase in users, but the cache

size remains fixed. But the decrease is not significant as ColabCache adapts to this change.

Thus, the access delay and backhaul traffic increase as users increases. The access delay

and backhaul traffic for other strategies are significantly higher compared to ColabCache

as the number of users increases. The RL agents of ColabCache efficiently explore and

exploits the solution space for caching contents into the cache of collaborating MEC servers.

Therefore, ColabCache handles the dynamicity arising out of variations in request patterns

and maintains a stable and improved CHR with the increasing number of users.

5.4.9 Ablation Study

In ColabCache, geographically nearby MEC servers collaborate to learn the best caching

policy suitable for that geographical region. Clustering the MEC servers according to their

geographical proximity helps improve the caching efficiency for collaborative caching as it

handles the diversities arising out of the geographical dimension. Each cluster learns the

caching policy most suitable for the region it is located in, thus, leveraging the geographical

locality of video request patterns. Table 5.2 presents a comparative study of ColabCache

with and without clustering for 2-sec segment duration with a MEC cache size of 256 MB

for both the datasets. The CHR for ColabCache with clustering improved substantially for

both the Zipf dataset and Iflix dataset. Clustering limits the sample space even when the

113

Collaborative Video Caching in Clustered Edge Network

network grows. The increase in CHR of ColabCache with clustering also led to the drop

in backhaul traffic and access delay, along with re-buffering events for both datasets. The

proposed model with clustering handles the diverse video request patterns arriving at the

BS.

5.4.10 Popularity Vs Redundancy

Figure 5.11 shows how the redundancy of video content varies with its popularity in our

proposed caching policy. Redundancy is the measure of the average number of copies of

the content that was found in the cluster. The observed correlation between redundancy

and popularity is 84.31%. The high correlation value implies that as the content popularity

increases, ColabCache increases the redundancy of video content by storing the content in

multiple BSs within the cluster. And when the popularity decreases, ColabCache reduces

the redundancy and reaches zero for highly unpopular content. Low redundancy of video

content implies that the content is not stored in multiple locations in the cluster. As a

result, it leads to more free space in the caches of BSs within the cluster, allowing other

(more popular) content to take its space. Therefore, by reducing the redundancy for less

popular video content, ColabCache creates space for more popular content, thus increasing

the cache hit rate. Furthermore, if highly popular video content (Say content c) were not

stored redundantly at multiple BSs within the cluster, all requests for the content c would

have to be satisfied by a single BS within the cluster. The load at that BS will increase,

leading to network congestion at the fronthaul links between the BSs. Hence, by storing

highly popular video contents at multiple BSs within the cluster, ColabCache reduces both

the fronthaul traffic and load on the BSs, which reduces the Access Delay.

5.5 Summary

In this chapter, we propose a Collaborative-based caching mechanism ColabCache in a

clustered MEC mesh network using RL. The clustering of MEC servers is performed based

114

Summary

Figure 5.11: Scatter Plot of Normalized Redundancy and Popularity

on geographical locations. Collaboration is carried out among ′M ′ MEC servers to service

a given video request that arrives at a BS. If the requested content is present in the local

MEC server, it is sent directly to the user; else it is brought from the neighbouring MEC

server. Whenever the requested content is not present in the clustered MEC network, the

content is fetched from the CCS and sent to the user. The decision on caching a particular

requested content into the cache of a MEC server is based on the measured Priority Score

of the content. The proposed model has been extensively evaluated using the Zipf and Iflix

dataset. To measure the efficacy of the proposed model, ColabCache has been compared

with various state-of-the-art caching strategies against CHR, backhaul traffic, access delay

and re-buffering.

Although, the proposed collaborative caching strategy performs well with heterogeneous

end users’ demands and requests, it is a centralized approach and may burden the MEC

servers if number of end-users becomes high. To make the processing decentralized and a

bit user-specific, in the final contributory chapter, we focus on developing a federated-based

learning caching strategy, where training is performed on the UEs instead of the central

server. Along with federated caching we also explore on the users’ viewing experience for

an adaptive video streaming session.

;;=8=<<

115

“Many of life’s failures are people who did not realize how close

they were to success when they gave up.”

∼Thomas A. Edison

6
Federated Caching and Prediction Model for

Content Delivery

There are two contributions in this final contributory chapter. In the first part, a hierarchical

Federated RL-based Content Caching strategy is presented. In this work, for the first time,

a A3C DRL network has been trained in a Federated way for making caching decisions at

the edge server. The proposed model offers a scalable solution by transferring the training

process to the UEs instead of centrally at the edge server. Further, the second part of this

chapter proposes a deep learning based prediction model for adaptive video streaming. In

this work, a LSTM-DNN based on DRL has been devised to model the dynamic control

rules for handling varying network conditions and end-user demands. The proposed model

117

Federated Caching and Prediction Model for Content Delivery

maximizes the overall QoE by satisfying the three QoE verticals such as overall video quality,

re-buffering and video quality switches simultaneously.

6.1 Federated Learning-based Caching

In most of the existing caching systems presented in chapter 2, the centralized server collects

user information and local data for training a caching model. Hence, as the number of

content requests increases, the diversity in request patterns also increases, thus making

the model less scalable and adaptive to the ever-changing dynamic scenarios. Caching

models trained in a centralized way over-consumes the network resources during training

and transmission of video requests. Federated Learning (FL) [36–38] has been introduced

recently to improve the caching performance at the edge server and efficiently offload the

computation task from the central server to the end-users. In FL, a model is trained at the

user’s end instead of the edge server, where the user data is not needed to be transferred to

the servers. Although there has been considerable success in using ML techniques for caching

schemes in wireless networks, learning-based caching strategies still face several challenges.

Firstly, in wireless network edge, multimedia popularity is considered unpredictable and

dynamic. The spatial-temporal fluctuation in content popularity adds a layer of complexity

to content caching. It is also difficult for ML algorithms to reliably and swiftly anticipate

content popularity based on user data and content retrieval history. Secondly, redundant

items may be stored in the edge node cache, which fails to optimize the resource utilization

of the global cache. Given the finite and restricted cache sizes at the various levels of edge

nodes, deciding where and how to cache is not straightforward. Finally, scalability would be

another challenge with a centralized training environment. With an increase in the number

of users, the data generated at the MEC server increases exponentially. Because of the high

computing and communication costs, centralized ML algorithms may struggle to handle

such enormous data.

Therefore in this work, we propose a FL-based caching strategy called FedCache which

deploys a decentralized approach for training a caching model. In FedCache, the edge server

118

Federated Learning-based Caching

aggregates the trained parameters sent by various end-users and presents a global model.

This caching approach offloads the central server’s computation task to the participating

end-users. In our proposed work, we present a Federated RL-based caching approach that

focuses on the popularity of videos. Users download the initial RL model from the edge

server and train the model using its local data. After each training round, the users upload

the learned parameters of the trained model to the server and suggests ‘n’ video files to the

server based on popularity. The server then aggregates the learned parameters uploaded by

each user using Federated Averaging [103] and finally recommends the most popular files

after completing ‘N ’ training rounds. The primary objective of the proposed decentral-

ized training approach using RL is to maximize the cache hit rate at the edge server and

simultaneously improve the users viewing experience.

The significant contributions made in this work to achieve the above-mentioned objec-

tives are as follows:

� In this work, we propose a novel RL-based FL model called FedCache for efficient

network caching. In this work, Actor-Critic (A3C)-based RL architecture is used for

the first time to model the caching strategy at the edge server in the federated way.

FedCache offers a scalable solution for handling a diverse request patterns by deploying

the training process to the end user’s devices instead of doing it centrally at the edge

server.

� In addition, a novel RL-based A3C framework has been proposed for defining state

policies πθ related to cache admission and eviction. Two Phases: I and II are trained

sequentially, generating state-action policies for deciding which segments to admit and

which to evict.

� Finally, a novel cache admission and eviction policy has been defined, unlike previous

strategies, which mostly used simple heuristic-based approaches such as FIFO, LRU

and LFU. FedCache measures the segment-level popularity and trains the A3C net-

work to learn which and how many segments to be evicted from the local cache to

119

Federated Caching and Prediction Model for Content Delivery

cache a new segment and reward the action taken.

The proposed FedCache measures the caching performance against various metrics such

as cache hit rate, backhaul traffic and access delay. A comprehensive set of experiments

were performed over the Iflix video streaming dataset [46]. FedCache outperformed both

heuristics and learning-based state-of-the-art strategies substantially.

6.1.1 System Overview

UE 1 UE 2
UE N

1

2

3

4

 EDGE SERVER4

4 (a) FEDERATED

AVERAGING

4 (b) FINAL

MODEL

4 (c) CACHE

DECISON

 Popular Contents

CORE CONTENT SERVER

Upload

Model

Download

Model

1

3

2

UE 1

UE 2

UE N

 LOCAL TRAINING2

UE1

Download

Model

Local Dataset

Updated

Model

UE

Figure 6.1: A Hypothetical Scenario of Edge Caching using Federated Learning

A diagrammatic overview of the system architecture used in our proposed FL-based

caching at the edge node is presented in Figure 6.1. FL is defined as a ML setup that

includes several distributed user devices (or edge devices) with their local data to prepare

a model locally without transporting the data to the edge server. This setup does not

reflect the traditional centralized ML approaches, where users’ local data are brought to the

central server for training purposes. It does not follow traditional distributed approaches,

which often assume that data among users are uniformly distributed. The primary challenge

with a centralized training environment would be scalability [36]. As the number of users

120

Federated Learning-based Caching

expands, so does the volume of data created by those users. Because of the high computing

and communication costs, centralized ML algorithms may struggle to handle such enormous

data. That’s where FL comes into the picture. In FL, a central or edge server does not

have to train that massive data; instead, users are selected to train the caching model on

the local in each federated iteration. The server will only collect and aggregate the model

updates and take decisions based on that updated model.

Figure 6.1 illustrates the steps performed in a FL communication round. Each commu-

nication round consists of the following four steps:

1. Download Model: In this work, we assumed that u users are present within the

coverage area of a given BS. q users are randomly selected from the pool of u users,

which participate in the FL-based training process, consisting of ‘N ’ communication

rounds. The users then download the initial global model from the MEC of the BS.

2. Local Training: The next step of the proposed FedCache is to train the caching

model based on the local data of users, as illustrated in step 2 of Figure 6.1. The

dataset for every user consisting of the video request pattern is denoted by D =

⟨D1, D2.....Dq⟩. Dq denotes the video request data of q
th user and the length of dataset

Dq is represented by dq, where dq = |Dq|. To train our RL-based model in a Federated

manner, we employed A3C [99], a state-of-the-art RL technique. Our proposed FL-

based RL model aims to improve the cache hit rate at the edge server to minimize the

backhaul traffic and access delay. The performance of our proposed model is measured

in terms of the overall reward χt, where χt is a function of cache hit rate, backhaul

traffic, access delay, video quality and re-buffering events. The proposed model aims to

maximize the overall reward χt for every training iteration and communication round.

3. Upload Trained Model: As represented in step 3 of Figure 6.1, the next step is to

upload the trained local model ωq
n from the pool of users u. ωq represents the trained

parameters of the nth communication round for qth user. In an FL-based training

environment, the time for communication costs dominates the computation cost, as

121

Federated Caching and Prediction Model for Content Delivery

mentioned in [104].

4. Model Aggregation: After individual users upload the models to the edge server,

a new global model ωg
n+1 is generated by computing the weighted sum of all received

local models ωq
n as shown in Figure 6.1. The newly constructed global model ωg

n+1

is downloaded by the users for training in the next round n + 1. The global model

is constructed using Federated Averaging [37] algorithm, a common technique for

calculating the weighted sum in FL.

Let us assume that ωg
n is the initial global model sent to q number of end-users. Next,

after training at the users’ end, the updated model is then uploaded to the edge server,

which is denoted by Equation (6.1):

Hq
n := ωg

n − ωq
n (6.1)

The edge server, after receiving the individual updates, aggregates and generates a

new global model ωg
n+1 for the next communication round using Federated Averaging

given by Equation

(6.2):

ωg
n+1 = ωg

n + ψHg
n (6.2)

where,

Hg
n :=

1

q

q∑
i=1

Hq
n (6.3)

where, ψ is learning rate. The training continues for a total of N communication

rounds. The final trained model then caches the most popular content in the edge

server as depicted by Steps 4 (b) and 4 (c) of Figure 6.1. The FL-based caching

model is implemented using A3C model of RL, the primary objective is maximizing

the overall reward χt given by Equation (6.8) In FedCache, we measure the popularity

of video segments using short, medium and long-term popularity defined in Section

122

Federated Learning-based Caching

DATA
PRE-PROCESSING

SERVER
Initial Model

Pool of Users (u)

Federated Training

Federated
Averaging

Update
Model

SERVER
Select

Randomly
q Users

Initialize Cache

Figure 6.2: Overview of Federated Learning-based Edge Caching

6.1.2.

6.1.2 Proposed Model

In this section, we present the related problem formulation and architecture of the FedCache

followed by the training mechanism. Figure 6.2 presents an overview of the proposed caching

mechanism using FL. In the proposed FedCache mechanism, a stream of video requests is

pre-processed from various users. An RL-based Actor-Critic model is defined and initialized

to be trained on user devices locally. At the other end, clients await the edge server to

broadcast the initial model ωg
n. From a pool of u users, present within a given BS, q

users are selected randomly. The selected users (u1, u2....uq) receive the initial actor-critic

model, model optimizer, and a learning algorithm broadcasted by the edge server. The

q selected users locally estimate the model’s update by performing the training algorithm

on the initial model using the data on the device. Users then sent the locally trained

123

Federated Caching and Prediction Model for Content Delivery

parameters ω1
n, ω

2
n...ω

q
n to the server for aggregation. The edge server then aggregates the

obtained model parameters using federated averaging and finalizes the global model ωg
n+1.

This process continues for N communication rounds.

6.1.2.1 Problem Formulation

Let us assume that the MEC server at the edge node consists of a local cache having a

capacity of K. u users are present within the purview of BS, where q users are selected

randomly to participate in the federated learning-based training procedure. We assume

that the participating users are computationally capable of training the proposed RL-based

model. The set of DASH video streams is denoted by V and cbij is the requested j
th segment

of ith video with bth video quality. b ∈ L where, L = (240p, 480p, 720p) denotes video quality

representation. To determine the cache hit rate at the MEC server for a video request cbqij

of qth user, a binary decision variable ybqij is defined, where ybqij ∈ {0, 1}. If the requested

content by the qth user is present in the local cache of the MEC server, it is a hit and ybqij = 1.

Whereas, in case of a miss, ybqij = 0, and the content has to be fetched from the CCS, and a

decision to cache the requested content is to be made.

Hence, in a given time instance t, the local cache of the MEC server can only accommo-

date videos that do not exceed the total capacity K and is denoted by Equation (6.4)

∑
q∈u

∑
cij∈V

yqij · k
q
ij ≤ K (6.4)

kqij is the size of requested video segment of the qth user.

The decision to cache the requested segment mbq
ij the average popularity P q

ij of the re-

quested segment is measured given by Equation (6.5)

P q
ij =

mq
ij∑

ij∈V

∑
q∈u

mq
ij

(6.5)

The average popularity P q
ij is the ratio of requests received for the content mij to the

124

Federated Learning-based Caching

total number of requests received from q users at a particular time frame. Along with the

average popularity value FedCache also considers various popularity values such as short-

term (number of times mij requested in the last 100 time steps), medium-term (number of

times mij requested in the previous 1000 time steps) and long-term (number of times mij

requested in the last 10000 time steps) popularity.

The Cache Hit Rate (CHR) in the local cache of the MEC server is denoted by Equation

(6.6) and is defined as the total number of hits occurring to the total number of requests

received in a given time frame.

CHR =

∑
ij∈V

∑
q∈u

yqijm
q
ij∑

ij∈V

∑
q∈u

mq
ij

(6.6)

With frequent cache miss at the MEC server, more requests are forwarded to the CCS

resulting in higher congestion at the backhaul links (the link between BS and CCS). Con-

gestion at the backhaul link is measured by Equation (6.7) denoted as ϱ

ϱ =
∑
ij∈V

∑
q∈u

·mq
ij · k

q
ij · (1− y

q
ij) (6.7)

The proposed model minimizes the congestion at the backhaul link by training an efficient

caching mechanism at the MEC and reducing access time for the users to retrieve the

requested content. The performance of FedCache is measured against the overall reward

χt which is a linear combination of video quality (Q(t)), CHR and re-buffering (R(t)) events

denoted by Equation (6.8).

χt = β1 ·Q(t) + β2 · CHR(t)− β3 ·R(t) (6.8)

Therefore, the objective of FedCache, is to maximize the overall reward χt subject to

the availability of resources S. β1, β2, and β3 are hyper-parameters used for training our

model.

125

Federated Caching and Prediction Model for Content Delivery

H
ID

D
E

N
 L

A
Y

E
R

 1

H
ID

D
E

N
 L

A
Y

E
R

 2

M
E

R
G

E
 N

E
T

RNN

240p

720p

480p

Bandwidth

Buffer Size

No. of Chunks left n
t

Last Chunk Quality b
t-1

No. of 480p nb2

No. of 720p nb3

No. of 240p nb1

RNN
Bandwidth H

ID
D

E
N

 L
A

Y
E

R
 1

H
ID

D
E

N
 L

A
Y

E
R

 2

M
E

R
G

E
 N

E
T

240p

720p

480p

Popularity of Requested Frame P (a
t
)

Avg Popularity of Bottom 10 Frames

Avg Popularity of Various Quality (240p/480p/720p)

a
t

CRITIC

NETWORK

ACTOR

NETWORK

Reward

Figure 6.3: Proposed Architecture of FedCache using A3C Network

6.1.2.2 Architecture of FedCache

Figure 6.3 illustrates the proposed architecture of RL-based FedCache Caching Module

(CAM) using A3C network. The architecture presents a detailed overview of the proposed

RL-based actor network. The CAM module takes various features as input to generate

policies πθ related to the eviction of video segments of various qualities (240p, 480p and

720p). The CAM consists of two phases: Phase I outputs the quality of the video (240p,

480p and 720p) (at) to be sent to the user. Phase II determines the quality and number

of such quality segments (πθ(xt, yt)) to be evicted from the local cache of MEC server. The

inputs and outputs related to Phase I and II is mentioned below:

� Phase I of actor-network takes state inputs st1 = (τt, ζt, nt, n
b1, nb2, nb3, bt−1) when

content mq
ij is requested by the qth user at time t. τt represents the bandwidth which

is fed to an RNN module. ζt is the current buffer size, nt is the number of chunks left,

nb1, nb2 and nb3 is the number of 240p, 480p and 720p segments, and bt−1 is the last

chunk quality. The inputs from both sequential and instantaneous are merged using

the Merge Net. The Merge Net is followed by two hidden layers consisting of 64 and

32 neurons and then a FC Layer which gives the output at. at represents the video

quality to be sent to the user.

� Phase II takes input state st2 = (at, P
1
ij, P

2
ij, P

3
ij, τt). at is the output from Phase I,

126

Federated Learning-based Caching

P 1
ij, P

2
ij, P

3
ij is the average popularity of video quality 240p, 480p and 720p respectively.

The inputs are combined using a Merge Net followed by two hidden layers (consisting

of 32 neurons each) and a final FC Layer, which defines the state-action policies

πθ(xt, at1). at1 represents the action which states how many video quality segments

(240p/480p/720p) need to be evicted from the local cache of the MEC server.

Similar to the Actor-Network, the architecture of the critic network takes the same set of

input states and hidden layer configuration with an additional input of πθ(xt, yt). The critic

network measures the efficiency of policy being learned by calculating the expected reward

χ̂t. RMSprop (Root Mean Squared Propagation) optimizer with learning rate α = 0.01 is

used. The discount factor, γ is set to 0.9.

6.1.3 Federated Learning-based Training

The proposed FedCache deploys an RL-based A3C agent to train the caching model. The

chosen client locally estimates the model’s update by performing the training algorithm on

the initial model using the data present on the device. The selected user transfers its locally

trained model parameters to the edge server for aggregation. The edge server then aggregates

the obtained model parameters (i.e., federated averaging) and finalizes the global model.

The global model actors are then used to make caching decisions i.e. Cache Admission

and Eviction. In Federated Averaging, the amount of computation is controlled basically

by three parameters, namely, q, the number of clients taking part in each communication

round; I is the number of iterations each client makes during each round; B is the batch size

of the local dataset. With Federated averaging, the compression rate is much stronger than

other averaging approaches such as SGD (Stochastic Gradient Descent) [105]. This work

considers a single MEC server with a cache capacity of S [256 GB or 128 GB, or 64 GB].

Users train the broadcasted model for 50000 iterations. Figure 6.4 illustrates the average

reward for randomly selected five users for 50000 iterations in a given communication round.

Algorithm 7 presents an overview of the training policy for the proposed work.

127

Federated Caching and Prediction Model for Content Delivery

Algorithm 7: FedCache Training Policy

1 Initialize MEC’s cache: BS ;
2 K → Local cache capacity (64,128,256 GB) ;
3 Let mq

ij is the requested content at the timestamp t ;

4 V : Set of videos ;
5 u: Pool of u users within the BS;
6 if (mq

ij ∈ V in BS) then

7 BS

mq
ij−−→ User (q)

8 else
9 CS → BS

10 CachingModule(mq
ij)

11 BS

mq
ij−−→ User (q)

12 Function CachingModule(mq
ij):

13 at1 = FedCache.output
14 Lij Least Popularity Score
15 if (Pij < Lij) then
16 return mq

ij ▷ Do not Cache mq
ij

17 else
18 while Pij > Lij & K ′

o < kbij do
19 Evict(Lij) ▷ Delete the content from the cache with the least popular

score

20 Function FedCache(mq
ij):

21 q = rand (u)
22 while i ∈ q do
23 A3C.actor()
24 A3C.critic()

25 ωg
n+1 = ωg

n + ψHg
n ▷ Federated Averaging

26 Calculate χt

128

Federated Learning-based Caching

5K 10
K

15
K

20
K

25
K

30
K

35
K

40
K

45
K

50
K

Number of Iterations

5
10
15
20
25
30
35
40
45
50

Av
er

ag
e

Re
w

ar
d

Average Reward for Participating Users
USER_1
USER_2
USER_3
USER_4
USER_5

Figure 6.4: Federated Learning-based Training among 5 different Users

6.1.4 Experiments and Results

The performance of the proposed FedCache is evaluated against various evaluation metrics

such as Cache Hit Rate (CHR), backhaul traffic (GBs) and access delay (sec). We compared

our work against various baseline work such as LRU [23], LFU [24] and FIFO along with

state-of-the-art strategies like PoPCache [22], QoECache [13], AdaptSize [31] and AViC

[25]. We evaluated the performance of FedCache using Kaggle’s Iflix [46] Video Streaming

Dataset. The dataset contains information on 17272 media files used as our media library.

It also includes 542158 plays (in our case, requests) of 17272 movies made by 110640 users.

The video requests dataset is modified using Zipf distribution [106].

In our experimental scenario, we evaluated FedCache against various cache sizes of 64

GB, 128 GB, and 256 GB. The number of users N within a given BS is fixed at 100. DASH

video streams [43] are used with a segment duration set of 10 seconds with four video

resolution layers (720p, 480p and 240p). We randomly choose 5-10 users for training in each

federated iteration.

129

Federated Caching and Prediction Model for Content Delivery

Figure 6.5: Comparison of Average Reward for various Caching Schemes

6.1.4.1 Evaluation Against various Cache Size

Figure 6.5 illustrates a comparative study of the Average Reward given by Equation (6.8)

for various caching strategies. In this representation, the average reward is measured for

a 10-second video representation with a cache size of 256 MB. FedCache performance is

substantially improved when compared with other caching strategies, with AViC [25] being

the next best performer in the case of overall average reward. The average reward is a com-

bination of both ABR metrics (video quality and re-buffering events) and Caching metrics

(CHR, backhaul traffic and access delay). The performance of FedCache further increases

with an increase in MEC cache size, as it is evident from Figure 6.6. As the cache size

increase from 64 to 256 GB, the local cache of MEC could accommodate more video seg-

ments which are frequently requested, thus increasing the cache hit rate. FedCache primary

objective is increasing the cache hit rate, therefore the performance is evident from Table

6.1. Table 6.1 presents a comparative study of FedCache against CHR, backhaul traffic and

access delay for various cache sizes of 64 and 128 GB with respect to a 10-sec video segment

duration. As the cache size of the MEC server increases from 64 GB to 128 GB, the CHR

increases by almost 21%. Therefore, more popular video segments could be stored as the

130

Federated Learning-based Caching

Figure 6.6: Comparison of Average Reward Against Various MEC Cache Sizes (GB)

Table 6.1: Comparison of FedCache Against Various Cache Size. The best results are shown in
Red and the second best in Blue

MEC Cache
Size (GB)

Evaluation
Metrics

Proposed
FedCache

FIFO LRU LFU PoPCache QoECache AdaptSize AviC

64 GB
CHR 35.53 18.28 17.01 22.31 23.1 24.23 21.16 33.76
Backhaul
Traffic (GB)

432.28 547.42 557.47 520.46 501.6 491.46 528.17 444.15

Access
Delay (sec)

1429 1811 1839 1722 1704 1679 1747 1468

128 GB
CHR 43.22 26.20 27.25 33.72 34.56 36.22 29.98 41.77
Backhaul
Traffic (GB)

380.67 494.36 469.10 444.01 430.21 422.80 469.10 390.39

Access
Delay (sec)

1258 1635 1612 1469 1450 1413 1552 1290

cache size increases, resulting in higher CHR. FedCache performance increases by almost

5% and 12% for cache size of 64 GB and 256 GB respectively when compared with the next

best strategy AViC.

6.1.4.2 Evaluation Against Cache Hit Rate

The Cache Hit Rate (CHR) is denoted by Equation (5.4) and represents the CHR of ran-

domly selected users from u. The proposed model outperforms all the other caching tech-

niques in terms of cache hit rate. For smaller cache sizes, AViC almost performs similarly to

our proposed method. But as the cache size increases, the difference in performance keeps

131

Federated Caching and Prediction Model for Content Delivery

getting prominent. FedCache achieved a cache hit rate of 35.53%, 43.22%, and 56.35% for

cache sizes 64 GB, 128 GB, and 256 GB respectively. Figure 6.7(a) presents the CHR of the

proposed model along with other caching strategies. FedCache outperforms both heuristics

and learning-based strategies as it is more scalable and robust to the changing and diverse

request patterns arising out of heterogeneous user demands.

6.1.4.3 Evaluation Against Backhaul Traffic

The network traffic at the backhaul link is measured by ϕ represented by Equation (6.7).

Table 6.1 and Figure 6.7(c) presents a comparative study of FedCache against backhaul

traffic which is given by Equation (6.7). The result obtained is for a 10-second video segment

duration. An increase in the CHR reduces the backhaul traffic, as is evident from our

experimental results. The cache hit rate is inversely proportional to the amount of backhaul

traffic generated, as whenever a cache hit occurs, we serve the request directly from the

cache. We must only fetch the requested segment from the core network if a cache miss

occurs. The proposed approach’s high cache hit rate significantly decreases the backhaul

traffic generated as fewer requests are forwarded to the CCS through the backhaul links.

The backhaul traffic generated in the case of FedCache reduces by almost 2% and 11% for

64 GB and 256 GB cache size when compared with its nearest competitor AViC.

6.1.4.4 Evaluation Against Access Delay

The Access Delay, δ, is the delay between the arrival of request for mq
ij at the BS from the

qth user and its delivery. It is represented by Equation (6.9)

δ =
∑
ij∈V

∑
u∈q

·mq
ij · (1− y

q
ij) · η (6.9)

where η = 0.02 msec is the delay in the backhaul link. Access delay is also inversely

proportional to CHR. The increase in the local cache hit signifies more popular content

being stored in the server and fewer requests being forwarded to the CCS in case a miss

occurs. This leads to lesser congestion at the backhaul link, thereby reducing the overall

132

Federated Learning-based Caching

(a) Cache Hit Rate (b) Access Delay (sec)

(c) Backhaul Traffic (GB)

Figure 6.7: Performance of the proposed FedCache against Cache hit, Access Delay and Backhaul
Traffic for 10-sec segment with 256 GB cache size

time to access the content for a user q. Here, access delay is considered the total of q

users for n communication rounds. Access delay for the proposed FedCache is presented in

Table 6.1 and Figure 6.7(b) for cache sizes of 64, 128 and 256 GB with segment duration

of 10 seconds. Access delay for the proposed work outperforms the existing state-of-the-art

heuristic and learning-based model. Access delay is reduced by 3% and 12% for 64 GB and

256 GB cache size compared with AViC. Therefore, the proposed FedCache performance

with respect to caching metrics improves substantially as the size of the local cache of the

MEC server increases. It is expected from our experiments that as the cache size increases,

the performance of the proposed work will further increase. Thus, FedCache performs the

133

Federated Caching and Prediction Model for Content Delivery

training process in a decentralized way on the end-user’s devices with its local data. FL-

based training offloads the computation task from the central server to the end-users making

the model more scalable to the increasing volumes of data.

6.2 Prediction Model for Content Delivery

Throughout this dissertation, we have explored different issues regarding caching strategies

to improve CHR while maintaining a decent QoE. In this final phase, the second part

of fourth contributory chapter explores content delivery for a video streaming session. A

DNN-based model is then proposed that chooses the proper video bitrates to maximize the

user’s viewing experience of various QoE models. In order to enhance the overall QoE, the

main objective of the adaptation strategies is to balance three important QoE verticals such

as bitrate, buffer size and flickering effect. It essentially means that the best appropriate

available bitrate (Maximize Video Quality) of the video segments should be selected in

such a way that buffering along with the flickering effect (Video Quality Switches) should

be minimized. Literature reveals that research based on adaptive video streaming has

progressed and primarily grouped into two classes of strategies, namely, (i) heuristics based

and (ii) ML-based approaches. For example, heuristics based approaches like [5] [73] [74]

[107] and a few ML-based approaches [6] [76] [108] models adaptive bitrate ABR strategies to

maintain uninterrupted high quality video viewing experience for adaptive video streaming.

The work presented in [4] has discussed a QoE management module for designing an

adaptive bitrate model for video streaming. Figure 6.8 depicts an overview of a general

block diagram for QoE management. The QoE management is primarily divided into three

modules: a) QoE Modeling for a video streaming session is defined as a linear function

of overall video quality, buffering events and the number of video quality switches for a

given session. b) QoE Monitoring determines the QoE reward for every video segment

fetched by the client and c) QoE Optimization and Control observes the QoE for the video

chunks already fetched by the client, and then the QoE reward is maximized by updating the

control policy. To devise such a type of QoE management, real-time, accurate and adaptable

134

Prediction Model for Content Delivery

QoE

Modelling

QoE

Monitoring

QoE

Optimization

& Control

Quality of Experience

Management

Figure 6.8: Block Diagram for Performing QoE Management [4]

QoE parameters are required. In recent times, machine learning ML-based strategies have

been incorporated to meet these requirements, which helps to predict more accurate QoE

management parameters for optimizing the QoE reward function.

In this work, an LSTM-CNN and RL-based DNN model has been devised, which is

trained with a large set of input parameters. These parameters essentially model the dy-

namic control rules for handling varying network conditions and end-user demands. Thus,

a more efficient QoE management model can be achieved. The proposed DNN architecture

combined with the flavour of RL starts learning the control policy for an adaptive algo-

rithm. It gradually keeps improving the reward signal measured in terms of QoE for the

decisions made for past video segments. The proposed model was able to maximize the

overall QoE by satisfying the three QoE verticals such as overall video quality, re-buffering

and video quality switches simultaneously. In order to overcome the shortcomings of exist-

ing literature, a DNN based on LSTM and CNN (LASH) has been proposed. The major

contributions made in this work are as follows:

� Identifying a sequential DNN that can work much more effectively than other CNN

models. LSTM has the ability to remember the patterns within the input data for

longer duration’s. Along with the long sequence of inputs, LSTM also remembers the

historical contexts of the inputs. Therefore, the model is able to predict the quality

level of the videos in a much more efficient way.

� The three QoE metrics (perceived video quality, buffering time and video quality switches)

135

Federated Caching and Prediction Model for Content Delivery

were optimized simultaneously. Therefore, the overall QoE improved by ≈ 8.84% when

compared with state-of-the-art ML and heuristics-based approach.

� Moreover, the proposed model reduces the flickering artifact significantly for different

QoE models.

6.2.1 Proposed Model

The proposed adaptive streaming model for improving QoE is mainly based on DASH

framework discussed in chapter 2. In this section, the proposed LASH model has been

described. This deep neural model consists of LSTM, CNN and a variant of RL architecture

to achieve improved QoE for the end-users. In this work, an existing Actor-Critic Network

or the A3C [6] has been improved by using LSTM architecture. In RL, there is an agent

which takes an action on an environment and based on the action taken, the environment

gives a reward. The underlying architecture uses two networks, i) the Actor Network which

describes the action policies and ii) the Critic Network that provides a reward for the action

taken.

A block diagram of the proposed LSTM-CNN based model for Adaptive Video Streaming

over HTTP (LASH) architecture has been illustrated in Figure 6.9. The underlying problem

for adaptive bitrate prediction generally takes two types of inputs. For instance, some inputs

are sequential, and others are static or instantaneous. In this model, the state-action pair

π(st, at) is defined by the underlying Actor-Critic Network. The RL agent of the actor

network selects an action at that corresponds to the bitrate of the next video segment upon

receiving the input state st. Based on the action (at) taken, the critic network analyses the

performance of the proposed LASH model with the help of the reward function mentioned in

Equation 6.10. The detailed LASH architecture, along with the training phase, is discussed

in the subsequent subsections.

136

Prediction Model for Content Delivery

State S
t

X
t

X
t-k

X
t-1

Past Chunk Throughput

T
t

T
t-k

T
t-1

n
1

n
mn

2

b
t

c
t

r
t

Past Chunk Download Time

Next Chunk Size

Current Buffer Size

No. of Chunks Left

Last Chunk Bit-Rate

LSTM

LSTM

LSTM

MERGE_NET

300p

750p

1200p

1850p

2850p

4300p

Fully Connected

Measure QoE

Metrics

Critic Network
Reward = Perceived Video Quality - Buffering - Smoothness

1200p

Actor Network

State Policies

π
0
 (s

t
, a

t
)

Figure 6.9: Proposed LASH Deep Neural Architecture with RL

6.2.1.1 Objectives of LASH ABR Model

The primary objective of the proposed LASH model is to select an action at for the input

state st, such that the overall video quality perceived by the end-user is maximized while

minimizing re-buffering events and flickering effects simultaneously. A QoE reward function

has been devised in Equation (6.10) as given in [6] to measure the overall performance of a

video streaming session:

χt =
N∑

n=1

q(Rn)− µ
N∑

n=1

Tn −
N−1∑
|q(Rn+1)− q(Rn)| (6.10)

where the first term q(Rn) represents the video quality perceived by a user for N video

chunks. µ is the re-buffering penalty for the re-buffering time Tn which is resulted from

downloading n video chunks. The sub-expression |q(Rn+1) − q(Rn)| denotes the flickering

effects occurring while viewing the video segments from chunk n to chunk n+ 1.

Accordingly, the individual terms of Equation (6.10) are required to be optimized in the

following manner so that the overall reward for QoE of a given video streaming session is

maximized i.e.

137

Federated Caching and Prediction Model for Content Delivery

� Maximize the overall perceived video quality: Higher quality video streams are to be

provided to the clients i.e. max(
N∑

n=1

q(Rn))

� Minimize re-buffering time Tn: For providing a stutter-free video viewing experience,

it is required to minimize the re-buffering time i.e. min(
N∑

n=1

Tn)

� Minimize frequent switching between the corresponding bitrates Rn+1 and Rn: The

unnecessary video quality switches downgrade the QoE because of the flickering effect

i.e. min(
N−1∑
n=1

|q(Rn+1)− q(Rn)|)

where N is the total number of video segments for a given video, and n is the current video

segment the client fetches. Based on the Equation (6.10), there are three different models

depending on q(Rn):

� QoELinear : q(Rn) = Rn MPC [98] used this metric for the video quality perceived by

the end-user that maps the selected bitrate Rk to q(Rk). As stated by the authors in

MPC, the video quality q(.) perceived by the end-user depends on the device as well

as the content of the video. For example, consider viewing videos of different bitrates

on an HDTV and then on a mobile device. The authors claimed that the difference

in viewing experience is quite noticeable when the same video with different bitrates

is viewed on a HDTV. However, such differences are not observable when the video is

viewed on a mobile device with a much smaller display.

� QoELog : q(Rn) = log(R/Rmin) BOLA [107] used this metric to define the video quality

perceived by the end-user. This logarithmic function signifies the fact that whenever

there is a switch in the chunk bitrate for lower video qualities, i.e. from 0.5 Mbps to

1.5 Mbps, the gain in the perceived video quality is higher than switching between

higher bitrates: for example, from 6 to 7 Mbps.

� QoEHD : To define a metric for HD videos, [6] assigned scores to both the HD and

non-HD videos. The function q(Rn) provided a low score for the non-HD videos and

a higher score for HD videos. Table 6.2 provides the exact values of HD video quality

scores.

138

Prediction Model for Content Delivery

Table 6.2: Video Quality Scores of HD Videos

Video Bitrate (Kbps) 300 750 1200 1850 2850 4300
Video Quality Score

(HD Model)
1 2 3 12 15 20

6.2.1.2 Input Space

The input space st considered by LASH after the download of each chunk t is categorized

into two types. The input data space st = (x̂t, τ̂t, n̂t, ζt, ct, bt) is feed to the deep neural

network of LASH. x̂t denotes the throughput of past k chunks, τ̂t is the past k chunks

download time, n̂t is available sizes of the next m video chunks, ζt is the current buffer size,

ct is the number of chunks left, and bt is the bitrate of the last chunk which was downloaded.

� Sequential Data: In this work, few inputs are assumed as sequential, for example, past

k chunk throughput as x̂t, past k chunk download time as τ̂t and chunk sizes as n̂t for

state inputs as they may be altered with respect to time. Since LSTM works better

than 1DCNN, RNN on sequential data, the sequential state inputs are fed into the

LSTM.

� Instantaneous Input Data: Inputs like current buffer size as ζt, number of chunks left

as ct and last chunk bitrate as bt are treated as instantaneous data. Here, instantaneous

data represents the exact value of ζt, ct, bt at time t.

6.2.1.3 Actor-Critic (A3C) Network

LASH uses A3C [109], a state-of-the-art actor-critic RL algorithm for the training. A3C

consists of two networks, one being the actor network and the other as the critic network.

The input to the actor network is the input space st, and the output is the state-action pair

defined as the probability distribution over state policy π(st, at) given by Equation (6.11)

as mentioned in [6]:

π : π(st, at)→ [0, 1] (6.11)

139

Federated Caching and Prediction Model for Content Delivery

where, π(st, at) is the probability that for the input state st, action at is taken. In real-life

scenarios, many [state, action] pairs (like buffer and bandwidth) can be mapped to different

bitrates of the same video segment or the same bitrate of different video segments. It is

hard to design such a model with so many (st, at) pairs. So, LASH trains its network with

several adjustable policy parameters θ [6]. The policy parameter is represented as πθ(st, at).

The state policies defined by the actor network is evaluated by the critic network using the

reward function, which is based on the QoE of the end-user. The input to the critic network

is the state-action policies πθ(st, at) defined by the actor network. The critic network uses

the equation defined in 6.10 to measure the QoE of a given video streaming session for the

state policies generated by the actor network. The critic network aids in training the LASH

model for improving ABR strategies. The primary goal of these agents is to maximize the

aggregated overall reward (χt) defined in Equation (6.10). The reward χt is optimized for

a video streaming session while simultaneously considering all the QoE metrics (perceived

video quality, buffering and smoothness).

6.2.1.4 LASH Architecture

The proposed LASH model considers past (k = 16) bandwidth measurement, chunk down-

load time and video chunk sizes in the experimentation. These sequential inputs are fed to

a LSTM network as illustrated in 6.9. Instantaneous inputs like current buffer size as ζt,

number of chunks left as ct and last chunk bitrate as bt are fed to a fully connected layer with

128 filters, each of size 4 and stride 1. Outputs from this first layer are concatenated in the

next layer using the merge net having 128 neurons. The last layer is a fully connected layer

that uses a Softmax Function to select action at for state st in the state policies πθ(st, at).

Action at is the probability of choosing the appropriate bitrate of the next video segment

from a set of available bitrates for the given video. The softmax function calculates the

probability of selecting an action at from a list of n different actions. The critic network

uses the same neural architecture as the actor network. The critic network uses a linear

neuron in the last layer instead of the softmax function, which measures the QoE of a given

140

Prediction Model for Content Delivery

video streaming session using Equation (6.10).

6.2.1.5 Training Phase

In policy gradient strategy [100], the primary motivation is to estimate the gradient of the

expected reward (rt). The total reward χt is mentioned in Equation (6.10). In the policy

gradient method, an Advantage function is defined as Aπθ(s, a) for the state policies πθ(st, at)

by the actor network. The advantage function represents how much better a definite action

at in the state-action policy (st, at) at time instant t is better compared to the average

actions. For a given experience of state-action pair (st, at), the advantage function A(st, at)

can be estimated by Equation (6.12) as described in [99]

A(st, at) = χt + γV πθ(st+1; θv)− V πθ(st; θv) (6.12)

As mentioned in [99], the above equation represents the experience for the advantage

function for the transition from state st to st+1 the obtained reward is χt for the action at

taken. θv represents the critic network parameters, V πθ(·; θv) is the estimate of vπθ(·) and γ

is the discount factor representing the importance of future rewards. vπθ(·) is the expected

total reward that starts at state s and follows the policy πθ. The critic network learns an

estimate of vπθ(s) from the experimentally observed rewards.

� Softmax Function: The final fully connected layer of LASH uses the softmax function,

which gives a probability distribution of all the actions at (selecting the video bitrates)

of the state-action policies πθ(st, at). The softmax function is defined in Equation

(6.13)

ρ(a)i =
eai

K∑
j=1

eaj
, for i = 1,..,K (6.13)

where K denotes the total number of probabilities of the actions at and a = (a1,ak)

is the input vector corresponding to the available video bitrates (300p, 750p, 1200p,

1850p, 2850p, 4300p). The output of the softmax function is selecting the bitrate for

the next video segment having the highest probability such that the most appropriate

141

Federated Caching and Prediction Model for Content Delivery

bitrate is selected for a corresponding state st.

In the proposed LASH architecture, both the actor and the critic network are used to train

the network. While during the testing phase, only the actor network is used, and the critic

network is not required for the testing scenario. In this sub-section, it has been shown how

the actor-critic network is being used to train the proposed DNN comprising both LSTM

and CNN. The applicability of the proposed model will be justified in the next section by a

comprehensive set of experiments with the help of a standard dataset.

6.2.2 Experiments and Results

The efficacy of the proposed LASH model has been evaluated by conducting a comprehensive

set of experiments based on the HSDPA [47] Norway traces. For the simulation of the pro-

posed model, the format of HSDPA dataset is used as [timestamp(sec), throughput(Mbps)].

LASH ABR model uses the vast collection of HSDPA traces to train the actor-critic based

DNN. After training, the trained model is deployed in the MEC server. The server delivers

the most relevant quality of the video segment to the client for the requested video segment.

To train the proposed LASH model, we considered k = 16 past bandwidth measurements

and chunk download time to the LSTM network for the time series data. Whereas, the

instantaneous current buffer size, number of chunks left and last chunk bitrate are fed to

the FC layer. The actor network’s learning rate is 0.0001, and for the critic network, the

learning rate is 0.001. Parallel training was employed while training the proposed LASH

model. A total of 16 agents, controlled by a central agent, were deployed for the training.

The loss function used in LASH is MSE, which is the average of the squared difference

between the calculated and predicted value. The model was trained for 50,000 iterations.

6.2.2.1 Ablation Studies

This section presents an ablation study for the proposed LASH model to better understand

the motivation behind using LSTM instead of 1DCNN for learning the previous k instances

of input features such as throughput, chunk of downloaded segments etc. We analyzed the

142

Prediction Model for Content Delivery

Table 6.3: Comparative study of LSTM and 1DCNN

HSDPA
Dataset

LSTM 1DCNN
RMSE COR. RMSE COR.

BUS 0.24 0.74 0.24 0.69
CAR 0.38 0.78 0.50 0.73

FERRY 0.49 0.51 0.66 0.43
TRAIN 0.29 0.71 0.38 0.64
METRO 0.31 0.53 0.34 0.45
TRAM 0.43 0.56 0.44 0.46

performance of both the LSTM and 1DCNN on the HSDPA dataset. A comparative study

between LSTM and 1DCNN for prediction accuracy has been carried out using the RMSE

and the Correlation metrics. RMSE measures the difference between the predicted values

and the actual observed values. At the same time, correlation measures the association

between the observed and the predicted variable.

To validate the introduction of LSTM into the proposed LASH model, we consider one

of the times series data (like network bandwidth) and test it against both the sequential

models: LSTM and 1DCNN. The bandwidth traces for public transportation like Bus, Car,

Train, Tram, Ferry and Metro is then used to compare the efficiency of both LSTM and

1DCNN. A comparative study of LSTM and 1DCNN with respect to the RMSE and the

correlation for both the deep models are presented in Table 6.3. It reveals that LSTM

produces a better correlation than 1DCNN compared to different bandwidth traces. The

RMSE score, which denotes the predicted accuracy of the network bandwidth for a given

deep model, is better for LSTM than 1DCNN. LSTM captures the historical context of the

time series data instead of only the last input data. For example, consider the bandwidth

sequence: 6.4 → 7.4 → 8.4 →?. The next expected output in the sequence is 9.4(x + 1.4).

Also, consider the sequence 2.1 → 4.2 → 8.4 →?. We would like to have 16.8(2x) as the

next output in the sequence. The expected output is different in both sequences, although

the last input was 8.4 in both cases. The recurrent nature of LSTM, along with various

input gates, can obtain better results than 1DCNN.

143

Federated Caching and Prediction Model for Content Delivery

6.2.2.2 Evaluation of Proposed LASH Model

The proposed LASH model has been compared with two state-of-the-art ABR techniques to

assess its performance and correctness. One of the strategies is a heuristic-based approach

handling the current playout buffer called Buffer Based (BB) [5]. The other is an RL-based

Neural Network called the Pensieve [6]. These two very recent and state-of-the-art schemes

have been chosen for comparison with the proposed scheme because Pensieve [6] is an ML-

based scheme, and [5] is a heuristics-based scheme. It has been experimentally shown that

the proposed model has outperformed both the scheme against three different QoE models,

namely, QoEHD, QoELinear and QoELog.

6.2.2.3 Comparison for QoE HD Reward Model

Table 6.4: QoEHD Reward for Various Transportation. The best results are shown in Red and
the second best in Blue

ABR Strategies
QoEHD Reward in the HSDPA Dataset

Train Tram Car Bus Ferry Metro
Buffer Based [5] 206 53 240.72 377 200 177
Pensieve [6] 442 123 212 386 376 332
Proposed LASH 464 123 255 505 404 354

Table 6.4 presents the total QoE reward obtained for the HD model while streaming a

video travelling in various public transportation. The total reward received by the proposed

LASH model for the individual public commutes like train, tram, car, bus, ferry and metro

is much higher when compared with Buffer-based [5] and Pensieve [6]. LASH employed

LSTM for sequential input data like past k chunk throughput (x̂t), past k chunk download

time (τ̂t) and chunk size (n̂t), because of which the proposed model was able to learn the

dependency within the input data in a much efficient way. As a result, LASH can generate

state-action pair πθ(st, at) such that the action at taken for the input state st obtained a

better and improved QoE than its counterpart. The plots given in Figure 6.10(b) and 6.10(c)

reveal that the buffering penalty and penalty is less for LASH (sim lstm) in comparison with

the BB (sim bb) [5] and Pensieve (sim rl) [6] schemes. For LASH, the buffering penalty is

144

Prediction Model for Content Delivery

around 0.1140 when compared with BB ≈ 0.1185 and Pensieve ≈ 0.1414. The smoothing

penalty for LASH was around ≈ 0.1379, which is less than BB ≈ 0.34464 and Pensieve

≈ 0.14571596. Further, it is evident from Figure 6.10(a) that both LASH and Pensieve

maintained a safe buffer capacity to avoid video stuttering artifacts.

(a) Buffer Occupancy (b) Buffering Penalty

(c) Smoothing Penalty

Figure 6.10: Comparing LASH on QoE metrics with BB [5] and Pensieve [6] QoEHD model

6.2.2.4 Comparison for QoE Linear Reward Model

A higher QoE reward Table shown in 6.5 implies that the proposed LASH model main-

tained an improved balance between perceived video quality, buffering events and frequent

switching between video qualities. The plots depicted in Figure 6.11(b) and 6.11(c) show

that the LASH model reduces the buffering and smoothing penalty to improve the overall

QoE reward. The total QoE reward obtained while streaming a video traveling in different

145

Federated Caching and Prediction Model for Content Delivery

Table 6.5: QoELinear Reward for Various Transportation. The best results are shown in Red and
the second best in Blue

ABR Strategies
QoELinear Reward in the HSDPA Dataset

Train Tram Car Bus Ferry Metro
Buffer Based [5] 2.89 9.54 45.52 46.65 68.80 11.62
Pensieve [6] 7.88 6.67 20.87 44.25 65.50 4.11
Proposed LASH 17.25 13.65 48.30 49.15 89 14.35

public commutes is depicted in Table 6.5. It can be observed that the reward obtained

for LASH outperforms both the heuristics based approach BB and machine learning based

approach Pensieve for all the cases.

6.2.3 Comparison for QoE Log Reward Model

Figure 6.12 portrays the individual values of the QoE metrics like buffer occupancy, smooth-

ing penalty and buffering penalty obtained for a given video streaming session. The plots

display that the proposed LASH (sim lstm) model can maintain a better buffer occupancy

level when compared with BB (sim bb) and Pensieve (sim rl). With a safe buffer occupancy

level, there is less smoothing penalty ≈ 0.2004 than BB ≈ 0.344 and Pensieve ≈ 0.2802.

LASH shows almost similar buffering penalty when compared with Pensieve but performs

better when compared with BB.

Table 6.6: QoELog Reward for Various Transportation. The best results are shown in Red and
the second best in Blue

ABR Strategies
QoELog Reward in the HSDPA Dataset

Train Tram Car Bus Ferry Metro
Buffer Based [5] 49.40 27.35 50.40 46.65 50.30 33.04
Pensieve [6] 43.43 32.20 48.12 45.92 52.51 33.95
Proposed LASH 47.04 36.72 53.24 58.09 59.73 35.39

A comparative study of LASH with BB and RL for the total QoE obtained while

streaming a video in various public transportation is depicted in Table 6.6. It can be

observed that the proposed LASH model outperforms both the strategies for the QoELog

model for different scenarios.

146

Prediction Model for Content Delivery

(a) Buffer Occupancy (b) Buffering Penalty

(c) Smoothing Penalty

Figure 6.11: Comparing LASH on QoE metrics with BB [5] and Pensieve [6] QoELinear model

6.2.3.1 Comparative study between various QoE models

Table 6.7 portrays the comparative results obtained for various QoE models like QoEHD,

QoELinear and QoELog as discussed in earlier sections. The results in Table 6.7 show the

overall aggregated QoE reward obtained for the HSDPA dataset. The QoE reward, a func-

tion of perceived video quality, buffering and frequent switching between the bitrates of

the video segments, defines the users’ satisfaction with a given video streaming session.

It is evident from the results presented in Table 6.7 that the proposed LASH model out-

performs both the heuristics-based approach BB [5] and ML-based approach Pensieve [6].

The proposed LASH obtained better QoE rewards for the three models QoEHD, QoELinear

and QoELog. In the QoEHD model, there is an improvement of ≈ 3.02% over Pensieve

147

Federated Caching and Prediction Model for Content Delivery

(a) Buffer Occupancy (b) Buffering Penalty

(c) Smoothing Penalty

Figure 6.12: Comparing LASH on QoE metrics with BB [5] and Pensieve [6] QoELog model

for the overall reward obtained. As for the QoELog model, there was an improvement of

over ≈ 8.84% compared with Pensieve. In the QoELinear model, the QoE reward metrics

obtained for LASH were better than Pensieve by ≈ 7.5%.

6.3 Summary

In the final contributory chapter of this dissertation, two works are proposed. In the first

part of this chapter, we proposed FedCache an RL-based FL Caching mechanism at the

MEC. Learning-based methods are intelligent and dynamic but not scalable to diverse re-

quest patterns. The proposed approach trains the model locally on the client side instead of

the server centrally. After training their model, the users upload their trained parameters

148

Summary

Table 6.7: Comparative Results for various QoE models. The best results are shown in Red and
the second best in Blue

QoE Model
Adaptive Bitrate Strategies

Buffer Based [5] Pensieve [6] Proposed LASH
QoE HD 140.15 236.12 243.27
QoE Linear 30.04 30.37 32.65
QoE Log 30.04 31.45 34.23

to the server, aggregating the learned parameters using Federated Averaging. FedCache

introduces intelligence to the caching system with an actor-critic network-based learning

model, which helps make intelligent caching decisions. On the other hand, it solves scalabil-

ity by transferring the training to the users’ devices. Extensive experiments were performed

on the Iflix dataset. The performance of the proposed work was measured against vari-

ous state-of-the-art caching mechanisms such as FIFO, LRU, LFU, PoPCache, QoECache,

AdaptSize and AviC. FedCache outperforms these existing strategies for various evaluation

metrics such as CHR, backhaul traffic and access delay.

In the second part of this chapter, we propose a content prediction model for adaptive

video streaming. an ABR model named LASH is proposed, a LSTM-CNN-based deep neural

model for adaptive video streaming. It has been demonstrated that unlike the heuristic-

based approaches and other recently introduced machine learning-based approaches, the

proposed model can predict a more accurate bitrate of video segments for the end-users to

maximize the overall QoE for an entire video streaming session. Using LSTM in the pro-

posed architecture enabled the model to understand the sequential feature more accurately.

Thus, it improves the underlying actor-critic network of LASH by defining a state policy

for the bitrate of the video segments to maximize the overall video quality. It has been

experimentally shown that the proposed LASH model has outperformed both heuristic and

machine learning-based state-of-the-art approaches concerning total QoE reward. Simula-

tion results over the standard HSDPA Norway dataset reveal that the proposed model can

minimize the buffering penalty along with frequent switching between the bitrates of the

video segments while delivering an improved perceived video quality to the end-user for an

entire session. Thus, the proposed LASH model optimizes all the QoE verticals, namely,

149

Federated Caching and Prediction Model for Content Delivery

overall video quality, buffering events and the flickering effect simultaneously.

The next chapter concludes the thesis by briefly summarizing the work presented in this

dissertation and discussing the future research works.

;;=8=<<

150

“Obstacles are those frightful things you see when you take your eyes off your

goal.”

∼Henry Ford

7
Conclusions and Future Perspectives

In this dissertation, DL approaches for efficient MEC concerning content caching and deliv-

ery while video streaming is presented. A summary of contributions is narrated as follows,

which aims at improving the caching performance and viewing experience for video stream-

ing at MEC.

7.1 Summary of Contributions

7.1.1 Content Aware Caching based on the Users Viewing Profile

In the first contributory chapter, a novel two-step caching model has been proposed that

focuses on the users’ viewing profiles at different time slots of the day. A time-slot-based

151

Conclusions and Future Perspectives

hypothetical popularity index has been introduced as a “Genre Vector” that signifies what

genre (action, comedy, drama, etc.) is prevalent at what time of the day. The ultimate

goal is to find a time-slot (of the day) based popularity index of the videos (Movie for our

case). The MEC caches are then updated so that a higher number of movie requests can

be met. We consider various input features obtained from the standard MovieLens dataset

to predict the expected request counts in the future. The movies’ expected request counts

are used for caching the movies, with the most requested movie stored first into the MEC

cache server in a slot-wise manner. Experimental results reveal that considering the users

viewing profiles and categorizing the movies into various genre improved the overall cache

hit rate at the MEC server.

7.1.2 QoE-Aware Adaptive-Bit Rate Caching

In the second chapter of this dissertation, the users preference for viewing a particular video

quality based on varying network conditions is taken into consideration while making caching

decisions. A joint optimization framework using RL that improves the overall QoE of the

end-users by focusing and giving equal weightage to both the ABR and caching mechanism

at the MEC is proposed. The RL-based framework, called ABRCache uses three types of

modules, namely ABR, Planner and Evictor to optimally select the most appropriate and

popular bitrate based on segment-level popularity and caches it accordingly. In addition,

ABRCache handles the variations in bandwidth pertaining to different mobility models.

The proposed model, combined with LSTM, can determine and extract patterns from the

variable bandwidth input data, which is a type of time-series data. A comprehensive set

of experiments demonstrate that the proposed ABRCache model improves the overall QoE

and reduces network traffic load on the backhaul link simultaneously.

7.1.3 Collaborative Video Caching in a Clustered Edge Network

In the third contributory chapter, to further improve the caching performance a collabo-

rative caching mechanism for clustered edge network is presented. The clustering of MEC

152

Summary of Contributions

servers is performed based on geographical locations. Collaboration is carried out among

‘M’ MEC servers to service a given video request that arrives at a BS. The proposed collabo-

rative caching mechanism unlike other collaborative strategies does not consider transcoding

a given video in case of a cache miss, which is computationally costly. Rather, the caching

strategy focuses on caching those quality of video segment which have a higher popularity

score. ColabCache collaborates amongst the clustered MEC servers to make caching de-

cisions based on the calculated Priority Score of video segments with respect to all MEC

servers in the cluster. In addition, ColabCache unlike most of the previous work, is in-

dependent of the size of media library at the CDN. The proposed model is independent

of the total number of videos in the media library, and hence the performance is optimal

even when the media library is continuously increasing. The proposed model has been ex-

tensively evaluated using the Zipf and Iflix dataset. ColabCache has been compared with

various state-of-the-art caching strategies against evaluation metrics such as cache hit rate,

backhaul traffic, access delay and re-buffering.

7.1.4 Federated Caching and Prediction Model for Content De-

livery

In the initial part of the final contributory chapter, a Federated RL-based caching mech-

anism, called FedCache is proposed. In this approach the model is trained locally on the

individual data, rather being trained in a centralized server. For the first time, an A3C RL

network has been trained in a Federated way for making caching decisions at the edge server.

FedCache offers a scalable solution for training diverse request patterns by transferring the

training process to the user’s device instead of centrally at the edge server. After training

their model, the users upload their trained parameters to the server, aggregating the learned

parameters using Federated Averaging. Extensive experiments were performed on the Iflix

dataset and FedCache outperforms existing state-of-the-art strategies.

153

Conclusions and Future Perspectives

7.1.5 Prediction Model for Content Delivery in Adaptive Video

The last part of the final chapter, focuses on improving the overall QoE of users for a video

streaming session. QoE management using a fixed set of rules may not always guarantee

optimal bandwidth utilization, video quality enhancement and accurate buffer estimation,

especially in the face of severely varying and often unpredictable bandwidth fluctuations. To

handle these issues across a wide range of varying network conditions and QoE parameters,

an LSTM-CNN-based RL model called, LASH has been proposed. LASH is trained with

a large set of input parameters. These parameters essentially model the dynamic control

rules for handling varying network conditions and end-user demands. Thus, a more efficient

QoE management model can be achieved. The proposed model maximizes the overall QoE

by satisfying the three QoE verticals such as overall video quality, re-buffering and video

quality switches simultaneously.

7.2 Future Works

While we have made significant contributions towards the designing and developing various

DL approach for content caching and content delivery at the MEC server, some future

directions still could be considered for further improving resource management at the MEC.

7.2.1 Content Aware cost efficient caching using Federated Learn-

ing

In the first part of Chapter 6 we proposed a FL-based caching mechanism at the MEC

server. The proposed model called FedCache trains the caching model at the end-users

devices, instead of centrally training the model at the MEC server. Such learning-based

model shifts the training process from the central server to UE’s, which otherwise over-

consumes the network resources. However, in FedCache it is observed that during every

communication round where the UE’s send their trained parameters to the central MEC

server incurs a significant communication cost. FL may therefore become ineffective or

154

Future Works

perhaps not feasible if communication bandwidth is limited. In order to solve this problem

several compression techniques have been introduced such as Gradient Dropping [110] and

signSGD [111]. However, such compression techniques are not efficient enough for handling

larger dataset. Therefore, in the future work we aim to develop a cost efficient caching

strategy using FL, that improves the overall QoE along with caching performance.

7.2.2 Deep Learning for Efficient Resource Allocation in V2X

Communication Networks

With the recent advancement in cellular communication technologies and the introduction

of 5G, it has been possible to achieve high reliability and QoS provisions. This has attracted

many diverse application domains in the industry. One such application domain was cre-

ated with 3GPP release 14 (2017), which allowed device-to-device (D2D) communication

and has been severely exploited in V2X communications. Just like any communication net-

work involves handling various resources, Radio Resource Management is central to V2X

communications as well. It involves the construction of strategies and algorithms for han-

dling and management of various radio resources such as Transmission power, Transmission

frequency, Data rates, Modulation scheme, etc. [112]. With the recent advancements in DL-

based methods, more DL-based algorithms have been proposed for the resource allocation

problem in V2X networks. Therefore, in the future, we plan to propose a DL-based ap-

proach to allocate transmission frequency and power in a 5G V2V network communication

such that latency constraints are met, and interference is minimal.

;;=8=<<

155

References

[1] M. ETSI, “Mobile edge computing (mec); framework and reference architecture,”

ETSI, DGS MEC, vol. 3, pp. 1–18, 2016.

[2] S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan, D. Purkayastha,

F. Jiangping, D. Frydman, G. Verin et al., “Mec in 5g networks,” ETSI white paper,

vol. 28, pp. 1–28, 2018.

[3] A. Lekharu, K. Moulii, A. Sur, and A. Sarkar, “Deep learning based prediction model

for adaptive video streaming,” in 2020 International Conference on COMmunication

Systems & NETworkS (COMSNETS). IEEE, 2020, pp. 152–159.

[4] M. T. Vega, C. Perra, F. De Turck, and A. Liotta, “A review of predictive qual-

ity of experience management in video streaming services,” IEEE Transactions on

Broadcasting, vol. 64, no. 2, pp. 432–445, 2018.

[5] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A buffer-based

approach to rate adaptation: Evidence from a large video streaming service,” ACM

SIGCOMM Computer Communication Review, vol. 44, no. 4, pp. 187–198, 2015.

[6] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video streaming with pen-

sieve,” in Proceedings of the Conference of the ACM Special Interest Group on Data

Communication. ACM, 2017, pp. 197–210.

157

REFERENCES

[7] H. Pang, J. Liu, X. Fan, and L. Sun, “Toward smart and cooperative edge caching for

5g networks: A deep learning based approach,” in 2018 IEEE/ACM 26th International

Symposium on Quality of Service (IWQoS). IEEE, 2018, pp. 1–6.

[8] V. Cisco, “Cisco visual networking index: Forecast and trends, 2017–2022,” White

Paper, March 2020(Updated).

[9] Ericsson, “Ericsson mobility report,” White Paper, June 2021. [Online]. Avail-

able: https://www.ericsson.com/4a03c2/assets/local/mobility-report/documents/

2021/june-2021-ericsson-mobility-report.pdf

[10] G. Orsini, D. Bade, and W. Lamersdorf, “Computing at the mobile edge: Designing

elastic android applications for computation offloading,” in 2015 8th IFIP Wireless

and Mobile Networking Conference (WMNC). IEEE, 2015, pp. 112–119.

[11] S. Kumar, N. Wang, C. Ge, and B. Evans, “Optimising layered video content delivery

based on satellite and terrestrial integrated 5g networks,” in 2019 European Conference

on Networks and Communications (EuCNC). IEEE, 2019, pp. 161–166.

[12] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing: A survey,”

IEEE Internet of Things Journal, vol. 5, no. 1, pp. 450–465, 2017.

[13] C. Ge, N. Wang, S. Skillman, G. Foster, and Y. Cao, “Qoe-driven dash video caching

and adaptation at 5g mobile edge,” in Proceedings of the 3rd ACM Conference on

Information-Centric Networking, 2016, pp. 237–242.

[14] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge comput-

ing—a key technology towards 5g,” ETSI white paper, vol. 11, no. 11, pp. 1–16, 2015.

[15] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A survey on mo-

bile edge networks: Convergence of computing, caching and communications,” IEEE

Access, vol. 5, pp. 6757–6779, 2017.

158

https://www.ericsson.com/4a03c2/assets/local/mobility-report/documents/2021/june-2021-ericsson-mobility-report.pdf
https://www.ericsson.com/4a03c2/assets/local/mobility-report/documents/2021/june-2021-ericsson-mobility-report.pdf

REFERENCES

[16] X. Xu, J. Liu, and X. Tao, “Mobile edge computing enhanced adaptive bitrate video

delivery with joint cache and radio resource allocation,” IEEE Access, vol. 5, pp.

16 406–16 415, 2017.

[17] Y. Jararweh, A. Doulat, O. AlQudah, E. Ahmed, M. Al-Ayyoub, and E. Benkhelifa,

“The future of mobile cloud computing: Integrating cloudlets and mobile edge com-

puting,” in 2016 23rd International conference on telecommunications (ICT). IEEE,

2016, pp. 1–5.

[18] D. Satria, D. Park, and M. Jo, “Recovery for overloaded mobile edge computing,”

Future Generation Computer Systems, vol. 70, pp. 138–147, 2017.

[19] T. H. Luan, L. Gao, Z. Li, Y. Xiang, G. Wei, and L. Sun, “Fog computing: Focusing

on mobile users at the edge,” arXiv preprint arXiv:1502.01815, 2015.

[20] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal et al., “Mobile-edge

computing introductory technical white paper,” White paper, mobile-edge computing

(MEC) industry initiative, pp. 1089–7801, 2014.

[21] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE Transac-

tions on information theory, vol. 60, no. 5, pp. 2856–2867, 2014.

[22] K. Suksomboon, S. Tarnoi, Y. Ji, M. Koibuchi, K. Fukuda, S. Abe, N. Motonori,

M. Aoki, S. Urushidani, and S. Yamada, “Popcache: Cache more or less based on

content popularity for information-centric networking,” in 38th Annual IEEE Confer-

ence on Local Computer Networks. IEEE, 2013, pp. 236–243.

[23] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replacement strategies,”

ACM Computing Surveys (CSUR), vol. 35, no. 4, pp. 374–398, 2003.

[24] Q. Huang, K. Birman, R. Van Renesse, W. Lloyd, S. Kumar, and H. C. Li, “An analy-

sis of facebook photo caching,” in Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles, 2013, pp. 167–181.

159

REFERENCES

[25] Z. Akhtar, Y. Li, R. Govindan, E. Halepovic, S. Hao, Y. Liu, and S. Sen, “Avic: a

cache for adaptive bitrate video,” in Proceedings of the 15th International Conference

on Emerging Networking Experiments And Technologies, 2019, pp. 305–317.

[26] W. Shi, Q. Li, C. Wang, G. Shen, W. Li, Y. Wu, and Y. Jiang, “Leap: learning-based

smart edge with caching and prefetching for adaptive video streaming,” in Proceedings

of the International Symposium on Quality of Service, 2019, pp. 1–10.

[27] W. Jiang, G. Feng, S. Qin, and Y.-C. Liang, “Learning-based cooperative content

caching policy for mobile edge computing,” in ICC 2019-2019 IEEE International

Conference on Communications (ICC). IEEE, 2019, pp. 1–6.

[28] Y. Jin, Y. Wen, and C. Westphal, “Optimal transcoding and caching for adaptive

streaming in media cloud: An analytical approach,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 25, no. 12, pp. 1914–1925, 2015.

[29] C. Li, L. Toni, J. Zou, H. Xiong, and P. Frossard, “Qoe-driven mobile edge caching

placement for adaptive video streaming,” IEEE Transactions on Multimedia, vol. 20,

no. 4, pp. 965–984, 2017.

[30] I. Sodagar, “The mpeg-dash standard for multimedia streaming over the internet,”

IEEE multimedia, vol. 18, no. 4, pp. 62–67, 2011.

[31] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “Adaptsize: Orchestrating

the hot object memory cache in a content delivery network,” in 14th {USENIX}

Symposium on Networked Systems Design and Implementation ({NSDI} 17), 2017,

pp. 483–498.

[32] V. Kirilin, A. Sundarrajan, S. Gorinsky, and R. K. Sitaraman, “Rl-cache: Learning-

based cache admission for content delivery,” in Proceedings of the 2019 Workshop

on Network Meets AI & ML, ser. NetAI’19. New York, NY, USA: Association for

Computing Machinery, 2019, p. 57–63.

160

REFERENCES

[33] T. X. Tran and D. Pompili, “Adaptive bitrate video caching and processing in mobile-

edge computing networks,” IEEE Transactions on Mobile Computing, vol. 18, no. 9,

pp. 1965–1978, 2018.

[34] F. Wang, F. Wang, J. Liu, R. Shea, and L. Sun, “Intelligent video caching at net-

work edge: A multi-agent deep reinforcement learning approach,” in IEEE INFOCOM

2020-IEEE Conference on Computer Communications. IEEE, 2020, pp. 2499–2508.

[35] Z. Wan and Y. Li, “Deep reinforcement learning-based collaborative video caching and

transcoding in clustered and intelligent edge b5g networks,” Wireless Communications

and Mobile Computing, vol. 2020, 2020.

[36] Z. Yu, J. Hu, G. Min, H. Lu, Z. Zhao, H. Wang, and N. Georgalas, “Federated

learning based proactive content caching in edge computing,” in 2018 IEEE Global

Communications Conference (GLOBECOM). IEEE, 2018, pp. 1–6.

[37] X. Wang, C. Wang, X. Li, V. C. Leung, and T. Taleb, “Federated deep reinforcement

learning for internet of things with decentralized cooperative edge caching,” IEEE

Internet of Things Journal, vol. 7, no. 10, pp. 9441–9455, 2020.

[38] K. Qi and C. Yang, “Popularity prediction with federated learning for proactive

caching at wireless edge,” in 2020 IEEE Wireless Communications and Networking

Conference (WCNC). IEEE, 2020, pp. 1–6.

[39] W. Shi, Q. Li, R. Zhang, G. Shen, Y. Jiang, Z. Yuan, and G.-M. Muntean, “Qoe

ready to respond: a qoe-aware mec selection scheme for dash-based adaptive video

streaming to mobile users,” in Proceedings of the 29th ACM International Conference

on Multimedia, 2021, pp. 4016–4024.

[40] Z. Chang, X. Zhou, Z. Wang, H. Li, and X. Zhang, “Edge-assisted adaptive video

streaming with deep learning in mobile edge networks,” in 2019 IEEE Wireless Com-

munications and Networking Conference (WCNC). IEEE, 2019, pp. 1–6.

161

REFERENCES

[41] Grouplens, Movielens Dataset, 2019 October. [Online]. Available: https://grouplens.

org/datasets/movielens/

[42] F. M. Harper and J. A. Konstan, “The movielens datasets: History and context,”

Acm transactions on interactive intelligent systems (tiis), vol. 5, no. 4, p. 19, 2016.

[43] S. Lederer, C. Müller, and C. Timmerer, “Dynamic adaptive streaming over http

dataset,” in Proceedings of the 3rd multimedia systems conference, 2012, pp. 89–94.

[44] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface, T. Bostoen,

and F. De Turck, “HTTP/2-Based Adaptive Streaming of HEVC Video Over 4G/LTE

Networks,” IEEE Communications Letters, vol. 20, no. 11, pp. 2177–2180, 2016.

[45] P. Lai, Q. He, M. Abdelrazek, F. Chen, J. Hosking, J. Grundy, and Y. Yang, “Optimal

edge user allocation in edge computing with variable sized vector bin packing,” in

International Conference on Service-Oriented Computing. Springer, 2018, pp. 230–

245.

[46] Kaggle, “Movie streaming dataset iflix,” Dataset, 2019. [Online]. Available:

https://www.kaggle.com/aungpyaeap/movie-streaming-datasets-iflix

[47] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute path bandwidth

traces from 3g networks: analysis and applications,” in Proceedings of the 4th ACM

Multimedia Systems Conference. ACM, 2013, pp. 114–118.

[48] M. ETSI, “Mobile edge computing (mec); mobile edge management; part 1: System,

host and platform management,” ETSI, DGS MEC, pp. 010–1.

[49] ETSI, “Mobile edge computing (mec); mobile edge management; part 2: application

lifecycle, rules and requirements management: Etsi gs mec 010-2 v1. 1.1,” 2017.

[50] M. ETSI, “Mobile edge platform application enablement,” vol. 11, 2017.

[51] ——, “Mobile edge computing (mec); radio network information, etsi gs mec 012

v1.1.1,” 2017.

162

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://www.kaggle.com/aungpyaeap/movie-streaming-datasets-iflix

REFERENCES

[52] ——, “Mobile edge computing (mec); ue application interface, etsi gs mec 016 v1.1.1,”

2017.

[53] DASH, “Dash dataset.” [Online]. Available: https://dash.itec.aau.at/dash-dataset/

[54] DASHEncoder, “Dashencoder.” [Online]. Available: https://github.com/slederer/

DASHEncoder

[55] Youtube, “Youtube live encoder settings, bitrates and resolutions.” [Online].

Available: https://support.google.com/youtube/answer/2853702?hl=en

[56] W. Jiang, G. Feng, and S. Qin, “Optimal cooperative content caching and delivery

policy for heterogeneous cellular networks,” IEEE Transactions on Mobile Computing,

vol. 16, no. 5, pp. 1382–1393, 2016.

[57] X. Chen, L. He, S. Xu, S. Hu, Q. Li, and G. Liu, “Hit ratio driven mobile edge caching

scheme for video on demand services,” in 2019 IEEE International Conference on

Multimedia and Expo (ICME). IEEE, 2019, pp. 1702–1707.

[58] S. Li, J. Xu, M. Van Der Schaar, and W. Li, “Popularity-driven content caching,” in

IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer

Communications. IEEE, 2016, pp. 1–9.

[59] Q. Zhang, L. T. Yang, Z. Chen, and P. Li, “A survey on deep learning for big data,”

Information Fusion, vol. 42, pp. 146–157, 2018.

[60] M. A. Beyer and D. Laney, “The importance of ‘big data’: a definition,” Stamford,

CT: Gartner, pp. 2014–2018, 2012.

[61] A. Narayanan, S. Verma, E. Ramadan, P. Babaie, and Z.-L. Zhang, “Deepcache:

A deep learning based framework for content caching,” in Proceedings of the 2018

Workshop on Network Meets AI & ML, 2018, pp. 48–53.

163

https://dash.itec.aau.at/dash-dataset/
https://github.com/slederer/DASHEncoder
https://github.com/slederer/DASHEncoder
https://support.google.com/youtube/answer/2853702?hl=en

REFERENCES

[62] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: a platform for high-

performance internet applications,” ACM SIGOPS Operating Systems Review, vol. 44,

no. 3, pp. 2–19, 2010.

[63] C. Zhong, M. C. Gursoy, and S. Velipasalar, “A deep reinforcement learning-based

framework for content caching,” in 2018 52nd Annual Conference on Information

Sciences and Systems (CISS). IEEE, 2018, pp. 1–6.

[64] A. Sadeghi, G. Wang, and G. B. Giannakis, “Deep reinforcement learning for adaptive

caching in hierarchical content delivery networks,” IEEE Transactions on Cognitive

Communications and Networking, vol. 5, no. 4, pp. 1024–1033, 2019.

[65] A. Gharaibeh, A. Khreishah, B. Ji, and M. Ayyash, “A provably efficient online col-

laborative caching algorithm for multicell-coordinated systems,” IEEE Transactions

on Mobile Computing, vol. 15, no. 8, pp. 1863–1876, 2015.

[66] T. X. Tran, A. Hajisami, and D. Pompili, “Cooperative hierarchical caching in 5g

cloud radio access networks,” IEEE Network, vol. 31, no. 4, pp. 35–41, 2017.

[67] E. Baccour, A. Erbad, A. Mohamed, K. Bilal, and M. Guizani, “Proactive video chunks

caching and processing for latency and cost minimization in edge networks,” in 2019

IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2019,

pp. 1–7.

[68] Y. Guo, F. R. Yu, J. An, K. Yang, C. Yu, and V. C. Leung, “Adaptive bitrate stream-

ing in wireless networks with transcoding at network edge using deep reinforcement

learning,” IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp. 3879–3892,

2020.

[69] G. Qiao, S. Leng, S. Maharjan, Y. Zhang, and N. Ansari, “Deep reinforcement learning

for cooperative content caching in vehicular edge computing and networks,” IEEE

Internet of Things Journal, vol. 7, no. 1, pp. 247–257, 2019.

164

REFERENCES

[70] Z. Yu, J. Hu, G. Min, Z. Zhao, W. Miao, and M. S. Hossain, “Mobility-aware proactive

edge caching for connected vehicles using federated learning,” IEEE Transactions on

Intelligent Transportation Systems, vol. 22, no. 8, pp. 5341–5351, 2020.

[71] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A buffer-based

approach to rate adaptation: Evidence from a large video streaming service,” in Pro-

ceedings of the 2014 ACM conference on SIGCOMM, 2014, pp. 187–198.

[72] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “Bola: Near-optimal bitrate adapta-

tion for online videos,” IEEE/ACM Transactions On Networking, vol. 28, no. 4, pp.

1698–1711, 2020.

[73] T. C. Thang, Q.-D. Ho, J. W. Kang, and A. T. Pham, “Adaptive streaming of au-

diovisual content using mpeg dash,” IEEE Transactions on Consumer Electronics,

vol. 58, no. 1, pp. 78–85, 2012.

[74] S. Kim, D. Yun, and K. Chung, “Video quality adaptation scheme for improving

qoe in http adaptive streaming,” in 2016 International Conference on Information

Networking (ICOIN). IEEE, 2016, pp. 201–205.

[75] M. D. F. De Grazia, D. Zucchetto, A. Testolin, A. Zanella, M. Zorzi, and M. Zorzi,

“Qoe multi-stage machine learning for dynamic video streaming,” IEEE Transactions

on Cognitive Communications and Networking, vol. 4, no. 1, pp. 146–161, 2017.

[76] Y.-L. Chien, K. C.-J. Lin, and M.-S. Chen, “Machine learning based rate adaptation

with elastic feature selection for http-based streaming,” in 2015 IEEE International

Conference on Multimedia and Expo (ICME). IEEE, 2015, pp. 1–6.

[77] C. Liu, I. Bouazizi, and M. Gabbouj, “Rate adaptation for adaptive http streaming,”

in Proceedings of the second annual ACM conference on Multimedia systems, 2011,

pp. 169–174.

165

REFERENCES

[78] H. T. Le, D. V. Nguyen, N. P. Ngoc, A. T. Pham, and T. C. Thang, “Buffer-based

bitrate adaptation for adaptive http streaming,” in 2013 International Conference on

Advanced Technologies for Communications (ATC 2013). IEEE, 2013, pp. 33–38.

[79] C. Müller, S. Lederer, and C. Timmerer, “An evaluation of dynamic adaptive stream-

ing over http in vehicular environments,” in Proceedings of the 4th Workshop on Mobile

Video, 2012, pp. 37–42.

[80] A. Lekharu, S. Kumar, A. Sur, and A. Sarkar, “A qoe aware lstm based bit-rate predic-

tion model for dash video,” in 2018 10th International Conference on Communication

Systems & Networks (COMSNETS). IEEE, 2018, pp. 392–395.

[81] M. Chen, W. Saad, C. Yin, and M. Debbah, “Echo state networks for proactive

caching in cloud-based radio access networks with mobile users,” IEEE Transactions

on Wireless Communications, vol. 16, no. 6, pp. 3520–3535, 2017.

[82] K. Thar, N. H. Tran, S. Ullah, T. Z. Oo, and C. S. Hong, “Online caching and

cooperative forwarding in information centric networking,” IEEE Access, vol. 6, pp.

59 679–59 694, 2018.

[83] K. Thar, N. H. Tran, T. Z. Oo, and C. S. Hong, “Deepmec: Mobile edge caching using

deep learning,” IEEE Access, vol. 6, pp. 78 260–78 275, 2018.

[84] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,

vol. 9, no. 8, pp. 1735–1780, 1997.

[85] D. Wu, H. Xu, Z. Jiang, W. Yu, X. Wei, and J. Lu, “Edgelstm: Towards deep and

sequential edge computing for iot applications,” IEEE/ACM Transactions on Net-

working, vol. 29, no. 4, pp. 1895–1908, 2021.

[86] F. M. Harper and J. A. Konstan, “The movielens datasets: History and context,” Acm

transactions on interactive intelligent systems (tiis), vol. 5, no. 4, pp. 1–19, 2015.

166

REFERENCES

[87] M. Ahmed, S. Traverso, P. Giaccone, E. Leonardi, and S. Niccolini, “Analyzing

the performance of lru caches under non-stationary traffic patterns,” arXiv preprint

arXiv:1301.4909, 2013.

[88] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High performance cache

replacement using re-reference interval prediction (rrip),” ACM SIGARCH Computer

Architecture News, vol. 38, no. 3, pp. 60–71, 2010.

[89] D. Rossi and G. Rossini, “Caching performance of content centric networks under

multi-path routing (and more),” Relatório técnico, Telecom ParisTech, pp. 1–6, 2011.

[90] B. Chen and C. Yang, “Caching policy for cache-enabled d2d communications by

learning user preference,” IEEE Transactions on Communications, vol. 66, no. 12, pp.

6586–6601, 2018.

[91] L. Teng, X. Yu, J. Tang, and M. Liao, “Proactive caching strategy with content-

aware weighted feature matrix learning in small cell network,” IEEE Communications

Letters, vol. 23, no. 4, pp. 700–703, 2019.

[92] M.-C. Lee, M. Ji, A. F. Molisch, and N. Sastry, “Throughput–outage analysis and

evaluation of cache-aided d2d networks with measured popularity distributions,” IEEE

Transactions on Wireless Communications, vol. 18, no. 11, pp. 5316–5332, 2019.

[93] C. Zhong, M. C. Gursoy, and S. Velipasalar, “Deep multi-agent reinforcement learn-

ing based cooperative edge caching in wireless networks,” in ICC 2019-2019 IEEE

International Conference on Communications (ICC). IEEE, 2019, pp. 1–6.

[94] J. Du, F. R. Yu, G. Lu, J. Wang, J. Jiang, and X. Chu, “Mec-assisted immersive

vr video streaming over terahertz wireless networks: A deep reinforcement learning

approach,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9517–9529, 2020.

[95] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and B. Sinopoli, “Cs2p:

Improving video bitrate selection and adaptation with data-driven throughput predic-

tion,” in Proceedings of the 2016 ACM SIGCOMM Conference, 2016, pp. 272–285.

167

REFERENCES

[96] J. Choi, A. S. Reaz, and B. Mukherjee, “A survey of user behavior in vod service and

bandwidth-saving multicast streaming schemes,” IEEE Communications Surveys &

Tutorials, vol. 14, no. 1, pp. 156–169, 2011.

[97] H. Zhao, J. Wang, F. Liu, Q. Wang, N. Luo, and W. Zhang, “Resource allocation

for virtual streaming media server cluster in cloud-based multi-version vod,” in 2018

IEEE 22nd International Conference on Computer Supported Cooperative Work in

Design ((CSCWD)). IEEE, 2018, pp. 313–318.

[98] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic approach for dy-

namic adaptive video streaming over http,” in Proceedings of the 2015 ACM Confer-

ence on Special Interest Group on Data Communication, 2015, pp. 325–338.

[99] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances in neural

information processing systems, 2000, pp. 1008–1014.

[100] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient meth-

ods for reinforcement learning with function approximation,” in Advances in neural

information processing systems, 2000, pp. 1057–1063.

[101] M. Chen, M. Ponec, S. Sengupta, J. Li, and P. A. Chou, “Utility maximization in peer-

to-peer systems with applications to video conferencing,” IEEE/ACM Transactions

on Networking, vol. 20, no. 6, pp. 1681–1694, 2012.

[102] E. Altman and T. Jiménez, “Measuring audience retention in youtube,” in Proceedings

of the 12th EAI International Conference on Performance Evaluation Methodologies

and Tools, 2019, pp. 79–85.

[103] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Ba-

con, “Federated learning: Strategies for improving communication efficiency,” arXiv

preprint arXiv:1610.05492, 2016.

168

REFERENCES

[104] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-efficient learning of deep networks from decentralized data,” in Ar-

tificial intelligence and statistics. PMLR, 2017, pp. 1273–1282.

[105] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and communication-

efficient federated learning from non-iid data,” IEEE transactions on neural networks

and learning systems, vol. 31, no. 9, pp. 3400–3413, 2019.

[106] Y. Navrotsky and N. Patsei, “Zipf’s distribution caching application in named data

networks,” in 2021 IEEE open conference of electrical, electronic and information

sciences (estream). IEEE, 2021, pp. 1–4.

[107] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “Bola: Near-optimal bitrate adapta-

tion for online videos,” in IEEE INFOCOM 2016-The 35th Annual IEEE International

Conference on Computer Communications. IEEE, 2016, pp. 1–9.

[108] M. D. F. De Grazia, D. Zucchetto, A. Testolin, A. Zanella, M. Zorzi, and M. Zorzi,

“Qoe multi-stage machine learning for dynamic video streaming,” IEEE Transactions

on Cognitive Communications and Networking, vol. 4, no. 1, pp. 146–161, 2018.

[109] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and

K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in Inter-

national conference on machine learning, 2016, pp. 1928–1937.

[110] A. F. Aji and K. Heafield, “Sparse communication for distributed gradient descent,”

arXiv preprint arXiv:1704.05021, 2017.

[111] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar, “signsgd: Com-

pressed optimisation for non-convex problems,” in International Conference on Ma-

chine Learning. PMLR, 2018, pp. 560–569.

[112] H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep reinforcement learning based resource allo-

cation for v2v communications,” IEEE Transactions on Vehicular Technology, vol. 68,

no. 4, pp. 3163–3173, 2019.

169

REFERENCES

;;=8=<<

170

Publications Related to Thesis

Journals

1. Anirban Lekharu, Mitansh Jain, Arijit Sur and Arnab Sarkar, “Deep

Learning Model for Content Aware Caching at MEC Servers”,

in IEEE Transactions on Network and Service Management (IEEE TNSM),

vol. 19, no. 2, pp. 1413-1425, June 2022. [Chapter 3]

Conferences

1. Anirban Lekharu, K. Y. Moulii, A. Sur and A. Sarkar, “Deep Learning

based Prediction Model for Adaptive Video Streaming”, 2020 In-

ternational Conference on COMmunication Systems & NETworkS (IEEE

COMSNETS), 2020, pp. 152-159. [Chapter 6]

Under Review

Journals

1. Anirban Lekharu, Chouhan, PS A., Sur, A., Patra, M.:,“Reinforcement

Learning based Adaptive Bit-Rate Caching at MEC Server.”, In

IEEE Transactions on Network and Service Management (IEEE TNSM)

(Major Review Submitted, July 2023). [Chapter 4]

2. Anirban Lekharu., Gupta, P., Sur, A., Patra, M.:,“Collaborative based

Video Caching in the Edge Network using Deep Reinforcement

Learning”, In ACM Transactions on Internet of Things (ACM TIOT)

(Under Review). [Chapter 5]

3. Anirban Lekharu, Samanta, A., Sur, A., Patra, M.:,“Content-Aware

Caching at the Mobile Edge Network using Federated Learning”,

In IEEE Transactions on Emerging Topics in Computational Intelligence

(Major Review). [Chapter 6]

Publications Outside Thesis

Conferences

1. Anirban Lekharu, Satish Kumar, Arijit Sur, and Arnab Sarkar. 2018.

“A QoE Aware SVC Based Client-side Video Adaptation Al-

gorithm for Cellular Networks”. In Proceedings of the 19th Inter-

national Conference on Distributed Computing and Networking (ICDCN

’18). Association for Computing Machinery, New York, NY, USA, Article

27, 1–4.

2. Anirban Lekharu, S. Kumar, A. Sur and A. Sarkar, “A QoE aware

LSTM based bit-rate prediction model for DASH video”, 2018

10th International Conference on Communication Systems & Networks

(IEEE COMSNETS), 2018, pp. 392-395.

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati

Guwahati 781039, India

	Certificate
	Declaration
	Dedication
	Acknowledgement
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Symbols
	List of Acronyms
	1 Introduction
	1.1 Characteristics of MEC
	1.2 Motivation of the Research Work
	1.3 Thesis Objectives
	1.4 Thesis Contributions
	1.4.1 Content Aware Caching based on the Users Viewing Profile (DCache)
	1.4.2 QoE-Aware Adaptive BitRate Caching (ABRCache)
	1.4.3 Collaborative Video Caching in a Clustered Edge Network (ColabCache)
	1.4.4 A Decentralized Caching Mechanism using Federated Learning (FedCache)
	1.4.5 Prediction Model for Content Delivery in Adaptive Video Streaming (LASH)
	1.4.6 Summary of Contributions

	1.5 Organization of the Thesis

	2 Background and Literature Survey
	2.1 Mobile Edge Computing
	2.1.0.1 MEC Reference Architecture
	2.1.0.2 Deployment Scenarios

	2.2 Adaptive Video Streaming
	2.3 Literature Survey
	2.3.1 Edge Caching Within Single BS
	2.3.1.1 Heuristic Based Approaches
	2.3.1.2 Machine Learning Based Approaches

	2.3.2 Edge Caching Amongst Multiple Base Station
	2.3.2.1 Heuristic Based Approaches
	2.3.2.2 Machine Learning Based Approaches

	2.3.3 Improving the QoE for Content Delivery
	2.3.4 Limitations of Existing Works

	2.4 Datasets
	2.5 Summary

	3 Content Aware Caching based on the Users Viewing Profile
	3.1 Introduction
	3.2 System Overview
	3.2.1 Long Short Term Memory for Popularity Prediction

	3.3 Proposed Model
	3.3.1 Problem Formulation
	3.3.2 Architecture of Proposed DCache Model
	3.3.2.1 Data Pre_processing
	3.3.2.2 Slot-wise Genre prediction model using LSTM
	3.3.2.3 Total Request Count prediction model using LSTM+DNN
	3.3.2.4 Caching Decision and the Evaluator Module

	3.4 Experiments and Results
	3.4.1 Implementation and Experimental Setup
	3.4.1.1 Evaluation Metrics
	3.4.1.2 Evaluation of Slot-wise Genre Prediction Model
	3.4.1.3 Evaluation of Request Count Prediction Model
	3.4.1.4 Cache Hit Rate
	3.4.1.5 Backhaul Usage
	3.4.1.6 Access Delay
	3.4.1.7 Training Cost

	3.5 Summary

	4 QoE-Aware Adaptive BitRate Caching
	4.1 Introduction
	4.2 System Overview
	4.3 Proposed Model
	4.3.1 Problem Formulation
	4.3.1.1 Video Quality
	4.3.1.2 Buffering Time
	4.3.1.3 Access Delay
	4.3.1.4 Switching Factor
	4.3.1.5 Backhaul Traffic

	4.3.2 Architecture of Proposed ABRCache
	4.3.2.1 ABR Module
	4.3.2.2 Cache Manager

	4.4 Experiments and Results
	4.4.1 Dataset
	4.4.2 Comparison Against Overall QoE Reward
	4.4.3 Comparison Against ABR Metrics
	4.4.4 Comparison Against Caching Metrics
	4.4.5 Ablation Study

	4.5 Summary

	5 Collaborative Video Caching in Clustered Edge Network
	5.1 Introduction
	5.2 System Overview
	5.3 Proposed Model
	5.3.1 Problem Formulation
	5.3.2 Proposed Actor-Critic (A3C) model of ColabCache
	5.3.2.1 Architecture of ColabCache
	5.3.2.2 Caching Algorithm
	5.3.2.3 Training of ColabCache
	5.3.2.4 Choice of Algorithm
	5.3.2.5 Computational Complexity

	5.4 Experiments and Results
	5.4.1 Dataset
	5.4.2 Evaluation of ColabCache for various Segment Duration
	5.4.3 Cache Hit Rate (CHR)
	5.4.4 Backhaul Traffic
	5.4.5 Access Delay
	5.4.6 Video Quality and Jitter
	5.4.7 Re-buffering
	5.4.8 Impact of Total Number of Users
	5.4.9 Ablation Study
	5.4.10 Popularity Vs Redundancy

	5.5 Summary

	6 Federated Caching and Prediction Model for Content Delivery
	6.1 Federated Learning-based Caching
	6.1.1 System Overview
	6.1.2 Proposed Model
	6.1.2.1 Problem Formulation
	6.1.2.2 Architecture of FedCache

	6.1.3 Federated Learning-based Training
	6.1.4 Experiments and Results
	6.1.4.1 Evaluation Against various Cache Size
	6.1.4.2 Evaluation Against Cache Hit Rate
	6.1.4.3 Evaluation Against Backhaul Traffic
	6.1.4.4 Evaluation Against Access Delay

	6.2 Prediction Model for Content Delivery
	6.2.1 Proposed Model
	6.2.1.1 Objectives of LASH ABR Model
	6.2.1.2 Input Space
	6.2.1.3 Actor-Critic (A3C) Network
	6.2.1.4 LASH Architecture
	6.2.1.5 Training Phase

	6.2.2 Experiments and Results
	6.2.2.1 Ablation Studies
	6.2.2.2 Evaluation of Proposed LASH Model
	6.2.2.3 Comparison for QoE HD Reward Model
	6.2.2.4 Comparison for QoE Linear Reward Model

	6.2.3 Comparison for QoE Log Reward Model
	6.2.3.1 Comparative study between various QoE models

	6.3 Summary

	7 Conclusions and Future Perspectives
	7.1 Summary of Contributions
	7.1.1 Content Aware Caching based on the Users Viewing Profile
	7.1.2 QoE-Aware Adaptive-Bit Rate Caching
	7.1.3 Collaborative Video Caching in a Clustered Edge Network
	7.1.4 Federated Caching and Prediction Model for Content Delivery
	7.1.5 Prediction Model for Content Delivery in Adaptive Video

	7.2 Future Works
	7.2.1 Content Aware cost efficient caching using Federated Learning
	7.2.2 Deep Learning for Efficient Resource Allocation in V2X Communication Networks

	References
	Publications Related to Thesis

