
Time-triggered Scheduling Algorithms for

Mixed-criticality Systems

Lalatendu Behera





Time-triggered Scheduling Algorithms for

Mixed-criticality Systems

Thesis submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

by

Lalatendu Behera

Under the supervision of

Prof. Purandar Bhaduri

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati
Guwahati 781039, India

May 2019



:

nFlAclEnvAsAy En(yAy prmA(mn�।

blBdý s� Bdý A<yA\ jgàATAy t� nm,॥

jgdAn�dk�dAy þZtAthrAy c।

nFlAclEnvAsAy jgàATAy t� nm,॥

Dedicated to my mother, brother and wife



Declaration

I, Lalatendu Behera, confirm that:

a. The work contained in this thesis is original and has been done by myself

and the general supervision of my supervisor.

b. The work has not been submitted to any other Institute for any degree or

diploma.

c. Whenever I have used materials (data, theoretical analysis, results) from

other sources, I have given due credit to them by citing them in the text of

the thesis and giving their details in the references.

d. Whenever I have quoted written materials from other sources, I have put

them under quotation marks and given due credit to the sources by citing

them and giving required details in the references.

Place: IIT Guwahati Lalatendu Behera

Date: Research Scholar

Department of Computer Science and Engineering,

Indian Institute of Technology Guwahati,

Assam-781039, India



Certificate

This is to certify that this thesis entitled “Time-triggered Scheduling of Mixed-

criticality Systems” submitted by Lalatendu Behera, to the Indian Institute of

Technology Guwahati, for partial fulfillment of the award of the degree of Doctor of

Philosophy, is a record of bona fide research work carried out by him under my supervision

and guidance.

The thesis, in my opinion, is worthy of consideration for award of the degree of Doctor of

Philosophy in accordance with the regulations of the institute. To the best of my knowledge,

the results embodied in the thesis have not been submitted to any other university or institute

for the award of any other degree or diploma.

Place : IIT Guwahati, India (Purandar Bhaduri)

Date: Professor,

Dept. of Computer Science and Engineering,

Indian Institute of Technology, Guwahati



Acknowledgements

I wish to express my most sincere gratitude and appreciation to my supervisor,

Prof. Purandar Bhaduri, for his support, help and guidance throughout the

research. His continued support led me the right way to bring forth this

thesis successfully. I would like to extend my appreciation to my doctoral

committee members, Prof. Hemangee K. Kapoor, Dr. Arnab Sarkar and Dr.

Aryabartta Sahu for providing constructive suggestions related to my work. I

especially appreciate Dr. Sarkar’s feedback in improving the quality of the thesis.

My sincere appreciation also goes to Prof. Sanjoy Baruah for his invaluable

suggestions that helped to fine-tune the thesis.

I wish to thank Prof. S. V. Rao, Head and other faculty members from the

Department of Computer Science and Engineering for their support and help.

I am grateful to a number of people of IIT Guwahati who, over the last few

years, have helped me by providing valuable ideas and suggestions. They include

Prof. Gautam Biswas (Director), Prof. Gautam Barua (former Director), Prof.

Sukumar Nandi, Dr. Santosh Biswas and Dr. R. Inkulu. I also sincerely

acknowledge the efforts devoted by all the teachers starting from my school days.

I would also like to take this opportunity to thank all my friends, only to name a

few, Shounak, Shirshendu, Ranajit, Amit, Mrityunjay, Basant, Ramanuj, Nandi,

Abinash, Biswaranjan, Sawan, Rupak, Sandeep who directly and indirectly

helped in finishing my thesis. I am thankful to Pradeep bhai and Badri bhai

for their moral support and love which helped me to overcome all the tough

situations in my life at IIT Guwahati.

Last but most important are my parents and other family members whose

blessings and love made my path of success. I am grateful to my mother (Mrs.

Premalata Behera), brother (Mr. Jajatendu Behera), wife (Mrs. Shubhashree

Behera) and sister-in-law (Mrs. Rajashree Behera) who have always supported

me at every course of my life and offered me constant encouragement and

inspiration.



Abstract

Real-time and embedded systems are moving from the traditional design paradigm to

integration of multiple functionalities onto a single computing platform. Some of the

functionalities are safety-critical and subject to certification. The rest of the functionalities

are non-safety critical and do not need to be certified. Designing efficient scheduling

algorithms which can be used to meet the certification requirement is challenging because

the requirements of both the system designers and certification authorities have to be met

within given time budgets.

Our research considers the time-triggered approach to scheduling of mixed-criticality

jobs with two criticality levels. In the first contribution, we propose an algorithm for

uniprocessor mixed-criticality systems which directly constructs two scheduling tables for the

two criticality levels without using a priority order. Furthermore, we show that our algorithm

schedules a strict superset of instances which can be scheduled by two current approaches

to the time-triggered scheduling of such systems – the OCBP-based algorithm as well as

by MCEDF. We show that our algorithm outperforms both the OCBP-based algorithm

and MCEDF in terms of the number of instances scheduled in a randomly generated set of

instances. We generalize our algorithm for jobs with m-criticality levels. Subsequently, we

extend our algorithm to find scheduling tables for periodic and dependent jobs.

Apart from schedulability, it is also important to consider some of the non-functional

properties of mixed-criticality systems, for example, energy consumption. In this work,

we propose a time-triggered dynamic voltage and frequency scaling (DVFS) algorithm

for uniprocessor mixed-criticality systems and show that our algorithm outperforms the

predominant existing algorithms which use DVFS for such systems with respect to

minimization of energy consumption. We prove an optimality result for the proposed

algorithm with respect to energy consumption. Then we extend our algorithm for tasks

with dependency constraints.

iv



ABSTRACT

Finally, we propose a time-triggered scheduling algorithm for both independent and

dependent mixed-criticality jobs on an identical multiprocessor platform. We show that

our algorithm is more efficient than the Mixed-criticality Priority Improvement (MCPI)

algorithm, the only existing such algorithm for a multiprocessor platform, although the set

of instances scheduled by the two algorithms are identical.

v



Contents

List of Figures ix

List of Tables xii

Nomenclature xiii

1 Introduction 1

1.1 Overview of Mixed-criticality Real-time Systems . . . . . . . . . . . . . . . . 3

1.2 Time-triggered Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Time-triggered Scheduling of Uniprocessor Mixed-criticality Systems . 7

1.3.2 Energy-efficient Time-triggered Scheduling of Uniprocessor Mixed-

criticality Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.3 Time-triggered Scheduling of Multiprocessor Mixed-criticality Systems 9

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background and Related Work 10

2.1 Real-time Task Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Overview of Real-time Scheduling . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Dynamic-priority Scheduling . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Fixed-priority Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Real-time Multiprocessor Scheduling . . . . . . . . . . . . . . . . . . 13

2.2 Mixed-criticality System Model . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Time-triggered Scheduling of Uniprocessor Mixed-criticality Systems 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vi



CONTENTS

3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Our Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 The Proposed Algorithm: TT-Merge . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Intuition Behind the Algorithm . . . . . . . . . . . . . . . . . . . . . 32

3.3.3 Correctness Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.4 Dominance Over OCBP-based Algorithm . . . . . . . . . . . . . . . . 40

3.3.5 Dominance Over MCEDF Algorithm . . . . . . . . . . . . . . . . . . 43

3.4 Extension for m Criticality Levels . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.3 Correctness Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Extension for Dependent Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.3 Correctness Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.4 Generalizing the Algorithm for m Criticality Levels . . . . . . . . . . 57

3.6 Extension for Periodic Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Comparison with Mixed-criticality Synchronous Programs . . . . . . . . . . 58

3.7.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.8 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Energy-efficient Time-triggered Scheduling of Uniprocessor Mixed-criticality

Systems 68

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 System Model and Literature Survey . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Mixed-criticality Task Model . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.2 Power Model and DVFS . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Motivation and Problem Definition . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

vii



CONTENTS

4.4 The Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Energy-efficient EDF-VD versus Energy-efficient TT-Merge . . . . . . 87

4.4.2 Extension for Discrete Frequency Levels . . . . . . . . . . . . . . . . 94

4.5 Extension of the Proposed Algorithm for Dependent Task Sets . . . . . . . . 95

4.5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Time-triggered Scheduling of Multiprocessor Mixed-criticality Systems 104

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 The Proposed Algorithm: LoCBP . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.1 Correctness Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4.2 Comparison with MCPI Algorithm . . . . . . . . . . . . . . . . . . . 112

5.5 Extension for Dependent Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5.2 The DP-LoCBP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5.3 Comparison with MCPI Algorithm . . . . . . . . . . . . . . . . . . . 119

5.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Conclusions and Future Scope of Work 123

6.1 Summary of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Future Scope of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

viii



List of Figures

1.1 EDF Schedulable according to the SDs . . . . . . . . . . . . . . . . . . . . . 6

1.2 EDF fails to schedule according to the CAs . . . . . . . . . . . . . . . . . . . 6

1.3 Scheduling of HI-criticality jobs according to the CAs . . . . . . . . . . . . . 6

1.4 Criticality-monotonic fails to schedule according to the CAs . . . . . . . . . 6

1.5 A schedule which satisfies both the CAs and SDs . . . . . . . . . . . . . . . 6

3.1 Priority tree of the instance given in Table 3.1 . . . . . . . . . . . . . . . . . 26

3.2 Table PTLO of the instance given in Table 3.1 . . . . . . . . . . . . . . . . . 26

3.3 Tables SLO and SHI constructed by our algorithm for the instance given in

Table 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 EDF order of three jobs. Up arrows indicate arrival and down arrows indicate

completion times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 After the shifting of jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Allocating Ci(LO) units of execution only . . . . . . . . . . . . . . . . . . . 30

3.7 Temporary table TLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.8 Intermediate temporary table THI . . . . . . . . . . . . . . . . . . . . . . . . 34

3.9 Temporary table THI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.10 Table SLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.11 Construction of table SHI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.12 Scheduling tables according to OCBP-based algorithm . . . . . . . . . . . . 37

3.13 Scheduling tables according to TT-Merge . . . . . . . . . . . . . . . . . . . . 37

3.14 A DAG showing job dependencies. The numbers in parentheses indicates

deadline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.15 Temporary table TLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.16 Temporary table THI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

ix



LIST OF FIGURES

3.17 Final table SLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.18 Final table SHI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.19 DAG of instance I given in Table 3.5 . . . . . . . . . . . . . . . . . . . . . . 60

3.20 DAG after unroll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.21 Tables TLO and THI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.22 Table SLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.23 Table SHI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.24 Comparison of number of MC-schedulable instances at an utilization of 0.9 . 65

3.25 Comparison of number of MC-schedulable instances with different utilizations 65

3.26 Comparison of number of MC-schedulable instances with different number of

jobs per instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Tables constructed by the TT-Merge algorithm . . . . . . . . . . . . . . . . 73

4.2 Table ELO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Table EHI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Table EFINAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Table EFINAL after the moving the job segments to their right . . . . . . . . 86

4.6 Dependencies among the tasks given in Table 4.1 . . . . . . . . . . . . . . . 98

4.7 Dependencies among the tasks given in Table 4.1 after unroll . . . . . . . . . 98

4.8 Tables ELO and EHI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.9 Table EFINAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.10 Table EFINAL after each job is moved to its finishing time in Eχ . . . . . . . 99

4.11 Comparison of normalized energy consumption between Energy-Efficient

EDF-VD and TT-Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.12 Comparison between TTM and EVD where LO-criticality scenario utilization

ranges from 0.5 to 0.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.13 Comparison between TTM, PCM and EVD where LO-criticality scenario

utilization ranges from 0.5 to 0.9 . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 Table SLO for processor P0 and P1 . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Table SHI for processor P0 and P1 . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 An example instance to explain the DP-LoCBP algorithm . . . . . . . . . . 117

5.4 A DAG showing job dependencies among the jobs of an instance . . . . . . . 117

5.5 Table SLO for processor P0 and P1 . . . . . . . . . . . . . . . . . . . . . . . . 118

x



LIST OF FIGURES

5.6 Table SHI for processor P0 and P1 . . . . . . . . . . . . . . . . . . . . . . . . 118

5.7 Comparison of time consumption of MC-schedulable instances with different

number of processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xi



List of Tables

1.1 Criticality levels of DO-178B standard [BV08] . . . . . . . . . . . . . . . . . 3

1.2 An example instance to explain MCS . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Different types of real-time multiprocessor algorithms . . . . . . . . . . . . . 14

3.1 Example instance scheduled by TT-Merge and not by the OCBP-based

algorithm or MCEDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 An example instance to explain the TT-Merge algorithm . . . . . . . . . . . 34

3.3 An instance where both TT-Merge and OCBP-based algorithms are successful 37

3.4 An example instance to explain the TT-Merge-DEP algorithm . . . . . . . . 55

3.5 An example instance to explain the application of our algorithm on syn-

chronous reactive systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 A task set which is not schedulable by EDF-VD . . . . . . . . . . . . . . . . 72

4.2 Table showing initial processor frequency allotment . . . . . . . . . . . . . . 86

4.3 Table showing final processor frequency allotment . . . . . . . . . . . . . . . 87

5.1 An example instance to explain the LoCBP algorithm . . . . . . . . . . . . . 109

xii



Nomenclature

AMC Adaptive Mixed-criticality

ASIL Automotive Safety and Integrity Levels

CA Certification Authority

CBEDF Criticality-based Earliest Deadline First

CPS Cyber-physical Systems

DMS Deadline Monotonic Scheduling

DVFS Dynamic Voltage and Frequency Scaling

EDF Earliest Deadline First

FAA Federal Aviation Authority

MCEDF Mixed-criticality Earliest Deadline First

MCPI Mixed-criticality Priority Improvement

MCRTS Mixed-criticality Real-time Systems

MCS Mixed-criticality Systems

OCBP Own Criticality Based Priority

PC Partitioned Criticality

RMS Rate Monotonic Scheduling

SD System Designer

SIL Safety Integrity Levels

SMC Static Mixed-criticality

TT Time-triggered

UAV Unmanned Aerial Vehicle

WCET Worst-case Execution Time

xiii



Chapter 1

Introduction

In recent times there has been a rapid increase in the use of real-time and embedded systems

in day-to-day life. A real-time system is required to produce not only correct results but also

produce them within the stipulated time. Typical applications of real-time systems are in

the field of defense and space systems, networked multimedia systems, embedded automotive

and avionics systems etc. Many of these real-time systems are safety-critical in nature.

The correctness requirements of safety-critical systems must be met at any cost. To

meet this goal designers perform a priori verification and also try to ensure run-time

robustness [Bar18] of the systems. In the verification process, formal models are constructed

to assess the run-time behaviors of the systems. On the other hand, run-time robustness

checks that any behavior not included in the system specification must not appear at run-

time. One of the most important features to verify by modeling is the execution time of a

piece of code. In traditional safety-critical real-time systems, a piece of code was verified

using simple processors and deterministic timing properties, leading to predictable run-time

behavior during the verification processes. However, safety-critical systems have become

more complicated with increasing size and complexity. Also, they are being implemented on

advanced processors which are much less predictable with respect to the run-time behavior of

such systems. Upon such platforms, the timing behavior of a piece of code varies considerably

during different runs. The longest time taken by a piece of code in different runs is called

the worst-case execution time (WCET).

In real-time systems, we assume that no task will exceed its computed worst-case

execution time (WCET) in order to ensure that every task meets its deadline. This

assumption may not always hold. In practice, it is very difficult to predict the WCET

1



of a task [PB00], a fact summarized by the observation that “the more confidence one needs

in a task execution time bound, the larger and more conservative that bound tends to

be in practice” [Ves07]. The increasing complexity of safety-critical system functionalities

and the enforced non-determinism due to the complex architecture of today’s platforms,

determination of WCET becomes very challenging. WCETS are estimated by some

methodologies and tools which compute the upper bound for a functionality. Due to the

non-determinism of the platform and the complexity of the codes, there can be a significant

difference between the WCETs computed by two different tools for the same functionality.

In real-time systems, satisfying the timing specifications for a given set of tasks

by determining an appropriate order among task executions boils down to a challenging

scheduling problem. Traditional scheduling schemes have primarily dealt with scenarios

in which all tasks belong to a single criticality level. In these systems, tasks at distinct

criticality levels are typically handled by allocating a dedicated server for each criticality

level. However, such federated schemes often lead to severe resource under-utilization. As a

result, real-time systems are moving towards integrating various functionalities onto a single

platform such that the under-utilization of the system resources can be alleviated. The

Integrated Modular Avionics (IMA) [Pri92] initiative for aerospace and AUTomotive Open

System ARchitecture (AUTOSAR) [SB08, FBH+06, FMB+09] for the automotive industry

are examples of frameworks for integrated functionalities. The task of making timing

guarantees for such systems is very challenging.

In various applications, the severity of missing a deadline varies from task to

task [Ves07]. For example, DO-178B [RB92], a software development process standard

(Software Considerations in Airborne Systems and Equipment Certification), is accepted

by the United States Federal Aviation Authority (FAA) to certify the software used in the

avionics industry. DO-178B assigns five different criticality levels to a task based on the

use of commercial aircraft. The criticality levels are presented in Table 1.1. A failure of

assurance level E can cause a sub-optimal behavior of the system, while one of assurance

level A can damage the system.

Safety functionalities are more difficult to verify. A major practice in some industries

is to increase the use of software to increase the safety of the system [Bow00]. But this leads

to the added burden of verifying the reliability of the software. A defect in software may

impact the timing aspects of a real-time system. Safety functionalities require certification by

certification authorities (CAs). The tools used by the certification authorities for estimating

2



1.1 Overview of Mixed-criticality Real-time Systems

Table 1.1: Criticality levels of DO-178B standard [BV08]

Level Failure Condition Interpretation

E No Effect Failure has no impact on the safety of an aircraft

D Minor Failure is noticeable, but has less impact on the safety of an aircraft

C Major Failure is significant but not hazardous

B Hazardous Failure has very large impact on the safety of the aircraft

A Catastrophic Total system failure and crash

WCETs of tasks are very pessimistic although they are concerned only about the safety-

critical functionalities. On the other hand, the system designers (SDs) use less pessimistic

tools for WCET estimation but are concerned about all functionalities. For example, a

UAV (Unmanned Aerial Vehicle) consists of two functionalities, viz., safe operation of the

vehicle above the ground (safety-critical) and capturing an image and sending to the base

station (mission-critical). In this case, the certification authorities assess the reliability of

only the safety-critical functionality whereas the system designers need to worry about both

functionalities, albeit with relaxed assumptions about WCETs. This is the crux of the

scheduling problem for mixed-criticality systems.

1.1 Overview of Mixed-criticality Real-time Systems

The main goal of studying mixed-criticality real-time systems is to build safety-critical

cyber-physical systems (CPS) in a resource-efficient manner. As mentioned above, safety-

critical systems must satisfy some correctness constraints and in many cases, for example,

for aircrafts and automotive vehicles, need to be certified by some certification authority.

In order to verify the correctness of the system, it must be guaranteed that the run-time

behavior of the system is predictable. For example, an anti-lock braking system has multiple

forms of predictability requirements, viz., functional predictability and timing predictability.

Functional predictability deals with the physical components of the anti-lock braking system,

whereas timing predictability deals with the time elapsed between the triggered event and

the actual action. Both requirements are vital with respect to the correctness of the system.

Here we mainly deal with cyber-physical systems which are reactive, i.e., the system

regularly interacts with the environment or the physical world. There are mainly three

components of a cyber-physical system, viz., program, platform and environment. We

3



1.1 Overview of Mixed-criticality Real-time Systems

write some programs which are executed on a given platform and which interact with the

environment. The resulting behavior of these three components defines the functionality of a

CPS. To achieve the timing predictability of a CPS, we must follow these guidelines, viz., (1)

the programs must behave in a deterministic fashion during run-time, (2) resource under-

utilization must be avoided and (3) the behavior of the platform must be deterministic.

Apart from these, the environment component is also necessary for timing predictability.

Since we cannot predict the behavior of the environment in general, we cannot represent the

environment exactly. Hence, if any aspect of a CPS is event-triggered (i.e., triggered by an

event in the environment) then such a model has to be conservative and must incorporate

pessimism by taking into account a range of possible environment behaviors. From the above

discussion, we can say that as cyber-physical systems become larger and more complex, they

become computationally more demanding. The fact that CPS are inherently interactive

results in pessimism and conservative assumptions about timing guarantees. The degree of

pessimism also depends on the criticality level of the task. This leads us into the realm of

mixed-criticality systems.

A mixed-criticality real-time system (MCRTS) [BBD+12a,BBB+09,LB10,BD13,BB11,

Ves07,BV08] is one that has two or more distinct levels of criticality, such as, safety-critical,

mission-critical, non-critical, etc. Typical names of the criticality levels used in industries

are ASIL (Automotive Safety and Integrity Levels) [fS11, aHCJPH11, HSK+09] and SIL

(Safety Integrity Level) [Com10, Gal08], etc. All the run-time behaviors of a CPS are not

equally important. Therefore the important behaviors must be validated to a greater level

of assurance or higher degrees of confidence. That means to validate or certify a very

critical property, we need to make very conservative assumptions. We introduce the mixed-

criticality scheduling problem with an example [BBD+12a] from the domain of UAVs. The

functionalities of UAVs may be classified into two categories, viz., mission-critical (LO-

criticality) and flight-critical (HI-criticality).

• Mission-critical functionalities include capturing images from the ground and

transmitting those to the base station, etc.

• Flight-critical functionalities include safe operation while performing the mission.

It is mandatory that the flight-critical functionalities be certified to be correct because

failure of these functionalities could be catastrophic. There are different certification

authorities (CAs) for different functionalities. The CAs for flight-critical jobs tend to be

4



1.1 Overview of Mixed-criticality Real-time Systems

very conservative. During the certification process, the CAs focus mainly on the run-time

behavior of the systems. The analytical tools, techniques and methodologies used by the CAs

estimate more pessimistic results than the system designers. System designers are interested

in both flight-critical and mission-critical functionalities, but are not as rigorous as the CAs

when estimating timing parameters. As mentioned above, the computation of the exact

worst-case execution time (WCET) of a non-trivial piece of code is extremely difficult due

to the complex architecture of today’s systems. A safe upper bound on the actual WCET

requires great effort. A CA may estimate the WCET of a piece of code to be far higher than

that of the system designer. This leads to two different WCET estimates, i.e., one by the

CA which is very pessimistic and the other one by the system designer which is much lower.

The gaps between the CAs and the system designers are more likely to increase in future as

pointed out in [HS06]. On the other hand, it is very unlikely that a system would realize the

higher WCET estimated by the CA. As a result, most of the resources which are provided

to run the piece of code go unused if the pessimistic estimates are adhered to.

Example 1.1.1: Consider the instance given in Table 1.2 which consists of three jobs.

Table 1.2: An example instance to explain MCS

Job Arrival time Deadline Criticality WCET WCET

estimated by SDs estimated by CAs

j1 0 3 LO 1 1

j2 0 6 HI 3 4

j3 1 5 HI 1 2

The given instance is EDF schedulable from the perspective of system designers, as

shown in Fig. 1.1. The CAs use very conservative tools and their estimates are given in

the last column of Table 1.2. When we consider the WCET estimated by the CAs, we find

that EDF fails to schedule the instance as is shown in Fig. 1.2. The symbol
⊗

indicates a

deadline miss.

But we know that CAs do not care about the schedulability of the LO-criticality jobs.

So they can certify the system only if the HI-criticality jobs are schedulable. We can verify

that the HI-criticality jobs are schedulable if j2 is scheduled in [0, 1] and [3, 6] and j3 is

scheduled in [1, 3] which is shown in Fig. 1.3. The schedule is obtained by the criticality-

monotonic scheduling with EDF policy, where a higher criticality job with earliest deadline

5



1.2 Time-triggered Scheduling

j1 j3 j2

0 1 2 5

Figure 1.1: EDF Schedulable according

to the SDs

j1 j3 j2

0 1 3 6 7

⊗
Figure 1.2: EDF fails to schedule according

to the CAs

is scheduled first. We can see that j1 misses its deadline but this fact is not important to

the CAs. But the schedule thus obtained does not satisfy the system designers even with

the lower WCET estimates. Suppose both j2 and j3 runs for 3 and 1 units of execution time

as estimated by the system designers. We can see in Fig. 1.4 that j1 has missed its deadline

which can lead to mission failure even if it is not catastrophic.

j2 j3 j2 j1

0 1 3 6 7

Figure 1.3: Scheduling of HI-criticality

jobs according to the CAs

j2 j3 j2 j1

0 1 2 5 6 7

⊗
Figure 1.4: Criticality-monotonic fails to

schedule according to the CAs

So the main problem in scheduling mixed-criticality jobs/tasks is to satisfy both the

CAs and SDs. Hence we need to construct deterministic algorithms where both the CAs

and SDs can certify the system correct with respect to their perspectives. We now present a

schedule in Fig. 1.5 which can satisfy both the CAs and SDs. In Fig. 1.5., if job j3 finishes

j2 j3 j1 j2

0 1 2 3 5 7

j2 j3 j1 j2

0 1 2 3 6 7

Figure 1.5: A schedule which satisfies both the CAs and SDs

its execution at time instant 2, then j2 can be assigned in [2, 3]. We then need to schedule

the 3 remaining units of execution time of j2 in [3, 6] which is possible.

1.2 Time-triggered Scheduling

In a time-triggered (TT) system, all activities in a distributed real-time system are initiated

by the progression of time [Kop11] and the information about the run-time of each task is

known at design time. All activities are scheduled at predefined points in time even before the

system is deployed. The scheduler dispatches the jobs using this prior information. In such

6



1.3 Outline of the Thesis

architectures, it is essential to synchronize the actions of all participating nodes to a global

clock. A time-triggered schedule is deterministic [BF11] and hence is very easy to verify

and certify. With the advantage of timing predictability, there are also some disadvantages.

Once a time-triggered schedule is prepared, it cannot be changed during run-time. If a job

finishes its execution in less time than the actual worst-case execution time, then the allotted

system resources for the job cannot be reallocated at run-time. Hence, under-utilization of

the system resources is a serious drawback of time-triggered scheduling. Since our work is

motivated by verification and certification, we focus on the time-triggered paradigm. There

are many variations of the paradigm, such as, slot shifting, mode change, etc. In the slot

shifting paradigm [Foh95, IF00], the time-triggered schedule is partially computed off-line.

Then some additional scheduling decision is taken depending upon the run-time events. On

the other hand, there are more than one pre-computed scheduling strategies available in the

mode change paradigm [Foh93]. The decision to change from one scheduling strategy to

another is triggered by the occurrence of a run-time event. These scheduling strategies are

designed in such a way that the ongoing activities run uninterruptedly. Our main focus is in

the mode change paradigm. We prepare more than one scheduling table for a task set and

switch between the tables to assert the correctness depending upon the requirement.

1.3 Outline of the Thesis

Traditional real-time scheduling algorithms are not able to schedule mixed-criticality task

sets efficiently as shown in [Ves07]. According to Vestal’s model, the high criticality tasks

must be guaranteed to meet their deadlines if estimates of CAs are to be considered and all

tasks must be guaranteed to meet their deadlines if estimates of SDs are to be considered.

Our thesis has the goal of finding time-triggered schedules for mixed-criticality task sets

considering Vestal’s model.

1.3.1 Time-triggered Scheduling of Uniprocessor Mixed-criticality

Systems

In this thesis, we focus on the time-triggered scheduling of mixed-criticality systems. We

will construct two predefined scheduling tables SHI and SLO for a given instance I which will

be used at run time. MCEDF [SPBB13] and OCBP [BF11] are two existing fixed-priority

7



1.3 Outline of the Thesis

job scheduling algorithms for mixed-criticality systems, which are used to construct time-

triggered scheduling tables. Both the MCEDF and OCBP algorithms fail to schedule some

instances due to a fixed priority assignment to the jobs. If the algorithms do not find a

priority order then they will not be able to construct the time-triggered scheduling tables.

We propose an algorithm called TT-Merge which can directly construct the time-triggered

scheduling tables without using priorities. We prove that the TT-Merge algorithm schedules

a strict superset of instances scheduled by the OCBP-based time-triggered scheduling

algorithm and MCEDF. We first propose the TT-Merge algorithm for independent mixed-

criticality jobs. We then generalize the problem for m-criticality levels. Then TT-Merge

is extended for dependent mixed-criticality jobs (abbreviated as DP-TT-Merge), periodic

jobs and synchronous reactive systems. Finally, we present results of experiments based on

randomly generated job instances.

1.3.2 Energy-efficient Time-triggered Scheduling of Uniprocessor

Mixed-criticality Systems

Huang et al. [HKGT14] proposed an energy-efficient algorithm for scheduling mixed-

criticality systems based on the EDF-VD algorithm. They showed the algorithm to be

optimal in finding processor frequencies for each job with respect to EDF-VD. We show that

our algorithm TT-Merge from Section 1.3.1 schedules more instances (i.e., a strict superset

of instances) than the EDF-VD algorithm. We also prove that TT-Merge will find more

energy-efficient schedules than the existing algorithm. Here we focus on dual-criticality task

sets. Since the probability of a scenario change from the LO-criticality scenario to HI-

criticality is very low, minimizing energy consumption in HI-criticality scenarios is of less

importance. Our objective is to minimize the system energy consumption by slowing down

the tasks in the LO-criticality scenario using the DVFS method while ensuring that they do

not miss their deadlines. Without loss of generality, we calculate the energy consumption

minimization up to the hyperperiod P of the task set. The idea is to find the energy-efficient

LO-criticality WCET C̃ik(LO) and the corresponding frequency fLO
ik for each job jik of the

task set in the hyperperiod which will minimize the energy consumption in the LO-criticality

scenario. We also prove the processor frequencies computed by our proposed algorithm are

optimal with respect to the TT-Merge algorithm.

Then we extend the algorithm to find the energy-efficient LO-criticality WCET C̃ik(LO)

8



1.4 Organization of the Thesis

and the corresponding frequency fLO
ik for dependent jobs such that the DP-TT-Merge

algorithm can schedule them without any deadline miss. Finally, we compare the results

with the existing work [HKGT14,ASK15] using random task sets.

1.3.3 Time-triggered Scheduling of Multiprocessor Mixed-

criticality Systems

There exists only one time-triggered mixed-criticality scheduling algorithm for multiprocessor

systems by Socci et al. [SPBB15]. They showed that the computational complexity of their

algorithm MCPI is O(|E|n2 +mn3 log n) for dependent jobs, where n is the number of jobs

in the instance I, m is the number of processors and E is the dependency relation between

jobs. In this thesis, we propose an algorithm which is easier to understand and schedules

exactly the instances that are schedulable by MCPI. We also prove that the computational

complexity of our algorithm is O(|E|n+mn3) for dependent jobs and O(mn3) for independent

jobs.

1.4 Organization of the Thesis

The thesis is organized as follows.

• Chapter 2: We present a brief introduction to traditional real-time systems followed

by mixed-criticality real-time systems. We then discuss different existing scheduling

algorithms for mixed-criticality real-time systems.

• Chapter 3: We propose a time-triggered scheduling algorithm for non-recurrent

independent mixed-criticality jobs on uniprocessor systems and then extend it to handle

m-criticality levels, dependent jobs, periodic tasks and synchronous reactive tasks.

• Chapter 4: We propose a time-triggered energy-efficient scheduling algorithm and

show it to be optimal with respect to the TT-Merge algorithm.

• Chapter 5: We propose a time-triggered scheduling algorithm for independent

non-recurrent mixed-criticality jobs on multiprocessor systems which is extended for

dependent non-recurrent mixed-criticality jobs.

• Chapter 6: We summarize the work done in this thesis and the scope for future work.

9



Chapter 2

Background and Related Work

In this chapter, we present the basic notations and definitions used in this thesis which

include the background and a survey of mixed-criticality systems. We begin the chapter with

the description of a generic task model. We then describe the classification of scheduling

algorithms and the associated results. Finally, we present a brief introduction of mixed-

criticality systems and work done in this area.

2.1 Real-time Task Model

A real-time task is one that has to perform some amount of computation within a specified

time limit. Based on the occurrence of real-time tasks, they are classified into three classes,

i.e., periodic, sporadic and aperiodic. The tasks which recur at a constant interval of time

are called periodic tasks [LL73]. On the other hand, a task is called sporadic [Liu00] when it

arrives at arbitrary times but the minimum inter-arrival time between any two consecutive

tasks is fixed. An aperiodic task [Liu00] can arrive at any time. All these tasks are called

recurrent tasks. A real-time task can recur indefinitely and generates a sequence of jobs.

Each instance of a task arrival is called a job. If after one instance a task does not recur

then it is called a non-recurrent task. The non-recurrent task sets are called an instance

or a job set. In the case of periodic tasks, the arrival time of instances is known due to

the constant inter-arrival time. This is also called as a time-triggered task [The15]. In this

thesis, we handle both recurrent and non-recurrent tasks. In the case of recurrent tasks, we

use only periodic tasks, where the arrival time of each job is known off-line. Note that if our

scheduling algorithms work on a job set, that means this is a single instance release of the

10



2.1 Real-time Task Model

task set and no other instance of the task set is available.

We now present a periodic task model. A periodic task (τi) is characterized by a

3-parameter tuple τi = (Ci, Pi, Di), where

• Ci ∈ N+ denotes the worst-case computation time or execution time.

• Pi ∈ N+ denotes the period, i.e., the inter-arrival time between two tasks.

• Di ∈ N+ denotes the relative deadline, i.e., the maximum time permissible for the task

to complete its execution.

Based on the relation between deadlines and periods, task sets have three types of

constraints on deadlines, i.e., implicit deadline, constrained deadline and arbitrary deadline.

A task set is said to have implicit deadline constraints, if all task periods are equal to their

deadlines, i.e., Pi = Di. If Di ≤ Pi, then the task set has constrained deadlines. All other

constraints are known as arbitrary deadline constraints. In some cases, periodic tasks are

assigned an initial arrival time or offset. This is the delay in the arrival of the task. If the

offsets of all the tasks are same, then the task set is called synchronous. In this thesis, we

consider the offset to be zero, unless stated explicitly.

In some cases, our work is based on jobs. A task can generate an infinite sequence of

jobs. The job or an instance jik of task τi, i.e., the kth job of the ith task is characterized by

a 3-parameter tuple jik = (aik, Cik, Dik), where

• aik ∈ N denotes the arrival time, i.e., the release time of the job.

• Cik ∈ N+ denotes the worst-case computation time or execution time of the job.

• Dik ∈ N+ denotes the relative deadline, i.e., the maximum time permissible for the job

to complete its execution.

Since our algorithms are restricted to non-recurrent jobs and periodic tasks, we do

not focus on sporadic and aperiodic tasks here. In real-time systems, jobs or tasks need

to complete their execution with not just correct results, but also on time. There are

various algorithms which can schedule jobs such that all the tasks complete their execution

correctly on time, i.e., before their deadlines. We next present some definitions regarding

the schedulability of a task or job set .

11



2.1 Real-time Task Model

Definition 2.1.1: A scheduling algorithm which schedules the tasks or jobs and/or allocates

resources to the tasks or jobs is called a scheduler [Liu00]. An assignment of all the jobs in

the system to the available processors is called a schedule.

Definition 2.1.2: If a schedule works correctly, then we call it a valid schedule [Liu00]. In

a valid schedule, all the jobs must complete their execution before their deadlines, no job is

assigned to a processor before its arrival time, all jobs must satisfy their resource allocation

and precedence constraints.

Definition 2.1.3: A task set is said to be feasible [Liu00] in a system if there exists an

algorithm (scheduler) which can correctly schedule all the jobs generated by a task set

before their deadlines.

Definition 2.1.4: An algorithm is said to be optimal [DB11] with respect to a system and

task model, if it can correctly schedule all task sets that are feasible.

Definition 2.1.5: A scheduling algorithm is said to be clairvoyant [DB11] if the algorithm

has prior knowledge about the events of the tasks, (such as, arrival time or actual execution

time) which is unknown until run-time.

2.1.1 Overview of Real-time Scheduling

Here we discuss the basics of real-time task scheduling. Generally, scheduling algorithms are

divided into two categories:

• Dynamic-priority scheduling

• Fixed-priority scheduling

2.1.2 Dynamic-priority Scheduling

In dynamic priority scheduling, the tasks are assigned priorities at every scheduling instant.

In Earliest Deadline First (EDF) scheduling [LL73], the task having the shortest time to its

deadline is assigned the highest priority. EDF scheduling is very intuitive and proven to be

an optimal [Hor74] uniprocessor scheduling algorithm. The schedulability test for EDF is

n∑
i=1

ci
pi

=
n∑
i=1

ui ≤ 1 (2.1)

where ci is the worst case execution time and pi is the period of the ith task, n is the number

of tasks to be scheduled and ui is the CPU utilization due to the ith task.

12



2.1 Real-time Task Model

2.1.3 Fixed-priority Scheduling

In fixed priority scheduling, the tasks are assigned priorities before execution. There are

two well-known fixed priority algorithms in wide use, viz., Rate Monotonic Scheduling

(RMS) [LL73] and Deadline monotonic scheduling (DMS) [ABW93].

Rate Monotonic scheduling (RMS) [LL73]: This algorithm assigns priorities to

tasks based on their periods, i.e., the shorter the period, the higher the priority. We know

that the rate of a task is the inverse of its period. Hence, higher the rate, higher its priority.

The following conditions are important criteria which can be used to check the schedulability

of a task set under RMS [Liu00].

1. Necessary Condition: A set of periodic real-time tasks would not be RMS

schedulable unless they satisfy the following necessary condition:

n∑
i=1

ci
pi

=
n∑
i=1

ui ≤ 1 (2.2)

2. Sufficient Condition: [LL73] A set of n real-time periodic tasks are schedulable

under RMS, if
n∑
i=1

ui ≤ n(2
1
n − 1) (2.3)

Deadline Monotonic scheduling (DMS) [ABW93]: This algorithm is similar in

concept to rate monotonic algorithm. Here the tasks are assigned priorities according to

their deadline. The task with the shortest deadline gets the highest priority and the one

with the longest deadline with the lowest priority.

The following are important criteria which can be used to check the schedulability of a task

set under DMS

∀i : 1 ≤ i ≤ n :
Ci
Di

+
Ii
Di

≤ 1 (2.4)

where Ii =
∑i−1

j=1

⌈
Di
Pj

⌉
×Cj, Pj is period of the jth task, Ci is execution time of the ith task,

Di is deadline of the ith task and n is the number of tasks in the task set.

2.1.4 Real-time Multiprocessor Scheduling

The scheduling algorithms discussed in the previous sections are based on uniprocessor real-

time systems. There are multiple algorithms proposed for scheduling jobs in a multiprocessor

13



2.1 Real-time Task Model

Table 2.1: Different types of real-time multiprocessor algorithms

Job Dynamic Job fixed Task fixed

Global Fluid Schedule Global EDF Global RM

Pfair

Partitioned Partitioned EDF Partitioned EDF Partitioned RM

real-time system. As in the uniprocessor case, the scheduling algorithms are divided into

different categories as given in Table 2.1.

Here we mainly focus on the homogeneous multiprocessor systems or multiprocessor

with identical processors. In the above table, when we move from left to right, the priority

assignments by the schemes move from unrestricted to restricted with respect to a task set.

In a dynamic scheduling policy the priorities are given at each instant of time. So there is no

restriction on a task in the beginning with respect to priority. On the other hand, each job

is given a fixed priority in its life time in the job fixed policy. In task fixed policy, each task is

given a single priority in its life time prior to their execution which cannot be changed later.

A global scheduling policy means a job can be executed in any processor after a preemption,

i.e., an inter-processor migration for jobs is allowed. On the other hand, a partitioned scheme

assigns a set of jobs to a particular processor and those jobs will be executed only in their

assigned processors from beginning to end.

In 1997, Phillips et al. [PSTW97, PSTW02] investigated the global EDF scheduling

approach (which is a job fixed policy) to schedule sporadic tasks in multiprocessor systems.

A given sporadic task set is called global EDF schedulable if EDF meets all deadlines for every

collection of jobs that may be generated by the task system. There were no exact feasibility

tests for sporadic tasks in this work. Srinivasan and Baruah [SB02], Goossens et al. [GFB03]

and Baruah [Bar04a] extended this work to find a sufficient condition. In 2008, Baruah and

Baker [BB08] proposed a sufficient schedulability test for global EDF. Baruah et al. [BG03]

proposed a global rate-monotonic scheduling algorithm for multiprocessor real-time systems

where a task is assigned the highest priority if it has the lowest period. In 2006, Cho et

al. [CRJ06] proposed an optimal scheduling algorithm for multiprocessor systems known

as LLREF based on the fluid scheduling model and a notion of fairness. The notion of

fairness was introduced by Baruah et al. [BCPV96] in 1996. They proposed the proportionate

progress (P-fairness) notion which is used to solve the periodic scheduling problems in real-

14



2.2 Mixed-criticality System Model

time systems. Anderson et al. [AS00] proposed a variant of fair scheduling known as ER-fair

schedule or early-release fair scheduling which is work conservative and optimally schedules

periodic tasks on a multiprocessor system. Levin et al. [LFS+10] proposed an algorithm

based on deadline partitioning which guarantees optimality and improves performance over

all other algorithms in multiprocessor real-time systems.

On the other hand, the partitioned EDF algorithm [Bar13, LDG04, BCA08] is known

to be intractable. But many polynomial time algorithms have been proposed to solve the

problem in approximation.

2.2 Mixed-criticality System Model

In this section, we present a general mixed-criticality periodic task model. A mixed-criticality

task is characterized by a 4-tuple of parameters: τi = (ai, pi, χi, Ci), where

• ai ∈ N denotes the arrival time of the first job of task τi (also known as the offset).

• pi ∈ N+ denotes the period.

• χi ∈ N+ denotes the criticality level.

• Ci ∈ NL is a vector, where the lth coordinate denotes the worst-case execution time

(Ci(l)) of lth criticality level of task τi. We represent the worst-case execution times of

a task for the L criticality levels as the tuple (Ci(1), Ci(2), . . . , Ci(L)).

A task τi generates an unbounded sequence of mixed-criticality jobs released at intervals

of time pi whose relative deadlines are after pi units of time after release. A job jk of task τi is

characterized by a 4-tuple parameters: jk = (ak, dk, χi, Ck), where ak and dk are arrival time

and deadline of job jk, respectively. We assume that the worst-case execution time estimates

are monotonically increasing with the criticality levels, i.e., Ck(1) ≤ Ck(2) ≤ · · · ≤ Ck(L)

for each job jk. This is because the execution time estimates represent upper bounds for

the respective criticality levels and we know that higher criticality levels correspond to more

conservative estimates. A task set T is a collection of n tasks. For simplicity, we assume

that each task can generate only one job between its arrival and its next period. In case of

non-recurrent tasks, an instance is a set of n jobs.

To understand the mixed-criticality scheduling problem, we need to define the notion

of a scenario [BBD+12a]. We know that a job jk arrives at its arrival time ak and must

15



2.3 Related Work

finish its execution before its deadline dk. The execution times defined above are worst-case

estimates. The actual execution time ci(l) is not known until a job signals its completion.

The collection of all such actual execution times of tasks/jobs is called a scenario, i.e., a tuple

(c1, c2, . . . , cn), where ck is the actual execution time of job jk. A scenario can be categorized

into L types depending upon the criticality levels.

Definition 2.2.1: An l-criticality scenario [BBD+12a] is defined as the smallest integer l,

such that ∀jk ∈ T .ck ≤ Ck(l)

Again a scenario is divided into two types, i.e., erroneous and non-erroneous. If a

smallest l cannot be found according to Def. 2.2.1, then the scenario is called erroneous, else

it is called non-erroneous.

Definition 2.2.2: [BBD+12a] A schedule for a scenario (c1, c2, . . . , cn) of criticality l is

feasible if every job jk with χk ≥ l receives execution time ck during its time window [ak, dk].

2.3 Related Work

In 2007, Vestal identified and formalized the mixed-criticality concept in his seminal

work [Ves07]. He established the necessity of conservative worst-case execution time

parameters in safety-critical systems with respect to fixed-priority preemptive uniprocessor

scheduling of recurrent task systems. Baruah and Vestal [BV08] presented a thorough

study of feasibility and schedulability for multi-criticality real-time systems using Audsley’s

algorithm [Aud01] when implemented upon preemptive uniprocessor platforms. They showed

that the earliest deadline first (EDF) algorithm [LL73] does not outperform fixed-priority

schemes in the presence of criticality levels. They also showed that some feasible systems

are not schedulable by EDF.

Burns and Baruah [BB11] proposed three schedulability algorithms based on the

response time analysis of the task set, i.e., Partitioned Criticality (PC), Static Mixed-

Criticality (SMC) and Adaptive Mixed-Criticality (AMC). In PC, the priorities are assigned

according to criticality, whereas SMC and AMC use run-time monitoring to assign the

priorities. They proved that the proposed algorithms dominate the existing fixed-priority

algorithms for traditional real-time systems. These algorithms are applicable to periodic

tasks.

Baruah et al. [BBD+12a,BBD+10] proved the MC-schedulability problem to be NP-hard

16



2.3 Related Work

in the strong sense even for two criticality levels and for identical arrival times. The strong

NP-hardness of MC-schedulability indicates that neither polynomial nor pseudo-polynomial

time algorithms are likely to exist to exactly decide whether there is a scheduling policy for

a mixed-criticality job instance or task set [Li13].

So most schedulability research on mixed-criticality systems revolves around finding

efficient approximation algorithms. In [BBD+12a,BBD+10,BLS10a,BLS10b], Baruah et al.

proposed the own-criticality based priority (OCBP) algorithm. OCBP is a job based fixed

priority algorithm which is described in Chapter 3 in more detail. They also proved that the

speedup factor of OCBP is optimal. In 2010, Baruah et al. [BLS10b] enhanced the OCBP

algorithm for sporadic tasks by obtaining the initial priority list and updating the list on-line

to maintain the correctness of the priority. Park and Kim [PK11a] proposed the Criticality

Based Earliest Deadline First (CBEDF) algorithm which is an extension of the traditional

EDF algorithm. Baruah et al. [BBD+12b,BBD+11,BBD+15] proposed an algorithm like the

traditional EDF algorithm based on the sporadic task model known as Earliest Deadline

First - Virtual Deadline (EDF-VD). The speedup factor of an algorithm A is the smallest

real number α such that any task system τ that is schedulable on a unit-speed processor by

a hypothetical optimal clairvoyant algorithm (where a clairvoyant algorithm for scheduling

mixed-criticality systems is one that knows prior to run-time whether the system is going

to exhibit LO-criticality or HI-criticality scenario) is successfully scheduled on a speed-α

processor by algorithm A. The smaller the speedup factor, the closer the behavior of the

algorithm A to that of a clairvoyant optimal algorithm. The speedup factor of EDF-VD

was given as 1.618 in [BBD+11] whereas an improved analysis in [BBD+12b] showed it to

be 1.33. We describe the algorithm in detail in Chapter 4.

In 2011, Baruah and Fohler [BF11] introduced a technique to schedule dual-criticality

mixed-criticality jobs using the time-triggered framework. Their objective was to ensure

that adequate resources are reserved for each application to be able to guarantee the timing

requirements. They used the OCBP algorithm to assign priorities to the jobs. These

priorities are used to find two scheduling tables which are used at the run-time to schedule

the jobs. They also showed that the speedup factor of the algorithm is 1.62.

Subsequently, Baruah [Bar14], [Bar12] proposed a schedule-generation algorithm for

mixed-criticality synchronous programs upon uniprocessor platforms. He proved that the

proposed algorithm for single-rate synchronous programs is optimal. He then proved that

an efficient and optimal schedule generation problem for multi-rate synchronous program is

17



2.3 Related Work

NP-hard in the strong sense. He also proposed a schedule generation algorithm based on

OCBP for multi-rate synchronous programs. We describe the algorithm in detail in Chapter

3.

In 2013, Socci et al. [SPBB13] proposed a fixed priority scheduling approach called

Mixed-Criticality Earliest Deadline First (MCEDF) for mixed-criticality jobs. In this paper,

they assigned a priority to each job and then constructed two priority tables, i.e., PTLO and

PTHI. The scheduling of jobs starts with the table PTLO, while the table PTHI is used after

a mode change occurs. We discuss this algorithm in more detail in Chapter 3. In [TFB13]

Theis et al. present a backtracking based iterative deepening algorithm for the generation

of the scheduling tables.

Zhao et al. [ZGZ14, ZGYZ16] proposed a new algorithm for scheduling of mixed-

criticality jobs with resource sharing. They extended the traditional resource sharing

scheduling algorithms such as PIP (Priority Inheritance Protocol) and PCP (Priority

Ceiling Protocol) for mixed-criticality systems. There are many properties of a mixed-

criticality system which should be taken care of other than functional properties. Huang

et al. [HKGT14] introduced the energy consumption problem for mixed-criticality systems.

They focused on dynamic voltage and frequency scaling (DVFS) to reduce the energy

consumption. They constructed an algorithm which computes a LO-criticality processor

frequency for all the LO-criticality tasks and two processor frequencies for all the HI-

criticality tasks, i.e., one for LO-criticality execution time and one for HI-criticality

execution time after mode change. They showed that if the mixed-criticality jobs run

with the calculated processor frequencies, then EDF-VD consumes optimum energy. In

2016 [NHG+16], Narayana et al. extended it to consider both static and dynamic power

consumption. The proposed method in [NHG+16] is based on a more generalized system

model to reduce energy consumption in multicore mixed-criticality systems.

Many other papers discuss the energy efficient problem in mixed-criticality systems,

but using different platforms, models and other considerations. In 2015, Ali et al. [ASK15]

proposed an algorithm based on DVFS to reduce energy consumption in mixed-criticality

real-time systems. They claimed that their algorithm dominates the work of Huang et

al. [HKGT14] based on their experiments. Vincent et al. [LJP13a] proposed a method

to find an appropriate trade-off between the number of missed deadlines and their energy

consumption. This method is not based on DVFS. Asyaban et al. [AKTM16a] discussed the

energy uncertainty scheduling problem of a battery-less mixed-criticality systems which is

18



2.3 Related Work

not based on DVFS.

All the mixed-criticality scheduling algorithms discussed above are based on unipro-

cessor mixed-criticality systems. In 2011, Baruah et al. [BBD+11] proposed an OCBP like

algorithm for multiprocessor systems consisting of m identical machines. They found the

speedup bound for a partitioned scheduling approach for the dual-criticality case. In the

process, they proved the existence of a polynomial-time approximation scheme (PTAS) that

partitions dual-criticality sporadic tasks to multiprocessors with the EDF-VD scheduler. In

2012, Pathan [Pat12] proposed methods to schedule mixed-criticality sporadic tasks based

on both global and fixed-priority schemes. He also derived a sufficient schedulability test

based on the response time analysis for the proposed algorithm. Li et al. [LB12] proposed

a global mixed-criticality scheduling algorithm for multiprocessor systems. This algorithm

is the same as the EDF-VD algorithm and uses the FpEDF algorithm [Bar04b, BCLS14a]

to check the schedulability of HI-criticality tasks. They found the speedup bound of the

algorithm to be no larger than
√

5 + 1. In [BCLS14a] Baruah et al. proposed a partitioned

algorithm for mixed-criticality multiprocessor systems. They compared both the approaches

and concluded that the partitioned algorithm outperforms the global scheduling algorithm.

Socci et al. [SPBB15] proposed the Mixed-criticality Priority Improvement (MCPI) algo-

rithm to find the priorities for jobs with precedence constraints. The priority order is used

to construct time-triggered scheduling tables. They showed the worst-case time complexity

of the algorithm to be O(mn3 log n) for independent jobs and O(|E|n2 + mn3 log n) for de-

pendent jobs, where n is the number of jobs in the instance I, m is the number of processors

and E depicts the dependency between jobs.

Giannopoulou et al. [GSHT13b] proposed a flexible time-triggered criticality-monotonic

scheduling scheme to schedule tasks with shared-resources in multi-core mixed-criticality

systems. They combined the scheduling strategy with a mapping optimization technique

to achieve better resource utilization. Apart from resource sharing, there exists some work

on energy efficient scheduling policies on multiprocessor mixed-criticality systems. Awan et

al. [AMT15a] proposed a task allocation method in a heterogeneous multiprocessor mixed-

criticality platform which is energy efficient but not based on DVFS.

19



Chapter 3

Time-triggered Scheduling of

Uniprocessor Mixed-criticality

Systems

3.1 Introduction

Time-triggered scheduling is an off-line scheduling strategy. The scheduling activities in a

time-triggered paradigm are triggered by the progression of time. and are predetermined at

each time instant for each job. Generally, this precalculated schedule is kept in a table format.

The scheduler takes the scheduling decisions according to this precalculated scheduling table.

Generally, scheduling tables are generated off-line which are used to dispatch jobs on-line.

Hence we need m tables for m criticality levels of a mixed-criticality system. Here we present

a time-triggered scheduling algorithm for mixed-criticality jobs that is an improvement over

the ones proposed by Baruah and Fohler [BF11] and Socci et al [SPBB13] by showing that

it can schedule a superset of instances that can be scheduled by their algorithms.

The rest of the chapter is organized as follows. In Section 3.2, we introduce the system

model used for this chapter. We then introduce the work done related to the time-triggered

scheduling of mixed-criticality jobs for uniprocessor systems. In Section 3.2.2, we present

our proposed algorithm (TT-Merge) for independent jobs. We then extend the TT-Merge

algorithm for m-criticality level instances in Section 3.4. In Section 3.5, we proposed the

TT-Merge-DEP algorithm for dependent jobs, an extension of the algorithm for independent

jobs. In Section 3.6 and 3.7, we extend our algorithm for periodic jobs and synchronous

20



3.2 System Model

reactive systems. Finally, we discuss the results from our experiments and conclude the

chapter in Sections 3.8 and 3.9, respectively.

3.2 System Model

The mixed-criticality model used in this chapter is based on non-recurrent tasks with at

most two levels of criticality, LO and HI. A job is characterized by a 5-tuple of parameters:

ji = (ai, di, χi, Ci(LO), Ci(HI)), where

• ai ∈ N denotes the arrival time.

• di ∈ N+ denotes the absolute deadline.

• χi ∈ {LO,HI} denotes the criticality level.

• Ci(LO) ∈ N+ denotes the LO-criticality worst-case execution time.

• Ci(HI) ∈ N+ denotes the HI-criticality worst-case execution time.

We assume that the system is preemptive and Ci(LO) ≤ Ci(HI) for 1 ≤ i ≤ n. Note

that in this chapter, we consider arbitrary arrival times of jobs.

An instance of mixed-criticality (MC) [BBD+12a] job set can be defined as a finite

collection of MC jobs, i.e., I = {j1, j2, ..., jn}. The job ji in the instance I is available for

execution at time ai and should finish its execution before di. The job ji must execute for

ci amount of time which is the actual execution time between ai and di, but this can be

known only at the time of execution. The scenarios in this model can be of two types,

i.e., LO-criticality scenarios and HI-criticality scenarios. When each job ji in instance I

executes ci units of time and signals completion before its Ci(LO) execution time, it is called

a LO-criticality scenario. If any job ji in instance I executes ci units of time and does not

signal its completion after it completes the Ci(LO) execution time, then such a scenario is

called a HI-criticality scenario.

Each mixed-criticality instance needs to be scheduled by a scheduling strategy where

both kinds of scenarios (LO and HI) can be scheduled. If we have prior knowledge about

the scenario, then the scheduling strategy is known as a clairvoyant scheduling strategy. If

we do not have prior knowledge about the scenario, then the scheduling strategy is called an

online scheduling strategy. Here we assume that if any job continues its execution without

21



3.2 System Model

signaling its completion at Ci(LO) then no LO-criticality jobs are required to complete by

their deadlines. Now we define the notion of MC-schedulability.

Definition 3.2.1: An instance I is MC-schedulable if it admits a correct online scheduling

policy.

Here we focus on the time-triggered schedules [BF11] of MC instances. We will

construct two tables SHI and SLO for a given instance I for use at run time. The length of

the tables is the length of the interval [minji∈I{ai},maxji∈I{di}]. The rules to use the tables

SHI and SLO at run-time, (i.e., the scheduler) are as follows:

• The criticality level indicator Γ is initialized to LO.

• While (Γ = LO), at each time instant t the job available at time t in the table SLO

will execute.

• If a job executes for more than its LO-criticality WCET without signaling completion,

then Γ is changed to HI.

• While (Γ = HI), at each time instant t the job available at time t in the table SHI will

execute.

Definition 3.2.2: A dual-criticality MC instance I is said to be time-triggered schedu-

lable [BF11] if it is possible to construct the two schedules SHI and SLO for I, such that the

run-time scheduler algorithm described above schedules I in a correct manner.

3.2.1 Related Work

Baruah et al [BBD+12a] proposed a priority-based scheduling technique known as OCBP

(Own Criticality Based Priority) scheduling for mixed-criticality jobs. The OCBP algorithm

chooses a job ji and assigns it the lowest priority if there is at least Ci(χi) time units available

between its arrival time and its deadline when every other job jk is executed with higher

priority than ji for Ck(χi) time units. The authors proved that an instance I is OCBP-

schedulable on a given processor, if and only if all the jobs in I is assigned a priority by the

OCBP algorithm.

Baruah and Fohler [BF11] introduced a technique to schedule MC jobs using the time-

triggered framework. Their objective was to ensure that adequate resources are reserved for

each application to be able to guarantee the timing requirements. They used the OCBP

22



3.2 System Model

algorithm to assign priorities to the jobs. Using this priority, they constructed two tables

Soc
LO and Soc

HI which are used by the dispatch algorithm [BF11] to schedule the jobs. We show

in Section 3.3 that our algorithm can schedule a strict superset of instances schedulable by

the OCBP-based algorithm. In Section 3.8 we quantify the number of instances scheduled

by the two algorithms on a set of randomly generated instances and show that our algorithm

has better performance.

Socci et al [SPBB13] proposed a fixed priority scheduling approach called MCEDF for

mixed-criticality jobs. In this paper, they construct two priority tables, i.e., PTLO and PTHI.

The scheduling of jobs starts with the table PTLO, while the table PTHI is used after a mode

change occurs. The authors proved that an instance I is MCEDF-schedulable on a given

processor, if and only if all the jobs in I is assigned a priority by the MCEDF algorithm. In

Section 3.8 we quantify the number of instances scheduled by MCEDF and our algorithm

and show that the latter performs better.

In [TFB13] Theis et al present a backtracking based iterative deepening algorithm for

the generation of the scheduling tables. We were not able to compare this algorithm with

ours because of the absence of implementation details.

Baruah [Bar14], [Bar12] proposed a schedule-generation algorithm for mixed-criticality

synchronous programs upon uniprocessor platforms. He proved that proposed algorithm for

single-rate synchronous programs is optimal. He then proved that an efficient and optimal

schedule generation problem for multi-rate synchronous program is NP-hard in the strong

sense. He also proposed a schedule generation algorithm based on OCBP for multi-rate

synchronous programs. In Section 3.7, we show that our algorithm can schedule a strict

superset of instances of this OCBP-based algorithm.

3.2.2 Our Work

In this section, we present an algorithm which can schedule not only the instances which

are schedulable by the OCBP-based algorithm [BF11] and MCEDF algorithm [SPBB13]

but additional ones as well. We then generalize the algorithm to the m criticality case.

Subsequently we extend the algorithm to construct scheduling tables for periodic and

dependent jobs.

Example 3.2.1: Consider the MC instance of 6 jobs given in Table 3.1.

The above MC instance is not OCBP schedulable because we will not be able to assign

23



3.2 System Model

Table 3.1: Example instance scheduled by TT-Merge and not by the OCBP-based algorithm

or MCEDF

Job Arrival time Deadline Criticality Ci(LO) Ci(HI)

j1 0 14 HI 1 8

j2 0 3 LO 1 1

j3 0 8 LO 2 2

j4 0 8 LO 2 2

j5 8 13 HI 2 3

j6 0 12 HI 2 3

a priority order as shown below.

• If j1 is assigned the lowest priority, then j2, j3, j4 and j6 could consume 8 units of time

(i.e., C2(HI) + C3(HI) + C4(HI) + C6(LO)) over [0, 8) as j1 is a HI-criticality job. In

the interval [8, 11), j5 execute its C5(HI) units of execution, thus leaving no time for

j1 to execute its C1(HI) before its deadline.

• If j2 is assigned the lowest priority, then j1, j3, j4 and j6could consume 7 units of time

(i.e., C1(LO) + C3(LO) + C4(LO) + C4(LO)) over [0, 7). This leaves no time for j2

to execute its C2(LO) time to finish by its deadline.

• If j3 is assigned the lowest priority, then j1, j2, j4 and j6 could consume 6 units of time

(i.e., C1(LO) + C2(LO) + C4(LO) + C6(LO)) over [0, 6). Job j5 execute its C5(LO)

units of execution over [8, 11), thus leaving two units of space over [6, 8) for j3 to

execute its C3(LO) units of execution before its deadline. So, j3 can be assigned the

lowest priority.

• Similarly, job j4 can also be assigned as the lowest priority jobs among {j1, j2, j4, j5, j6}
after removing job j3.

Next, we remove the job j4 and consider {j1, j2, j5, j6} and try to assign the next lowest

priority.

• If j1 is assigned the lowest priority, then j2 and j6 could consume 4 units of time (i.e.,

C2(HI) + C6(HI)) over [0, 4) and j5 could consume 3 units of C2(HI) execution time

24



3.2 System Model

over [8, 11), thus leaving 7 units of time for j1 to execute its C1(HI) units of execution

before its deadline which is not possible.

• If j2 is assigned the lowest priority, then j1 and j6 could consume 3 units of time (i.e.,

C1(LO) + C6(LO)) over [0, 3), thus leaving no time for j2 to execute its C2(LO) units

of execution before its deadline which is not possible.

• If j5 is assigned the lowest priority, then j1, j2 and j6 could consume 12 units of time

(i.e., C1(HI) + C2(HI) + C6(HI)) over [0, 12), thus leaving 1 unit of time for j5 to

execute its C5(HI) units of execution before its deadline which is not possible.

• If j6 is assigned the lowest priority, then j1, j2 and j5 could consume 12 units of time

(i.e., C1(HI) + C2(HI) + C5(HI)) over [0, 12), thus leaving no time for j6 to execute

its C6(HI) units of execution before its deadline which is not possible.

Since, no other job can be assigned the lowest priority, we declare the MC instance is not

OCBP-schedulable. So due to the unavailability of an OCBP order, we cannot construct a

time-triggered schedule.

Now we try to schedule the same instance with the MCEDF algo-

rithm [SPBB13], [SPBB15]. We find the two priority tables PTLO and PTHI and

check the schedulability. According to the MCEDF algorithm, if the instance is schedulable

in the LO scenario, then it generates a priority tree. The nodes of the priority tree are

sorted using topological sort [CLRS09]. The table PTLO is constructed from the order

generated by the topological sort. The table PTHI is nothing but a simple EDF order of

HI-criticality jobs. The algorithm checks for each possible HI scenario failure. If it does not

get any HI scenario failure, then the algorithm declares success, otherwise it declares failure.

The EDF order of the above instance given in Table 3.1 is (2, 3, 4, 6, 5, 1). The MCEDF

algorithm generates the priority tree shown in Fig. 3.1. The instance is schedulable in LO

scenario. The instance has one busy interval, i.e., [0, 10]. This means the lowest priority

job of this interval will be the root of the priority tree. In this busy interval, jLateLO is job j4

and jLateHI is job j1. Clearly, j1 is chosen to be the lowest priority job as the deadline of j4

is less than 10. Next, j1 is removed which splits the busy interval into two, i.e., [0, 7] and

[8, 10]. Job j5 is the single job in the busy interval [8, 10]. So it can be assigned as one of the

children of the root, i.e., job j5 is removed from the interval. In the busy interval [0, 7], jLateLO

is job j4 and jLateHI is job j6. Here the MCEDF algorithm chooses job j4 as one of the lowest

25



3.2 System Model

priority job as its deadline is greater than 7. After removal of j4, the busy interval splits into

two intervals, i.e., [0, 3] and [5, 7]. Now the priority tree generation steps are trivial. The

resulting priority tree is given in Fig. 3.1.

j1

j4 j5

j3 j6

j2

PTEDF = {j2, j3, j4, j6, j5, j1}
Busy Interval (BI) = [0,10]

PTEDF = {j2, j3, j4, j6}
BI = [0,6]

PTEDF = {j2, j3}
BI = [0,3]

PTEDF = {j5}
BI = [8,10]

PTEDF = {j6}
BI = [5,7]

PTEDF = {j2}
BI = [0,1]

Figure 3.1: Priority tree of the instance given in Table 3.1

Now the MCEDF algorithm uses topological sort to find a priority order of the instance

which in this case could be chosen to be {j2, j3, j6, j4, j5, j1}. The table PTLO according to

the priority order is given in Fig. 3.2.

j2 j3 j6 j4 j1 j5

0 1 3 5 7 8 10 14

Figure 3.2: Table PTLO of the instance given in Table 3.1

Then the MCEDF algorithm checks all possible HI-criticality scenarios for a deadline

miss. When the job j6 at time instant 5 does not signal its completion, there must be

sufficient time for 1, 3 and 8 units of execution for jobs j6, j5 and j1 respectively before time

instant 14. But, we have only 9 units of time left to complete these 12 units of execution.

So, MCEDF cannot schedule the given instance.

We propose an algorithm called TT-Merge which can construct a time-triggered

schedule for this instance and is an improvement over OCBP in terms of the set of

instances that can be scheduled. We show through experiments that the number of

instances schedulable by our algorithm exceeds those schedulable by OCBP and MCEDF by

a significant amount on randomly generated instances. We describe the algorithm in detail

in the next section. The two scheduling tables generated by our algorithm for the instance

26



3.3 The Proposed Algorithm: TT-Merge

in Table 3.1 are shown in Fig. 3.3.

SLO j6 j2 j1 j3 j4 j5

0 2 3 4 6 8 10 14

SHI j6 j1 j5 j1

0 3 8 11 14

Figure 3.3: Tables SLO and SHI constructed by our algorithm for the instance given in

Table 3.1

3.3 The Proposed Algorithm: TT-Merge

From Section 3.2.2, it is clear that both the MCEDF and OCBP algorithms fail to schedule

some instances due to a fixed priority assignment to the jobs. Both these algorithms construct

the scheduling tables from the priority order of the jobs. That means, if the algorithms do not

find a priority order then they will not be able to construct the scheduling tables. We propose

an algorithm which can directly construct the scheduling tables without using priorities. We

also focus on scheduling more number of instances than the OCBP and MCEDF algorithms.

The main insight behind our algorithm is as follows.

• We want to find a time-triggered schedule not based on a priority order.

• We want to find the exact time to run a job in a scheduling table by merging two tables

TLO and THI containing jobs of the two different criticality levels.

• The LO-criticality execution time of HI-criticality jobs must be completed at a time

instant t such that there is sufficient time to complete the remaining execution before

its deadline.

• We want to construct the table SLO by filling the vacant time slots of THI by the

available jobs of TLO at those time slots.

3.3.1 The Algorithm

In this section, we propose TT-Merge, an algorithm which can schedule more instances than

the OCBP-based algorithm as well as MCEDF. Our algorithm has a pseudo-polynomial time

27



3.3 The Proposed Algorithm: TT-Merge

complexity. The proposed algorithm constructs two tables SHI and SLO for the given MC

instance, if possible. Our intention is to find SLO and then construct SHI keeping the same

starting time for all the jobs as in SLO.

We define Dmax which is the maximum deadline of the MC instance I.

Dmax = max{di} (3.1)

We construct SLO from two temporary tables TLO and THI. Algorithm 1 and 2 describe

the construction processes of TLO and THI. The length of the two temporary tables THI and

TLO is the same as the length of SLO and SHI.

Algorithm 1 Construct-TLO(I)

Input : I = {j1, j2, ..., jn}, where ji =< ai, di, χi, Ci(LO), Ci(HI) >.

Output : TLO

Assume earliest arrival time is 0.

1: Find the maximum deadline (Dmax) of the jobs;

2: Prepare a temporary table TLO of maximum length Dmax;

3: Let Ψ be the set of LO-criticality jobs of instance I;

4: Let O be the EDF order of the jobs of Ψ on the time-line using Ci(LO) units of execution

for job ji ;

5: if (any job cannot be scheduled) then

6: Declare failure;

7: end if

8: Starting from the rightmost job segment of the EDF order of Ψ, move each segment of

a job ji as close to its deadline as possible in TLO.

Algorithm 1 constructs the temporary table TLO. This algorithm chooses the LO-

criticality jobs from the instance I and orders them in EDF order [LL73]. Then, all the job

segments of the EDF schedule are moved as close to their deadline as possible so that no job

misses its deadline in TLO. For example, we have an EDF order of three jobs as in Fig. 3.4

whose arrival times are 0, 2, 5, execution times 6, 4, 2 and deadlines 16, 11, 10, respectively.

The up and down arrows in the figure refer to the release and completion times respectively.

Then, starting from the right end of the schedule, we shift each job segment as close to its

28



3.3 The Proposed Algorithm: TT-Merge

deadline as possible so that no job misses its deadline. Here we move the rightmost job

segment, i.e., j1’s segment as close to its deadline, i.e., from [8,12] to [12,16]. We then move

the next job segment of j2 from [7,8] to [10,11]. Then the job segment of j3 is moved right

from [5,7] to [8,10] as the deadline of j3 is 10. Then the job segment of j2 is moved right from

[2,5] to [5,8]. Finally, j1’s segment in the interval [0,2] is moved as close to its deadline as

possible. Since at this stage there is an empty space at [11,12], j1’s segment in the interval

[0,2] is distributed over [4,5] and [11,12]. The resulting table TLO is given in Fig. 3.5. Note

that, if the arrival times of the jobs are not the same, then the jobs may execute in more

than one segment, in general. If the arrival times of all the jobs are the same then, the jobs

will execute in one segment.

j1 j2 j3 j2 j1

0 2 5 7 8 12 16

Figure 3.4: EDF order of three jobs. Up arrows indicate arrival and down arrows indicate

completion times

j1 j2 j3 j2 j1 j1

0 4 5 8 10 11 12 16

Figure 3.5: After the shifting of jobs

Algorithm 2 constructs the temporary table THI. This algorithm chooses the HI-

criticality jobs from the instance I and orders them in EDF order. Then, all the job segments

of the EDF schedule are moved as close to their deadline as possible so that no job misses

its deadline in THI. Then, out of the total allocation so far, the algorithm allocates Ci(LO)

units of execution of job ji in THI from the beginning of its slot and leaves the rest of the

execution time of ji unallocated in THI. Suppose, there is an instance I which contains three

HI-criticality jobs j1, j2 and j3 with arrival times 0, 2, 5, execution times (2, 6), (2, 4), (2, 2)

and deadlines 16, 11, 10, respectively. This instance is arranged in EDF order and then each

job segment is shifted as close to its deadline as possible. The resulting allocation is given

at the top of Fig. 3.6, which happens to be the same as in the earlier example for TLO.

Then algorithm 2 allocates Ci(LO) units of execution and leaves (Ci(HI)−Ci(LO)) units of

29



3.3 The Proposed Algorithm: TT-Merge

Algorithm 2 Construct-THI(I)

Input : I = {j1, j2, ..., jn}, where ji =< ai, di, χi, Ci(LO), Ci(HI) >.

Output : THI

Assume earliest arrival time is 0.

1: Find the maximum deadline (Dmax) of the jobs;

2: Prepare a temporary table THI of maximum length Dmax;

3: Let Ψ be the set of HI-critical jobs of instance I;

4: Let O be the EDF order of the jobs of Ψ on the time-line using Ci(HI) units of execution

for job ji ;

5: if (any job cannot be scheduled) then

6: Declare failure;

7: end if

8: Starting from the rightmost job segment of the EDF order of Ψ, move each segment of

a job ji as close to its deadline as possible in THI.

9: for i := 1 to m do

10: Allocate Ci(LO) units of execution to job ji from its starting time in THI and leave

the rest unallocated;

11: end for

execution unallocated. The resulting allocation is shown at the bottom of Fig. 3.6.

j1 j2 j3 j2 j1 j1

0 4 5 8 10 11 12 16

j1 j2 j3 j1

0 4 5 7 8 10 11 12 16

Figure 3.6: Allocating Ci(LO) units of execution only

Now, we use Algorithm 3 to construct the table SLO from TLO and THI. The algorithm

starts the construction of SLO from time 0 and checks the tables TLO and THI simultaneously.

30



3.3 The Proposed Algorithm: TT-Merge

Algorithm 3 TT-Merge(I, TLO, THI)

Input : I = {j1, j2, ..., jn}, where ji =< ai, di, χi, Ci(LO), Ci(HI) >, TLO, THI

Output : Tables SLO and SHI

Assume earliest arrival time is 0.

1: Construction of SLO.

2: Find the maximum deadline (Dmax) of the jobs;

3: The maximum length of tables SHI and SLO are both Dmax;

4: t := 0;

5: while (t ≤ Dmax) do

6: if (TLO[t] = NULL & THI[t] = NULL) then

7: Search the tables TLO and THI simultaneously from the beginning to find the first available job at

time t;

8: Let k be the first occurrence of a job ji in TLO or THI;

9: if (Both LO-criticality & HI-criticality job are found) then

10: SLO[t] := TLO[k];

11: TLO[k] := NULL;

12: else if (LO-criticality job is found) then

13: SLO[t] := TLO[k];

14: TLO[k] := NULL;

15: else if (HI-criticality job is found) then

16: SLO[t] := THI[k];

17: THI[k] := NULL;

18: else if (NO job is found) then

19: SLO[t] := NULL

20: t := t+ 1;

21: end if

22: else if (TLO[t] = NULL & THI[t] != NULL) then

23: SLO[t] := THI[t];

24: THI[t] := NULL;

25: t := t+ 1;

26: else if (TLO[t] != NULL & THI[t] = NULL) then

27: SLO[t] := TLO[t];

28: TLO[t] := NULL;

29: t := t+ 1;

30: else if (TLO[t] != NULL & THI[t] != NULL) then

31: Declare failure;

32: end if

33: end while

34: This is the table SLO;

35:

36: Construction of SHI

37: Copy all the jobs from table SLO to table SHI;

38: Scan the table SHI from left to right:

39: for each HI-criticality job ji, allocate an additional Ci(HI) − Ci(LO) time units immediately after the

rightmost segment of job ji, recursively pushing all the overlapping HI-criticality job segments in SHI

(except those whose allocation time is same as in THI) to the right and overwriting any LO-criticality

jobs in the process.

31



3.3 The Proposed Algorithm: TT-Merge

There are four possibilities while merging the two temporary tables to construct SLO.

At time slot t, one of the following situations can occur.

1. Both TLO and THI are empty.

2. Both TLO and THI are not empty.

3. TLO is empty and THI is not empty.

4. TLO is not empty and THI is empty.

If situation 1 occurs, then the algorithm will allocate the nearest ready job to the right at

time slot t where a LO-criticality job gets higher priority over a HI-criticality job. In this

case, the place of the ready job in TLO or THI is marked as empty. In case of situation 2,

the algorithm declares failure to schedule. In situation 3, the algorithm allocates the HI-

criticality job from THI, whereas in situation 4, the algorithm allocates the LO-criticality job

from TLO. Once an instant of a job is allocated in SLO, the place where it was scheduled in

TLO or THI is emptied.

We then construct the table SHI from SLO. We first copy the jobs of table SLO to

SHI. Then the HI-criticality jobs are allocated Ci(HI) − Ci(LO) units of HI-criticality

execution time after their Ci(LO) units of execution in SHI. These additional time units are

allocated by pushing all overlapping HI-criticality jobs in SHI to the right and overwriting

any LO-criticality job in the process. An exception to this is when the allocation time of an

overlapping HI-criticality job is the same in both the tables SHI and THI, in which case the

additional time units are allocated after this job. A LO-criticality job jk present in table

SLO will not appear in table SHI if and only if the additional Ci(HI)−Ci(LO) time units of

allocation of any HI-criticality job overlaps with the allocation of jk in table SLO.

3.3.2 Intuition Behind the Algorithm

In the following subsections, we show that TT-Merge dominates both the existing mixed-

criticality time-triggered scheduling algorithms by being able to schedule a larger subset of

instances. Here we briefly explain the working of TT-Merge, contrasting it with the existing

algorithms.

The OCBP algorithm fails to find a priority order for instance I, if it is unable to choose

a lowest priority job from I. For example, a HI-criticality job ji is assigned the lowest priority

32



3.3 The Proposed Algorithm: TT-Merge

if all other jobs can finish their HI-criticality execution times before their deadlines and still

leave sufficient time for ji to finish its execution. But this is too strong a requirement, since

in a HI-criticality scenario the LO-criticality jobs need not meet their deadlines. Since it

is not possible for OCBP to check the worst-case starting and completion time of each job

separately at each criticality level, it fails to assign priorities in some cases. We construct an

algorithm which does not depend on any priority, while finding a time-triggered schedule.

We construct two separate schedules for the two different criticality levels. We merge the

two tables to find a LO-criticality schedule and then find the HI-criticality schedule using

this LO-criticality schedule.

The core idea behind TT-Merge is to allocate jobs at each instant of the time-triggered

schedule without depending on any priority such that both the scenarios (HI-criticality and

LO-criticality) can be successfully scheduled. To this end, we find the worst-case starting and

completion times of each job of the same criticality for the LO-criticality scenario separately

in the tables TLO and THI. Algorithms 1 and 2 find the tables TLO and THI by shifting the

job segments of the EDF order of jobs as close to their deadlines as possible considering

Ci(LO) and Ci(HI) units of executions, respectively. Then Algorithm 2 keeps Ci(LO) units

of execution for each HI-criticality job in THI and empties the rest of the slots. From table

THI, we know the worst-case completion time of a LO-criticality execution of a HI-criticality

job. These two tables are identical to the OCBP order for the jobs of the same criticality,

which we prove later in Lemma 3.3.4 and 3.3.5. Algorithm 3 merges the tables TLO and

THI to construct the table SLO, where all the tables have the same schedule length, i.e.,

Dmax. Algorithm 3 keeps the jobs of table THI at their assigned slots and fills the empty

places of this table with the jobs of the table TLO. This guarantees the timely execution

of HI-criticality jobs in both the scenarios which is not always possible in the case of the

OCBP-based and MCEDF algorithms. Since jobs of the table TLO fill the empty spaces of

the table THI, we prefer a LO-criticality job to be allocated at time t, if both the tables

are empty at time t. If a LO-criticality job is not available at t and a HI-criticality job is

available, then that HI-criticality job segment is chosen to be allocated at t.

We illustrate the operation of this algorithm by an example.

Example 3.3.1: Consider the MC instance given in Table 3.2.

Let us first find the two temporary tables TLO and THI in which the LO-criticality and

HI-criticality jobs are allocated respectively.

33



3.3 The Proposed Algorithm: TT-Merge

Table 3.2: An example instance to explain the TT-Merge algorithm

Job Arrival time Deadline Criticality Ci(LO) Ci(HI)

j1 1 8 HI 1 2

j2 1 6 HI 1 2

j3 2 4 HI 1 2

j4 0 4 LO 1 1

j5 0 4 LO 2 2

• Dmax = 8.

• The maximum length of TLO and THI is 8.

• According to Algorithm 1, we choose the LO-criticality jobs and allocate them in TLO

in EDF order. Then, each segment of the jobs in EDF order are shifted as close to their

deadlines as possible according to their Ci(LO) units of execution. So j4 is allocated

in the interval [1,2] and j5 is allocated in the interval [2,4]. The resulting table TLO is

given in Fig. 3.7.

j4 j5

0 1 2 4 8

Figure 3.7: Temporary table TLO

• According to Algorithm 2, we choose the HI-criticality jobs to allocate them in THI in

EDF order. Then, each segment of the jobs in EDF order are shifted as close to their

deadlines as possible according to their Ci(HI) units of execution. So j3 is allocated in

the interval [2,4], j2 is allocated in the interval [4,6] and j1 is allocated in the interval

[6,8]. The resulting table THI is given in Fig. 3.8.

j3 j2 j1

0 2 4 6 8

Figure 3.8: Intermediate temporary table THI

34



3.3 The Proposed Algorithm: TT-Merge

• Then, we allocate Ci(LO) units of execution of ji and leave the (Ci(HI)−Ci(LO)) units

of execution unallocated. Here j3 has been allocated its Ci(LO) units of execution time

in the interval [2,3]. So we empty the occurrence of j3 in the interval [3,4]. We repeat

the same process for both j2 and j1. After this modification of THI, the resulting table

THI is given in Fig. 3.9.

j3 j2 j1

0 2 3 4 5 6 7 8

Figure 3.9: Temporary table THI

• Finally, we construct SLO from these two temporary tables.

We construct the table SLO according to Algorithm 3.

• We start from time t = 0.

• At t = 0, both TLO and THI are empty. So we allocate the LO-criticality job from TLO

which is ready at t = 0, i.e., j4. We empty the interval [1,2] in TLO from where the

first occurrence of j4 is found.

• At t = 1, both TLO and THI are empty. So we allocate the LO-criticality job from TLO

which is ready at t = 1, i.e., j5. We empty the interval [2,3] in TLO from where the

first occurrence of j5 is found.

• At t = 2, TLO is empty and THI contains j3. So we allocate j3 from THI and empty the

interval [2,3] of THI.

• At t = 3, TLO contains j5 and THI is empty. So we allocate j5 from TLO and empty the

interval [3,4] of TLO.

• At t = 4, TLO is empty and THI contains j2. So we allocate j2 from THI and empty the

interval [4,5] of THI.

• At t = 5, both TLO and THI are empty. So we allocate a ready LO-criticality job from

TLO. But, no LO-criticality jobs are there to be allocated. So we allocate the remaining

jobs of THI.

35



3.3 The Proposed Algorithm: TT-Merge

j4 j5 j3 j5 j2 j1

0 1 2 3 4 5 6 8

Figure 3.10: Table SLO

• The resulting table SLO is given in Fig. 3.10.

Now, we construct the table SHI from SLO using the steps shown in Fig. 3.11.

• We copy the table SLO to table SHI.

• For the first HI-criticality job j3, C3(HI)−C3(LO) units of execution time are allocated

in the interval [3, 4]. In this process, we overwrite job j5 which was present in the

interval [3, 4]. This is shown in the top table of Fig. 3.11.

• Then C2(LO) units of execution time of j2 are allocated in the interval [4, 5] followed

by C2(HI) − C2(LO) units of execution time in the interval [5, 6]. In this process, we

push job j1 to its right, i.e., to the interval [6, 7] from [5, 6]. Finally, j1 is allocated in

the interval [6,8]. This is shown in the middle table of Fig. 3.11.

• The resulting table SHI is given in the table at the bottom of Fig. 3.11.

j4 j5 j3 j2 j1

0 1 2 4 5 6 8
Allocate j3, overwrite j5 in the interval [3, 4]

j4 j5 j3 j2 j1

0 1 2 4 6 7 8
Allocate j2 in the interval [5, 6], push j1 to right

j4 j5 j3 j2 j1

0 1 2 4 6 8
Final table SHI

Figure 3.11: Construction of table SHI

Now we present an example to show the tables constructed by different existing

algorithm and TT-Merge for the same instance.

36



3.3 The Proposed Algorithm: TT-Merge

Example 3.3.2: The point of this example is to show how the tables constructed by TT-

Merge differ from the ones constructed by the OCBP-based algorithm, when both the

algorithms are successful. Consider the MC instance given in Table 3.3. Fig. 3.12 shows

Table 3.3: An instance where both TT-Merge and OCBP-based algorithms are successful

Job Arrival time Deadline Criticality Ci(LO) Ci(HI)

j1 0 2 LO 1 1

j2 0 7 HI 2 3

j3 2 10 LO 4 4

j4 5 10 HI 2 5

Soc
HI j1 j2 j3 j4

0 1 4 5 10

Soc
LO j1 j2 j3 j4 j3

0 1 3 5 7 9 10

Figure 3.12: Scheduling tables according to OCBP-based algorithm

the tables constructed using the OCBP-based algorithm. The MCEDF algorithm computes

the same priority order as OCBP. So it constructs the same tables as OCBP. Fig. 3.13 shows

the scheduling tables according to TT-Merge.

THI j2 j4

0 2 4 5 7 10

TLO j1 j3

0 1 2 6 10
Intermediate tables THI and TLO

SLO j1 j2 j3 j2 j3 j4 j3

0 1 2 3 4 5 7 9 10

SHI j1 j2 j3 j2 j4

0 1 2 3 5 10
Final scheduling tables SLO and SHI

Figure 3.13: Scheduling tables according to TT-Merge

37



3.3 The Proposed Algorithm: TT-Merge

3.3.3 Correctness Proof

For correctness, we have to show that if TT-Merge finds the two scheduling tables SLO and

SHI, then these two tables will give a correct scheduling strategy. We start with the proof

of some properties of the schedule.

Observation 3.3.1: The table THI shows the latest possible allocation of the initial (LO-

criticality) segment of a HI-criticality job that can still meet its deadline in a schedule. To

see this, recall that the table THI is constructed from the EDF order of the HI-criticality

jobs. Each job segment in the EDF order is pushed as close to its deadline as possible.

Then the initial Ci(LO) time units of each job are kept and the rest are unallocated. By the

construction, no job segment can be pushed further to the right and still meet its deadline.

Remark: We know that the table SLO allocates each HI-criticality job on or before its

allocation in THI. Then no job can be pushed to the right in the table SHI after its allocation

in THI as it will miss its deadline. This follows from Observation 3.3.1.

Lemma 3.3.1: If Algorithm 3 does not declare failure, then each job ji receives Ci(LO)

units of execution in SLO and each HI-criticality job jk receives Ck(HI) units of execution in

SHI by its deadline.

Proof. First, we show that any job ji receives Ci(LO) units of execution in SLO. We construct

SLO from the temporary tables TLO and THI. Each job ji can be scheduled in SLO on or before

its scheduled time in TLO and THI. If TT-Merge finds the table SLO then each job must receive

Ci(LO) units of execution.

Next we show that any HI-criticality job jk receives Ck(HI) units of execution in SHI.

We start constructing SHI by copying the jobs in SLO. But according to TT-Merge, the HI-

criticality jobs are allocated their remaining Ck(HI)−Ck(LO) units of allocation in SHI after

they complete their Ck(LO) units of allocation in SHI by pushing recursively all the following

HI-criticality job segments to the right except those whose allocation is the same as in table

THI. This means we can push a job segment to the right in SHI only if it is allocated before its

allocation in THI and moreover, no job is pushed beyond its allocation in THI, because if the

construction of THI does not declare failure then it allocates enough time for the execution

of all the HI-criticality jobs. In this case, all the jobs can get sufficient time to schedule their

Ck(HI)−Ck(LO) units of execution as they are allocated on or before the allocation in table

THI. This is clear from the remark following Observation 1. If a HI-criticality job jh cannot

be pushed to the right then it will get its remaining Ch(HI) − Ch(LO) units of execution

38



3.3 The Proposed Algorithm: TT-Merge

time in table SHI by a similar reasoning as above.

Lemma 3.3.2: At any time t, if a job ji is present in SHI but not in SLO, then the job ji

has finished its LO-criticality execution before time t in SLO.

Proof. We use the same order of jobs in SLO to construct SHI. We know the HI-criticality

jobs are allocated their Ci(HI) − Ci(LO) units of execution after the allocation of Ci(LO)

units of execution in SHI. In SHI, the HI-criticality jobs are preferred over the LO-criticality

jobs, i.e., a HI-criticality job is chosen to be allocated in table SHI if a LO-criticality job is

found in SLO while allocating Ci(HI)− Ci(LO) units of execution in table SHI. This means

each of the job segments present in table SHI is either at the same position in SLO or to

the right of it. When a job ji is present in SHI and not in SLO at time t, it means this has

already completed its LO-criticality execution in SLO.

Lemma 3.3.3: At any time t, when a mode change occurs, each HI-criticality job still has

Ci(HI) − ci units of execution in SHI after time t to complete its execution, where ci is the

execution time already completed by job ji before time t in SLO.

Proof. Suppose a mode change occurs at time t. This means all the HI-criticality jobs

scheduled before time t have either signaled their completion or the current HI-criticality

job is the first one to complete its Ci(LO) units of execution without signaling its completion.

We know that all the HI-criticality jobs are allocated their Ci(HI)−Ci(LO) units of execution

in SHI after the completion of their Ci(LO) units of execution in both SLO and SHI. If a job ji

has already executed its Ci(LO) units of execution in SLO, then it requires Ci(HI)−Ci(LO)

units of time to be completed in SHI. When job ji initiates the mode change, this is the

first job which does not signal its completion after completing its Ci(LO) units of execution.

Before time t, the scheduler uses the table SLO to schedule the jobs, while subsequently

the scheduler uses table SHI due to the mode change. If a job ji has already executed its

ci units of execution in SLO, then it requires Ci(HI) − ci units of time to be completed in

SHI its execution. We know that the tables SHI and SLO have same order and according

to lemma 3.3.1 and 3.3.2, each job will get sufficient time to complete its Ci(HI) units of

execution. Hence, each HI-criticality job will get Ci(HI)− ci units of time in SHI to complete

its execution after the mode change at time t.

Theorem 3.3.1: If the scheduler dispatches the jobs according to SLO and SHI, then it will

be a correct scheduling strategy.

39



3.3 The Proposed Algorithm: TT-Merge

Proof. For LO-criticality scenarios, all jobs can be correctly scheduled by the table SLO as

proved in Lemma 3.3.1. Now, we need to prove that in a HI-criticality scenario, all the

HI-criticality jobs can be correctly scheduled by the table SHI. In Lemma 3.3.1, we have

already proved that all the HI-criticality jobs get sufficient units of time in SHI to complete

their execution. In Lemma 3.3.3, we have proved that when the mode change occurs at

time t, all the HI-criticality jobs can be scheduled without missing their deadline. So from

Lemma 3.3.1 and Lemma 3.3.3, it is clear that if the scheduler uses the tables SLO and SHI

to dispatch the jobs then it will be a correct scheduling strategy.

3.3.4 Dominance Over OCBP-based Algorithm

We know that the algorithm proposed by Baruah and Fohler [BF11] is based on the OCBP

order [BBD+12a] and constructs the tables Soc
LO and Soc

HI based on this order. We show that if

the OCBP-based algorithm constructs the tables Soc
LO and Soc

HI for an instance then TT-Merge

will also construct the two tables SLO and SHI for the same instance.

Notation: We use Soc
LO and Soc

HI for the tables constructed by the OCBP-based algorithm

and SLO and SHI for the tables constructed by TT-Merge. Further, we use TLO and THI for

the two temporary tables in TT-Merge.

Lemma 3.3.4: If OCBP chooses a latest deadline job as the lowest priority job at each stage,

then the OCBP priority order of jobs of the same criticality is the same as that assigned by

EDF.

Proof. See observation 1 of Lemma 2 from Park and Kim [PK11b] for the proof of this

lemma.

Lemma 3.3.5: If OCBP finds a priority order for an instance I, then there exists an OCBP

priority order for I in which all jobs of the same criticality are in EDF order.

Proof. Suppose there exists an OCBP priority order for instance I. Let ji and jk be two jobs

of the same criticality, where ji is assigned higher priority than jk by OCBP and di ≥ dk.

OCBP assigns lower priority to jk because all other jobs including ji finish their C(χk) units

of execution and there is sufficient time in the interval [ak, dk] for jk to finish its C(χk) units

of execution. If we swap the priority levels of ji and jk, then jk certainly meets its deadline

and even though the execution segments of ji are shifted to the right, its deadline di is not

40



3.3 The Proposed Algorithm: TT-Merge

violated, since di ≥ dk. So we can exchange their priority which means there exists a priority

order for I in which all jobs of the same criticality are in EDF order.

Without loss of generality, by Lemma 3.3.5 all the jobs in the table Soc
LO constructed by

the OCBP-based algorithm of the same criticality are in EDF order.

Lemma 3.3.6: If OCBP finds a priority order for an instance I, then Algorithms 1 and 2

can construct the tables TLO and THI and these are obtained from the OCBP order by moving

the job segments to the right starting from the right end of the schedule for the LO-criticality

and HI-criticality jobs respectively.

Proof. Follows from Lemma 3.3.4 and 3.3.5.

Theorem 3.3.2: If an instance I is schedulable by the OCBP-based scheduling algorithm,

then it is also schedulable by TT-Merge.

Proof. OCBP generates a priority order for an instance I. Then the OCBP-based algorithm

finds the tables Soc
LO and Soc

HI for the instance I using this priority order. We need to show

that if there exists tables Soc
LO and Soc

HI constructed by the OCBP-based algorithm, then TT-

Merge will not encounter a situation where at time slot t TLO and THI are non-empty, for

any t.

We know that Ci(LO) units of execution are allocated to each job ji for constructing the

tables TLO and THI. Each job in TLO and THI is allocated as close to its deadline as possible.

That means no job can execute after its allocation time in TLO and THI without affecting the

schedule of any other job and still meet its deadline. Algorithm 3 declares failure if it finds

a non-empty slot at any time t in both the tables TLO and THI. This means the two jobs

which are found in the tables TLO and THI respectively cannot be scheduled with all other

remaining jobs from this point, because all the jobs to the right have already been moved as

far to the right as possible.

Suppose there is an OCBP priority order of the jobs of instance I and the LO-criticality

table Soc
LO follows this priority order.

Let jl and jh be two jobs in TLO and THI respectively found at time t during the

construction of table SLO by TT-Merge, which means all job segments in the interval [0, t−1]

from TLO and THI have already been assigned in SLO. But, we know that OCBP has assigned

priorities to these jobs jl and jh. There are two cases to consider.

41



3.3 The Proposed Algorithm: TT-Merge

In the first case, assume jl is assigned lower priority than jh by OCBP. Let al be the

arrival time of job jl and tl and tl
′ be the starting and completion times of jl in TLO computed

by Algorithm 1. Since job jl can be scheduled only on or after the arrival time al, we need to

show that the job segment of jl found at time t cannot be scheduled in the interval [al, t− 1]

by the OCBP-based algorithm. We know that Algorithm 3 can allocate a job in table SLO on

or before its allocation in TLO and THI. But Algorithm 3 has not allocated the job segments

found in TLO and THI at time t in the interval [al, t−1] of the table SLO and by Lemma 3.3.6

this is due to the presence of equal or higher priority job segments of the OCBP priority

order in TLO and THI. We know that all the jobs in TLO in the interval [al, t] and the jobs in

THI including job jh in the interval [al, t] are of priority greater or equal to that of jl according

to OCBP since, by moving job segments to the right starting from the OCBP schedule the

jobs to the left of jl are of priority greater than or equal to that of jl. This means the jobs in

the interval [al, t− 1] of table SLO are either equal or higher priority jobs than jl according

to OCBP. So both the algorithms, the OCBP-based one and ours, allocate higher or equal

priority jobs (or, job segments according to Algorithm 3) before time t. Then it is clear that

after the jobs of higher priority than jl finish their C(LO) units of execution by time t, there

will not be sufficient time for jl to finish its Cl(LO) units of execution in the interval [al, tl
′]

in the OCBP schedule. This is because at time t, the OCBP-based algorithm has already

allocated all ready jobs with higher or equal priority than jl (according to OCBP) in the

interval [al, t] with no vacant slot for further allocation of jl’s segment found at time slot t,

which is the case for Algorithm 3 as well. A similar statement holds for jh. Therefore jh

and jl cannot be simultaneously scheduled to meet their deadlines in the remaining time,

according to the OCBP-based algorithm.

In the second case, assume jh is assigned lower priority than jl by OCBP. Let ah be the

arrival time of job jh and let the starting and completion times of the LO-criticality execution

of jh be th and th
′ respectively, and the completion time of the HI-criticality execution be

te. As in the previous case, all the jobs in THI in the interval [ah, t] and the jobs in TLO,

including job jl, in the interval [ah, t] are of priority (according to OCBP) greater than or

equal to that of jh. OCBP considers C(HI) units of execution time to assign a priority to

a HI-criticality job. As seen above, it is clear that after the jobs of higher priority than jh

finish their C(LO) units of execution by time t, there will not be sufficient time for jh to

finish its Ch(LO) units of execution in the interval [ah, th
′] according to OCBP. We know

that C(LO) ≤ C(HI). If job jh does not get sufficient time to execute its Ch(LO) units of

42



3.3 The Proposed Algorithm: TT-Merge

execution in the interval [ah, th
′], then it will not get sufficient time to execute its Ch(HI)

units of execution in the interval [ah, te] either.

From the above two cases, it is clear that OCBP cannot assign priorities to job jl and

jh, which is a contradiction. This means if there exists an OCBP priority order for instance

I, then TT-Merge will not encounter a situation where both the tables TLO and THI are

non-empty at any time t for the instance I.

Note that we need to consider only the LO-criticality scenarios in the proof since

Lemma 3.3.3 implies that if SLO can be constructed, then so can SHI.

3.3.5 Dominance Over MCEDF Algorithm

Now we show the dominance of TT-Merge over the MCEDF algorithm [SPBB13].

Lemma 3.3.7: If MCEDF finds a priority order for an instance I, then there exists an

MCEDF priority order for I in which all jobs of the same criticality are in EDF order.

Proof. This can be derived directly from the priority assignment to the jobs by the MCEDF

algorithm.

Theorem 3.3.3: If an instance I is schedulable by the MCEDF algorithm, then it is also

schedulable by TT-Merge.

Proof. The MCEDF algorithm generates a priority order for an instance I. This priority

order is used to find the table PTLO. We need to show that if there exists a table PTLO and

the anyHIscenarioFailure() subroutine in Algorithm MCEDF on page 95 of [SPBB13] does

not fail, then TT-Merge will not encounter a situation where TLO and THI are non-empty at

any time slot t.

We know that Ci(LO) units of execution are allocated to each job ji for constructing the

tables TLO and THI. Each job in TLO and THI is allocated as close to its deadline as possible.

That means no job can execute after its allocation time in TLO and THI without affecting the

schedule of any other job and still meet its deadline. Algorithm 3 declares failure if it finds

a non-empty slot at any time t in both the tables TLO and THI. This means the two jobs

which are found in the tables TLO and THI respectively cannot be scheduled with all other

remaining jobs from this point, because all the jobs to the right have already been moved as

far to the right as possible.

43



3.3 The Proposed Algorithm: TT-Merge

By Lemma 3.3.7, without loss of generality, the MCEDF order is the same as the EDF

orders for jobs of the same criticality. So the tables TLO and THI are obtained from the

MCEDF order by moving the job segments to the right starting from the right end of the

schedule for the LO-criticality and HI-criticality jobs respectively.

Suppose there is an MCEDF priority order of the jobs of instance I and a table PTLO

according to this priority order and suppose the anyHIscenarioFailure() subroutine does

not fail.

Let jl and jh be two jobs in TLO and THI respectively found at time t during the

construction of table SLO by TT-Merge, which means all the job segments in the interval

[0, t− 1] from TLO and THI have already been assigned in SLO. But, we know that MCEDF

has assigned priorities to these jobs jl and jh. Now there are two cases.

In the first case, assume jl is assigned lower priority than jh by MCEDF. Let al be

the arrival time of job jl and tl and tl
′ be the starting and completion times of jl in TLO

computed by Algorithm 1. Since job jl can be scheduled only on or after the arrival time

al, we need to show that the job segment of jl found at time t cannot be scheduled in the

interval [al, t− 1] by the MCEDF algorithm. We know that Algorithm 3 can allocate a job

in table SLO on or before its allocation in TLO and THI. But Algorithm 3 has not allocated

the job segments found in TLO and THI at time t in the interval [al, t − 1] of the table SLO,

and by Lemma 3.3.7, this is due to the presence of equal or higher priority job segments of

the MCEDF priority order in TLO and THI. We know that all the jobs in TLO in the interval

[al, t] and the jobs in THI including job jh in the interval [al, t] are of priority greater or equal

to that of jl according to the MCEDF algorithm since, by moving job segments to the right

starting from the EDF schedule, the jobs to the left of jl are of priority greater than or

equal to that of jl. This means the jobs in the interval [al, t − 1] of table SLO are either

equal or higher priority jobs than jl according to MCEDF. So both the algorithms, MCEDF

and ours, allocate higher or equal priority jobs (or, job segments according to Algorithm 3)

before time t. Then it is clear that after the jobs of higher priority than jl finish their

C(LO) units of execution, there will not be sufficient time for jl to finish its Cl(LO) units

of execution in the interval [al, tl
′] in the MCEDF schedule. This is because at time t, the

MCEDF algorithm has already allocated all ready jobs with higher or equal priority than jl

(according to MCEDF) in the interval [al, t] with no vacant slot for further allocation of jl’s

segment found at time slot t, which is the case for Algorithm 3 as well. A similar statement

holds for jh. Therefore jh and jl cannot be simultaneously scheduled to meet their deadlines

44



3.4 Extension for m Criticality Levels

in the remaining time, according to MCEDF. In the second case, assume jh is assigned lower

priority than jl by MCEDF. Let ah be the arrival time of job jh and let the starting and

completion times of the LO-criticality execution of jh be th and th
′ respectively, and the

completion time of the HI-criticality execution be te. As in the previous case, all the jobs

in THI in the interval [ah, t] and the jobs in TLO, including job jl, in the interval [ah, t] are

of priority (according to MCEDF) greater or equal to that of jh. MCEDF considers C(HI)

units of execution time to assign a priority to a HI-criticality job. As seen above, it is clear

that after the jobs of higher priority than jh finish their C(LO) units of execution, there will

not be sufficient time for jh to finish its Ch(LO) units of execution in the interval [ah, th
′]

according to MCEDF. We know that C(LO) ≤ C(HI). If job jh does not get sufficient time

to execute its Ch(LO) units of execution in the interval [ah, th
′], then it will not get sufficient

time to execute its Ch(HI) units of execution in the interval [ah, te] either.

From the above two cases, it is clear that MCEDF may assign priorities to job jl and jh

but the anyHIscenarioFailure() subroutine will fail, which is a contradiction. This means

if the MCEDF algorithm finds a schedule for instance I, then TT-Merge will not encounter

a situation where both the tables TLO and THI are non-empty at any time t for the instance

I.

Note that we need to consider only the LO-criticality scenarios in the proof since Lemma

3 implies that if SLO can be constructed, then so can SHI.

3.4 Extension for m Criticality Levels

The algorithm discussed in Section 3.3 constructs two scheduling tables SLO and SHI for the

dual-criticality instances which can be used by the scheduler to dispatch the jobs. Now we

extend TT-Merge for instances with m criticality levels. Here we need to create m different

tables for m criticality levels which can be used by the scheduler to dispatch the jobs.

3.4.1 Model

A job is characterized by a 5-tuple of parameters: ji = (ai, di, χi, {Ci(1), Ci(2), . . . , Ci(m)}),
where

• ai ∈ N denotes the arrival time.

• di ∈ N+ denotes the absolute deadline.

45



3.4 Extension for m Criticality Levels

• χi ∈ N+ denotes the criticality level.

• {Ci(1), Ci(2), . . . , Ci(m)} denotes the worst-case execution time at each criticality level.

We assume that Ci(k) is monotonically increasing with increasing k, i.e., ∀i : Ci(1) ≤ Ci(2) ≤
. . . ≤ Ci(m), where 1 ≤ i ≤ n.

Definition 3.4.1: An m criticality MC instance I is said to be time-triggered schedulable if

it is possible to construct m tables S1, S2, . . . , Sm such that the scheduler can schedule any

non-erroneous scenario of instance I.

The following scheduler algorithm is used to dispatch the jobs using the m tables at

run-time.

• Initially χi = 1

• The criticality level indicator Γ is initialized to χi.

• Repeat

– While (Γ = χi), at each time instant t the job available at time t in the table Sχi
will execute.

– If a job executes for more than its χi-criticality WCET without signaling

completion, then Γ is changed to χi + 1.

3.4.2 Algorithm

Here we need to construct m tables to find a time triggered schedule. Each table is of length

Dmax as in Equation 3.1.

Algorithm 4 constructs m temporary tables T1, T2, . . . , Tm. For each table Tχi where

χi ∈ {1, 2, . . . ,m}, Algorithm 4 chooses jobs with χi-criticality level and orders them in EDF

order. Then, all the job segments of the EDF order are moved as close to their deadline as

possible so that no job misses its deadline in Tχi . Then out of the total allocation so far,

the algorithm allocates Ci(1) units of execution of ji in Tχi from the beginning of its slot

and leaves the rest of the execution time of ji unallocated in Tχi . This is similar to the dual

criticality case.

Now, we use Algorithm 5 to construct the table S1 from tables T1, T2, . . . , Tm. The

algorithm starts the construction of S1 from time 0 and checks all m tables simultaneously.

46



3.4 Extension for m Criticality Levels

Algorithm 4 Construct-TT-m-crit-Tχi(I)

Input : I = {j1, j2, ..., jn}, where ji =< ai, di, χi, Ci(LO), Ci(HI) >.

Output : T1, T2, . . . , Tm
Assume earliest arrival time is 0.

1: Find the maximum deadline (Dmax) of the jobs;

2: for χi := 1 to m do

3: Prepare a temporary table Tχi of maximum length Dmax;

4: Let Ψ be the set of χi-criticality jobs of instance I;

5: Let O be the EDF order of the jobs of Ψ on the time-line using Ci(χi) units of execution for job ji ;

6: if (any job cannot be scheduled) then

7: Declare failure;

8: end if

9: Starting from the rightmost job segment of the EDF order of Ψ, move each segment of a job ji as

close to its deadline as possible in Tχi
.

10: for k := 1 to |Ψ| do
11: Allocate Ck(1) units of execution to job jk from its starting time in Tχi

and leave the rest unallocated;

12: end for

13: end for

There will be three situations while merging these tables to construct S1. At time slot t, one

of the following can occur:

1. All m tables are empty.

2. Two or more tables from the m tables are not empty.

3. Exactly one table from the m tables is not empty.

If situation 1 occurs, then the algorithm will allocate the nearest ready job to the right

at time slot t where a lower criticality job gets higher priority than a higher criticality job.

After the allocation of the job ji in S1, that instant of ji in Tχi is marked empty. In case of

situation 2, the algorithm declares failure to schedule. In situation 3, the algorithm allocates

the first available job from the table which is non-empty at time t in S1.

We then construct the table S2 from S1. We first copy the jobs of table S1 to table S2.

Then all the jobs whose criticality are greater than 1 need to be allocated Ci(2)−Ci(1) units

of execution time immediately after their Ci(1) units of execution in S2. These additional

time units is allocated by pushing all overlapping jobs whose criticality is greater than or

equal to 2 to the right and overwriting any job with criticality 1 in the process. If the

47



3.4 Extension for m Criticality Levels

Algorithm 5 TT-Merge-m-crit(I, T1, T2, . . . , Tm)

Input : T1, T2, . . . , Tm and I = {j1, j2, ..., jn}, where ji =< ai, di, χi, Ci(LO), Ci(HI) >.

Output : Tables S1, S2, . . . , Sm

1: Construction of S1.

2: Find the maximum deadline (Dmax) of the jobs;

3: The maximum length of tables S1, S2,. . . , Sm are Dmax each;

4: t := 0;

5: while (t ≤ Dmax) do

6: if (|{χi|Tχi
[t] 6= NULL}| = 0) then

7: Search the tables Tχi
simultaneously from the beginning to find the first available job at

time t;

8: Let k be the first occurrence, if any, of such a job ji in Tχi
;

9: if (more than one job is found) then

10: LC := the lowest criticality such that a job ji is found in TLC ;

11: S1[t] := TLC [k];

12: TLC [k] := NULL;

13: else if (only job of χi-criticality level is found) then

14: S1[t] := Tχi
[k];

15: Tχi
[k] := NULL;

16: else if (no job is found) then

17: S1[t] := NULL

18: t := t+ 1;

19: end if

20: else if (|{χi|Tχi
[t] 6= NULL}| = 1) then

21: S1[t] := Tχi
[t];

22: Tχi
[t] := NULL;

23: t := t+ 1;

24: else if (|{χi|Tχi
[t] 6= NULL}| > 1) then

25: Declare failure;

26: end if

27: end while

28: This is the table S1;

29:

30: Construction of Sχi
where 2 ≤ χi ≤ m

31: for χi := 2 to m do

32: Copy all the jobs from table Sχi−1 to table Sχi
;

33: Scan the table Sχi
from left to right:

34: for each χi-criticality job jl, allocate an additional Cl(χi) − Cl(χi − 1) time units after the

rightmost segment of job jl, recursively pushing all the overlapping job segments with criticality

greater or equal to χi-criticality in Sχi
(except those whose allocation time is same as in Tχi

)

to the right and overwriting any jobs with criticality (χi− 1)-criticality or lesser in the process.

35: end for

48



3.4 Extension for m Criticality Levels

allocation time of a job whose criticality is 2 or more which needs to be pushed is same in

both the tables S2 and T2, then the additional time units are allocated after this job.

Similarly, we construct the table Sχi from Sχi−1. We first copy the jobs of table Sχi−1 to

table Sχi . Then the χi-criticality jobs are allocated Ci(χi)−Ci(χi− 1) units of χi-criticality

execution time immediately after their Ci(χi−1) units of execution in Sχi . These additional

time units is allocated by pushing all overlapping jobs whose criticality is greater than or

equal to χi to the right and overwriting any job with criticality less than or equal to (χi− 1)

in the process. If the allocation time of a χi-criticality job which needs to be pushed is same

in both the tables Sχi and Tχi , then the additional time units are allocated after this job.

3.4.3 Correctness Proof

Theorem 3.4.1: If the scheduler dispatches the jobs according to tables S1, S2, . . . , Sm,

then it will be a correct scheduling strategy.

Proof. We prove the theorem by strong induction.

Let S(i) be the statement ”If the scheduler dispatches the jobs according to tables S1,

S2, . . . , Si, then it will be a correct scheduling strategy up to criticality level i.”

BASE STEP (i = 2): Since i = 2 is a dual criticality instance for which the correctness has

already been proved in the previous section, S(2) is true.

INDUCTIVE STEP: Fix some i ≥ 2, and assume that for every t satisfying 2 ≤ t ≤ i, the

statement S(t) is true.

Now we need to show that S(i + 1) is true, i.e., if the algorithm finds a correct online

scheduling policy up to the i-criticality level using the first i scheduling tables, then there

exists an online scheduling policy for (i+1)-criticality levels using the first (i+1) tables. We

know that S(i) is true which means for the i-criticality level, the scheduler dispatches the

job according to the first i tables which is a correct online scheduling strategy for i-criticality

levels. Algorithm 5 starts constructing the table S(i+1) from the table Si keeping the same

order of the jobs. According to Algorithm 5, after Cl(i) units of execution for each job jl

of χ(i+1)-criticality level is allocated, the remaining {Cl(i + 1) − Cl(i)} units of execution

has been allocated to them immediately after the rightmost job segment in the table S(i+1)

while following the job order of table Si. So, each job jl of χ(i+1)-criticality gets sufficient

time to execute their Cl(i+ 1) units of execution in S(i+1). This proof is similar to the dual

criticality case. Hence, we get a correct online scheduling policy.

49



3.5 Extension for Dependent Jobs

3.5 Extension for Dependent Jobs

In previous sections we have considered instances with independent jobs. Now we consider

the case of dual-criticality instances with dependent jobs. In this section we design algorithms

to find two scheduling tables such that if the scheduler discussed in Section 3.2 dispatches

the jobs according to these two tables then it will be a correct online scheduling strategy

without violating the dependencies between them. To the best of our knowledge, there is no

existing algorithm which can schedule the jobs of an instance I with dependencies, although

a similar type of problem is discussed in Baruah [Bar14] based on synchronous programs.

First we discuss the case of non-recurrent jobs and we then extend it for recurrent or periodic

jobs.

3.5.1 Model

A job is characterized by a 5-tuple of parameters: ji = (ai, di, χi, Ci(LO), Ci(HI)), where

• ai ∈ N denotes the arrival time.

• di ∈ N+ denotes the absolute deadline.

• χi ∈ {LO,HI} denotes the criticality level.

• Ci(LO) ∈ N+ denotes the LO-criticality worst-case execution time.

• Ci(HI) ∈ N+ denotes the HI-criticality worst-case execution time.

We assume that ∀i : Ci(LO) ≤ Ci(HI), where 1 ≤ i ≤ n and χi ∈ {LO,HI}.
An instance of a mixed-criticality system with dependent jobs can be defined as a

directed acyclic graph (DAG). An instance I is represented in the form of I(V,E), where

V represents the set of jobs {j1, j2, . . . , jn} and E represents the dependencies between the

jobs. We also assume that no HI-criticality job can depend on a LO-criticality job. This

means, there will be no instance where an outward edge from a LO-criticality job becomes

an inward edge to a HI-criticality job.

Definition 3.5.1: A dual-criticality MC instance I with job dependencies is said to be time-

triggered schedulable if it is possible to construct the two schedules SLO and SHI for I

without violating the dependencies, such that the run-time scheduler algorithm described

above schedules I in a correct manner.

50



3.5 Extension for Dependent Jobs

3.5.2 The Algorithm

Here we propose an algorithm which can construct two scheduling tables SLO and SHI for

a dual-criticality instance with dependent jobs. If the scheduler discussed in Section 3.2

dispatches job according to these two tables, then this will be a correct scheduling strategy.

We construct the tables SLO and SHI from two temporary tables TLO and THI. The

length of all these tables are Dmax, i.e., the length of the maximum deadline among all the

jobs in the instance.

Algorithm 6 constructs a subgraph Ψ which consists of all the LO-criticality jobs and

the edges between them. Then it finds a job ji with the smallest deadline and no inward

edges and allocates its Ci(LO) units of execution in TLO. After Ci(LO) units of execution

of the job is allocated, the job and all its outward edges are removed from Ψ. The process

continues until all the jobs in Ψ are scheduled. Then all job segments in TLO are shifted as

close to their deadlines as possible without violating the dependencies between them so that

no job misses their deadline. For an example see Fig. 3.4 and Fig. 3.5

Algorithm 6 Construct-Dependency-TLO(I)

Input : I = {j1, j2, ..., jn}, where ji =< ai, di, χi, Ci(LO), Ci(HI) >.

Output : TLO

Assume earliest arrival time is 0.

1: Find the maximum deadline (Dmax) of the jobs;

2: Prepare a temporary table TLO of maximum length Dmax;

3: Let Ψ be the subgraph of DAG I containing LO-criticality jobs and the edges between them;

4: repeat

5: Choose an available job ji from Ψ with the earliest deadline that does not have an inward edge.

6: Allocate ji’s execution time at the next available slot in the temporary table TLO;

7: if (ji’s Ci(LO) units of execution is allocated) then

8: delete ji and its outward edges from Ψ;

9: end if

10: if (job ji misses its deadline) then

11: Declare failure and exit;

12: end if

13: until (all the jobs in Ψ are allocated)

14: Let O be the final order of the jobs of Ψ on the time-line of TLO using Ci(LO) units of execution for job

ji;

15: Starting from the rightmost job segment of the order O, move each segment of a job ji as close to its

deadline as possible in TLO without violating the dependency;

Algorithm 7 constructs a subgraph Ψ which consists of all the HI-criticality jobs and

51



3.5 Extension for Dependent Jobs

the edges between them. Then it finds a job ji with the smallest deadline and no inward

edges and allocates Ci(HI) units of execution to it in THI. After Ci(HI) units of execution

of the job is allocated, the job and all its outward edges are removed from Ψ. The process

continues until all the jobs in Ψ are scheduled. Then all job segments in THI are shifted as

close to their deadlines as possible without violating the dependencies between them so that

no job miss their deadline. Then out of the total allocation so far, it allocates Ci(LO) units

of execution of job ji in THI from the beginning of its slot and leaves the rest of the execution

time of ji unallocated in THI, as in Fig. 3.5 and Fig. 3.6.

Algorithm 7 Construct-Dependency-THI(I)

Input : I = {j1, j2, ..., jn}, where ji =< ai, di, χi, Ci(LO), Ci(HI) >.

Output : THI

Assume earliest arrival time is 0.

1: Find the maximum deadline (Dmax) of the jobs;

2: Prepare a temporary table THI of maximum length Dmax;

3: Let Ψ be the subgraph of DAG I containing HI-criticality jobs and the edges between them;

4: repeat

5: Choose an available job ji from Ψ with the earliest deadline and does not have an inward edge.

6: Allocate ji’s execution time at the next available slot in the temporary table THI;

7: if (ji’s Ci(HI) units of execution is allocated) then

8: delete ji and its outward edges from Ψ;

9: end if

10: if (job ji misses its deadline) then

11: Declare failure and exit;

12: end if

13: until (all the jobs in Ψ are allocated)

14: Let O be the final order of the jobs of Ψ on the time-line of THI using Ci(HI) units of execution for job

ji ;

15: Starting from the rightmost job segment of the order O, move each segment of a job ji as close to its

deadline as possible in THI without violating the dependency.

16: for i := 1 to m do

17: Allocate Ci(LO) units of execution to job ji from its starting time in THI and leave the rest unallocated;

18: end for

Now, we use Algorithm 8 to construct the table SLO from TLO and THI and then construct

SHI from SLO. The algorithm starts the construction of SLO from time 0 and checks the tables

TLO and THI simultaneously at each instant. There are four possibilities while merging the

two temporary tables to construct SLO.

At time t, one of the following situations can occur.

52



3.5 Extension for Dependent Jobs

1. Both TLO and THI are empty.

2. Both TLO and THI are not empty.

3. TLO is empty and THI is not empty.

4. TLO is not empty and THI is empty.

If situation 1 occurs, then the algorithm will search both the tables TLO and THI to find the

first available job in both the table. Then, it allocates one of the available jobs at time t

where a LO-criticality job gets higher priority over a HI-criticality job. If a LO-criticality

job is chosen to be allocated, then all the predecessor of that job must be finished allocation.

Then the place of the ready job in TLO or THI is marked as empty. In case of situation 2,

the algorithm declares failure to schedule. In situation 3, the algorithm allocates the HI-

criticality job from THI whereas in situation 4, it allocates the LO-criticality job from TLO if

and only if all the predecessor of the job has already finished allocation. Once an instant of

a job is allocated in SLO, the place where it was scheduled in TLO or THI is emptied.

We then construct the table SHI from SLO. We first copy the jobs of table SLO to

SHI. Then the HI-criticality jobs are allocated their Ci(HI)− Ci(LO) units of HI-criticality

execution time immediately after their Ci(LO) units of execution in SHI. These additional

time units are allocated by recursively pushing all overlapping HI-criticality jobs in SHI to

the right and overwriting any LO-criticality job in the process. An exception to this is when

the allocation time of an overlapping HI-criticality job is the same in both the tables SHI

and THI, in which case the additional time units are allocated after this job without violating

the dependency constraints.

We illustrate the algorithm by an example.

Example 3.5.1: Consider the instance shown in Fig. 3.14. This is an instance with five jobs

j1, j2, j3, j4 and j5 with dependencies between them. The properties of these jobs can be

seen from Table 3.4.

We find the two temporary tables as in Example 3.3.1. But, here we need to take care

of the job dependencies. So, we apply Algorithm 6 and 7 to construct the tables TLO and

THI shown in Fig. 3.15 and 3.16.

We then use Algorithm 8 to find the table SLO which is shown in Fig. 3.17. Finally, we

construct the table SHI from the table SLO which is shown in Fig. 3.18.

53



3.5 Extension for Dependent Jobs

Algorithm 8 TT-Merge-DEP(I, TLO, THI)

Input : TLO, THI and I = {j1, j2, ..., jn}, where ji =< ai, di, χi, Ci(LO), Ci(HI) >.

Output : Tables SLO and SHI

1: Construction of SLO.

2: Find the maximum deadline (Dmax) of the jobs;

3: The maximum length of tables SHI and SLO are both Dmax;

4: t := 0;

5: while (t ≤ L) do

6: if (TLO[t] = NULL & THI[t] = NULL) then

7: Search the tables TLO and THI simultaneously from the beginning to find the first available job at time t;

8: Let k be the first occurrence of a job ji in TLO or THI;

9: if (Both LO-criticality & HI-criticality job are found) then

10: if (Predecessors of TLO[k] has been allocated its Ci(LO) execution time) then

11: SLO[t] := TLO[k];

12: TLO[k] := NULL;

13: else

14: SLO[t] := THI[k];

15: THI[k] := NULL;

16: end if

17: else if (LO-critical job is found) then

18: if (Predecessors of TLO[k] has been allocated its Ci(LO) execution time) then

19: SLO[t] := TLO[k];

20: TLO[k] := NULL;

21: else

22: SLO[t] := NULL;

23: t := t+ 1;

24: end if

25: else if (HI-criticality job is found) then

26: SLO[t] := THI[k];

27: THI[k] := NULL;

28: else if (NO job is found) then

29: SLO[t] := NULL

30: t := t+ 1;

31: end if

32: else if (TLO[t] = NULL & THI[t] != NULL) then

33: SLO[t] := THI[t];

34: THI[t] := NULL;

35: t := t+ 1;

36: else if (TLO[t] != NULL & THI[t] = NULL) then

37: SLO[t] := TLO[t];

38: TLO[t] := NULL;

39: t := t+ 1;

40: else if (TLO[t] != NULL & THI[t] != NULL) then

41: Declare failure;

42: end if

43: end while

44: This is the table SLO;

45:
46: Construction of SHI

47: Copy all the jobs from table SLO to table SHI;

48: Scan the table SHI from left to right:

49: for each HI-criticality job ji, allocate an additional Ci(HI)− Ci(LO) time units immediately after the rightmost segment

of job ji, repeatedly pushing all the following HI-criticality jobs in SHI (except those whose allocation time is same as in

THI) to the right and overwriting any LO-criticality jobs in the process.

54



3.5 Extension for Dependent Jobs

HI LO

HI HI HI

j1

j2

j3

j4 j5

(4) (4)

(4) (6) (8)

Figure 3.14: A DAG showing job dependencies. The numbers in parentheses indicates

deadline

Table 3.4: An example instance to explain the TT-Merge-DEP algorithm

Job Arrival time Deadline Criticality Ci(LO) Ci(HI)

j1 0 4 HI 1 2

j2 0 4 HI 1 2

j3 0 4 LO 1 1

j4 0 6 HI 1 2

j5 3 8 HI 1 2

j3

0 3 4 8

Figure 3.15: Temporary table TLO

j1 j2 j4 j5

0 1 2 3 4 5 6 7 8

Figure 3.16: Temporary table THI

j1 j3 j2 j4 j5

0 1 2 3 4 5 8

Figure 3.17: Final table SLO

55



3.5 Extension for Dependent Jobs

j1 j2 j4 j5

0 2 4 6 8

Figure 3.18: Final table SHI

3.5.3 Correctness Proof

We need to show that if TT-Merge-DEP finds the two tables SLO and SHI, then the scheduler

can find an online scheduling strategy using these tables.

Lemma 3.5.1: If Algorithm 8 does not declare failure, then each job ji receives Ci(LO)

units of execution in SLO and each HI-criticality job jk receives Ck(HI) units of execution in

SHI without violating the dependency constraints.

Proof. The table SLO is constructed from the two temporary tables TLO and THI. Each

LO-criticality job ji can be allocated in SLO on or before its scheduled time instant in TLO

if and only if all of its predecessor jobs have completed their allocation, which does not

violate the dependencies. We have already assumed that no HI-criticality job depends on

any LO-criticality job. We know that each job in THI is allocated according to its dependency

constraints. So each HI-criticality job ji can be allocated in SLO on or before its scheduled

time instant in THI. If TT-Merge-DEP finds a table SLO then each job must receives Ci(LO)

units of execution time.

Next we show that any HI-criticality job jk receives Ck(HI) units of execution in SHI.

We start constructing SHI by copying the jobs in SLO. But according to TT-Merge-DEP,

the HI-criticality jobs are allocated their remaining Ck(HI) − Ck(LO) units of allocation in

SHI after they complete their Ck(LO) units of allocation in SHI by pushing recursively all

the following HI-criticality job segments to the right except those whose allocation is the

same as in table THI and without violating the dependency constraints. This means we can

push a job segment to the right in SHI only if it is allocated before its allocation in THI

and, moreover, no job is pushed beyond its allocation in THI, because if THI does not declare

failure then it allocates enough time for the execution of all the HI-criticality jobs without

violating the dependency constraints. In this case, all the jobs can get sufficient time to

schedule their Ck(HI) − Ck(LO) units of execution as they are allocated on or before the

allocation in table THI. This is clear from the remark following Observation 1 which holds

for dependent jobs as well. If a HI-criticality job jh cannot be pushed to the right then it

56



3.6 Extension for Periodic Jobs

will get its remaining Ch(HI) − Ch(LO) units of execution time in table SHI by a similar

reasoning as above.

Theorem 3.5.1: If the scheduler dispatches the jobs according to SLO and SHI, then it will

be a correct scheduling strategy without violating the dependency constraints.

Proof. Algorithms 6 and 7 take care of all the dependencies between LO-criticality and

HI-criticality jobs respectively. We know that Algorithm 8 checks the dependencies of the

LO-criticality jobs on HI-criticality jobs before allocating the LO-criticality jobs. We have

assumed that no HI-criticality job depends on a LO-criticality job. So the construction of

the tables SLO and SHI does not violate the dependency constraints of instance I. From

Lemma 3.5.1, it is clear that each job in SLO and SHI receives C(LO) and C(HI) units of

execution respectively. The rest of the proof is similar to that of Theorem 3.3.1.

3.5.4 Generalizing the Algorithm for m Criticality Levels

We know that Algorithm 8 can find two tables SLO and SHI which can be used by the

scheduler for correct online scheduling policy. In Section 3.4, we have already proved that

the dual-criticality algorithm can be modified to find m number of tables which can be used

by the scheduler to find a correct online scheduling strategy for m criticality levels. Thus,

we can say that the algorithm discussed in this section can be extended to find m tables

which can be used by the scheduler to find a correct online scheduling strategy.

3.6 Extension for Periodic Jobs

Now we extend TT-Merge for periodic or recurrent jobs. Here, a job is characterized by a

5-tuple of parameters: ji = (ai, pi, χi, Ci(LO), Ci(HI)), where

• ai ∈ N denotes the arrival time.

• pi ∈ N+ denotes the period.

• χi ∈ {LO,HI} denotes the criticality level.

• Ci(LO) ∈ N+ denotes the LO-criticality worst-case execution time.

• Ci(HI) ∈ N+ denotes the HI-criticality worst-case execution time.

57



3.7 Comparison with Mixed-criticality Synchronous Programs

We assume that ∀i : Ci(LO) ≤ Ci(HI), where 1 ≤ i ≤ n and χi ∈ {LO,HI}. Note that in

this chapter, we also assume that pi = di, where di is the deadline and 1 ≤ i ≤ n.

As we can see that the job model is very much similar to the non-recurrent jobs except

the periods which initiate the new instance of the job. The process of constructing a time-

triggered schedule for the jobs having the above dual-criticality model will be very similar to

the one we have discussed in Section 3.3. Here we follow the same algorithms as in Section 3.3

to find the two tables SLO and SHI. These two tables will be used by the scheduler to dispatch

the jobs at each instant of time.

All algorithms discussed in Section 3.3 constructed the tables of length Dmax. But, in

this case, all the tables will have length equals to the lcm or hyper-period L of periods of

all the jobs. Here we need to modify Algorithms 1 and 2 only. We find the EDF order of

the LO-criticality and HI-criticality jobs up to the hyper-period L in the tables TLO and THI

respectively. We then can use Algorithm 3 to find tables SLO and SHI.

3.7 Comparison with Mixed-criticality Synchronous

Programs

Baruah [Bar14] proposed a technique to schedule mixed-criticality synchronous programs

on a uniprocessor system. He showed that the scheduling of mixed-criticality single-

rate synchronous program is polynomial time solvable whereas the optimal and efficient

scheduling of mixed-criticality multi-rate synchronous program is NP-hard in the strong

sense. He also proved that the schedule generation algorithm which finds a schedule for

single-rate synchronous programs is optimal. Baruah used graphs to represent the reactive

blocks and their dependencies. The multi-rate graph of a synchronous program is unrolled to

find a directed acyclic graph (DAG) in which each invocation of each block within an interval,

of length equal to the lcm of the periods, is explicitly represented as a separate node. Each

node is then assigned a priority according to the OCBP algorithm. From the above priorities,

two tables can be constructed which can be used by the scheduler to dispatch the blocks.

We present an algorithm which can construct two tables with which we can schedule a strict

superset of OCBP-schedulable mixed-criticality multi-rate programs.

58



3.7 Comparison with Mixed-criticality Synchronous Programs

3.7.1 Model

We follow the same model of synchronous program as suggested in [Bar14]. The model is

described as follows.

• The synchronous program is represented as a directed acyclic graph G(V,E), where

V is the set of vertices and E is the set of edges. The blocks (B1, . . . , Bn) of the

synchronous program are represented as the vertices of the graphs, i.e., Bi ∈ V . The

dependencies between the blocks (Bi, Bj) is represented by the directed edges, i.e.,

(Bi, Bj) ∈ E.

• Some of the blocks are designated as output blocks and input blocks; these generate

output and input values of the synchronous program. Other blocks are called internal

blocks.

• Each block is characterized by a 5-tuple of parameters: Bi = (ai, pi, χi, Ci(LO),

Ci(HI)), where

– ai ∈ N denotes the arrival time.

– pi ∈ N+ denotes the period.

– χi ∈ {LO,HI} denotes the criticality level.

– Ci(LO) ∈ N+ denotes the LO-criticality worst-case execution time.

– Ci(HI) ∈ N+ denotes the HI-criticality worst-case execution time.

• We assume that ∀i : Ci(LO) ≤ Ci(HI), where 1 ≤ i ≤ n and χi ∈ {LO,HI}. Note

that in this chapter, we also assume that pi = di, where di is the deadline.

• Each output block can either be a HI-criticality or a LO-criticality block. We assume

that a HI-criticality block cannot depend upon a LO-criticality block. This means if

a block Bi is a HI-criticality block, then all the preceding blocks of Bi will be HI-

criticality blocks.

As discussed earlier, the CAs are interested in the certification of the values of the HI-

criticality output blocks only, whereas the system designers want to verify the correctness of

all the blocks in a synchronous program.

59



3.7 Comparison with Mixed-criticality Synchronous Programs

Table 3.5: An example instance to explain the application of our algorithm on synchronous

reactive systems

Block Arrival time Period Criticality Ci(LO) Ci(HI)

B1 0 14 HI 3 5

B2 2 14 HI 1 2

B3 0 7 LO 3 3

B4 0 14 HI 3 7

IN1

IN2

OUT1

OUT2

HI LO

HI HI

B1

B2

B3

B4

(14) (7)

(14) (14)

Figure 3.19: DAG of instance I given in Table 3.5

Example 3.7.1: Let us consider an instance I given in Table 3.5 and its corresponding

DAG in Fig. 3.19. Since we are considering a periodic instance, the instance I is unrolled

according to the method given in [Bar14]. The resulting DAG is given in Fig. 3.20. We try

to apply the OCBP algorithm to find the priority from which the tables Soc
LO and Soc

HI are

constructed. As the procedure shown in [Bar14], the blocks B3(1) is chosen to be assigned

the lowest priority block. Since B3(1) is a LO-criticality block, we need to consider C(LO)

units of execution of each block. Now we can see that block B1 can execute over [0, 3], block

B3(0) can execute over [3, 6], block B2 can execute over [6, 7] and block B4 can execute over

[7, 10]. So there is sufficient time for B3(1) to execute its three units of execution. Thus,

block B3(1) is assigned lowest priority. Now, we can see that no more blocks can be assigned

a priority. Since, there is no OCBP priority order, the algorithm discussed in [Bar14] cannot

construct the two scheduling tables Soc
LO and Soc

HI.

Now we apply our algorithm 8 on the synchronous program given in Example 3.7.1

to construct the two scheduling tables SLO and SHI. We consider the unrolled synchronous

60



3.7 Comparison with Mixed-criticality Synchronous Programs

IN1

IN2

OUT1

OUT2

HI LO LO

HI HI

B1

B2

B3(0) B3(1)

B4

(14) (7) (14)

(14) (14)

Figure 3.20: DAG after unroll

program given in Fig. 3.20 to find the scheduling tables. As we know, we need two temporary

tables TLO and THI to construct the scheduling table SLO. Then SHI will be constructed using

SLO.

First, Algorithm 6 and 7 construct the two temporary tables as shown in Fig. 3.21.

Then Algorithm 8 constructs the table SLO as shown in Fig. 3.22 from which the table SHI

TLO B3(0) B3(1)

0 4 7 11 14

THI B1 B2 B4

0 3 5 6 7 10 14

Figure 3.21: Tables TLO and THI

is constructed as shown in Fig. 3.23.

SLO B1 B3(0) B2 B3(0) B4 B3(1)

0 3 5 6 7 10 14

Figure 3.22: Table SLO

We follow all the Lemmas from Section 3.3.4 to prove Theorem 3.7.1.

Theorem 3.7.1: If a mixed-criticality synchronous program is schedulable by the OCBP-

based algorithm, then it is also schedulable by our algorithm.

Proof. The OCBP algorithm generates priority orders for the synchronous programs. Then

the OCBP-based algorithm finds tables Soc
LO and Soc

HI for the synchronous programs using this

61



3.7 Comparison with Mixed-criticality Synchronous Programs

SHI B1 B2 B4

0 5 7 14

Figure 3.23: Table SHI

priority order. We need to show that if the OCBP-based algorithm constructs the tables

Soc
LO and Soc

HI for an instance, then our algorithm will not encounter a situation where at time

slot t the tables TLO and THI are non-empty, for any t.

We know that Ci(LO) units of execution is allocated to each block Bi for constructing

the tables TLO and THI. Each block in TLO and THI is allocated as close to its deadline as

possible without violating the dependency constraints. That means no block can execute

after its allocation time in TLO and THI without affecting the schedule of any other block

and still meet its deadline. Algorithm 8 never allocates a block in SLO whose predecessors

have not completed its C(LO) units of execution in SLO. Because, Algorithm 6 and 7 take

care of the dependencies between the LO-criticality and HI-criticality blocks respectively

and Algorithm 8 takes care the dependencies of a LO-criticality block on HI-criticality

block. Algorithm 8 declares failure if it finds a non-empty instant at any time t in both

the tables TLO and THI. This means the two blocks which are found in the tables TLO and

THI respectively cannot be scheduled with all other remaining blocks from this point, because

all the blocks to the right have already been moved as far to the right as possible.

Let there be an OCBP priority order of the blocks of synchronous program and a table

SLO according to this priority order.

Let Bl and Bh be two blocks in TLO and THI respectively found at time t during the

construction of SLO, by our algorithm which means all job segments in the interval [0, t− 1]

from TLO and THI have already been assigned in SLO. But, we know that OCBP has assigned

priorities to these blocks Bl and Bh. Now there are two cases.

In the first case, assume Bl is assigned lower priority than Bh by OCBP. Let al be the

arrival time of Bl and the starting and completion times of Bl in TLO be tl and tl
′ respectively.

Since block Bl can be scheduled only on or after the arrival time al, we need to show that

the block segment of Bl found at time t cannot be scheduled in the interval [al, t − 1] by

the OCBP-based algorithm. We know that Algorithm 8 can allocate a block in table SLO

on or before its allocation in TLO and THI without violating the dependency constraints.

But Algorithm 8 has not allocated the block segments found in TLO and THI at time t in

62



3.7 Comparison with Mixed-criticality Synchronous Programs

the interval [al, t − 1] of the table SLO, and by Lemma 3.3.6, this is due to the presence

of equal or higher priority block segments of the OCBP priority order in TLO and THI. We

know that all the blocks in TLO in the interval [al, t] and the blocks in THI including block

Bh in the interval [al, t] are of priority greater or equal to that of Bl according to OCBP

since, by moving block segments to the right starting from the OCBP schedule the blocks

to the left of Bl are of priority greater or equal to that of Bl. This means the blocks in the

interval [al, t − 1] of table SLO are either equal or higher priority blocks than Bl according

to OCBP. So both the algorithms, the OCBP-based one and ours, allocate higher or equal

priority jobs (or, block segments according to Algorithm 8) before time t. Then it is clear

that after the blocks of higher priority than Bl finish their C(LO) units of execution, there

will not be sufficient time for Bl to finish its Cl(LO) units of execution in the interval [al, tl
′]

in the OCBP schedule. This is because at time t, the OCBP-based algorithm has already

allocated all ready blocks with higher or equal priority than Bl (according to OCBP) in the

interval [al, t] with no vacant slot for further allocation of Bl’s segment found at time slot t

which is the case for Algorithm 8 as well. A similar statement holds for Bh. Therefore Bh

and Bl cannot be simultaneously scheduled to meet their deadlines in the remaining time,

according to the OCBP-based algorithm.

In the second case, assume Bh is assigned lower priority than Bl by OCBP. Let ah be

the arrival time of block Bh and let the starting and completion times of the LO-criticality

execution of Bh be th and th
′, respectively and the completion time of the HI-criticality

execution be te. As in the previous case, all the blocks in THI in the interval [ah, t] and the

blocks in TLO, including block Bl, in the interval [ah, t] are of priority (according to OCBP)

greater than or equal to that of Bh. OCBP considers C(HI) units of execution time to assign

a priority to a HI-criticality block. As seen above, it is clear that after the blocks of higher

priority than Bh finish their C(LO) units of execution, there will not be sufficient time for

Bh to finish its Ch(LO) units of execution in the interval [ah, th
′] according to OCBP. We

know that C(LO) ≤ C(HI). If block Bh does not get sufficient time to execute its Ch(LO)

units of execution in the interval [ah, th
′], then it will not get sufficient time to execute its

Ch(HI) units of execution in the interval [ah, te] either.

From the above two cases, it is clear that OCBP cannot assign priorities to job Bl

and Bh, which is a contradiction. This means if there exists an OCBP priority order for

a synchronous program, then our algorithm will not encounter a situation where both the

tables TLO and THI are non-empty at any time t for the same synchronous program.

63



3.8 Results and Discussion

Note that we need to consider only the LO-criticality scenarios since Lemma 3.3.3

implies that if SLO can be constructed, then so can SHI.

3.8 Results and Discussion

In this section we present the experiments conducted to evaluate TT-Merge for the dual-

criticality case for non-recurrent jobs (Algorithm 3). The experiments show the impact of

utilization on TT-Merge versus the OCBP-based and MCEDF algorithms. The comparison

is done over a large number of instances with randomly generated parameters.

The job generation policy may have significant effect on the experiments. The details of the

job generation policy are as follows.

• The utilization (ui) of the jobs of instance I are generated according to the UUniFast

algorithm [BB05].

• We use the exponential distribution proposed by Davis et al [DZB08] to generate the

deadline (di) of the jobs of instance I.

• The Ci(LO) units of execution time of the jobs are calculated as ui × di.

• The Ci(HI) units of execution time of the jobs are calculated as Ci(HI) = CF×Ci(LO)

where CF is the criticality factor which varies between 2 and 6 for each HI-criticality

job ji.

• Each instance I contains at least one HI-criticality job and one LO-criticality job.

• For each point on the X-axis, we have plotted the average result of 10 runs.

In the first experiment, we fix the utilization at LO-criticality level of each instance at

0.9 and let the deadline of the jobs vary between 1 and 2000. The number of jobs in each

instance is set to 10. The graph in Fig. 3.24 shows the number of schedulable instances out

of different numbers of randomly generated instances.

From the graph in Fig. 3.24, it is clear that TT-Merge schedules more instances successfully

than both the OCBP-based algorithm and the MCEDF algorithm. As can be seen from

Fig. 3.24, for an utilization of 0.9 about 620 instances out of 1000 instances are successfully

scheduled by TT-Merge which is two times more than the OCBP-based algorithm and 1.25

64



3.8 Results and Discussion

 0

 100

 200

 300
 400

 500
 600

 700

 800

 900

 1000

 100 200 300 400 500 600 700 800 900 1000

N
um

be
r 

of
 s

uc
ce

ss
fu

l i
ns

ta
nc

es

Number of instances

OCBP-based Algorithm
MCEDF Algorithm

Proposed Algorithm

Figure 3.24: Comparison of number of MC-schedulable instances at an utilization of 0.9

times more than the MCEDF algorithm. As the number of instances increases, the success

ratio is more or less stable.

The next experiment checks the impact of the utilizations on the schedulable instances.

Here the number of jobs in an instance is fixed at 20. The deadlines of the jobs in an instance

range between 1 and 2000. The utilizations at LO-criticality level of the instances are varied

between 0.1 and 0.9. The graph in Fig. 3.25 shows the number of schedulable instances from

1000 randomly generated instances.

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

N
um

be
r 

of
 s

uc
ce

ss
fu

l i
ns

ta
nc

es

Utilizations per instance

OCBP-based Algorithm
MCEDF Algorithm

Proposed Algorithm

Figure 3.25: Comparison of number of MC-schedulable instances with different utilizations

From the graph, it is clear that TT-Merge constructs more tables SLO and SHI

successfully than the OCBP-based scheduling algorithm. We can see that TT-Merge also

65



3.9 Conclusion

schedules more instances than MCEDF by a factor of 1.25. Typically TT-Merge is successful

in scheduling twice the number of instances than the OCBP-based algorithm. We can see

that the number of schedulable instances decrease with the increase in the utilization.

We have done another experiment where the number of jobs in an instance varied

between 5 and 100. For this experiment, we fix the utilization at LO-criticality level of each

instance at 0.9 and let the deadline of the jobs vary between 1 and 2000. We plot the result

from 1000 randomly generated instances in Fig. 3.26.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  10  20  30  40  50  60  70  80  90  100

N
u
m

b
e
r 

o
f 
s
u
c
c
e

s
s
fu

l 
in

s
ta

n
c
e
s

Number of jobs per instance

OCBP-based Algorithm
MCEDF Algorithm

Proposed Algorithm

Figure 3.26: Comparison of number of MC-schedulable instances with different number of

jobs per instance

From the graph in Fig. 3.26 it is clear that TT-Merge successfully schedules significantly

more (by a factor of two) instances successfully than the OCBP-based algorithm and also

schedules more instances than the MCEDF algorithm.

3.9 Conclusion

In this chapter, we proposed a new algorithm for the time-triggered scheduling of mixed-

criticality systems. We proved that our algorithm can schedule a bigger set of instances than

the previous algorithm based on OCBP. We also showed that our algorithm schedules more

instances than MCEDF. The experiments show the differences in number of schedulable

instances between our algorithm and the OCBP-based algorithm and MCEDF. We have

also extended the work to handle periodic and dependent jobs. Finally, we proved that our

algorithm for dependent jobs can be used to schedule the blocks of a synchronous program

66



3.9 Conclusion

and for which it schedules a bigger set of instances than the algorithm based on OCBP.

In the next chapter, we plan to investigate the non-functional properties of mixed-

criticality systems, e.g., energy consumption. We extend the TT-Merge algorithm for the

optimization of the energy consumption of mixed-criticality systems.

67



Chapter 4

Energy-efficient Time-triggered

Scheduling of Uniprocessor

Mixed-criticality Systems

4.1 Introduction

Besides schedulability, researchers are beginning to look at various other aspects of mixed-

criticality systems, such as energy consumption minimization. In the energy consumption

minimization problem, task executions are slowed down by using dynamic voltage and

frequency scaling (DVFS) and/or dynamic power management (DPM) such that the system

energy consumption is minimized without affecting the mixed-criticality schedulability

requirement. The energy consumption minimization problem is as hard as the mixed-

criticality scheduling problem which has been proved to be NP-hard in the strong sense. This

is easy to see, as the problem of finding minimized energy schedule for a mixed-criticality

system with just one processor frequency is the same as a general mixed-criticality scheduling

problem.

In Chapter 3, we proposed a time-triggered scheduling algorithm for a uniprocessor

mixed-criticality real-time system. Now we investigate the energy consumption minimization

problem with respect to the algorithm of Chapter 3. The work closest to ours is [HKGT14],

where the proposed method is based on EDF-VD [BBD+12b] and successful only if the task

set is schedulable by EDF-VD. We try to find a method which can schedule more number of

task sets compared to [HKGT14] as well as minimize the energy consumption. Our method is

68



4.2 System Model and Literature Survey

to integrate the mixed-criticality energy-efficient problem with the time-triggered scheduling

algorithm TT-Merge of Chapter 3. As in [HKGT14], we consider minimizing the energy

consumption only in the LO-criticality scenarios as the probability of occurrence of a HI-

criticality scenario is extremely low from the designer’s viewpoint. The energy optimization

problem for HI-criticality scenarios is part of future work. We show that our algorithm

outperforms that of [HKGT14, NHG+16], the predominant existing algorithm which uses

DVFS for mixed-criticality systems with respect to minimization of energy consumption.

We then prove the optimality of the proposed algorithm with respect to energy consumption

minimization for scheduler produced by the TT-Merge algorithm. Ours is the first energy-

efficient time-triggered algorithm for scheduling of mixed-criticality systems. Extending our

algorithm to multiprocessor mixed-criticality systems is part of future work.

The rest of the chapter is organized as follows: Section 4.2 describes the system model

and definitions. In Section 4.3, we formulate the energy consumption minimization problem

for mixed-criticality systems. Section 4.4 presents a new algorithm which finds the processor

frequency and the execution time to be taken after DVFS for each job. We extend the

proposed algorithm for dependent jobs in Section 4.5. Section 4.6 presents the evaluation of

the proposed algorithm. Section 4.7 concludes the chapter.

4.2 System Model and Literature Survey

4.2.1 Mixed-criticality Task Model

In this chapter, we consider periodic mixed-criticality task systems. A mixed-criticality (MC)

periodic task system T consists of a number of tasks τ1, . . . , τn. A task τi is characterized

by a 4-tuple (χi, ci(LO), ci(HI), pi), where

• χi ∈ {LO,HI} denotes the criticality level.

• Ci(LO) ∈ N+ denotes the LO-criticality worst-case execution time.

• Ci(HI) ∈ N+ denotes the HI-criticality worst-case execution time.

• pi ∈ N+ denotes the period.

We assume that Ci(LO) ≤ Ci(HI) for all tasks τi and the deadline of each task is

the same as its period. Each of these tasks may generate an unbounded number of dual-

69



4.2 System Model and Literature Survey

criticality jobs, either of LO-criticality or HI-criticality. A job jik of task τi is characterized

by a 5-tuple of parameters: jik = (aik, dik, χi, Ci(LO), Ci(HI)), where

• aik ∈ N denotes the arrival time, aik ≥ 0.

• dik ∈ N+ denotes the relative deadline, dik = pi.

We assume that the system is preemptive. Generally, a job in the task set is available

for execution at time aik and should finish its execution before aik + dik. The job jik must

execute for ci amount of time which is the actual execution time between aik and aik + dik,

but this can be known only at the time of execution. Now we define the schedulability

condition for a mixed-criticality task set.

Definition 4.2.1: A scheduling strategy is feasible or correct if and only if the following

conditions are true:

1. If all the jobs finish their Ci(LO) units of execution time on or before their deadlines.

2. If any job does not declare its completion after executing its Ci(LO) units of execution

time, then all the HI-criticality jobs must finish their Ci(HI) units of execution time

on or before their deadlines.

Here we focus on time-triggered schedules [BF11] of the MC task set. Two time-

triggered scheduling tables SLO and SHI are constructed for a given task set. These tables

are used to schedule the task set at run time. The length of the tables is the length of the

least common multiple (lcm) of the periods of the task set. The rules to use the tables SHI

and SLO at run time, (i.e., the scheduler) are as follows:

• The criticality level indicator Γ is initialized to LO.

• While (Γ = LO), at each time instant t the job available at time t in the table SLO

will execute.

• If a job executes for more than its LO-criticality WCET without signaling completion,

then Γ is changed to HI.

• While (Γ = HI), at each time instant t the job available at time t in the table SHI will

execute.

70



4.2 System Model and Literature Survey

Definition 4.2.2: A dual-criticality MC task set is said to be time-triggered schedulable

[BF11] if it is possible to construct the two schedules SHI and SLO for T , such that the run-

time scheduler algorithm described above schedules T in a correct manner.

4.2.2 Power Model and DVFS

Here we consider the state-of-the-art power model [CK07,PC14,ZMM04]:

P (f) = Ps + Pd(f) = Ps + β.fα (4.1)

where f is the processor frequency, P (f) is the power consumption at frequency f ,

Ps is the static power consumption due to leakage current, and Pd denotes the frequency-

dependent active power. The quantity β is a circuit dependent positive constant and α ≥ 2

depends on the hardware. Since α ≥ 2, the power consumption is a convex increasing

function of the processor frequency.

Since our target is to minimize energy consumption due to Pd by DVFS, we ignore the

effect of the static power Ps. We also assume that the system runs at a base frequency fb,

fmin ≤ fb ≤ fmax, where fmin and fmax are the minimum and maximum processor frequencies.

Without loss of generality, we assume the frequency fmax to be 1.

4.2.3 Related Work

The papers [ASK15,AKTM16b,HKGT14,AMT15b,AMT16,LJP13b] have looked at energy-

efficient scheduling of mixed-criticality systems. Out of these only [ASK15,HKGT14] are for

uniprocessor systems. The work by Huang et al. [HKGT14] and Narayan et al. [NHG+16]

are the only ones with which our work is comparable, because the most of the papers use

different mixed-criticality real-time systems models and power management schemes.

In [HKGT14], Huang et al. studied the energy consumption minimization in

uniprocessor mixed-criticality systems using the DVFS technique based on continuous

frequency levels. They found the processor frequencies fLO
LO of LO-criticality tasks and fLO

HI

of HI-criticality tasks which can be used in the EDF-VD algorithm [BBD+12b] to schedule

the given task set successfully and which result in minimum energy consumption in the LO-

criticality scenario with respect to EDF-VD. They also proved that the energy consumed

in the system is optimal for the EDF-VD algorithm. In [ASK15], Ali et al. proposed an

algorithm, hereafter abbreviated by PMC, which is based on EDF-VD and claimed that it

71



4.3 Motivation and Problem Definition

consumes less energy than the algorithm in [HKGT14] based on experimental evidence, but

without a proof.

In 2016, Narayana et al. [NHG+16] proposed a method based on a more generalized

system model to reduce energy consumption in multicore mixed-criticality systems. Since

the search space for optimality condition is huge, Narayana et al. considered 3 separate

processor frequency variables as in [HKGT14]. The optimal processor frequencies computed

in [NHG+16] when restricted to unicore system turns out to be the same as in [HKGT14],

i.e., the one which is optimal for EDF-VD. We show that our algorithm consumes less energy

as compared to any energy-efficient algorithm based on EDF-VD.

4.3 Motivation and Problem Definition

The algorithm presented in [HKGT14] finds optimal processor frequencies for both LO-

criticality and HI-criticality jobs in a LO-criticality scenario with respect to EDF-

VD [BBD+12b] to get an energy efficient schedule. We first show that the TT-merge al-

gorithm proposed in Chapter 3 can schedule more instances (i.e., a strict superset) than

the EDF-VD algorithm [BBD+12b]. We then propose an energy-efficient adaptation of the

TT-Merge algorithm (Algorithm 11 in Section 4.4) which gives more energy efficient sched-

ules than the energy-efficient EDF-VD algorithm discussed in [HKGT14]. Here we prove

the first claim, i.e., the TT-Merge algorithm schedules more task sets than the EDF-VD

algorithm. In the second part of the chapter, we show that the energy consumption of the

energy-efficient TT-Merge algorithm is less than that of the energy-efficient EDF-VD algo-

rithm and PMC. We also prove an optimality result with respect to energy consumption for

our algorithm.

Example 4.3.1: Consider the MC task set of 4 tasks given in Table 4.1. To be schedulable

Table 4.1: A task set which is not schedulable by EDF-VD

Task Arrival time Period Criticality Ci(LO) Ci(HI)

τ1 0 14 HI 3 5

τ2 0 14 HI 1 2

τ3 0 7 LO 3 3

τ4 0 14 HI 3 7

72



4.3 Motivation and Problem Definition

under EDF-VD, it must satisfy the following condition [BBD+12b]:

xULO
LO (T ) + UHI

HI (T ) ≤ 1 (4.2)

where Uχ2
χ1

=
∑

τi∈Tχ1

Ci(χ2)
pi

and x =
ULO

HI

1−ULO
LO

. For the given task set in Table 4.1, x = 0.875,

ULO
LO = 0.375 and UHI

HI = 1. Since the left-hand side of inequality 4.2 gives a value which is

greater than 1. Hence, this task set is not schedulable under EDF-VD.

But the task set is schedulable under TT-Merge where the resulting tables are given

in Fig. 4.1. Here we can see that each HI-criticality job can finish its execution at the time

instant where a scenario change occurs in the table SHI. On the other hand, if a scenario

change does not occur, then all jobs can finish their LO-criticality execution in the table

SLO.

SLO j11 j31 j21 j31 j41 j32

0 3 5 6 7 10 14

SHI j11 j21 j41

0 5 7 14

Figure 4.1: Tables constructed by the TT-Merge algorithm

Lemma 4.3.1: If a task set is schedulable under EDF-VD, then the task set is schedulable

under TT-merge.

Proof. We need to show that if the EDF-VD algorithm finds a mixed-criticality schedule for

a task set, then the TT-Merge algorithm will not encounter a situation where at time slot t,

tables TLO and THI are non-empty, for any t.

We know that Ci(LO) units of execution time are allocated to each job jik for

constructing the tables TLO and THI. Each job in TLO and THI is allocated as close to

its deadline as possible. That means no job can be executed after its allocation time in TLO

and THI without affecting the schedule of any other job and still meet its deadline. The

TT-Merge algorithm declares failure if it finds a non-empty slot at any time t in both the

tables TLO and THI. This means the two jobs which are found at time instant t in the tables

TLO and THI respectively cannot be scheduled with all other remaining jobs from this point,

because all the jobs to the right have already been moved as far to the right as possible.

73



4.3 Motivation and Problem Definition

Suppose a task set satisfies the preprocessing phase of EDF-VD and therefore has a

mixed-criticality schedule.

Let jl and jh be two jobs in TLO and THI respectively found at time t during the

construction of table SLO by the TT-Merge algorithm, which means all job segments in

the interval [0, t − 1] from table TLO and THI have already been assigned in SLO. But, we

know that these jobs can be scheduled by EDF-VD as the task set satisfies the required

schedulability condition. The EDF-VD algorithm executes or dispatches the waiting jobs

with earliest scheduling deadline. Without loss of generality, we can say that the processor

is not idle in the interval [0, t], i.e., there is no such time when a task is not available. Both

the algorithm schedules all the LO-criticality jobs whose deadline is less than or equal to the

deadline of job jl in the interval [0, t]. This is because both the algorithms schedule the LO-

criticality jobs in the EDF order. We know that EDF-VD schedules the HI-criticality jobs in

the EDF order according to the LO-scenario deadline, i.e., p̂i (= x ·pi) [BBD+12b]. We know

that the LO-scenario deadline is computed using the factor
ULO

HI

1−ULO
LO

for each HI-criticality job.

That means the deadlines of HI-criticality job is modified with equal proportion which does

not change the original EDF order, i.e., the EDF order with actual deadlines. So the EDF

order of the HI-criticality jobs according to the LO-scenario deadline is the same as the EDF

order of the HI-criticality jobs according to the actual deadlines. So all the HI-criticality

jobs whose deadline is less than or equal to the deadline of job jh are allocated between 0

and t by both the algorithms. We know that the LO-criticality execution times of each job is

scheduled in the interval [0, t] in a work conservative way by both the algorithms. According

to our algorithm, there is no time to schedule jl and jh before time t, because there is no

empty space in the interval [0, t] after scheduling LO-criticality execution time of each job

whose deadline is less than or equal to the deadlines of jl and jh. EDF-VD also schedules

all the LO-criticality jobs whose deadline is less than or equal to that of job jl and all the

HI-criticality jobs whose LO-scenario deadline is less than or equal to that of job jh. EDF-

VD cannot schedule a HI-criticality job whose LO-scenario deadline is greater than that of

jh in the interval [0, t], because the jobs whose deadline is less than that of jl and jh has

already filled the interval [0, t]. Moreover, both jl and jh are close to their deadlines. Since

our algorithm does not find a place to schedule jh or jl in the time interval [0, t], EDF-VD

cannot schedule jh or jl in that time interval. Hence either jh or jl will miss its deadline

as they are close to their deadline at time t. Therefore EDF-VD cannot schedule the task

set. This is a contradiction. Hence all task sets which can be scheduled by the EDF-VD

74



4.3 Motivation and Problem Definition

algorithm can also be scheduled by our algorithm.

Theorem 4.3.1: The collection of task sets schedulable under EDF-VD is a strict subset

of TT-Merge, i.e., T EDF-VD ( T TT-Merge where T EDF-VD and T TT-Merge are the set of task

sets schedulable by the EDF-VD and TT-Merge algorithms, respectively.

Proof. By Lemma 4.3.1, at least T EDF-VD ⊆ T TT-Merge is satisfied. By Example 4.3.1, some

task sets are not schedulable by EDF-VD, but schedulable by the TT-Merge algorithm.

Hence, T EDF-VD ( T TT-Merge.

4.3.1 Problem Formulation

Now we formally present our energy consumption minimization problem. Our objective is

to minimize the system energy consumption by slowing down the tasks in the LO-criticality

scenario while ensuring that they do not miss their deadlines using DVFS method. Without

loss of generality, we calculate the energy consumption minimization up to the hyperperiod

P of the task set. The idea is to find the energy-efficient LO-criticality WCET C̃ik(LO) and

the corresponding frequency fLO
ik for each job jik of the task set in the hyperperiod which

will minimize the energy consumption in the LO-criticality scenario.

Definition 4.3.1: We denote by C̃ik(LO) the worst-case execution time at LO-criticality

level of the job jik of task τi after DVFS using the processor frequency fLO
ik , i.e.,

C̃ik(LO) = Ci(LO) · fb
fLO
ik

(4.3)

and by C̃ik(HI) as the worst-case execution time at HI-criticality level of the job jik of task

τi after DVFS, i.e.,

C̃ik(HI) = C̃ik(LO) + (Ci(HI)− Ci(LO)) (4.4)

Since we assume that in HI-criticality scenario every job runs at the base frequency fb, i.e.,

DVFS is not used in HI-criticality scenario.

Problem 1: Mixed-criticality Time-triggered Energy Consumption Minimization (MT-

TEM ) Given a dual-criticality task set schedulable under TT-Merge, decide offline the

frequency fLO
ik for each job jik of the task set in the hyperperiod such that

• each jik of τi whether it is of LO-criticality or HI-criticality should execute for C̃ik(LO)

units of execution time instead of Ci(LO) with the frequency fLO
ik ≤ fb in a LO-

criticality scenario, and

75



4.3 Motivation and Problem Definition

• each HI-criticality job jik of task τi should execute for C̃ik(LO) units of execution time

instead of Ci(LO) with the frequency fLO
ik ≤ fb and Ci(HI)−Ci(LO) units of execution

time with the frequency fb in a HI-criticality scenario, respectively

and further the LO-criticality scenario system energy consumption is minimized without

affecting the schedulability of the system under TT-Merge.

We want to minimize the normalized energy consumption over a hyperperiod (i.e.,

the actual energy consumption divided by the hyperperiod of the task set) in the LO-

criticality scenario by varying the processor frequency. The normalized energy consumption

in a hyperperiod is:

1

P
·

∑
τi∈T ∧1≤k≤Ni

Ci(LO)fb ·
1

fLO
ik

· β · (fLO
ik )α (4.5)

where Ni is the number of times a job of task τi will run in a hyperperiod, i.e., Ni = P
pi

.

The energy consumption minimization is constrained by:

• Bounds for the Frequency for each job:

fLO
ik ∈ [fmin, fmax]. (4.6)

• Construction of temporary tables:

It should be possible to construct T̃LO and T̃HI using C̃ik(LO) and

C̃ik(HI) units of execution time of job jik, respectively without missing

the deadline, as TT-Merge of Chapter 3.

(4.7)

• Construction of time-triggered table:

It should be possible to construct S̃LO while ensuring the failure

situation (4) of TT-Merge does not occur, at any time t (i.e., T̃LO[t]

contains a LO-criticality job and T̃HI[t] contains a HI-criticality job

at time t, respectively).

(4.8)

Finally, our energy consumption minimization problem is

minimize(4.5)

s.t.(4.6), (4.7), (4.8)
(4.9)

Recall that the table S̃HI is constructed using the table S̃LO. Also, the TT-Merge

algorithm guarantees that if the table S̃LO can be constructed, then so can the table S̃HI.

76



4.4 The Proposed Algorithm

4.4 The Proposed Algorithm

In this section, we propose an algorithm to find a processor frequency fLO
ik and an energy-

efficient LO-criticality WCET C̃ik(LO) for each job jik in the LO-criticality scenario. We

also find C̃ik(HI) of each HI-criticality job using C̃ik(LO). We then use C̃ik(LO) and C̃ik(HI)

to construct the tables S̃LO and S̃HI using the TT-Merge algorithm. The key ideas behind

our algorithm are as follows.

• We find a processor frequency for each job to run in the LO-criticality scenario.

• We find a LO-criticality worst-case execution time C̃ik(LO) of each job which gives a

minimized energy consumption schedule in LO-criticality scenario using the processor

frequency fLO
ik .

• On a mode change from LO-criticality to HI-criticality, a HI-criticality job runs at the

base frequency fb.

• We achieve energy efficiency by reducing the idle time of the processor as much as

possible.

Algorithm 9 constructs the table ELO which includes only the LO-criticality tasks. This

algorithm chooses the LO-criticality tasks from the task set and orders them in EDF order

[LL73]. Then, all the job segments of the EDF schedule are moved as close to their deadline

as possible so that no job misses its deadline in table ELO. Note that, if the arrival times of

the jobs are not the same, then the jobs may execute in more than one segment, in general.

If the arrival times of all the jobs are the same then, the jobs will execute in one segment.

Algorithm 10 constructs the table EHI which contains only the HI-criticality tasks. This

algorithm chooses the HI-criticality tasks from the task set and orders them in EDF order.

Then, all the job segments of the EDF schedule are moved as close to their deadline as

possible so that no job misses its deadline in table EHI. Then, out of the total allocation

so far, the algorithm allocates Ci(LO) units of execution of job jik in table EHI from the

beginning of its slot and leaves the rest of the execution time of jik unallocated in table EHI.

Algorithm 11 is the same as the TT-Merge algorithm of Chapter 3 ex-

cept it calls the function SetFrequency(ELO,EHI,EFINAL) at the end. Function

SetFrequency(ELO,EHI,EFINAL) in Algorithm 12 finds the energy efficient LO-criticality

WCET C̃ik(LO) after DVFS and the processor frequency fLO
ik for each job jik which will

77



4.4 The Proposed Algorithm

Algorithm 9 Construct-ELO(T )

Input : A task set T = {τ1, τ2, ..., τn}, where jik is a job of τi =< aik, di, χi, Ci(LO),

Ci(HI) >.

Output : Temporary table ELO

Assume the earliest arrival time is 0.

1: Let P denote the least common multiple of the periods of the task set T : P :=

lcm(p1, p2, . . . , pn).

2: The length of table ELO is set to P ;

3: Let L be the set of LO-criticality tasks of the task set;

4: Let O be the EDF order of the tasks of L on the time-line using Ci(LO) units of execution

for each job jik;

5: if (any job cannot be scheduled) then

6: Declare failure;

7: end if

8: Starting from the rightmost job segment of the EDF order of L, move each segment of

a job jik as close to its deadline as possible in table ELO.

be used by the TT-Merge algorithm to construct the scheduling tables S̃LO and S̃HI. In step

1, all the job segments in table EFINAL are moved to the right as close to their finishing time

in table Eχ as possible, where χ is the criticality level of the job. After each job jik is moved

to its right, the completion time of each job in the table EFINAL is called its finishing time

d∆
ik. In step 3, the function initializes C̃ik(LO) to the value of Ci(LO). In step 6, the function

finds all the empty intervals in the table EFINAL. All the jobs found before the start of the

first empty interval in the table EFINAL have not been moved. So these jobs cannot be slowed

down by lowering the processor frequency as they have no idle time between their arrival

times and finishing times. In step 9, the function removes the set of jobs J ′ which cannot be

slowed down from the set of jobs J , namely the jobs before the first empty interval, where

J is the set of all jobs and J ′ is the set of all jobs which cannot be slowed down. In step 10,

the possible expansion per unit of execution time rLO for each job in J is calculated using

78



4.4 The Proposed Algorithm

Algorithm 10 Construct-EHI(T )

Input : A task set T = {τ1, τ2, ..., τn}, where job jik of τi =< aik, di, χi, Ci(LO), Ci(HI) >.

Output : Temporary table EHI

1: Let P denote the least common multiple of the periods of the task set T : P :=

lcm(p1, p2, . . . , pn).

2: The length of table EHI is set to P ;

3: Let H be the set of HI-critical tasks of the task set;

4: Let O be the EDF order of the tasks of H on the time-line using Ci(HI) units of execution

for job jik ;

5: if (any job cannot be scheduled) then

6: Declare failure;

7: end if

8: Starting from the rightmost job segment of the EDF order of H, move each segment of

a job jik as close to its deadline as possible in table EHI.

9: for i := 1 to m do

10: Allocate Ci(LO) units of execution to job jik from its starting time in table EHI and

leave the rest unallocated;

11: end for

the following formula.

rLO =
P − EMPTY S

1∑
∀jik∈J Cik(LO)

(4.10)

where EMPTY S
1 is the start time of the first empty interval in table EFINAL.

The fraction rLO is used as follows to compute the processor frequency for each job. If

the processor frequency fb
rLO

is less than or equal to fmin, then C̃ik(LO) of each job jik ∈ J is

updated using the following formula:

C̃ik(LO) = Cik(LO) · fb
fmin

(4.11)

On the other hand, if fb
rLO

> fmin, then fb
rLO

is the lowest possible frequency or each job.

So C̃ik(LO) of each job jik ∈ J is updated using the following formula:

79



4.4 The Proposed Algorithm

Algorithm 11 EE-TT-MERGE(T , table ELO, table EHI)

Input : Table ELO, table EHI, T = {τ1, τ2, ..., τn}, where job jik of τi =< aik, di, χi, Ci(LO),

Ci(HI) >.

Output : C̃ik(LO), C̃ik(HI), fLO
ik .

1: Copy table ELO and EHI to ẼLO and ẼHI, respectively;

2: Let P denote the least common multiple of the periods of the task set T : P :=

lcm(p1, p2, . . . , pn).

3: The length of table EFINAL is set to P ;

4: t := 0;

5: while (t ≤ P ) do

6: if (ẼLO[t] = NULL & ẼHI[t] = NULL) then

7: Search the tables ẼLO and ẼHI simultaneously from the beginning to find the first available

job at time t;

8: Let k be the first occurrence of a job jik in ẼLO or ẼHI;

9: if (Both LO-criticality & HI-criticality job are found) then

10: EFINAL[t] := ẼLO[k];

11: ẼLO[k] := NULL;

12: else if (LO-criticality job is found) then

13: EFINAL[t] := ẼLO[k];

14: ẼLO[k] := NULL;

15: else if (HI-criticality job is found) then

16: EFINAL[t] := ẼHI[k];

17: ẼHI[k] := NULL;

18: else if (NO job is found) then

19: EFINAL[t] := NULL

20: t := t+ 1;

21: end if

22: else if (ẼLO[t] = NULL & ẼHI[t] 6= NULL) then

23: EFINAL[t] := ẼHI[t];

24: ẼHI[t] := NULL;

25: t := t+ 1;

26: else if (ẼLO[t] 6= NULL & ẼHI[t] = NULL) then

27: EFINAL[t] := ẼLO[t];

28: ẼLO[t] := NULL;

29: t := t+ 1;

30: else if (ẼLO[t] 6= NULL & ẼHI[t] 6= NULL) then

31: Declare failure;

32: end if

33: end while

34: SetFrequency(ELO,EHI,EFINAL);

80



4.4 The Proposed Algorithm

Algorithm 12 Function SetFrequency(ELO,EHI,EFINAL,T )

Input : ELO, EHI, EFINAL and a task set T = {τ1, τ2, ..., τn}, where jik = (aik, di, χi, Ci(LO), Ci(HI)) is

the kth job of τi.

Output : C̃ik(LO), C̃ik(HI), fLO
ik .

/* C̃ik(LO) and C̃ik(HI) are the LO-criticality and HI-criticality execution time of each job after DVFS,

respectively and fLO
ik is the LO-criticality processor frequency of each job in DVFS */

1: Starting from the rightmost job segment of the table EFINAL, move each segment of a job jik as close to

its finishing time in Eχ as possible, where χ is the criticality of jik;

2: Let J be the set of all jobs in table EFINAL;

3: for each job in J do

4: C̃ik(LO) := Ci(LO);

5: end for

6: Find all the empty intervals in the table EFINAL;

7: Let EMPTY be the set of empty intervals in the table EFINAL;

8: Let J ′ be the set of jobs before the first empty interval;

9: J := J \ J ′;
10: rLO :=

P−EMPTY S
1∑

∀jik∈J
Cik(LO) ; /* EMPTY S

1 is the beginning of the first empty interval */

11: if ( fb
rLO
≤ fmin) then

12: for each job in J do

13: C̃ik(LO) := Cik(LO) · fb
fmin

;

14: end for

15: else

16: for each job in J do

17: C̃ik(LO) := Cik(LO) · rLO;

18: end for

19: end if

20: Find the finishing time (d∆
ik) of each job in J ;

21: Sort the jobs in table EFINAL according to their finishing times in non-decreasing order;

22: for each job jik in increasing order of the corresponding d∆
ik do

23: if (C̃ik(LO) +
∑

jl∈J∧d∆
l <d

∆
ik
C̃l(LO) ≥ d∆

ik) then

24: t∆ := CheckEmptySpace(EFINAL,d∆
ik);

25: δ := d∆
ik −

∑
jl∈J∧d∆

l ≤d
∆
ik
C̃l(LO); /* compute the amount of time δ by which jik misses its

26: finishing time */

27: for each job jl ∈ J ∧ al ≥ t∆ ∧ d∆
l ≤ d∆

ik do

28: /* subtract a total of δ amount of execution time in equal parts from jobs whose arrival time is greater

than or equal to t∆ and finishing time is less than or equal to d∆
ik */

29: C̃l(LO) := C̃l(LO)− δ∑
jl∈J∧al≥t∆∧d∆

l
≤d∆

ik

Cl(LO) · Cl(LO);

30: end for

31: for each job jl ∈ J ∧ d∆
l > d∆

ik do

32: C̃l(LO) := C̃l(LO) + δ∑
jl∈J∧d

∆
l

>d∆
ik

Cl(LO) · Cl(LO);

33: end for

81



4.4 The Proposed Algorithm

34: Goto step 22;

35: end if

36: end for

37: for each job jik ∈ J do

38: fLO
ik = max{fmin,

Cik(LO)

C̃ik(LO)
· fb};

39: C̃ik(HI) := (Ci(HI)− Ci(LO)) + C̃ik(LO);

40: end for

Algorithm 13 Function CheckEmptySpace(EFINAL,d∆)

Output : Time instant (t∆) of an empty space

1: δ := d∆ −
∑

jl∈J∧d∆
l ≤d∆ C̃l(LO);

2: for each job jl ∈ J ∧ d∆
l ≤ d∆ do

3: C̃l(LO) := C̃l(LO)− δ∑
jl∈J∧d

∆
l
≤d∆ Cl(LO)

· Cl(LO);

4: end for

5: Simulate each job jl ∈ J ∧ d∆
l ≤ d∆ using the EDF algorithm considering d∆

l as the

deadline.

6: if (an empty space is found) then

7: return the end time (t∆) of the empty space;

8: else

9: return 0;

10: end if

C̃ik(LO) = Cik(LO) · rLO (4.12)

In step 20, the function finds the finishing time (d∆
ik) of each job jik in J . Then all

the jobs are sorted according to their finishing time in non-decreasing order. In step 22,

the function checks that each job must meet its finishing time d∆
ik using C̃ik(LO) units of

execution time. The schedulability of each job can be verified by the following condition:

C̃ik(LO) +
∑

jl∈J∧d∆
l <d

∆
ik

C̃l(LO) ≤ d∆
ik (4.13)

If no job execution crosses its finishing time d∆
ik, then the total energy consumption

found for the LO-criticality scenario is the minimum, as proved below in Lemma 4.4.2. On

82



4.4 The Proposed Algorithm

the other hand, if a job jik crosses its finishing time in the above process, then the algorithm

finds processor frequencies for each job which are as close to fb
rLO

as possible. Suppose job jik

misses its deadline with δ time remaining to be executed. In this case, the algorithm calls the

function CheckEmptySpace(). This function reduces C̃l(LO) of all the jobs whose finishing

time is less than d∆
ik by equal proportion (given in step 3 of the function CheckEmptySpace()).

Then it simulates all the jobs whose deadlines are less than d∆
ik using the EDF algorithm,

where the finishing time of each job in the table EFINAL is considered to be the deadline. If

an empty space is found, then it returns the end time (t∆) of that empty space. Otherwise,

it returns the initial time, i.e., 0. Note that t∆ 6= 0 means the jobs present before t∆ in

simulation are the only ready jobs before time t∆ and the arrival time of all the remaining

jobs are greater than or equal to t∆. Then C̃l(LO) of all the jobs jl whose al ≥ t∆ and

dl ≤ d∆
ik is updated using the following formula:

C̃l(LO) := C̃l(LO)− δ∑
jl∈J∧al≥t∆∧d∆

l ≤d
∆
ik
C̃l(LO)

· C̃l(LO) (4.14)

Here the extra amount of execution time δ is subtracted in equal proportion from each

job jl whose al ≥ t∆ and dl ≤ d∆
ik to accommodate jik between its arrival time aik and

finishing time d∆
ik. The process continues until all the jobs whose finishing times lie between

t∆ and d∆
ik meet their finishing times. Then the extra amount of workload δ is distributed

in equal proportion among all the jobs whose finishing time is greater than d∆
ik using the

following formula:

C̃l(LO) := C̃l(LO) +
δ∑

jl∈J∧d∆
l >d

∆
ik
C̃l(LO)

· C̃l(LO) (4.15)

The above process continues until all the jobs of the table EFINAL meet their finishing

times with the computed C̃ik(LO). Then the processor frequency for each job is calculated

using the following formula:

fLO
ik = max{fmin,

Cik(LO)

C̃ik(LO)
· fb} (4.16)

Finally, C̃ik(HI) for each HI-criticality job jik is computed using the following formula:

C̃ik(HI) := (Ci(HI)− Ci(LO)) + C̃ik(LO) (4.17)

Example 4.4.1: Consider the following task set. Here we assume that the base frequency

83



4.4 The Proposed Algorithm

Task Period Criticality Ci(LO) Ci(HI)

τ1 8 HI 2 5

τ2 12 LO 1 1

τ3 16 LO 2 2

ELO j21 j31 j22 j32 j23 j33j24

0 11 12 14 16 23 24 30 32 35 36 45 47 48

Figure 4.2: Table ELO

fb of the processor is the same as fmax, i.e., 1 and the minimum frequency fmin is 0.2, where

β = 1 and α = 2.5 . Let us first find tables ELO and EHI in which the LO-criticality and

HI-criticality jobs are allocated respectively.

• The lcm of all the periods of the task set is 48, and hence so is the length of the tables

ELO and EHI.

• According to Algorithm 9, we choose the LO-criticality jobs and allocate them in ELO

in EDF order. Then, each segment of the jobs in EDF order is shifted as close to its

deadline as possible according to its Ci(LO) units of execution. The resulting table

ELO is given in Fig. 4.2.

• According to Algorithm 10, we choose the HI-criticality jobs in order to allocate them

in EHI in EDF order. Then each segment of the jobs in EDF order is shifted as close to

its deadline as possible according to its Ci(HI) units of execution. So the first arrival

of j11 whose deadline is at time instant 8 is allocated in the interval [3, 8]. Similarly,

the other arrivals are allocated in the intervals [11, 16], [19, 24], [27, 32], [35, 40] and

[43, 48] respectively.

• Then we allocate Ci(LO) units of execution of each arrival of jik and leave the

(Ci(HI) − Ci(LO)) units of execution unallocated. Here the first arrival of j11 has

been allocated its Ci(LO) units of execution time in the interval [3, 8]. Then we empty

the occurrence of j11 in the interval [5, 8] which leaves the interval [3, 5] in table EHI.

We repeat the same process for the other arrivals of task j11. The resulting table EHI

after this modification is given in Fig. 4.3.

• Finally, we construct the table EFINAL from these two temporary tables.

84



4.4 The Proposed Algorithm

EHI j11 j12 j13 j14 j15 j16

0 3 5 11 13 19 21 27 29 35 37 43 45 48

Figure 4.3: Table EHI

EFINALj21j31j11 j12 j22 j32j13 j23j14 j33j15j24 j16

0 1 3 5 8 10 12 13 16 18 20 24 25 27 32 34 36 37 40 42 48

Figure 4.4: Table EFINAL

We construct the table EFINAL according to Algorithm 11.

• We start from time t = 0.

• At t = 0, both ELO and EHI are empty. Then we search both the tables ELO and EHI

starting from time t = 0. We find j21 in table ELO and j11 in table EHI available at

time t = 0. So we allocate the LO-criticality job from ELO, i.e., j21. We empty the

interval [11, 12] in ELO from where the first occurrence of j21 was found.

At t = 1, both ELO and EHI are empty. Then we search both the tables ELO and EHI

starting from time t = 1. We find j31 in table ELO and j11 in table EHI available at

time t = 1. So we allocate the LO-criticality job from ELO, i.e., j31. We empty the

interval [14, 15] in ELO from where the first occurrence of j31 was found. We continue

in this way till all the jobs have been allocated in table EFINAL.

• The resulting table EFINAL is given in Fig. 4.4.

• Then the SetFrequency() function is called, where all the jobs, beginning from the

right end of EFINAL, are moved as close to their finishing time in table Eχ as possible,

where χ is the criticality level of a job. We start with j16 present in the interval [40, 42]

in EFINAL and move it to the interval [43, 45] which is the finishing time of j16 in EHI.

We continue until we move all the jobs to their right. Then the resulting table EFINAL

is given in Fig. 4.5.

• Here EMPTY S
1 and P are 0 and 48, respectively. The total LO-criticality execution

time between EMPTY S
1 and P in table EFINAL is 22.

• rLO =
P−EMPTY S

1∑
∀jik∈J

Cik(LO)
= 48−0

22
= 2.181, where fmin <

fb
rLO

. This means the lowest possible

processor frequency for each job in J is 0.458.

85



4.4 The Proposed Algorithm

EFINAL j11 j21j12 j31 j13 j22 j14 j32 j23j15 j16j33j24

0 3 5 10 11
13

14 16 19 21 23 24 27
29

30 32 34 35 37 43 45 47 48

Figure 4.5: Table EFINAL after the moving the job segments to their right

• We find the C̃ik(LO) for each job of tasks 〈τ1, τ2, τ3〉 to be 〈4.363, 2.183, 4.363〉.

• Now we use the relation 4.13 to check the schedulability of each job with the C̃ik(LO)

units of execution time. We show this in the table given below.

Table 4.2: Table showing initial processor frequency allotment

Job Arrival Deadline Exec Rem. Total time Frequency

time Assgn exec elapsed alloted

j11 0 5 4.363 0 4.363 0.458

j21 0 11 2.181 0 6.544 0.458

j12 8 13 4.363 0 12.363 0.458

j31 0 16 4.363 0 15.27 0.458

j13 16 21 4.363 0 20.363 0.458

j22 12 24 2.181 0 21.814 0.458

j14 24 29 4.363 0 28.363 0.458

j32 16 32 4.363 0 30.54 0.458

j23 24 35 2.181 0 32.721 0.458

j15 32 37 4.363 0.084 37.084 0.458

j16 40 45 4.363 4.363 0 0.458

j33 32 47 4.363 4.363 0 0.458

j24 36 48 2.181 2.181 0 0.458

• There is a finishing time miss for job j15 by 0.084 units in Table 4.2 which is shown

in the colored row. Then the 0.084 units of time is reduced from all the jobs whose

finishing time lies in [0, 37]. As a result, the processor frequencies of those jobs are

increased.

• On the other hand, the 0.084 units of extra time is added to the execution times of all

those jobs whose finishing time is greater than 37. As a result, the processor frequencies

86



4.4 The Proposed Algorithm

of such jobs are reduced. This is shown in Table 4.3.

Table 4.3: Table showing final processor frequency allotment

Job Arrival Deadline Exec Rem. Total time Frequency

time Assgn exec elapsed alloted

j11 0 5 4.353 0 4.353 0.459

j21 0 11 2.176 0 6.53 0.459

j12 8 13 4.353 0 12.353 0.459

j31 0 16 4.353 0 15.236 0.459

j13 16 21 4.353 0 20.353 0.459

j22 12 24 2.176 0 21.765 0.459

j14 24 29 4.353 0 28.353 0.459

j32 16 32 4.353 0 30.471 0.459

j23 24 35 2.176 0 32.647 0.459

j15 32 37 4.353 0 37 0.459

j16 40 45 4.4 0 44.4 0.45

j33 32 47 4.4 0 45.8 0.45

j24 36 48 2.2 0 48 0.45

• Since we do not find any finishing time miss, the processor frequency for each job is

the final one.

• The total normalized energy consumption by the TT-Merge energy-efficient algorithm

using the above processor frequencies is 0.09.

• The processor frequencies fLO
LO and fLO

HI for the task set of this example calculated by

the EDF-VD energy-efficient algorithm are 0.54 and 0.65, respectively.

• The normalized energy consumption computed by the EDF-VD energy-efficient

algorithm is 0.21 which is greater than the TT-Merge energy-efficient algorithm.

4.4.1 Energy-efficient EDF-VD versus Energy-efficient TT-Merge

First, we prove that the schedule constructed by the energy-efficient TT-Merge algorithm

using C̃(LO) units of execution time does not have any idle time. We then prove that the

87



4.4 The Proposed Algorithm

energy-efficient TT-Merge algorithm finds the lowest possible energy consumption among

all frequency assignments to jobs that lead to schedulability by the TT-Merge algorithm.

Finally, we prove the dominance of Energy-efficient TT-Merge over Energy-efficient EDF-

VD. Recall that rLO is
P−EMPTY S

1∑
∀jik∈J

Cik(LO)
, where P is the hyperperiod and EMPTY S

1 is the start

time of the first empty interval. We use the following result in our proof.

Lemma 4.4.1: The optimal processor frequency to minimize the total energy consumption

while meeting all the finishing times d∆ is constant and equal to fLO = max{fmin, ULO · fb},

where ULO =

∑
∀jik

Cik(LO)

P
. Moreover, when used along with this speed fLO, any periodic

hard real-time policy which can fully utilize the processor can be used to obtain a feasible

schedule.

Proof. We know that the function SetFrequency() assigns C̃ik(LO) units of execution time to

each job jik between its arrival time aik and its finishing time d∆
ik with processor frequencies

fLO = ULO · fb. If all the jobs complete execution before their finishing time d∆
ik, then we say

that each job is stretched with equal proportion. We need to show that∑
∀jik

C̃ik(LO)

P
= 1 (4.18)

We know that

C̃ik(LO) = Cik(LO) · fb
fLO

=
Cik(LO)

ULO

(4.19)

Without loss of generality, we assume fb = 1. Now we replace C̃ik(LO) of the left hand side

in Eqn. 4.18 with Eqn. 4.19. So clearly
∑
C̃ik(LO)
P

= 1. if fmin > ULO · fb, then we choose the

minimum processor frequency available.

Fact 1: If all jobs in the hyperperiod for a given task can be scheduled using the same

processor frequency fb
rLO

for each job then the function SetFrequency() will assign this

frequency to each job. This is because lines 23-35 in the function SetFrequency() are never

executed.

Lemma 4.4.2: A task set T with all tasks scheduled with the same processor frequency fb
rLO

without violating any finishing time d∆ in the LO-criticality scenario and guaranteeing the

execution of (C(HI) − C(LO)) time units of each HI-criticality job results in the minimum

energy consumption among possible frequency assignments under the TT-Merge algorithm.

Proof. We try to assign a uniform processor frequency to each job and utilize the total

hyperperiod as much as possible. Without loss of generality, EMPTY S
1 is assumed to be 0.

88



4.4 The Proposed Algorithm

Then the lowest possible processor frequency fb
rLO

is the same as the LO-criticality utilization

(ULO) of the task set T , where fb = fmax = 1. If fb
rLO

> fmin and no job misses its finishing

time d∆, then the energy-efficient TT-Merge algorithm generates a schedule with no idle

time and each job is expanded with equal proportion using the processor frequency fb
rLO

. In

this way, we use the total hyperperiod available to run the task set T , i.e., the total effective

task utilization is 1. We can see this from the equation given below:∑
∀jik

Cik(LO)
fb
rLO

P
=
ULO

fb
rLO

= 1 (4.20)

From the function SetFrequency(), it is clear that we choose fmin as the lowest possible

processor frequency, if fb
rLO
≤ fmin. It can be see that the maximum processor frequency

between fmin and fb
rLO

will always result in a total effective task utilization which is not

greater than 1. This follows from Lemma 4.4.1.

If a job misses its finishing time d∆
ik with processor frequency fb

rLO
, then the lowest

possible energy solution does not exist. So our algorithm searches for the processor

frequencies which are as close to fb
rLO

as possible.

Lemma 4.4.3: In the proposed energy-efficient TT-Merge algorithm, i.e., Algorithm 11, the

time-triggered schedule generated with C̃ik(LO) units of execution time does not contain any

idle time interval [t, t′] where a job with processor frequency fLO
ik > fmin is available.

Proof. This is easy to see from the algorithm. Without loss of generality, we consider

EMPTY S
1 to be 0. Initially, the total hyperperiod is distributed among all the jobs. If

all the jobs satisfy condition 4.13 with the assigned execution times, then there will not be

any idle time in the schedule. Suppose a job jik misses its finishing time (d∆
ik) by δ amount

of times in table EFINAL. Then we call the function CheckEmptySpace() which finds empty

spaces before d∆
ik in table EFINAL, if any. First, the function subtracts the extra amount of

the assigned execution time δ by which job jik misses its finishing time d∆
ik is subtracted in

equal proportion from each job whose finishing time is less than d∆
ik. Then it simulates to

find an empty space from time instant 0 to d∆
ik using EDF algorithm. If an empty space is

not found, then we finalize the processor frequency for each job. Otherwise, we subtract the

extra amount of the assigned execution time δ in equal proportion from each job jl whose

al ≥ t∆ and dl ≤ d∆
ik. Then job jik meets its finishing time exactly along with all the jobs

jl whose al ≥ t∆ and dl ≤ d∆
ik. from the above discussion, it is clear that the jobs which are

89



4.4 The Proposed Algorithm

allocated before t∆ will not be assigned new processor frequencies, whereas the jobs between

t∆ and d∆
ik are. There will not be any idle time in the schedule after d∆

ik as the extra amount

of execution time δ is distributed in equal proportion among the jobs whose finishing time

is greater than d∆
ik. From the above arguments, it is clear that the schedule generated using

our algorithm does not have any idle time.

Lemma 4.4.4: The frequency assigned by the function SetFrequency() to each job of task

set T when the condition of Lemma 4.4.2 is not satisfied (i.e., the task set is not scheduled

by energy-efficient TT-Merge with the frequency assignment of fb
rLO

for all tasks) results in

minimum energy consumption.

Proof. Initially, the function SetFrequency() assigns a single processor frequency fLO to each

job, where fLO = fb
rLO

. If no job misses its finishing time d∆
ik, then each job gets the minimum

frequency fLO. This is clear from Lemma 4.4.2. So our energy consumption function becomes

as follows: ∑
τi∈T ∧1≤k≤Ni

Ci(LO)fb · 1
fLO · (fLO)α (4.21)

Then the extra amount of the assigned execution time δ by which job jik misses its finishing

time d∆
ik is subtracted in equal proportion from each job whose finishing time is less than d∆

ik.

Then we call the function CheckEmptySpace() which finds empty spaces before d∆
ik in the

table EFINAL, if any. If an empty space is not found we finalize the processor frequency for

each job. Otherwise, we subtract the extra amount of the assigned execution time δ in equal

proportion from each job jl whose al ≥ t∆ and dl ≤ d∆
ik. If the function CheckEmptySpace()

finds an empty space at t∆, then our algorithm does not change the assigned processor

frequency to the jobs which are scheduled before t∆. In other words, the frequency of each

job jl whose al ≥ t∆ and dl ≤ d∆
ik is increased by x = K

Ψ−δ − f
LO and the frequency of each

job whose finishing time lies after d∆
ik is decreased by y = fLO − L

Ω+δ
, where

K =
∑

jr∈J∧ar≥t∆∧d∆
r ≤d∆

ik

Cr(LO),

L =
∑

js∈J∧d∆
s >d

∆
ik

Cs(LO),

Ψ =
∑

jr∈J∧ar≥t∆∧d∆
r ≤d∆

ik

C̃r(LO) and

Ω =
∑

js∈J∧d∆
s >d

∆
ik

C̃s(LO).

90



4.4 The Proposed Algorithm

In other words, K is the sum of execution times of all jobs jr whose ar ≥ t∆ and

d∆
r ≤ d∆

ik and L is the sum of execution times of all jobs whose finishing times lie after d∆
ik.

Similarly, Ψ is the sum of execution times after DVFS of all jobs whose ar ≥ t∆ and d∆
r ≤ d∆

ik

and Ω is the sum of execution times after DVFS of all jobs whose finishing times lie after

d∆
ik. Now our energy consumption function is modified as follows:

∑
jq∈J∧aq≤t∆∧dq≤t∆

Cq(LO) · (fLO)α−1 +
∑

jr∈J∧ar≥t∆∧d∆
r ≤d∆

ik

Cr(LO) · (fLO + x)α−1 +
∑

js∈J∧d∆
s >d

∆
ik

Cs(LO) · (fLO − y)α−1

(4.22)

The first part of Eqn. 4.22 always consumes less energy as each job is assigned the same

processor frequency and the finishing time of each job is less than t∆. From Eqn. 4.22, we

can verify that
∑

jq∈J∧d∆
q ≤t∆

Cq(LO) · (fLO)α−1 will always consume minimum energy as the

processor frequency for each job is minimum (fLO), because further reducing the frequency

will create empty spaces in the schedule. We need to show that any processor frequency

other than fLO + x and fLO − y results in increasing the total energy consumption. It is

easy to see that decreasing the value of δ decreases the processor frequency fLO + x which

will lead the job jik to miss its finishing time d∆
ik. Furthermore, we need to show that the

energy consumption will increase with the increase of δ. This is because, increasing δ results

in increasing fLO + x and decreasing fLO − y. So we need to show that the sum of the last

two terms of Eqn. 4.22 is an increasing function with respect to δ. Now we express the sum

of the last two terms of Eqn. 4.22 with respect to δ as follows:

∑
jr∈J∧ar≥t∆∧d∆

r ≤d∆
ik

Cr(LO) ·
(
fLO + K

Ψ−δ − f
LO
)α−1

+
∑

js∈J∧d∆
s >d

∆
ik

Cs(LO) ·
(
fLO − fLO + L

Ω+δ

)α−1

(4.23)

We simplify Eqn. 4.23 to get the following equation:

Kα

(Ψ− δ)α−1 +
Lα

(Ω + δ)α−1 (4.24)

To show the function in Eqn. 4.24 is an increasing function of δ, we need to differentiate

the function with respect to δ. The derivative of the function in Eqn. 4.24 with respect to δ

is:
(α− 1) ·Kα

(Ψ− δ)α
− (α− 1) · Lα

(Ω + δ)α
(4.25)

91



4.4 The Proposed Algorithm

Now

(α− 1) ·Kα

(Ψ− δ)α
− (α− 1) · Lα

(Ω + δ)α
≥ 0

⇔
(
K

L

)α
≥
(

Ψ− δ
Ω + δ

)α
⇔ K

L
≥ Ψ− δ

Ω + δ
(4.26)

If the above condition is true, then the function in Eqn. 4.24 is an increasing function with

respect to δ. It is easy to see that decreasing the value of δ leads to a deadline miss.

Hence we cannot decrease the value of δ. If we increase δ, then the right-hand side of the

inequality 4.26 decreases and is always less than the left-hand side of the inequality 4.26.

This is because, increasing δ results in increasing the value of denominator of the right-hand

side and decreasing the value of the numerator. So the right-hand side will decrease with

increasing δ and the condition is true with increasing δ. Hence, the function in Eqn. 4.24

is an increasing function with respect to δ. As a result, the function in Eqn 4.23 is also an

increasing function with respect to δ.

As a corollary to Lemma 4.4.2 and Lemma 4.4.4, we have our main result.

Theorem 4.4.1: If Algorithm 11 does not declare failure, then the energy consumption in

a schedule produced by it is optimal.

Proof. Algorithm 11 achieves the minimum value of δ without missing any deadline. Hence

the resulting energy consumption is minimum among all possible feasible schedules according

to TT-Merge.

Theorem 4.4.2: The schedule according to our algorithm consumes no more energy than

the one produced by the energy-efficient EDF-VD algorithm.

Proof. From Theorem 4.3.1, we know that EDF-VD schedules fewer task sets than the

TT-Merge algorithm. Here we consider the case where both energy-efficient EDF-VD and

energy-efficient TT-Merge can schedule a task set. We know that the schedules constructed

by the energy-efficient TT-Merge algorithm are without any idle time. Without loss of

generality we assume that schedules produced by energy-efficient EDF-VD also have no idle

time, as in that case we can always expand a job and decrease the total energy consumption.

Since the energy-efficient EDF-VD algorithm finds an optimal solution in two cases, we need

to consider both.

92



4.4 The Proposed Algorithm

Case 1: Energy efficient EDF-VD algorithm assigns the minimum frequency fmin to

each job.

According to Lemma 4.4.2, our algorithm assigns the same processor frequency fb
rLO

to

each job, if all job meet their finishing time d∆. If fb
rLO
≤ fmin, then we set fb

rLO
to fmin.

From Lemma 4.4.2, we know that the maximum processor frequency between fmin and fb
rLO

will always result in the minimum energy solution. Since both the algorithms use the EDF

algorithm to check for schedulability, if energy-efficient EDF-VD assigns fmin to each job

then so does our algorithm.

Case 2: Energy efficient EDF-VD fails to find the lowest possible energy solution (i.e.,

a job does not meet its deadline using the processor frequency fmin):

Then energy-efficient EDF-VD computes two separate processor frequencies fLO
LO and

fLO
HI for LO-criticality and HI-criticality jobs, respectively. We assume that energy-efficient

EDF-VD successfully schedules all the jobs using processor frequencies fLO
LO and fLO

HI . Let the

processor frequencies for each job assigned by energy-efficient EDF-VD be less than those

assigned by our algorithm. We know that our algorithm assigns two different processor

frequencies to the job of task set T if and only if there is a finishing time miss by a job jik

with processor frequency fb
rLO

. Then the processor frequencies of those jobs whose finishing

times before d∆
ik are increased using the function CheckEmptySpace() and the rest of the jobs

whose finishing times lie after d∆
ik are decreased. In Lemma 4.4.4, we have already proved

that increasing or decreasing the processor frequency of any job from those that are assigned

by our algorithm will lead to deadline misses or increase in the total energy consumption. If

fLO
LO and fLO

HI are less than the frequencies assigned by our algorithm, then the jobs will miss

their deadline. This is a contradiction. On the other hand, it is easy to see that if fLO
LO and

fLO
HI are greater than the frequencies assigned by our algorithm, then there will be empty

spaces in the schedule. This is a contradiction.

Case 3: One of the processor frequencies fLO
LO and fLO

HI computed by energy-efficient

EDF-VD is less or the other one is greater than the processor frequency assigned by our

algorithm to some job. Here we assume that our algorithm faces only one finishing time

miss which results in two different processor frequency assignment for each job. In this

case, we get either a finishing time miss when the processor frequency assigned by EDF-

VD is less than that assigned by our algorithm or an empty space when the processor

frequency assigned by EDF-VD is greater than that assigned by our algorithm. Suppose job

jik misses its finishing time d∆
ik. Then the function SetFrequency() reduced the running time

93



4.4 The Proposed Algorithm

(by increasing the processor frequency) of all the jobs whose deadline is less than d∆
ik and

increasing the running time (by decreasing the processor frequency) of all the jobs whose

deadline is greater than d∆
ik. We know that both the algorithms use EDF algorithm to verify

schedulability of the jobs. Clearly, EDF-VD has to schedule all those jobs before d∆
ik whose

finishing time is less than or equal to d∆
ik as they will miss their deadlines if scheduled later.

This is because the finishing time computed by our algorithm for each job is as close to

its deadline as possible. From Lemma 4.4.2, we know that the same processor frequency

assigned to each job results in minimum energy consumption. Our algorithm assigns two

different processor frequency to each job scheduled before and after d∆
ik, respectively. Suppose

EDF-VD meets the finishing time d∆
ik and jobs present before and after d∆

ik contains both

LO- and HI-criticality. Using Lemma 4.4.2, we know that the same processor frequency

assigned to each job results in minimum energy consumption. Hence the schedule generated

by the energy-efficient TT-Merge algorithm results in minimum energy consumption. If

jobs present before and after d∆
ik contains LO-criticality and HI-criticality, respectively, then

the schedule computed by both the algorithm consumes same energy. On the other hand,

suppose EDF-VD schedules the jobs present on the left hand side of d∆
ik quickly and the

jobs present on the right hand side of d∆
ik slowly as compared to our algorithm. This means

EDF-VD increases the value of δ. From Lemma 4.4.4, we know that increasing δ leads

to increase in energy consumption. Using Lemma 4.4.2 and 4.4.3, we can easily conclude

that the energy-efficient schedule constructed by EDF-VD gets either a deadline miss or has

empty spaces in the schedule. This is a contradiction. This case can be easily extended for

more than two processor frequencies assigned by our algorithm to a job.

So the processor frequencies assigned by the energy-efficient EDF-VD algorithm are

equal or greater than those assigned by our algorithm. Hence the energy consumption for

the energy-efficient EDF-VD algorithm is equal or greater than the energy consumed for our

algorithm.

4.4.2 Extension for Discrete Frequency Levels

In previous sections, we discussed the minimization of energy consumption in a mixed-

criticality system using continuous processor frequency levels. In practice, continuous

processor frequency levels will not be available. We need to extend our algorithm to find a

schedule which consumes less energy as compared to the energy-efficient EDF-VD algorithm

94



4.5 Extension of the Proposed Algorithm for Dependent Task Sets

while considering only discrete processor frequency levels.

Suppose the set of processor frequencies available in the model is F = {f1, f2, . . . , f|F |},
where f1 = fmin and f|F | = fmax. We need to find processor frequencies for each job such

that the energy consumption can be minimized in the LO-criticality scenario using DVFS

method without affecting the schedulability of the system in both the scenarios.

We can modify our algorithm discussed in Section 4.4 to assign processor frequencies

from F . For example, if a job jik is assigned a processor frequency fm < fLO
ik < fn, then

processor frequency fn can be assigned to job jik, where fm and fn are two consecutive

processor frequency in F . Note that the resulting schedule may not be optimal with respect

to energy consumption.

4.5 Extension of the Proposed Algorithm for Depen-

dent Task Sets

In previous sections, we have considered task sets with independent tasks. To the best of

our knowledge, minimizing the energy consumption of mixed-criticality systems has not been

explored for dependent tasks. Here we consider the case of dual-criticality instances with

dependent tasks. In Chapter 3, we proposed a time-triggered scheduling algorithm for mixed-

criticality systems with dependent tasks which finds the two scheduling tables, i.e., SLO and

SHI. Here we focus on integrating DVFS with the TT-Merge-Dep algorithm to minimize

the energy consumption in mixed-criticality systems with dependency constraints. As in

the case of independent tasks, we propose an algorithm which finds a processor frequency

fLO
ik and energy-efficient LO-criticality WCET C̃ik(LO) for each job jik of a task set which

minimizes the energy consumption. These C̃ik(LO) units of execution time are used by

the TT-Merge-Dep algorithm to find the scheduling tables which gives minimum energy

consumption.

4.5.1 Model

The task model is similar to the one discussed in Section 4.2. The dependencies among

the tasks is defined by a directed acyclic graph (DAG). A task set is represented in the

form of T (V,E), where V represents the set of tasks {τ1, τ2, . . . , τn} and E represents the

dependency between the tasks. If there is an edge τi → τj, then the execution of τi must

95



4.5 Extension of the Proposed Algorithm for Dependent Task Sets

precede the execution of τj, denoted by τi ≺ τj. We assume that no HI-criticality job can

depend on a LO-criticality job. This means, there will be no task set where an outward edge

from a LO-criticality task becomes an inward edge to a HI-criticality task.

Definition 4.5.1: A dual-criticality MC task set with task dependencies is said to be time-

triggered schedulable if it is possible to construct the two scheduling tables SLO and

SHI for task set T without violating the dependencies, such that the run-time scheduler

schedules T in a correct manner.

4.5.2 Problem Formulation

Here we formally present our energy optimization problem for mixed-criticality systems with

dependent tasks. Our goal is to minimize the LO-criticality scenario energy consumption

by expanding the task executions in the schedule while ensuring that they do not miss

their deadlines without violating the dependency constraints. Without loss of generality,

we calculate the energy consumption minimization up to the hyperperiod P of the task

set. As in the earlier case, we find a LO-criticality WCET C̃ik(LO) for each job of a task

set. This is accomplished by expanding the execution time of a task as much as possible so

that the minimum expansion of each job is maximized and the processor works on a slower

frequency to minimize the energy consumption and each task also meets its deadline without

violating the dependency constraints. Then using these LO-criticality WCETs C̃ik(LO), the

TT-Merge-Dep algorithm finds a minimized energy consumption schedule. When the system

switches to HI-criticality scenario, the processor frequency is set to fb. Here the problem is

similar to Problem 1 in Section 4.3 with dependency constraints. So our energy objective to

be minimized in the LO-criticality scenario by varying the processor frequency is:

1

P
·

∑
τi∈T ∧1≤k≤Ni

Ci(LO)fb ·
1

fLO
ik

· β · (fLO
ik )α (4.27)

The energy minimization is constrained by:

• Bound for the frequency for each job:

fi ∈ [fmin, fmax]. (4.28)

where fi is the frequency of job jik.

96



4.5 Extension of the Proposed Algorithm for Dependent Task Sets

• Construction of table T̃LO and T̃HI:

It should be possible to construct T̃LO and T̃HI using C̃i(LO) and C̃i(HI) units

of execution time of job jik, respectivley without missing any deadline as TT-

Merge-DEP of Chapter 3
(4.29)

where C̃i(LO) and C̃i(HI) are the time taken to execute Ci(LO) and Ci(HI) units of

execution time, respectively.

• Construction of table S̃LO:

It should be possible to construct S̃LO while ensuring the failure situation (4)

of TT-Merge-DEP of Chapter 3 does not occur, at any time t (i.e., T̃LO[t] is

not empty and T̃HI[t] is not empty, at time t.
(4.30)

where T̃LO[t] contains a LO-criticality job and T̃HI[t] contains a HI-criticality job at

time t, respectively.

• Dependency constraints:

∀i, k, if ∀jik ≺ jil, then eik < sil (4.31)

where eik and sil are the completion time and starting time of task jik and jil,

respectively in the scheduling table.

Finally, our energy minimization problem is

minimize(4.27)

s.t.(4.28), (4.29), (4.30), (4.31)
(4.32)

4.5.3 The Algorithm

In this section, we present an algorithm to find the processor frequency fLO
ik for each job which

can be used by the TT-Merge-Dep algorithm to schedule a dependent task set successfully.

First, we find the tables ELO and EHI. Then the table EFINAL is constructed using these two

tables. The length of all these tables are P , i.e., the hyperperiod of all the tasks in the task

set. These steps are similar to the TT-Merge-Dep algorithm. But inputs for the TT-Merge-

Dep algorithm are non-recurrent jobs. So we need to find all the jobs and the dependencies

between them over a hyperperiod P which can be done by the method given in [Bar14].

97



4.5 Extension of the Proposed Algorithm for Dependent Task Sets

We then can use the same function SetFrequency() of Section 4.4. But we need to check

the dependencies among the jobs. The first step of function SetFrequency(ELO,EHI,EFINAL)

for the dependent jobs moves each segment of a job jik as close to its finishing time in Eχ

as possible without disturbing the dependency constraints, where χ is the criticality of jik.

Then all the steps are similar to the function SetFrequency(ELO,EHI,EFINAL) of Section 4.4.

We explain the algorithm with the help of an example.

Example 4.5.1: Consider the task set given in Table 4.1. The dependencies among the

tasks are shown in Fig. 4.6. Here the fmin and fmax are set to 0.5 and 1, respectively. We

assume α = 3.

τ1

τ2

τ3

τ4

Figure 4.6: Dependencies among the tasks given in Table 4.1

First, we unroll the graph given in Fig. 4.6 to get all the jobs and their dependencies

over a hyperperiod using the method given in [Bar14]. The resulting graph is shown in

Fig. 4.7.

j11

j21

j31

j41

j32

Figure 4.7: Dependencies among the tasks given in Table 4.1 after unroll

Now we find the tables ELO and EHI as shown in Fig. 4.8 using the TT-Merge-Dep

algorithm. We then construct table EFINAL by merging the tables ELO and EHI using the

j31 j32

0 4 7 11 14

j11 j21 j41

0 3 5 6 7 10 14

Figure 4.8: Tables ELO and EHI

TT-Merge-Dep algorithm as shown in Fig. 4.9.

98



4.6 Results and Discussion

j11 j31 j21 j31 j41 j32

0 3 5 6 7 10 13 14

Figure 4.9: Table EFINAL

• Then starting from the right, each job jik is moved as close to its finishing time in Eχ

as possible without disturbing the dependency constraints, where χ is the criticality of

job jik. So job j32 is moved to its right from [10, 13] to [11, 14] as its finishing time in

table ELO is 14. The final table EFINAL is given in Fig. 4.10.

j11 j31 j21 j31 j41 j32

0 3 5 6 7 10 11 14

Figure 4.10: Table EFINAL after each job is moved to its finishing time in Eχ

• Here EMPTY S
1 and P are 10 and 14, respectively. The total execution time between

EMPTY S
1 and P in table EFINAL is 3.

• rLO =
P−EMPTY S

1∑
∀jik∈J

Cik(LO)
= 14−10

3
= 4

3
where fmin <

1
rLO

. This means the lowest possible

processor frequency for each job in J is 0.75.

• We find the C̃ik(LO) for each job 〈j11, j21, j31, j41, j32〉 to be 〈3, 1, 3, 3, 4〉.

• Now we use formula 4.13 to check the schedulability of each job with the C̃ik(LO) units

of execution time. All the jobs pass this test.

• We then find the processor frequencies fik(LO) for each job 〈j11, j21, j31, j41, j32〉 to be

〈1, 1, 1, 1, 0.75〉.

• The total normalized energy consumption by the TT-Merge energy-efficient algorithm

using the above processor frequencies is 0.835.

4.6 Results and Discussion

In this section we present the experiments conducted to evaluate our algorithm. The

experiments show the impact of the utilization of task sets on the energy-efficient TT-

Merge algorithm versus the energy-efficient EDF-VD algorithm. The comparison is done

99



4.6 Results and Discussion

over numerous task sets with randomly generated parameters. The task generation policy

may have a significant effect on the experiments. We follow a similar task generation policy

as in Chapter 3. The details of the task generation policy are as follows.

• The utilization (ui) of tasks in a task set are generated according to the UUniFast

algorithm [BB05].

• The periods (pi) of the tasks are generated by using exponential distribution proposed

by Davis et al [DZB08].

• The Ci(LO) units of execution time of the tasks are calculated by ui × pi.

• The Ci(HI) units of execution time of the tasks are calculated as Ci(HI) = CF×Ci(HI),

where CF is the criticality factor which varies between 2 and 6 for each HI-criticality

tasks

• Each task set contains at least one HI-criticality job and one LO-criticality job.

In these experiments, we consider only those results where both the energy-efficient

TT-Merge algorithm and energy-efficient EDF-VD algorithm successfully find a schedule.

For each point on the X-axis, we plot the average results of 200 runs, where a run is a single

execution of the algorithm on a task set with a given utilization. The energy consumption

plotted in the graphs are normalized energy consumption. We vary the utilization at the

LO-criticality scenario of the task sets between 0.5 and 0.9, and we set periods of the tasks

between 100 and 1000. The processor frequency fmin is set to 0.2, β is set to 1 and α to

2.5. The number of tasks in the task set is set to 10. The names TTM and EVD used

in the graphs are shorthand for the energy-efficient TT-Merge and EDF-VD algorithms,

respectively.

In the first experiment, we plot the minimum, maximum and average energy consump-

tion of both the algorithms for each utilization. The graph in Fig. 4.11a shows that the

energy consumption increases for both the algorithms with the increase in the utilization.

It is evident from the graph that the schedule constructed according to the energy-efficient

TT-Merge algorithm consumes less energy than the one constructed by the energy-efficient

EDF-VD algorithm for all utilizations. For detailed analysis, we use Box-whisker plots.

From the graphs in Fig. 4.12, we can see that the maximum energy consumption of task

sets by our algorithm lies between 0.2 and 0.6 for all utilizations, where it is between 0.3 and

100



4.6 Results and Discussion

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

pt
io

n

Utilization

Min(TTM)
Min(EVD)
Avg(TTM)
Avg(EVD)
Max(TTM)
Max(EVD)

(a) At least one LO-criticality and one

HI-criticality task

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

pt
io

n

Utilization

Min(TTM)
Min(EVD)
Avg(TTM)
Avg(EVD)
Max(TTM)
Max(EVD)

(b) More than 50% of HI-criticality

tasks

Figure 4.11: Comparison of normalized energy consumption between Energy-Efficient EDF-

VD and TT-Merge

TTM EVD
Algorithm

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

pt
io

n

(a) U = 0.5

TTM EVD
Algorithm

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

pt
io

ns

(b) U = 0.6

TTM EVD
Algorithm

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

pt
io

n

(c) U = 0.7

TTM EVD
Algorithm

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

pt
io

n

(d) U = 0.8

TTM EVD
Algorithm

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

pt
io

n

(e) U = 0.9

Figure 4.12: Comparison between TTM and EVD where LO-criticality scenario utilization

ranges from 0.5 to 0.9

0.8 for energy-efficient EDF-VD. For example, when the LO-criticality scenario utilization

is 0.7, the energy consumption by the schedule constructed by our algorithm is between 0.3

and 0.5 for maximum number of task sets and the same for the energy-efficient EDF-VD

is between 0.5 and 0.7, respectively. Clearly, our algorithm outperforms the energy-efficient

EDF-VD algorithm.

The next experiment finds the impact of the number of HI-criticality tasks in a task

set. Here each task set contains more than 50% of HI-criticality tasks. The other parameters

are the same as the previous experiment. From the graph in Fig. 4.11b, we can observe that

the LO-criticality scenario energy consumption increases with the number of HI-criticality

tasks increases. This is because of the lack of slack times due to the time reservation for

HI-criticality jobs.

101



4.7 Conclusion

TTM PMC EVD
Algorithm

0

0.2

0.4

0.6

0.8

1
N

or
m

al
iz

ed
 E

ne
rg

y 
C

on
su

m
pt

io
n

(a) U = 0.5

TTM PMC EVD
Algorithm

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

pt
io

n

(b) U = 0.6

TTM PMC EVD
Algorithm

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

pt
io

n

(c) U = 0.7

TTM PMC EVD
Algorithm

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

pt
io

n

(d) U = 0.8

TTM PMC EVD
Algorithm

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

pt
io

n

(e) U = 0.9

Figure 4.13: Comparison between TTM, PCM and EVD where LO-criticality scenario

utilization ranges from 0.5 to 0.9

Now we compare our algorithm with energy-efficient EDF-VD and the work in [ASK15],

which we abbreviated as PMC. Here we assume that the available processor frequencies are

{0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. Now we plot the Box-whisker plots to show the minimum,

maximum and average energy consumption for all the three algorithms for each utilization.

From Fig. 4.13, it is clear that the schedule constructed according to our algorithm consumes

less energy than both the existing algorithms. We also can see that the schedule constructed

according to our algorithm consumes 20% and 25% less energy than the one constructed

by the energy-efficient EDF-VD and PMC algorithms, respectively at higher LO-criticality

utilization.

4.7 Conclusion

In this chapter, we proposed a new algorithm to find energy efficient time-triggered schedules

using the TT-Merge algorithm. The proposed algorithm finds a processor frequency and the

corresponding LO-criticality WCET for all the jobs of a task set which are then used by

the TT-Merge algorithm. We proved that the schedule constructed according to the energy-

efficient TT-Merge algorithm consumes less energy than the one constructed by the energy-

efficient EDF-VD algorithm. The experiments also validated the fact. We then proved the

optimality of our algorithm with respect to energy consumption for schedulability under the

TT-Merge algorithm. We also discussed the impact of discrete processor frequency levels on

our algorithm. We then extended our algorithm for dependent task sets. As part of future

work, we plan to extend this algorithm to the multiprocessor case. The algorithm proposed

102



4.7 Conclusion

in this chapter can be used in a multiprocessor system using the partitioned scheduling

technique. We plan to extend our technique for a global multiprocessor scheduling algorithm

in the future.

103



Chapter 5

Time-triggered Scheduling of

Multiprocessor Mixed-criticality

Systems

5.1 Introduction

In this chapter, we propose an approach to find preemptive, global, time-triggered schedules

for mixed-criticality non-recurrent task systems on identical multiprocessor platforms. In

Chapter 2 we discussed various types of scheduling policies for traditional multiprocessor

systems. Here we investigate a global time-triggered scheduling strategy for a dual-critical

mixed-criticality task system to be scheduled on a multiprocessor system. We find two

scheduling tables for the LO-criticality and HI-criticality levels (SLO and SHI), which are

then used by a scheduler to dispatch the jobs on-line according to the off-line scheduling

tables. We show that the scheduling tables can successfully handle the mode changes at

any time. We also show that the worst-case time complexity of our proposed algorithm is

better than the MCPI algorithm [SPBB15], the only existing time-triggered algorithm for

such systems. In addition, our algorithm is much easier to understand and reason about.

The rest of the chapter is organized as follows. Sections 5.2 and 5.3 describes the

systems model and related work, respectively. In Section 5.4, we propose our algorithm for

independent mixed-criticality jobs. Then Section 5.5 extends the algorithm for dependent

jobs. Finally, we discuss the results for our experiment in Section 5.6.

104



5.2 System Model

5.2 System Model

The mixed-criticality systems used in this chapter are based on non-recurrent tasks. An

instance or job set is a collection of n jobs {j1, j2, . . . , jn}, each with a criticality level.

Here we focus on dual-criticality jobs, i.e., LO-criticality and HI-criticality. A job ji is

characterized by a 5-tuple of parameters: ji = (ai, di, χi, Ci(LO), Ci(HI)), where

• ai ∈ N denotes the arrival time, ai ≥ 0.

• di ∈ N+ denotes the absolute deadline, di ≥ ai.

• χi ∈ {LO,HI} denotes the criticality level.

• Ci(LO) ∈ N+ denotes the LO-criticality worst-case execution time.

• Ci(HI) ∈ N+ denotes the HI-criticality worst-case execution time.

We assume that the system is preemptive and Ci(LO) ≤ Ci(HI) for 1 ≤ i ≤ n. Note that

in this chapter, we consider arbitrary arrival times of jobs. Scenarios in the mixed-criticality

model discussed above can be of two types, i.e., LO-criticality scenarios and HI-criticality

scenarios. The details of scenario is discussed in Chapter 2. Now we define a schedulability

condition for a mixed-criticality instance I.

Definition 5.2.1: A scheduling strategy is feasible or correct if and only if the following

conditions are true:

1. If all the jobs finish their Ci(LO) units of execution time on or before their deadlines.

2. If any job does not declare its completion after executing its Ci(LO) units of execution

time, then all the HI-criticality jobs must finish their Ci(HI) units of execution time

on or before their deadlines.

Here we focus on the time-triggered schedule [Kop98] of MC instances on a

multiprocessor system with identical processors. We will construct two tables SHI and SLO

for each processor for a given instance I for use at run-time. The length of the tables is the

length of the interval [minji∈I{ai},maxji∈I{di}]. The rules to use the tables SHI and SLO at

run-time, (i.e., the scheduler) are as follows:

• The criticality level indicator Γ is initialized to LO.

105



5.3 Related Work

• While (Γ = LO), at each time instant t the job available at time t in the table SLO for

processor Pi will execute on Pi.

• If a job executes for more than its LO-criticality WCET without signaling completion

in any processor Pi, then Γ is changed to HI.

• While (Γ = HI), at each time instant t the job available at time t in the table SHI for

processor Pi will execute on Pi.

5.3 Related Work

Most research on mixed-criticality systems focuses on the uniprocessor case (see for

example, [BBD+12a, SPBB13]). The increasing functionalities in mixed-criticality systems

motivate researchers to turn to multiprocessor systems (see [BCLS14b,GSHT14,GSHT13a,

Pat12, SPBB15]). Among the above cited work only [BF11, SPBB13] focus on a time-

triggered scheduling algorithm for uniprocessor systems and [SPBB15] introduces a time-

triggered scheduling algorithm for multiprocessor systems. To the best of our knowledge,

there has not been any other work studying time-triggered mixed-criticality scheduling for

multiprocessor systems.

Socci et al. [SPBB15] proposed the Mixed-criticality Priority Improvement (MCPI)

algorithm to schedule jobs with precedence constraints. In this algorithm, they construct a

priority order of jobs from the support algorithm (i.e., a multiprocessor algorithm for non-

critical jobs) which is used to find a table for the LO-scenario and the support algorithm is

used to schedule the HI-criticality jobs in HI-scenarios. They showed the worst-case time

complexity of the algorithm to beO(mn3 log n) for independent jobs andO(|E|n2+mn3 log n)

for dependent jobs, where n is the number of jobs in the instance I, m is the number of

processors and E depicts the dependency between jobs.

5.4 The Proposed Algorithm: LoCBP

In this section, we propose an algorithm for mixed-criticality jobs on multiprocessor systems

which not only schedules the same set of instances as the existing algorithm [SPBB15] but

also has a better worst-case time complexity. Hereafter, abbreviated as LoCBP algorithm

(LO-criticality based Priority).

106



5.4 The Proposed Algorithm: LoCBP

The time-triggered scheduling approach to mixed-criticality jobs [SPBB15] constructs

two scheduling tables SLO and SHI to schedule a dual-criticality instance. Since we consider

mixed-criticality jobs for a multiprocessor system, we need two separate scheduling tables for

each processor. The schedule constructed by our algorithm is a global one, i.e., a job can be

preempted in one processor and resume its execution in another processor. Here we assume

that the system is a closely coupled synchronous homogeneous multiprocessor system with

shared last level cache and the job context switch time is negligible. We also assume that

the cache miss penalty is negligible.

Algorithm 14 LoCBP(I)
Notation:

I = {j1, j2, ..., jn}, where ji =< ai, di, χi, Ci(LO), Ci(HI) >.

Input : I

Output : Priority Order (Ψ) of Instance I

Assume the earliest arrival time is 0.

1: Compute the LO-scenario deadline (di
∆) of each job ji as di

∆ = di − (Ci(HI)− Ci(LO));

2: while I is not empty do

3: Assign a LO-criticality latest deadline1job ji as the lowest priority job if ji can finish its

execution in the interval [ai, di
∆] after all other jobs finish their execution in LO-scenario under

the global EDF scheme;

4: If any LO-criticality job cannot be given a lowest priority then a HI-criticality latest deadline

job ji is assigned as the lowest priority job if ji can finish its execution in the interval [ai, di
∆]

after all other jobs finish their execution in LO-scenario under the global EDF scheme;

5: if no job is assigned a lowest priority then

6: Declare FAIL and EXIT;

7: else

8: Add job ji to the priority order Ψ;

9: Remove job ji from the instance and continue;

10: end if

11: end while

12: Construct table SLO for each processor using the priority order;

13: if anyHI scenarioFailure(SLO, I,Ψ) then

14: return FAIL and EXIT;

15: end if

16: The same order as SLO is followed to allocate the jobs in SHI;

17: After a HI-criticality job ji is allocated its Ci(LO) execution time in SHI, Ci(HI)−Ci(LO) units

of execution time of job ji is allocated after the rightmost segment of job ji in SLO without

disturbing the priority order Ψ and overwriting LO-criticality jobs in the process, if any;

1The original deadline and not the LO-scenario one.

107



5.4 The Proposed Algorithm: LoCBP

Algorithm 14 determines a priority order, which is used to construct the scheduling

tables for all the processors, in steps 1 to 11. First, our algorithm finds the LO-scenario

deadline (di
∆) of each job. For the LO-criticality jobs di

∆ = di, but for HI-criticality ones

di
∆ ≤ di. Then the algorithm starts to assign the lowest priority jobs from the instance

I. It always selects the latest deadline job to be assigned as the lowest priority job, but

LO-criticality jobs are considered before the HI-criticality jobs. A job ji can be assigned the

lowest priority if and only if all other jobs jk finish their executions when run according to the

global EDF algorithm and there remains sufficient time for ji to complete its Ci(LO) units

of execution time before di
∆. After job ji is assigned the lowest priority, it is removed from

the instance, and the remaining jobs are considered for priority assignment. If at any step

a job cannot be assigned a priority, the algorithm declares failure. In step 10, the algorithm

constructs table SLO.

In steps 11 to 13, it checks for any possible HI-criticality scenario failure. The

subroutine anyHI scenarioFailure(SLO, I,Ψ) checks if at least one job runs at its Ci(HI)

execution time, then all HI-criticality jobs must complete their HI-criticality execution

before their deadline. If it does not find a HI-criticality scenario failure from the subroutine

anyHI scenarioFailure(SLO, I,Ψ), then the priority order constructed by Algorithm 14 can

successfully schedule the instance I. Algorithm 14 constructs table SLO for each processor.

Then Table SHI is constructed for each processor by allocating the remaining Ci(HI)−Ci(LO)

units of execution time of each HI-criticality job after its Ci(LO) units of execution time in

SHI using the same priority order and also a HI-criticality job is given higher priority over

LO-criticality jobs. This means a HI-criticality job can overwrite a LO-criticality job in the

process of allocating its Ci(HI)− Ci(LO) units of execution time.

We illustrate the operation of this algorithm by an example.

Example 5.4.1: Consider the mixed-criticality instance given in Table 5.1 to be scheduled

on a multiprocessor system having two identical processors P0 and P1.

Now we construct a priority order using our algorithm. The LO-scenario deadlines d∆
i

of jobs j1, j2, j3, j4 are 5, 8, 5, 4 respectively. Now we start assigning priorities to each job.

• The job j2 is the latest LO-criticality deadline job. If j2 is assigned the lowest priority,

then j3 and j4 can run simultaneously in P0 and P1 over [0, 3] and [0, 2] respectively.

Then j1 will run over [2, 5] in P1. So j2 can execute its 4 units of execution time in P0

over [3, 7] to finish by its deadline. Now we can assign job j2 the lowest priority. We

remove job j2 and consider {j1, j3, j4} to find the next lowest priority job.

108



5.4 The Proposed Algorithm: LoCBP

Table 5.1: An example instance to explain the LoCBP algorithm

Job Arrival time Deadline Criticality Ci(LO) Ci(HI)

j1 1 5 LO 3 3

j2 0 8 LO 4 4

j3 0 7 HI 3 5

j4 0 4 HI 2 2

• If j1 is assigned the lowest priority, then j3 and j4 can run simultaneously on P0 and P1

over [0, 3] and [0, 2] respectively. Then j1 will run over [2, 5] in P1. So j1 can execute

its 3 units of execution time in P1 over [2, 5] to finish by its deadline. Now we can

assign job j1 the lowest priority. Next, we remove the job j1 and consider {j3, j4} to

assign the next lowest priority.

• Since there are two jobs and two processors, any job can be given lower priority among

the two. But our algorithm assigns the latest deadline job as the lowest priority job.

So job j3 is given the lowest priority.

Finally, the priority order of the jobs in instance I is j4 . j3 . j1 . j2. Now Algorithm 14

constructs the table SLO for each processor using the above priority order. The table SLO

for each processor is given in Fig. 5.1.

Then the anyHI scenarioFailure(SLO, I,Ψ) subroutine checks for all possible HI-

criticality scenarios. We can check that all HI-criticality scenarios are schedulable using

the priority order {j4, j3, j1, j2} of I. Finally, table SHI is constructed for each processor

by allocating the remaining Ci(HI) − Ci(LO) units of execution time of each HI-criticality

job after its Ci(LO) units of execution time in SHI using the same priority order, where a

HI-criticality job is given higher priority over LO-criticality jobs. The table SHI for each

processor is given in Fig. 5.2.

SLO

P1

P0

j3 j2

j4 j1

0 2 3 5 7 8

Figure 5.1: Table SLO for processor P0 and P1

109



5.4 The Proposed Algorithm: LoCBP

SHI

P1

P0

j3

j4 j1

0 2 5 8

Figure 5.2: Table SHI for processor P0 and P1

5.4.1 Correctness Proof

For correctness, we have to show that if our algorithm finds a priority order for instance

I and the anyHI scenarioFailure(SLO, I) subroutine does not fail, then the scheduling

tables SLO and SHI will give a correct scheduling strategy. We start with the proof of some

properties of the schedule.

Lemma 5.4.1: If the LoCBP algorithm 14 does not declare failure and finds a priority order,

then each job ji receives Ci(LO) units of execution time in SLO and each HI-criticality job

jk receives Ck(HI) units of execution time in SHI.

Proof. First, we show that any job ji receives Ci(LO) units of execution time in SLO. This

follows directly from the algorithm as each job ji must finish its Ci(LO) units of execution

time before di
∆ ≤ di to be assigned the lowest priority job.

Next we show that any HI-criticality job jk receives Ck(HI) units of execution

time in SHI. We construct the table SHI according to the same priority order. Since

anyHI scenarioFailure(SLO, I,Ψ) subroutine does not find any HI-criticality scenario

failure, so all the HI-criticality jobs have received their Ci(HI) units of execution time.

Lemma 5.4.2: At any time t, if a job ji is present in SHI but not in SLO, then the job ji

has finished its execution in SLO.

Proof. We use the same order of jobs in SLO to construct SHI. Whenever a job ji has executed

for time ci ≤ Ci(LO) at time t, then it is present in both the tables SLO and SHI. We know

the HI-criticality jobs are allocated their Ci(HI)− Ci(LO) units of execution time after the

allocation of Ci(LO) units of execution time in both SHI and SLO. In SHI, the HI-criticality

jobs are higher priority job than LO-criticality jobs. When a job ji is present in SHI and not

in SLO at time t, it means this has already completed its execution in SLO.

110



5.4 The Proposed Algorithm: LoCBP

Lemma 5.4.3: At any time t, when a mode change occurs, each HI-criticality job still has

Ci(HI)− ci units of execution time in SHI after time t to complete its execution, where ci is

the execution time already completed by job ji before time t in SLO.

Proof. Let a mode change occur at time t. This means that the following statements hold:

(i) all the HI-criticality jobs other than the current job, or none of them has completed their

Ci(LO) units of execution time at time t, (ii) the current HI-criticality job is the first one

to complete its Ci(LO) units of execution time without signaling its completion. We know

that all the HI-criticality jobs are allocated their Ci(HI) − Ci(LO) units of execution time

in SHI after the completion of their Ci(LO) units of execution time in both SLO and SHI.

If a job ji has already executed its Ci(LO) units of execution time in SLO, then it requires

Ci(HI)−Ci(LO) units of time to be completed in SHI. When job ji initiates the mode change,

this is the first job which does not signal its completion after completing its Ci(LO) units of

execution time. Before time t, the scheduler uses the table SLO to schedule the jobs, while

subsequently the scheduler uses table SHI due to the mode change. If a job ji has already

executed its ci units of execution time in SLO, then it requires Ci(HI) − ci units of time to

be completed its execution in SHI. We know that the tables SHI and SLO have the same

order and according to Lemma 5.4.1 and 5.4.2, each job will get sufficient time to complete

its Ci(HI) units of execution time. Hence, each HI-criticality job will get Ci(HI) − ci units

of time in SHI to complete its execution after the mode change at time t.

Theorem 5.4.1: If the scheduler dispatches the jobs according to SLO and SHI, then it will

be a correct scheduling strategy.

Proof. For the LO-criticality scenarios, all the jobs can be correctly scheduled by the table

SLO as proved in Lemma 5.4.1. Now, we need to prove that in a HI-criticality scenario, all

the HI-criticality jobs can be correctly scheduled by the table SHI. In Lemma 5.4.1, we have

already proved that all the HI-criticality jobs get sufficient units of time to complete their

execution in SHI. In Lemma 5.4.3, we have proved that when the mode change occurs at

time t, all the HI-criticality jobs can be scheduled without missing their deadline. So from

Lemma 5.4.1 and Lemma 5.4.3, it is clear that if the scheduler uses tables SLO and SHI to

dispatch the jobs then it will be a correct scheduling strategy.

111



5.4 The Proposed Algorithm: LoCBP

5.4.2 Comparison with MCPI Algorithm

Theorem 5.4.2: An instance I is schedulable by the MCPI algorithm [SPBB15] if and only

if it is schedulable by our algorithm.

Proof. (⇒) The MCPI algorithm generates a priority order for an instance I which is used

to find table SLO. When a mode change occurs, it uses a support algorithm to schedule the

HI-criticality jobs of instance I. We need to show that if MCPI generates a priority order

for an instance I, then our algorithm will always find a priority order for instance I and the

anyHI scenarioFailure(SLO, I,Ψ) subroutine will not fail.

Suppose the MCPI algorithm finds a priority order for an instance I. Now the least

priority job of the priority order (according to the MCPI algorithm) can be either a LO-

criticality or HI-criticality job. First, we consider the case where a job is of LO-criticality.

Let ji be the lowest priority job and its criticality be low. So at the time of construction

of the table SLO, every higher priority job jk finishes its Ck(LO) units of execution time

and there remains sufficient time for the lowest priority job ji to finish its Ci(LO) units of

execution time in the interval [ai, di]. So this condition is the same as the LoCBP algorithm.

Let job ji be the lowest priority job and its criticality be high. Since MCPI successfully

finds the priority order, it must have checked all the scenarios and didn’t find any failure.

Now after every higher priority job jk finishes its Ck(LO) units of execution time, there

remains sufficient time for the lowest priority job ji to finish its Ci(LO) units of execution

time in the interval [ai, d
∆
i ]. Unlike the LO-criticality job, the HI-criticality jobs need to

finish their LO-criticality execution on or before d∆
i . So this condition is the same as the

LoCBP algorithm.

Then ji is removed from the instance and the next priority can be assigned from the

remaining jobs. We can argue in the same way for the remaining jobs. From the above

argument, it is proved that the LoCBP algorithm finds the same priority order for instance

I as the MCPI algorithm. Since the priority order is the same and the MCPI algorithm

does not find any HI-scenario or LO-scenario failure, the anyHI scenarioFailure(SLO, I,Ψ)

subroutine in our algorithm will not fail as well. Thus, for a MCPI schedulable instance, our

algorithm can also construct priority tables SLO and SHI.

(⇐) Our algorithm generates a priority order for an instance I which is used to find

the table SLO. When a mode change occurs, our algorithm uses the table SHI to schedule

the HI-criticality jobs which is constructed from the job ordering in SLO. We need to show

112



5.4 The Proposed Algorithm: LoCBP

that if our algorithm generates a priority order for an instance I, then the MCPI algorithm

will always find a priority order and the anyHIScenarioFailure(PT, T ) subroutine will not

fail.

Suppose our algorithm finds a priority order for an instance I. The least priority job

assigned by our algorithm can be either a HI-criticality or a LO-criticality job. First, we

consider the case where the lowest priority job is LO-criticality. Let ji be the lowest priority

job and its criticality be LO which means the job ji finishes its execution between its arrival

time and deadline after all other jobs finish their execution. So according to the priority

table (SPT ) of MCPI, job ji can be given the lowest priority among the LO-criticality

jobs. Since the job can meet its deadline after all other jobs finish their execution, the

PullUp() subroutine [SPBB15] will pull up the HI-criticality jobs upward in the priority

tree. So according to the MCPI algorithm the job ji is the lowest priority job among the

HI-criticality jobs as well. This shows that the job ji is the lowest priority job according to

the MCPI algorithm.

Now assume ji is the lowest priority job and its criticality is HI which means the job ji

can finish its execution between its arrival time and deadline after all other jobs finish their

execution. Since our algorithm prefers LO-criticality jobs to assign the lowest priority over

HI-criticality jobs, there are no LO-criticality jobs available which can be assigned the lower

priority. As in the previous case, job ji is the lowest priority job in the SPT priority table of

the MCPI algorithm. Since no LO-criticality job can finish its execution after the execution

of job ji, the PullUp() subroutine will not be able to pull up the HI-criticality job upward

in the priority tree. So job ji is the lowest priority job according to the MCPI algorithm.

So both the algorithms generate the same priority order for instance I. Since our

algorithm does not find any HI-scenario failure in the anyHI scenarioFailure(SLO, I,Ψ)

subroutine, the MCPI algorithm also does not find any HI-scenario failure in its

anyHIscenarioFailure() subroutine.

Theorem 5.4.3: The computational complexity of LoBCP (Algorithm 14 on page 107) is

O(mn3), where n is the number of jobs in an instance I and m is the number of processors.

Proof. Line 1 takes O(n) time. In lines 3 and 4, finding the latest deadline job takes

O(n log n) time, simulation of global EDF on m processors takes O(mn2) times [Hor74].

So the total time taken by lines 3 and 4 is O(n log n+mn2). Lines 5 to 10 take O(1) time.

Since the while loop in line 2 runs n times, line 3 to 10 require a total of O(n2 log n+mn3)

113



5.5 Extension for Dependent Jobs

time, i.e., O(mn3). Lines 12, 13 to 15, 16 and 17 takes O(mn2) time each. So the overall

time complexity of our algorithm is O(mn3).

This is in contrast to MCPI [SPBB15], the only existing time-triggered scheduling al-

gorithm for mixed-criticality systems on multiprocessors, whose complexity is O(mn3 log n).

5.5 Extension for Dependent Jobs

In previous sections, we have discussed instances with independent jobs. Now, we discuss

the case of the dual-criticality instances with dependent jobs. In this section, we modify

the algorithm given in Section 5.4 to find the scheduling tables such that if the scheduler

discussed in Section 5.2 dispatches the jobs according to these scheduling tables then it will

be a correct online scheduling strategy without disturbing the dependencies between them.

There exists an algorithm [SPBB15] which can schedule the jobs of an instance I with

dependencies with worst-case time complexity O(|E|n2 +mn3 log n), where n is the number

of jobs, |E| the number of edges in the DAG and m the number of processors. We claim

that our algorithm has a better worst-case time complexity than the existing algorithm.

5.5.1 Model

We use the same model as discussed in Section 5.2. Additionally, an instance of a mixed-

criticality system containing dependent jobs can be defined as a directed acyclic graph (DAG).

An instance I is represented in the form of I(V,E), where V represents the set of jobs, i.e.,

{j1, j2, . . . , jn} and E represents the edges which depict dependencies between jobs. We

assume that a HI-criticality job can depend on a LO-criticality job only if the HI-criticality

job depends upon another HI-criticality job. This means, there are some instances where an

outward edge from a LO-criticality job jl becomes an inward edge to a HI-criticality job jh1

with another inward edge from a HI-criticality job jh to job jh1.

Definition 5.5.1: A dual-criticality MC instance I with job dependencies is said to be

time-triggered schedulable on a multiprocessor system if it is possible to construct the

two scheduling tables SLO and SHI for each processor of instance I without violating the

dependencies, such that the run-time algorithm described in Section 5.2 schedules I correctly.

114



5.5 Extension for Dependent Jobs

5.5.2 The DP-LoCBP Algorithm

Here we propose the DP-LoCBP algorithm which can construct the two scheduling tables

SLO and SHI for a dual-criticality instance with dependent jobs. A DAG of mixed-criticality

jobs is MC-schedulable if there exists a correct online scheduling policy for it. Our algorithm

finds a LO-criticality priority order for the jobs of instance I which is used to construct the

table SLO. Then the same job allocation order of SLO is used to construct the table SHI,

where HI-criticality jobs have greater priority than LO-criticality jobs, and the HI-criticality

jobs are allocated their CiHI units of execution time in SHI without violating the dependency

constraints. The priority between two jobs ji and jk is denoted by ji . jk, where ji is higher

priority than jk. This priority ordering must satisfy two properties:

• If a node ji is assigned higher priority than node jk (i.e., ji . jk), then there should not

be a path in the DAG from node jk to node ji.

• If the DAG is scheduled according to this priority ordering then each job ji of the DAG

must finish its Ci(LO) units of execution time before d∆
i .

Now we present the algorithm DP-LoCBP which finds a priority order for mixed-criticality

dependent jobs.

The DP-LoCBP algorithm finds a priority order which is used to construct the

scheduling tables for all the processors in steps 1 to 11. First, DP-LoCBP finds the LO-

scenario deadline (di
∆) of each job. For the LO-criticality jobs di

∆ = di, but di
∆ ≤ di for

the HI-criticality jobs. Then the algorithm starts to assign the lowest priority jobs from the

instance I. It always selects the latest deadline job which does not have an outward edge as

the lowest priority job, but LO-criticality jobs are considered before the HI-criticality jobs. A

job ji can be assigned the lowest priority if and only if all other jobs jk finish their execution

and there remains sufficient time for ji to complete its Ci(LO) units of execution time before

di
∆. After a job ji is assigned the lowest priority, it is removed from the instance and added

to the priority order Ψ. Then the remaining jobs are considered for priority assignment. If

at any step a job cannot be assigned a priority, the algorithm declares failure. In step 12, the

algorithm constructs the table SLO. In steps 13 to 15, it checks for any possible HI-criticality

scenario failure. If it does not find a HI-criticality scenario failure, then the priority order

constructed by the DP-LoCBP algorithm can successfully schedule the instance I. Then the

table SHI is constructed for each processor by allocating Ci(HI) units of execution time of

115



5.5 Extension for Dependent Jobs

Algorithm 15 DP-LoCBP(I)

Notation:

I = {j1, j2, ..., jn}, where ji =< ai, di, χi, Ci(LO), Ci(HI) >.

Input : I, Dependency relation E ⊆ I × I
Output : Tables SLO and SHI

Assume earliest arrival time is 0.

1: Compute the LO-scenario deadline (di
∆) of each job ji as di

∆ = di− (Ci(HI)−Ci(LO));

2: while I is not empty do

3: Assign a LO-criticality latest deadline job ji which does not have an outward edge as

the lowest priority job if ji can finish its execution in the interval [ai, di
∆] after all other

jobs finish their execution in LO-scenario under the global EDF scheme;

4: If any LO-criticality job with no outward edge cannot be given the lowest priority then

a HI-criticality latest deadline job ji which does not have an outward edge is assigned as

the lowest priority job if ji can finish its execution in the interval [ai, di
∆] after all other

jobs finishes their execution in LO-scenario under the global EDF scheme;

5: if no job is assigned a lowest priority then

6: Declare FAIL and EXIT;

7: else

8: Add the job ji to the priority order Ψ.

9: Remove job ji from the instance and continue;

10: end if

11: end while

12: Construct table SLO for each processor Pi using the priority order Ψ;

13: if anyHI scenarioFailure(SLO, I, Ψ) then

14: return FAIL and EXIT;

15: else

16: Construct table SHI for each processor Pi using the same order of allocated jobs in

SLO.

17: The same order as SLO is followed to allocate the jobs in SHI;

18: After a HI-criticality job ji is allocated its Ci(LO) execution time in SHI, Ci(HI) −
Ci(LO) units of execution time of job ji is allocated after the rightmost segment of job ji

in SLO without violating the dependency constraints and without disturbing the priority

order Ψ;

19: end if

116



5.5 Extension for Dependent Jobs

each HI-criticality job using the same order of allocated jobs as SLO where a HI-criticality

job is given higher priority over LO-criticality jobs. In SHI each HI-criticality job is allocated

its Ci(LO) units of execution time without violating the dependency constraints. Once the

Ci(LO) units of execution time are allocated for HI-criticality jobs in SHI, the remaining

Ci(HI) − Ci(LO) units of execution time are allocated immediately without disturbing the

priority order Ψ and without violating the dependency constraints. At each instant, the

allocation is done without violating the dependency constraints.

We illustrate the operation of this algorithm by an example.

Example 5.5.1: Consider the mixed-criticality instance given in Table 5.3 which is going

to be scheduled on a multiprocessor system having two homogeneous processors, i.e., P0 and

P1. The corresponding DAG is given in Fig. 5.4.

Figure 5.3: An example instance to explain the DP-LoCBP

algorithm

Job Arrival time Deadline Criticality Ci(LO) Ci(HI)

j1 0 3 LO 1 1

j2 0 3 LO 1 1

j3 0 3 LO 1 1

j4 0 4 HI 1 3

j5 1 6 HI 1 3

j1 j2 j3 j4

j5

Figure 5.4: A DAG showing job dependencies among the jobs of an

instance

Now we construct a priority order using the DP-LoCBP algorithm. The LO-criticality

scenario d∆
i of the jobs j1, j2, j3, j4.j5 are 3, 3, 3, 2, 4 respectively. Next we start assigning

priorities to each job.

• We start with a node having no outward edges from it. The only such node is job j5.

117



5.5 Extension for Dependent Jobs

So Algorithm 15 assigns job j5 the lowest priority. If j5 is assigned the lowest priority,

then j1 and j2 can run simultaneously in P0 and P1 over [0, 1] and [0, 1] respectively.

Then j3 and j4 can run over [1, 2] in P0 and P1 respectively. Then j5 can easily execute

its 1 unit of execution on either P0 or P1 over [2, 3] to finish by its LO-scenario deadline

(d∆
i ). Now we can assign job j5 the lowest priority job.

We remove job j5 and consider {j1, j2, j3, j4} to find the next lowest priority job.

• Since the LO-criticality jobs are given the lowest priority by the proposed algorithm, it

is easy to verify that the successive lowest priority jobs will be j1, j2 and j3 respectively.

Finally, j4 is the highest priority job.

So the final priority order of jobs in instance I is j4 . j3 . j2 . j1 . j5. The table SLO for each

processor is given in Fig. 5.5.

Now the anyHI scenarioFailure(SLO, I,Ψ) subroutine checks for all possible HI-

criticality scenarios. We can check that all HI-criticality scenarios are schedulable using

the priority order j4 .j3 .j2 .j1 .j5 of the instance I. Finally, the table SHI is constructed for

each processor by allocating Ci(HI) units of execution time of each HI-criticality job using

the same order of allocated jobs in SLO where a HI-criticality job is given higher priority over

a LO-criticality job. On processor P0, the job order of SHI remains the same as in SLO. Job

j4 is a HI-criticality job and does not depend on any other job, so it is allocated its Ci(LO)

units of execution time over [0, 1] and the remaining Ci(HI)−Ci(LO) units of execution time

are allocated in the interval [1, 3]. Job j5 is allocated in the interval [2, 3] in table SLO of P0.

But j5 is allocated in the interval [3, 6] due to dependency constraints which does not affect

the scheduling after a mode change. On processor P1, job j3 and j2 (LO-criticality) which do

not depend on any other jobs, are allocated their one unit of execution time in the intervals

[0, 1] and [1, 2] respectively. The table SHI for each processor is given in Fig. 5.6.

SLO

P1

P0

j3 j2

j4 j1 j5

0 1 2 3 6

Figure 5.5: Table SLO for processor P0

and P1

SHI

P1

P0

j3 j2

j4 j5

0 1 2 3 6

Figure 5.6: Table SHI for processor P0 and

P1

118



5.5 Extension for Dependent Jobs

5.5.3 Comparison with MCPI Algorithm

Theorem 5.5.1: An instance I is schedulable by the MCPI algorithm [SPBB15] if and only

if it is schedulable by our algorithm.

Proof. ⇒ We need to show that if MCPI generates a priority order for an in-

stance I, then our algorithm will always find a priority order for instance I and the

anyHI scenarioFailure(SLO, I,Ψ) subroutine will not fail.

Suppose the MCPI algorithm finds a priority order for instance I. Now the lowest

priority job of the priority order (according to the MCPI algorithm) can be either a LO-

criticality or HI-criticality job. First, we prove the case where a job is LO-criticality and

then HI-criticality. Let ji be the lowest priority job and its criticality be LO which means no

other job depends on ji. So at the time of construction of table SLO, every higher priority job

jk finishes its Ck(LO) units of execution time without violating the dependency constraints

and there remains sufficient time for the lowest priority job ji to finish its Ci(LO) units of

execution time in the interval [ai, (d
∆
i )]. So this condition is the same as the DP-LoCBP

algorithm.

Let job ji be the lowest priority, and its criticality be HI which means no other job

depends on ji. Since MCPI successfully finds the priority order, it must have checked all

the scenarios and does not find any failure in the HI-scenario situations. After every higher

priority job jk finishes its Ck(LO) units of execution time, there remains sufficient time for

the lowest priority job ji to finish its Ci(LO) units of execution time in the interval [ai, d
∆
i ]

without violating the dependency constraints. The HI-criticality jobs need to finish their

LO-criticality execution on or before d∆
i in LO-scenario, so that they have sufficient time to

finish their remaining Ci(HI)−Ci(LO) units of execution time before their deadline di. This

condition does not violate the dependency constraints as it is the job which does not have

an outward edge from it. So this condition is the same as the DP-LoCBP algorithm.

Then ji is removed from the instance I and the next priority can be assigned from the

remaining jobs. We can argue in the same way for the remaining jobs. From the above

argument, it is proved that the DP-LoCBP algorithm finds the same priority order, for

instance I as the MCPI algorithm. Since the priority order is the same and MCPI does not

find any HI-scenario or LO-scenario failure, anyHI scenarioFailure(SLO, I,Ψ) subroutine in

our algorithm will not fail as well. Thus, for a MCPI schedulable instance, our algorithm

can also construct priority tables SLO and SHI.

119



5.5 Extension for Dependent Jobs

(⇐) Our algorithm generates a priority order for instance I which is used to find the

table SLO. When a mode change occurs, our algorithm uses the table SHI which is constructed

from the job ordering in SLO to schedule the HI-criticality jobs. We need to show that if our

algorithm generates a priority order for instance I, then the MCPI algorithm will always

find a priority order and the anyHIScenarioFailure(PT, T ) subroutine will not fail.

Suppose our algorithm finds a priority order, for instance I. The lowest priority job

assigned by our algorithm can be either a HI-criticality or a LO-criticality job. First, we

consider the case where a job is LO-criticality. Let ji be the lowest priority job, and its

criticality be LO which means the job ji can finish its execution between its arrival time

and deadline after all other job finishes their execution without violating the dependency

constraints. So according to the priority table (SPT ) of MCPI, job ji can be given the

lowest priority among the LO-criticality jobs. Since the job can meet its deadline after all

other jobs finished their execution, the PullUp() subroutine will pull up the HI-criticality

jobs upward in the priority tree. So according to the MCPI algorithm, the job ji is the lowest

priority job among the HI-criticality jobs as well. This shows that the job ji is the lowest

priority job according to the MCPI algorithm.

Let ji be the lowest priority job, and its criticality be HI which means the job ji

can finish its execution between its arrival time and deadline after all other job finishes

their execution without violating the dependency constraints. Since our algorithm prefers

LO-criticality jobs to assign the lowest priority over HI-criticality jobs, there are no LO-

criticality jobs available which can be assigned lower priority than job ji. Our algorithm

chooses the job with no outward edges which means no job depends on the lowest priority

job. So due to the dependency constraints, all the LO-criticality jobs finish before job ji.

Since no LO-criticality job can finish its execution after the execution of job ji, the PullUp()

subroutine will not be able to pull up the HI-criticality jobs upward in the priority tree. So

job ji is the lowest priority job according to the MCPI algorithm.

In the same way, we argue for the next priority assignment of jobs of instance I.

Theorem 5.5.2: The computational complexity of DP-LoCBP (Algorithm 15 on page 116)

is O(n|E| + mn3), where n is the number of jobs, E the dependency relations among the

jobs in the instance I and m the number of processors in the system.

Proof. Line 1 takes O(n) time. In lines 3 - 4, traversing each edges takes O(|E|) time,

simulation of global EDF on m processors takes O(mn2) times [CSB90]. So the total time

120



5.6 Results and Discussion

taken by lines 3 and 4 is O(|E|+n log n+mn2). Lines 5 to 9 take O(1) time in each execution

of the loop body. Since the while loop in line 2 runs n times, lines 3 to 9 require a total

of O(n|E| + n2 log n + mn3) time, i.e, O(n|E| + mn3) time each. Lines 12, 13 to 14, 16

and 17 to 18 takes O(mn2) time each. So the overall time complexity of our algorithm is

O(n|E|+mn3).

This is in contrast to the MCPI algorithm [SPBB15], the only existing time-triggered

scheduling algorithm for the dependent jobs of mixed-criticality systems on multiprocessors

is O(n2|E|+mn3 log n).

5.6 Results and Discussion

In this section, we present the experiments conducted to evaluate the LoCBP algorithm

for the dual-criticality case for non-recurrent jobs. The experiments compare the running

times of LoCBP and MCPI. The comparison is done over numerous instances with randomly

generated parameters.

The job generation policy may have significant effect on the experiments. The details

of the job generation policy [ESD10] are given below.

• The utilization (ui) of the jobs of instance I are generated according to the Staffords

randfixedsum algorithm [Sta06].

• We use the exponential distribution proposed by Davis et al [DZB08] to generate the

deadline (di) of the jobs of instance I.

• The Ci(LO) units of execution of the jobs are calculated by ui × di.

• The Ci(HI) units of execution of the jobs are calculated as Ci(HI) = CF × Ci(LO)

where CF is the criticality factor which varies between 2 and 6 for each HI-criticality

job ji in our experiments.

• Each instance I contains at least one HI-criticality job and one LO-criticality job. We

have generated random instances for 2, 4, 8 and 16 processors, where each instance

has atleast m + 1 number of jobs. Each instance is LO-scenario schedulable. We

have used an intel core 2 duo processor machine with speed of 2.3 Ghz to conduct the

experiments.

121



5.7 Conclusion

 0

 20

 40

 60

 80

 100

 120

 0  100  200  300  400  500  600  700  800  900  1000

T
im

e
 c

o
n

s
u

m
e

d
 (

in
 s

e
c
s
)

Number of jobs per instance

MCPI Algorithm
LoCBP Algorithm

(a) Comparison of time consumption of

MC-schedulable instances for m = 2

 0

 10

 20

 30

 40

 50

 60

 70

 0  100  200  300  400  500  600  700  800  900  1000

T
im

e
 c

o
n

s
u

m
e

d
 (

in
 s

e
c
s
)

Number of jobs per instance

MCPI Algorithm
LoCBP Algorithm

(b) Comparison of time consumption of

MC-schedulable instances for m = 4

Figure 5.7: Comparison of time consumption of MC-schedulable instances with different

number of processors

In the first experiment, we fix the number of processors to 2 and let the deadline of the

jobs vary between 1 and 2000. The graph in Fig. 5.7a shows the time consumption by each

schedulable instances from different numbers of randomly generated instances.

From the graph in Fig. 5.7a, it is clear that our algorithm consumes significantly less

time than the MCPI algorithm. As can be seen from Fig. 5.7a, for a multiprocessor with two

processors the time consumption by MCPI is much higher than our algorithm. The ratio of

time consumed also increases with the increase of number of jobs per instance and is close

to five for 1000 jobs. In another experiment, we have shown that the time consumption

decreases for m = 4, but the ratio of time consumed by our algorithm in comparison to the

MCPI algorithm is very much similar to the case m = 2, as can be seen in Fig. 5.7b.

5.7 Conclusion

In this chapter, we proposed a new algorithm for time-triggered scheduling of mixed-

criticality jobs for multiprocessor systems. We proved that our algorithm has a better worst-

case time complexity than the previous algorithm (MCPI). We also proved the correctness

of our algorithm. Then we extended our algorithm for dependent jobs and compared the

worst-case time complexity with the existing algorithm. We examined the theoretical result

by comparing the actual time consumption between LoCBP and MCPI.

122



Chapter 6

Conclusions and Future Scope of

Work

6.1 Summary of the Thesis

The fundamental challenge in scheduling a mixed-criticality (MC) instance is to satisfy both

the system designers and certification authorities. We discussed most of the work carried

out in the field of schedulability of mixed-criticality systems based on the time-triggered

paradigm. We focused on time-triggered scheduling because of the resultant deterministic

behavior and easier verification.

In this thesis, we proposed a number of time-triggered scheduling algorithms for various

mixed-criticality systems. In the first contribution, we proposed a time-triggered scheduling

algorithm (TT-Merge) for non-recurrent task sets. The algorithm constructs two off-line

scheduling tables which can be used by a scheduler to dispatch jobs on-line. We proved

the proposed algorithm is better than the existing algorithms in terms of the number of

schedulable instances. We presented a few experimental results through randomly generated

instances (or task sets) to show the extent to which TT-Merge dominates the existing

algorithms. Then we extended TT-Merge to schedule dependent jobs, periodic jobs and

synchronous reactive systems. We also presented an extended algorithm which constructs

time-triggered scheduling tables up to m-criticality levels.

Most researchers have focused on the schedulability of mixed-criticality task sets. Non-

functional properties of mixed-criticality systems like energy consumption have not been

explored widely, and not in the context of time-triggered scheduling. Our time-triggered

123



6.2 Future Scope of Work

energy-efficient scheduling algorithm for mixed-criticality systems is the first such algorithm

to the best of our knowledge. Initially, we proposed the algorithm for periodic tasks and then

extended it for dependent jobs. We proved that our proposed work consumes less energy

than all the existing algorithms based on EDF-VD. Along the way, we also proved that our

time-triggered algorithm (TT-Merge) schedules more number of instances (a super set of

instances) than the EDF-VD algorithm. Finally, we proved that the proposed energy-efficient

time-triggered scheduling algorithm is optimal with respect to the TT-Merge algorithm.

Then we extended the proposed algorithm for dependent jobs. We provided a number of

experimental results to show the dominance of our algorithm over the existing algorithms in

terms of normalized energy consumption.

Finally, we proposed a time-triggered scheduling algorithm for mixed-criticality systems

for multiprocessor systems. In this work, we showed that our algorithm schedules the same

number of instances as the MCPI algorithm, the only existing time-triggered scheduling

algorithm. On the other hand, we showed that the time complexity of our algorithm is better

than the MCPI algorithm. We presented experimental results to support the theoretical

results.

6.2 Future Scope of Work

This thesis is focused on the time-triggered paradigm of scheduling mixed-criticality task sets.

Several schedulability tests for mixed-criticality task sets have been proposed, e.g., periodic

tasks, dependent tasks and synchronous reactive systems, etc., while constructing time-

triggered scheduling tables. Further, some new design objectives and interesting research

challenges have been identified during the course of this work. Some of the potential

directions to which the contribution of the thesis can be extended are discussed below.

In Chapter 3, we proposed a time-triggered scheduling algorithm for dependent and

independent jobs where we assumed that there is no resource sharing between the jobs. The

impact of resource sharing among jobs in the TT-Merge algorithm needs investigation. On

the other hand, a speed-up bound for the TT-Merge algorithm has not been computed and

should be explored. In Chapter 4, the proposed energy-efficient time-triggered scheduling

algorithm is applicable for uniprocessor real-time systems. We plan to extend our technique

for a global multiprocessor scheduling algorithm in the future. On the other hand, we

minimize the energy consumption in only LO-criticality scenarios. We would like to extend

124



6.2 Future Scope of Work

the work to minimize the energy consumption in both HI-criticality and LO-criticality

scenarios. In this thesis, we have not studied fault-tolerance in the context of mixed-

criticality systems. Fault-tolerance in the presence of processor faults is a vital functionality

of mixed-criticality systems for multiprocessor systems. The impact of time-triggered

paradigm in the presence of faults need to be explored in this settings. In particular, we

plan to investigate the impact of fault-tolerance on the time-triggered scheduling algorithm

proposed in Chapter 5 in the future.

125



References

[ABW93] NC Audsley, Alan Burns, and AJ Wellings. Deadline monotonic scheduling

theory and application. Control Engineering Practice, 1(1):71–78, 1993.

[aHCJPH11] Seo-Hyun Jeon andJin Hee Cho, Yangjae Jung, Sachoun Park, and Tae-Man

Han. Automotive hardware development according to ISO 26262. In Advanced

Communication Technology (ICACT), 2011 13th International Conference on,

pages 588–592. IEEE, 2011.

[AKTM16a] Sedigheh Asyaban, Mehdi Kargahi, Lothar Thiele, and Morteza Mohaqeqi.

Analysis and scheduling of a battery-less mixed-criticality system with energy

uncertainty. ACM Transactions on Embedded Computing Systems (TECS),

16(1):23, 2016.

[AKTM16b] Sedigheh Asyaban, Mehdi Kargahi, Lothar Thiele, and Morteza Mohaqeqi.

Analysis and scheduling of a battery-less mixed-criticality system with energy

uncertainty. ACM Trans. Embedded Comput. Syst., 16(1):23:1–23:26, 2016.

[AMT15a] M Ali Awan, Damien Masson, and Eduardo Tovar. Energy-aware task allo-

cation onto unrelated heterogeneous multicore platform for mixed criticality

systems. In 2015 IEEE Real-Time Systems Symposium,, pages 377–377, 2015.

[AMT15b] Muhammad Ali Awan, Damien Masson, and Eduardo Tovar. Energy-aware

task allocation onto unrelated heterogeneous multicore platform for mixed

criticality systems. In IEEE Real-Time Systems Symposium, RTSS 2015, San

Antonio, Texas, USA, December 1-4, 2015, page 377, 2015.

[AMT16] Muhammad Ali Awan, Damien Masson, and Eduardo Tovar. Energy efficient

mapping of mixed criticality applications on unrelated heterogeneous multicore

126



REFERENCES

platforms. In 11th IEEE Symposium on Industrial Embedded Systems, SIES

2016, Krakow, Poland, May 23-25, 2016, pages 63–72, 2016.

[AS00] James H Anderson and Anand Srinivasan. Early-release fair scheduling. In 12th

Euromicro Conference on Real-Time Systems, ECRTS., pages 35–43. IEEE,

2000.

[ASK15] Ijaz Ali, Jun-Ho Seo, and Kyong Hoon Kim. A dynamic power-aware

scheduling of mixed-criticality real-time systems. In 14th IEEE International

Conference on Ubiquitous Computing and Communications, IUCC 2015, pages

438–445, 2015.

[Aud01] Neil C Audsley. On priority assignment in fixed priority scheduling. Informa-

tion Processing Letters, 79(1):39–44, 2001.

[Bar04a] Sanjoy K Baruah. Optimal utilization bounds for the fixed-priority scheduling

of periodic task systems on identical multiprocessors. IEEE Transactions on

Computers, 53(6):781–784, 2004.

[Bar04b] Sanjoy K Baruah. Optimal utilization bounds for the fixed-priority scheduling

of periodic task systems on identical multiprocessors. IEEE Transactions on

Computers, 53(6):781–784, 2004.

[Bar12] Sanjoy Baruah. Semantics-preserving implementation of multirate mixed-

criticality synchronous programs. In Proceedings of the 20th International

Conference on Real-Time and Network Systems, pages 11–19. ACM, 2012.

[Bar13] Sanjoy Baruah. Partitioned edf scheduling: a closer look. Real-Time Systems,

49(6):715–729, 2013.

[Bar14] Sanjoy Baruah. Implementing mixed-criticality synchronous reactive programs

upon uniprocessor platforms. Real-Time Systems, 50(3):317–341, 2014.

[Bar18] Sanjoy Baruah. Mixed-criticality scheduling theory: Scope, promise, and

limitations. IEEE DESIGN AND TEST, 35(2):31–37, 2018.

[BB05] Enrico Bini and Giorgio Buttazzo. Measuring the performance of schedulability

tests. Real-Time Systems, 30(1-2):129–154, 2005.

127



REFERENCES

[BB08] Sanjoy Baruah and Theodore Baker. Schedulability analysis of global edf.

Real-Time Systems, 38(3):223–235, 2008.

[BB11] Alan Burns and Sanjoy Baruah. Timing Faults and Mixed Criticality Systems,

volume 6875 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,

2011.

[BBB+09] James Barhorst, Todd Belote, Pam Binns, Jon Hoffman, James Paunicka,

Prakash Sarathy, John Scoredos, Peter Stanfill, Douglas Stuart, and Russel

Urzi. A research agenda for mixed-criticality systems. In Cyber-Physical

Systems Week, APR 2009.

[BBD+10] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’angelo, Alberto Marchetti-

Spaccamela, Suzanne Van Der Ster, and Leen Stougie. Proceedings of the

35th international symposium on scheduling real-time mixed-criticality jobs. In

Mathematical Foundations of Computer Science 2010, pages 90–101. Springer,

2010.

[BBD+11] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’angelo, Alberto Marchetti-

Spaccamela, Suzanne Van Der Ster, and Leen Stougie. Mixed-criticality

scheduling of sporadic task systems. In European Symposium on Algorithms,

pages 555–566. Springer, 2011.

[BBD+12a] S. Baruah, V. Bonifaci, G. D’Angelo, Haohan Li, A. Marchetti-Spaccamela,

N. Megow, and L. Stougie. Scheduling real-time mixed-criticality jobs. IEEE

Transactions on Computers, 61(8):1140–1152, Aug 2012.

[BBD+12b] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo DAngelo, Haohan Li, Alberto

Marchetti-Spaccamela, Suzanne Van Der Ster, and Leen Stougie. The preemp-

tive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic task

systems. In Real-Time Systems (ECRTS), 2012 24th Euromicro Conference

on, pages 145–154. IEEE, 2012.

[BBD+15] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’angelo, Haohan Li, Alberto

Marchetti-Spaccamela, Suzanne Van Der Ster, and Leen Stougie. Preemptive

uniprocessor scheduling of mixed-criticality sporadic task systems. Journal of

the ACM (JACM), 62(2):14, 2015.

128



REFERENCES

[BCA08] Björn B Brandenburg, John M Calandrino, and James H Anderson. On the

scalability of real-time scheduling algorithms on multicore platforms: A case

study. In Real-Time Systems Symposium, 2008, pages 157–169. IEEE, 2008.

[BCLS14a] Sanjoy Baruah, Bipasa Chattopadhyay, Haohan Li, and Insik Shin. Mixed-

criticality scheduling on multiprocessors. Real-Time Systems, 50(1):142–177,

2014.

[BCLS14b] Sanjoy Baruah, Bipasa Chattopadhyay, Haohan Li, and Insik Shin. Mixed-

criticality scheduling on multiprocessors. Real-Time Systems, 50(1):142–177,

2014.

[BCPV96] Sanjoy K Baruah, Neil K Cohen, C Greg Plaxton, and Donald A Varvel. Pro-

portionate progress: A notion of fairness in resource allocation. Algorithmica,

15(6):600–625, 1996.

[BD13] Alan Burns and Rob Davis. Mixed criticality systems: A review. Department

of Computer Science, University of York, Tech. Rep, 2013.

[BF11] Sanjoy Baruah and Gerhard Fohler. Certification-cognizant time-triggered

scheduling of mixed-criticality systems. In 32nd IEEE Real-Time Systems

Symposium (RTSS), pages 3–12. IEEE, 2011.

[BG03] Sanjoy K Baruah and Joël Goossens. Rate-monotonic scheduling on uniform

multiprocessors. IEEE transactions on computers, 52(7):966–970, 2003.

[BLS10a] Sanjoy Baruah, Haohan Li, and Leen Stougie. Towards the design of certifiable

mixed-criticality systems. In Proceedings of the 2010 16th IEEE Real-Time and

Embedded Technology and Applications Symposium, RTAS ’10, pages 13–22,

2010.

[BLS10b] Sanjoy K Baruah, Haohan Li, and Leen Stougie. Mixed-criticality scheduling:

Improved resource-augmentation results. In Proceedings of the ICSA Inter-

national Conference on Comput- ers and their Applications (CATA), pages

217–223, 2010.

[Bow00] Jonathan Bowen. The ethics of safety-critical systems. Communications of the

ACM, 43(4):91–97, 2000.

129



REFERENCES

[BV08] Sanjoy Baruah and Steve Vestal. Schedulability analysis of sporadic tasks

with multiple criticality specifications. In Euromicro Conference on Real-Time

Systems, 2008. ECRTS’08., pages 147–155. IEEE, 2008.

[CK07] Jian-Jia Chen and Chin-Fu Kuo. Energy-efficient scheduling for real-time

systems on dynamic voltage scaling (dvs) platforms. In Embedded and Real-

Time Computing Systems and Applications, 2007. RTCSA 2007. 13th IEEE

International Conference on, pages 28–38. IEEE, 2007.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[Com10] International Electrotechnical Commission. Parts 1 – 7 IEC 6150: Functional

safety of electrical/electronic/programmable electronic safety-related systems,

2010.

[CRJ06] Hyeonjoong Cho, Binoy Ravindran, and E Douglas Jensen. An optimal real-

time scheduling algorithm for multiprocessors. In 27th IEEE International

Real-Time Systems Symposium, RTSS’06., pages 101–110. IEEE, 2006.

[CSB90] Houssine Chetto, Maryline Silly, and T Bouchentouf. Dynamic scheduling of

real-time tasks under precedence constraints. Real-Time Systems, 2(3):181–

194, 1990.

[DB11] Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for

multiprocessor systems. ACM Comput. Surv., 43(4):35:1–35:44, October 2011.

[DZB08] Robert I. Davis, Attila Zabos, and Alan Burns. Efficient exact schedulability

tests for fixed priority real-time systems. IEEE Transactions on Computers,,

57(9):1261–1276, 2008.

[ESD10] Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques for the

synthesis of multiprocessor tasksets. In proceedings 1st International Workshop

on Analysis Tools and Methodologies for Embedded and Real-time Systems

(WATERS 2010), pages 6–11, 2010.

[FBH+06] Helmut Fennel, Stefan Bunzel, Harald Heinecke, Jürgen Bielefeld, Simon Fürst,

Klaus-Peter Schnelle, Walter Grote, Nico Maldener, Thomas Weber, Florian

130

http://www.iec.ch/functionalsafety/standards/page2.htm
http://www.iec.ch/functionalsafety/standards/page2.htm


REFERENCES

Wohlgemuth, et al. Achievements and exploitation of the autosar development

partnership. Technical report, SAE Technical Paper, 2006.

[FMB+09] Simon Fürst, Jürgen Mössinger, Stefan Bunzel, Thomas Weber, Frank

Kirschke-Biller, Peter Heitkämper, Gerulf Kinkelin, Kenji Nishikawa, and

Klaus Lange. Autosar–a worldwide standard is on the road. In 14th

International VDI Congress Electronic Systems for Vehicles, Baden-Baden,

volume 62, page 5, 2009.

[Foh93] Gerhard Fohler. Changing operational modes in the context of pre run-time

scheduling. IEICE transactions on information and systems, 76(11):1333–1340,

1993.

[Foh95] Gerhard Fohler. Joint scheduling of distributed complex periodic and hard

aperiodic tasks in statically scheduled systems. In 16th IEEE Proceedings

Real-Time Systems Symposium, 1995., pages 152–161. IEEE, 1995.

[fS11] International Organiztion for Standardization. ISO 26262-5:2011 – Road

vehicles – Functional safety – Part 5: Product development at the hardware

level, November 2011.

[Gal08] Heinz Gall. Functional safety IEC 61508/IEC 61511 the impact to certification

and the user. In Computer Systems and Applications, 2008. AICCSA 2008.

IEEE/ACS International Conference on, pages 1027–1031. IEEE, 2008.

[GFB03] Joël Goossens, Shelby Funk, and Sanjoy Baruah. Priority-driven scheduling of

periodic task systems on multiprocessors. Real-time systems, 25(2-3):187–205,

2003.

[GSHT13a] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. Scheduling of mixed-

criticality applications on resource-sharing multicore systems. In Proceedings of

the Eleventh ACM International Conference on Embedded Software, EMSOFT

’13, pages 17:1–17:15. IEEE Press, 2013.

[GSHT13b] Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang, and Lothar

Thiele. Scheduling of mixed-criticality applications on resource-sharing mul-

ticore systems. In Proceedings of the Eleventh ACM International Conference

on Embedded Software, page 17, 2013.

131

https://www.iso.org/standard/51360.html
https://www.iso.org/standard/51360.html
https://www.iso.org/standard/51360.html


REFERENCES

[GSHT14] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. Mapping mixed-

criticality applications on multi-core architectures. In Design, Automation Test

in Europe Conference Exhibition (DATE), pages 1–6, March 2014.

[HKGT14] Pengcheng Huang, Pratyush Kumar, Georgia Giannopoulou, and Lothar

Thiele. Energy efficient dvfs scheduling for mixed-criticality systems. In

Embedded Software (EMSOFT), 2014 International Conference on, pages 1–

10. IEEE, 2014.

[Hor74] WA Horn. Some simple scheduling algorithms. Naval Research Logistics

Quarterly, 21(1):177–185, 1974.

[HS06] Thomas A Henzinger and Joseph Sifakis. The embedded systems design

challenge. In FM 2006: Formal Methods, pages 1–15. Springer, 2006.

[HSK+09] Reinhold Hamann, Jürgen Sauler, Stefan Kriso, Walter Grote, and Jürgen

Mössinger. Application of ISO 26262 in distributed development ISO 26262 in

reality. Technical report, SAE Technical Paper, 2009.

[IF00] Damir Isovic and Gerhard Fohler. Efficient scheduling of sporadic, aperiodic,

and periodic tasks with complex constraints. In The 21st IEEE Proceedings.

Real-Time Systems Symposium, 2000., pages 207–216. IEEE, 2000.

[Kop98] Hermann Kopetz. The time-triggered model of computation. In Real-time

Systems Symposium, page 168. IEEE, 1998.

[Kop11] Hermann Kopetz. Real-Time Systems - Design Principles for Distributed

Embedded Applications. Springer US, Upper Saddle River, NJ, USA, 2nd

edition, 2011.

[LB10] Haohan Li and Sanjoy Baruah. Load-based schedulability analysis of certifiable

mixed-criticality systems. In Proceedings of the tenth ACM international

conference on Embedded software, pages 99–108. ACM, 2010.

[LB12] H. Li and S. Baruah. Global mixed-criticality scheduling on multiprocessors. In

24th Euromicro Conference on Real-Time Systems, pages 166–175, July 2012.

132



REFERENCES

[LDG04] José Maŕıa López, José Luis Dı́az, and Daniel F Garćıa. Utilization bounds

for edf scheduling on real-time multiprocessor systems. Real-Time Systems,

28(1):39–68, 2004.

[LFS+10] Greg Levin, Shelby Funk, Caitlin Sadowski, Ian Pye, and Scott Brandt. Dp-

fair: A simple model for understanding optimal multiprocessor scheduling.

In 22nd Euromicro Conference on Real-Time Systems (ECRTS),, pages 3–13.

IEEE, 2010.

[Li13] Haohan Li. Scheduling mixed-criticality real-time systems. PhD thesis,

University of North Carolina at Chapel Hill, 2013.

[Liu00] Jane W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle

River, NJ, USA, 1st edition, 2000.

[LJP13a] Vincent Legout, Mathieu Jan, and Laurent Pautet. Mixed-criticality multi-

processor real-time systems: Energy consumption vs deadline misses. In First

Workshop on Real-Time Mixed Criticality Systems (ReTiMiCS), pages 1–6,

2013.

[LJP13b] Vincent Legout, Mathieu Jan, and Laurent Pautet. Mixed-Criticality Multi-

processor Real-Time Systems: Energy Consumption vs Deadline Misses. In

First Workshop on Real-Time Mixed Criticality Systems (ReTiMiCS), pages

1–6, Taipei, Taiwan, August 2013.

[LL73] Chung Laung Liu and James W. Layland. Scheduling algorithms for

multiprogramming in a hard-real-time environment. Journal of the ACM

(JACM), 20(1):46–61, 1973.

[NHG+16] Sujay Narayana, Pengcheng Huang, Georgia Giannopoulou, Lothar Thiele, and

R Venkatesha Prasad. Exploring energy saving for mixed-criticality systems

on multi-cores. In 2016 IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS), pages 1–12. IEEE, 2016.

[Pat12] R. M. Pathan. Schedulability analysis of mixed-criticality systems on multipro-

cessors. In 24th Euromicro Conference on Real-Time Systems, pages 309–320,

July 2012.

133



REFERENCES

[PB00] Peter Puschner and Alan Burns. Guest editorial: A review of worst-case

execution-time analysis. Real-Time Systems, 18(2-3):115–128, 2000.

[PC14] Santiago Pagani and Jian-Jia Chen. Energy efficiency analysis for the single

frequency approximation (sfa) scheme. ACM Transactions on Embedded

Computing Systems (TECS), 13(5s):158, 2014.

[PK11a] Taeju Park and Soontae Kim. Dynamic scheduling algorithm and its schedula-

bility analysis for certifiable dual-criticality systems. In 2011 Proceedings of the

International Conference on Embedded Software (EMSOFT),, pages 253–262.

IEEE, 2011.

[PK11b] Taeju Park and Soontae Kim. Dynamic scheduling algorithm and its

schedulability analysis for certifiable dual-criticality systems. In Proceedings of

the ninth ACM international conference on Embedded software, pages 253–262.

ACM, 2011.

[Pri92] Paul J Prisaznuk. Integrated modular avionics. In Proceedings of the IEEE

National Aerospace and electronics conference, 1992. naecon 1992.,, pages 39–

45. IEEE, 1992.

[PSTW97] Cynthia A Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-

critical scheduling via resource augmentation. In Proceedings of the twenty-

ninth annual ACM symposium on Theory of computing, pages 140–149. ACM,

1997.

[PSTW02] Cynthia A Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-

critical scheduling via resource augmentation. Algorithmica, 32(2):163–200,

2002.

[RB92] RTCA/DO-178B. Software considerations in airborne systems and equipment

certification, Dec 1992.

[SB02] Anand Srinivasan and Sanjoy Baruah. Deadline-based scheduling of periodic

task systems on multiprocessors. Information processing letters, 84(2):93–98,

2002.

134



REFERENCES

[SB08] H. Fennel S. Bunzel. The autosar methodology. In VDI (ed) FISITA World

Automotive Congress. FISITA 2008/F2008-10-023,. Springer Automotive Me-

dia, 2008.

[SPBB13] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Mixed critical earliest

deadline first. In 2013 25th Euromicro Conference on Real-Time Systems,

pages 93–102, July 2013.

[SPBB15] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Time-triggered mixed-

critical scheduler on single and multi-processor platforms. In HPCC / CSS

/ICESS, pages 684–687, Aug 2015.

[Sta06] Roger Stafford. Random vectors with fixed sum. See http://www. mathworks.

com/matlabcentral/fileexchange/9700, 2006.

[TFB13] Jens Theis, Gerhard Fohler, and Sanjoy Baruah. Schedule table generation for

time-triggered mixed criticality systems. In Proc. WMC, RTSS, pages 79–84,

2013.

[The15] Jens Theis. Certificate Cognizant Mixed-critical Scheduling in Time-triggered

Scheduling. PhD thesis, University of Kaiserslautern, 2015.

[Ves07] S. Vestal. Preemptive scheduling of multi-criticality systems with varying

degrees of execution time assurance. In 28th IEEE International Real-Time

Systems Symposium, 2007. RTSS 2007., pages 239–243, Dec 2007.

[ZGYZ16] Qingling Zhao, Zonghua Gu, Min Yao, and Haibo Zeng. HLC-PCP: A resource

synchronization protocol for certifiable mixed criticality scheduling. Journal

of Systems Architecture, 66:84–99, 2016.

[ZGZ14] Qingling Zhao, Zonghua Gu, and Haibo Zeng. HLC-PCP: A resource

synchronization protocol for certifiable mixed criticality scheduling. Embedded

Systems Letters, 6(1):8–11, 2014.

[ZMM04] Dakai Zhu, Rami Melhem, and Daniel Mossé. The effects of energy man-

agement on reliability in real-time embedded systems. In Computer Aided

Design, 2004. ICCAD-2004. IEEE/ACM International Conference on, pages

35–40. IEEE, 2004.

135



Publications Related to Thesis

Journals

• L. Behera and P. Bhaduri, “Time-Triggered Scheduling of Mixed-Criticality Systems”,

ACM Transactions on Design Automation of Electronic Systems, Volume 22, Issue 4,

Number 74, Pages 74:1 - 74:25, 2017. (Published)

• L. Behera and P. Bhaduri, “An Energy-efficient Time-triggered Scheduling Algorithm

for Mixed-criticality Systems”, Design Automation for Embedded Systems, Springer.

(Submitted)

Conference

• L. Behera and P. Bhaduri, “Time-Triggered Scheduling for multiprocessor Mixed-

Criticality Systems”, Distributed Computing and Internet Technology. ICDCIT 2018.

Lecture Notes in Computer Science (LNCS), vol 10722. Springer, 2018. (Published)

136



Brief Biography of the Author

Name: Lalatendu Behera

Father’s Name: Late Achyutananda Behera

Mother’s Name: Premalata Behera

Date of Birth: 15.06.1983

Date of Birth: Department of Computer Science and Engineering,

IIT Guwahati, Assam-781039, India

E-mail: lalatendu@iitg.ac.in

Lalatendu Behera is a research scholar at the Department of Computer Science and

Engineering at IIT Guwahati, India. He completed his M.Tech in Computer Science from

the Department of CSE, NIT Rourkela in 2011 and his B.Tech in Computer Science and

Engineering from Utkal University in 2006. His research interests include Real-time and

embedded systems and Real-time scheduling.

137



Department of Computer Science and Engineering

Indian Institute of Technology Guwahati

Guwahati 781039, India


	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Overview of Mixed-criticality Real-time Systems
	Time-triggered Scheduling
	Outline of the Thesis
	Time-triggered Scheduling of Uniprocessor Mixed-criticality Systems
	Energy-efficient Time-triggered Scheduling of Uniprocessor Mixed-criticality Systems
	Time-triggered Scheduling of Multiprocessor Mixed-criticality Systems

	Organization of the Thesis

	Background and Related Work
	Real-time Task Model
	Overview of Real-time Scheduling
	Dynamic-priority Scheduling
	Fixed-priority Scheduling
	Real-time Multiprocessor Scheduling

	Mixed-criticality System Model
	Related Work

	Time-triggered Scheduling of Uniprocessor Mixed-criticality Systems
	Introduction
	System Model
	Related Work
	Our Work

	The Proposed Algorithm: TT-Merge
	The Algorithm
	Intuition Behind the Algorithm
	Correctness Proof
	Dominance Over OCBP-based Algorithm
	Dominance Over MCEDF Algorithm

	Extension for m Criticality Levels
	Model
	Algorithm
	Correctness Proof

	Extension for Dependent Jobs
	Model
	The Algorithm
	Correctness Proof
	Generalizing the Algorithm for m Criticality Levels

	Extension for Periodic Jobs
	Comparison with Mixed-criticality Synchronous Programs
	Model

	Results and Discussion
	Conclusion

	Energy-efficient Time-triggered Scheduling of Uniprocessor Mixed-criticality Systems
	Introduction
	System Model and Literature Survey
	Mixed-criticality Task Model
	Power Model and DVFS
	Related Work

	Motivation and Problem Definition
	Problem Formulation

	The Proposed Algorithm
	Energy-efficient EDF-VD versus Energy-efficient TT-Merge
	Extension for Discrete Frequency Levels

	Extension of the Proposed Algorithm for Dependent Task Sets
	Model
	Problem Formulation
	The Algorithm

	Results and Discussion
	Conclusion

	Time-triggered Scheduling of Multiprocessor Mixed-criticality Systems
	Introduction
	System Model
	Related Work
	The Proposed Algorithm: LoCBP
	Correctness Proof
	Comparison with MCPI Algorithm

	Extension for Dependent Jobs
	Model
	The DP-LoCBP Algorithm
	Comparison with MCPI Algorithm

	Results and Discussion
	Conclusion

	Conclusions and Future Scope of Work
	Summary of the Thesis
	Future Scope of Work


