
Design and Testing of Digital
VLSI Circuits using Approximate

Computing

Thesis submitted to the

Indian Institute of Technology Guwahati

for the award of the degree

of

Doctor of Philosophy

in

Computer Science and Engineering

Submitted by

Sisir Kumar Jena

Under the guidance of

Prof. Santosh Biswas and Prof. Jatindra Kumar Deka

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati

Oct, 2023

mailto:sisir.jena@iitg.ernet.in
https://www.iitbhilai.ac.in/index.php?pid=santosh
https://www.iitg.ac.in/cse/internet-pages/jatin
http://www.iitg.ernet.in/cse/
http://www.iitg.ernet.in

Abstract

Several studies on the applications of Recognition, Mining, and Syn-

thesis (RMS) have been undertaken in recent years. The tasks exe-

cuted by these applications don’t require a golden answer or an out-

standing numerical result. Instead, they must deliver products that

are acceptable or sufficient in quality. These workloads have inher-

ent application resilience or the capacity to deliver acceptable results

even if a significant portion of their computations are executed in

an imprecise or approximate manner. Intrinsic application resilience

adds a whole new level to the optimization of computing platforms.

However, the belief that every computation must be conducted with

the same stringent idea of accuracy continues to govern the design

of computing systems. With unrelenting demand for computing per-

formance on one side and the power requirement from technology

scaling on the other, it’s essential to delve into a new source of effi-

ciency. Approximate Computing (AxC) is a new design method that

takes advantage of the flexibility given by intrinsic application re-

silience to optimise hardware or software implementations that are

more energy or performance efficient. Several AxC techniques have

been effectively developed for system architecture, software, storage

elements, arithmetic circuits, and simulation in the last decade. In

this thesis, we focus on Approximate Arithmetic Circuits, particularly

Approximate Adder, which are the result of applying AxC techniques

at the hardware level, and Approximate Testing, which is the process

of approximating the conventional test procedure.

Recent techniques in approximate adder design revolve around two

important principles: (1) reducing the carry chain and (2) tolerating

inaccuracy at Least Significant Bits (LSBs). Using the first principle,

a given n-bit adder is divided into a number of blocks to shorten the

carry chain, and no modification is made to the Full Adders (FAs),

which is the fundamental unit of an adder circuit. The next cat-

egory of adders is based on the second principle. The approxima-

tion is achieved through employing Approximate Full Adder (AFA)

in the LSB part of the adder circuit. The basic design principle is

to partition the given n-bit adder into two segments: an inaccurate

(inexact) segment and an accurate segment. The former consists of

AFAs accepting the inputs from LSBs. The latter consists of conven-

tional FAs receiving inputs from MSBs. The approximate adder de-

sign techniques discussed above are primarily applied to Ripple Carry

Adder (RCA) circuits, where a carry-chain or a fundamental block

such as FA is present in the design. However, complex adder designs

such as Kogge Stone Adder (KSA), where no fundamental blocks or

carry chain is available, require unique treatments to generate an ap-

proximation version. This thesis focuses on designing such adders us-

ing the Significance-based gate-level pruning (SGLP) technique. With

this approach, a non-significant gate is identified and is removed from

the actual architecture to achieve approximation. Following SGLP,

the accuracy of the adder can be controlled using the error threshold

provided by the designer.

Circuits that produce acceptable results can be used in applications

like RMS that have error resilience qualities. To put it another way,

a circuit that has a fault but nevertheless produces a decent outcome

can be used in error-tolerant applications. These circuits are referred

to as Acceptable Integrated Circuits (AcICs). However, when using

the traditional testing process, we discovered no technique for iden-

tifying AcICs through testing. We can’t overlook the fact that the

faulty circuit discovered via traditional testing may generate error-

free output for the majority of test patterns. This thesis proposes

techniques to approximate the traditional test flow architecture (Ap-

proximate Testing) for distinguishing AcICs from rejected circuits.

The key idea is to classify the faults as benign or malignant (i.e.,

acceptable or unacceptable, respectively) based on an error threshold

(i.e., the maximum tolerable amount of error). This classification pro-

vides two sets of faults (i.e., acceptable and unacceptable). Then, we

employ an Automatic Test Pattern Generation (ATPG) system that

is aware of the classification and generates test patterns only for unac-

ceptable faults while minimizing detection of acceptable faults. The

proposed approach has the considerable benefit of increasing yield.

According to the proposed yield model, the effective yield gain will

be between 10-20% on average.

Declaration

I certify that:

a. The work contained in this thesis is original and has
been done by me under the guidance of my supervisor.

b. The work has not been submitted to any other Insti-
tute for any degree or diploma.

c. I have followed the guidelines provided by the Insti-
tute in preparing the thesis.

d. I have conformed to the norms and guidelines given
in the Ethical Code of Conduct of the Institute.

e. Whenever I have used materials (data, theoretical anal-
ysis, figures, and text) from other sources, I have given
due credit to them by citing them in the text of the
thesis and giving their details in the references. Fur-
ther, I have taken permission from the copyright own-
ers of the sources, whenever necessary.

Sisir Kumar Jena

mailto:sisir.jena@iitg.ernet.in

Copyright

Attention is drawn to the fact that copyright of this thesis rests with

its author. This copy of the thesis has been supplied on the condition

that anyone who consults it is understood to recognise that its copy-

right rests with its author and that no quotation from the thesis and

no information derived from it may be published without the prior

written consent of the author.

This thesis may be made available for consultation within the Indian

Institute of Technology Library and may be photocopied or lent to

other libraries for the purposes of consultation.

Signature of Author..

Sisir Kumar Jena

mailto:sisir.jena@iitg.ernet.in

Certificate

This is to certify that this thesis entitled “Design and
Testing of Digital VLSI Circuits using Approxi-
mate Computing” being submitted by Sisir Kumar
Jena, to Department of Computer Science and Engineer-
ing, Indian Institute of Technology Guwahati, for partial
fulfillment of the award of the degree of Doctor of Phi-
losophy, is a bonafide work carried out by him under our
supervision and guidance. The thesis, in our opinion, is
worthy of consideration for award of the degree of Doc-
tor of Philosophy in accordance with the regulation of the
institute. To the best of our knowledge, it has not been
submitted elsewhere for the award of the degree.

........................

Prof. Santosh Biswas

Professor

Department of Electrical Engineering and Computer Science

IIT Bhilai

........................

Prof. Jatindra Kumar Deka

Professor

Department of Computer Science and Engineering

IIT Guwahati

mailto:sisir.jena@iitg.ernet.in
mailto:sisir.jena@iitg.ernet.in
http://www.iitg.ernet.in
https://www.iitbhilai.ac.in/index.php?pid=santosh
https://www.iitbhilai.ac.in/index.php?pid=dept_cse
https://www.iitg.ac.in/cse/internet-pages/jatin
https://www.iitg.ac.in/cse/

Dedicated to
Late Baikuntha Nath Jena

My Father, whose blessing, love and inspiration paved my path of

success

Acknowledgments

A great many people have contributed to the production of this dis-

sertation. I owe my gratitude to all those people who have made this

possible.

I wish to express my deepest gratitude to my supervisors, Prof. San-

tosh Biswas and Prof. Jatindra Kumar Deka for their valuable guid-

ance, inspiration, and advice. I feel very privileged to have had the

opportunity to learn from, and work with them. Their constant guid-

ance and support not only paved the way for my development as a

research scientist also changed my personality, ability, and nature in

many ways. I have been fortunate to have such advisors who gave me

the freedom to explore on my own and at the same time the guidance

to recover when my steps faltered. Besides my advisor, I would like to

thank the rest of my thesis committee: Prof. Purandar Bhaduri, Dr.

Aryabartta Sahu, and Dr. Ashish Anand, for their insightful com-

ments and encouragement. Their comments and suggestions helped

me to widen my research from various perspectives.

I also like to express my heartful gratitude to the director, the deans

and other managements of IIT Guwahati whose collective efforts has

made this institute a place for world-class studies and eduaction. I

am thankful to all faculty and staff of Dept. of Computer Science and

Engineering for extending their co-operation in terms of technical and

official support for the successful completion of my research work.

I am thankful to my friends for supporting and motivating to overcome

any problems either in work and otherwise. The countless discussions,

sharing ideas has improved our research. I am also grateful to all my

seniors, friends and juniors especially Pranav, Partha, Chinmaya, De-

babrata, Swagat Abhijeet, Madhurima, Nilakshi, Shrestha, Subrata,

Arunangshu, Palash, Aparajita, Vasudevan, Bhale, and many others

for their unconditional help and support. You made my life at IIT

Guwahati a memorable.

Most importantly, none of this would have been possible without the

love and patience of my family. I want to thank my parents, Lipun

and Duggu for being a constant source of love, concern, support, and

strength all these years.

Contents

1 Introduction 1

1.1 Approximate Computing Research Areas 3

1.2 Motivation and Research Focus 6

1.3 Scope and Objective of the Thesis 13

1.4 Major Contribution of the Thesis 15

1.4.1 Contribution on Approximate Adder Design 15

1.4.1.1 Systematic Design of Approximate Adder Using

Significance Based Gate-Level Pruning (SGLP) . 15

1.4.2 Contribution on Approximate Testing 16

1.4.2.1 Approximate Testing of Digital VLSI Circuits us-

ing Error Significance based Fault Analysis . . . 17

1.4.2.2 Retesting of Rejected Circuits using Approxima-

tion Technique 17

1.4.2.3 Retesting Defective Circuits to Allow Acceptable

Faults for Yield Enhancement 18

1.5 Organization of the Thesis . 18

2 Research Background 21

2.1 Approximate Adder Design Philosophy 21

2.2 Approximate Adder Design Techniques 24

2.2.1 Approximate Block Adders (AxBA) 24

2.2.1.1 Variable Latency Speculative Addition (VLSA) . 25

2.2.1.2 Error Tolerant Adder Type II (ETAII) 25

xv

CONTENTS

2.2.1.3 Speculative Carry Select Addition (SCSA) 26

2.2.1.4 Approximate Carry Skip Adder (ACSA) 27

2.2.1.5 Carry Speculative Adder (CSPA) 28

2.2.1.6 Efficient Carry Speculative Approximate Adder

(EFCSA) . 29

2.2.2 Approximate Segment Adders (AxSA) 30

2.2.2.1 Gate-Level Simplification 31

2.2.2.2 Lower-part-OR Adder (LOA) 31

2.2.2.3 Approximate Mirror Adder (AMA) 32

2.2.3 Approximate Pruning Adders (AxPA) 33

2.3 Approximate Testing Philosophy 35

2.3.1 Digital VLSI Testing . 35

2.3.1.1 Fault Models . 36

2.3.1.2 Test Generation 37

2.4 Literature Review of Testing Techniques in the Context of Approx-

imate Computing . 39

2.4.1 Approximating Conventional Test Flow Architecture . . . 40

2.4.2 Threshold Testing . 41

2.4.2.1 Error-rate based Threshold Testing (Error-rate Test-

ing) . 42

2.4.2.2 Error-significance based Threshold Testing 43

2.4.2.3 Threshold Testing Using Both Error-Rate and Error-

Significance . 44

2.4.3 Testing Techniques for Approximate Circuits (AxICs) . . . 45

2.5 Conclusion . 47

3 Approximate Adder Design 49

3.1 SGLP Technique and Implementation 50

3.1.1 SGLP for FA Approximation 50

3.1.2 SGLP for Uncut Adder . 52

3.2 Experimental Evaluation . 56

3.2.1 DCT Application . 57

3.2.1.1 FPGA Implementation 58

xvi

CONTENTS

3.2.1.2 Image compression and Result Analysis 59

3.3 Conclusion . 59

4 Approximate Testing 63

4.1 Fault Analysis based Approximate Testing 64

4.1.1 Motivation . 66

4.1.2 Proposed Approach . 68

4.1.2.1 PGN Generation 68

4.1.2.2 One-to-One mapping 71

4.1.3 Experimental Result . 72

4.1.3.1 Test Pattern Reduction Analysis 72

4.1.3.2 Image Compression 74

4.2 Retesting Defective Circuits using Approximation Technique . . . 75

4.2.1 Motivation and Analysis 77

4.2.1.1 Analysis-1 . 78

4.2.1.2 Analysis-2 . 80

4.2.2 Proposed Approach . 81

4.2.2.1 Fundamental Principle 83

4.2.2.2 Fault Analysis 84

4.2.2.3 Fault Classification 88

4.2.2.4 Conventional Test Flow 89

4.2.2.5 Approximate Test Phase 92

4.2.3 Case Study . 92

4.2.4 Evaluation . 97

4.3 Discussion and Summary . 102

4.4 Conclusion . 103

5 Conclusion and Future Works 105

5.1 Summary of the Contributions . 105

5.2 Fulfilling the Aim and Objective 109

5.3 Future Works . 110

References 113

xvii

CONTENTS

Appendix A: Yield Modeling and Analysis 127

Appendix B: Summary of Publications 133

xviii

List of Figures

1.1 Approximate computing philosophy 2

1.2 Research Focus . 6

1.3 ALU Energy Consumption with respect to basic Basic Arithmetic

Operations . 7

1.4 Circuit Categories (2-bit Multiplier Circuit) 10

2.1 Ripple Carry Adder . 22

2.2 8-bit RCA Circuit Showing Error at LSB bit 23

2.3 Block diagram of ETAII . 26

2.4 Block diagram of SCSA . 27

2.5 Block diagram of ACSA . 28

2.6 A Single Block of CSPA . 29

2.7 Basic Design Principle of AxSA 30

2.8 Gate Level simplification of FA 31

2.9 Lower Part OR Adder Architecture 32

2.10 Gate-Level Netlist Example and Significance 34

2.11 Conventional Test Flow Architecture 36

2.12 Example of Stuck at Fault model 37

2.13 Scan Chain Design Technique . 39

2.14 Structural Analysis of Primary Output 41

2.15 Error-rate test methodology . 42

2.16 Threshold testing using error significance as error threshold 43

2.17 Acceptance Threshold for Error-rate and Error-significance 44

xix

LIST OF FIGURES

2.18 Fault Classification Procedure for Approximate Aware Testing . . 46

2.19 SAT-based ATPG for Approximate Circuit 46

3.1 Systematic Process of SGLP for AFA 51

3.2 Systematic Generation of AFAs using SGLP 51

3.3 Significance-based Gate-Level Pruning Process 53

3.4 Average PSNR for several compression ratios 60

3.5 Lena image produced with (a) DCT, (b) BAS-2011, (c-f) Proposed

method DCTv1, DCTv2, DCTopt, DCTnop 60

4.1 Idea of approximate testing . 63

4.2 Idea of approximating conventional IC test flow architecture . . . 64

4.3 Histogram Comparison . 67

4.4 Proposed Method . 68

4.5 Example . 70

4.6 Function representing the relationship between PGN and GN . . . 71

4.7 Fault site shown in red dot . 73

4.8 Compressed Lena image produced using the proposed model (a)

Conventional DCT (b) RCA with injected fault (c) KSA with in-

jected fault (d) HCA with injected fault 76

4.9 Motivating Example . 78

4.10 Example Circuit to explain Fault Severity 79

4.11 Showing absolute numerical difference (error-significance) between

output of original circuit and the faulty circuit 81

4.12 Imaginary Circuits under Test (a) Circuit showing Z0 as LSB and

Z3 as MSB (b) Circuit showing Z3 as LSB and Z0 as MSB 82

4.13 Proposed Test Flow Architecture 88

4.14 Traditional Test Flow Architecture With Enlarged View of the

Fault Analysis Steps . 91

4.15 C17 Circuit showing the fault locations (nets) marked with cross

symbols. Each cross symbol either represents a stuck-at-0 or a

stuck-at-1 fault . 93

4.16 C17 circuit’s fault analysis showing the fault list and the fault pay-off 94

xx

LIST OF FIGURES

4.17 C17 circuit’s fault analysis showing fault pay-off clusters in a num-

ber line. 95

4.18 C17 circuit’s fault analysis showing fault pay-off clusters. The

point annotated with F i
max is the largest fault fay-off with value

532. The remaining fault pay-offs are grouped into 5 clusters. δi

shows the distance from the point F i
max. 96

4.19 Showing results of fault analysis and their fault pay-off 98

4.20 (a) Hierarchical SOC Containing Several Cores Having Multiple

Modules (b) Simplified IC Fabrication Steps (c) Simplified SOC

Design . 101

1 Fault Distribution on a Wafer in Classical Yield Model and Ap-

proximate Yield Model . 129

2 Result of Effective Yield for different values of b 131

xxi

LIST OF FIGURES

xxii

List of Algorithms

1 Significance based Gate-Level Pruning 55

2 Fault Analysis . 87

3 Fault Classification . 90

xxiii

LIST OF ALGORITHMS

xxiv

List of Tables

1.1 Categorization of Approximate Computing Techniques 3

1.2 A Comparison table that describes about ExICs, AxICs, and AcICs 9

1.3 Truth Table Analysis of 2-bit Multiplier Circuit 12

2.1 Truth Table Comparisons of AMAs 33

3.1 Truth Table Analysis of Approximate FAs 52

3.2 Area,Power, and Delay Characteristics 57

4.1 Analysis of the result obtained for RCA 4-bit 71

4.2 Fault-based Test Technique Results for Benchmark Circuits 74

4.3 Output analysis of the example circuit 82

4.4 Deciding the value for δ . 96

4.5 ISCAS85 Benchmarks Result Analysis and Classification for Faults 99

4.6 ITC’99 Benchmark Circuits . 99

4.7 ITC’99 Benchmarks Result Analysis and Classification for Faults . 100

4.8 SOC Test Result . 101

1 Existing Yield Models . 128

2 Effective Yield for 30% Benign Fault 131

xxv

xxvi

List of Acronyms

AcIC Acceptable Integrated Circuit

AFA Approximate Full Adder

AMA Approximate Mirror Adder

ATPG Automatic Test Pattern Generation

AxBA Approximate Block Adder

AxC Approximate Computing

ACSA Approximate Carry Skip Adder

AxIC Approximate Integrated Circuit

AxPA Approximate Pruning Adder

AxSA Approximate Segment Adder

BKA Brent-Kung Adder

CLA Carry Lookahead Adder

CUT Circuit Under Test

CNN Convolutional Neural Networks

CSPA Carry Speculative Adder

DNN Deep Neural Networks

DSP Digital Signal Processing

ETAII Error Tolerant Adder Type II

xxvii

ExIC Exact Integrated Circuit

FaIC Faulty Integrated Circuit

FA Full Adder

HCA Han-Carlson Adder

IoT Internet of Things

KSA Kogge Stone Adder

LFA Ladner-Fischer Adder

LSB Least Significant Bit

LOA Lower-part-OR Adder

ML Machine Learning

MA Mirror Adder

MSB Most Significant Bit

RCA Ripple Carry Adder

RMS Recognition, Mining, and Synthesis

SBER Significance based Error-rate

SGLP Significance-based gate-level pruning

SCSA Speculative Carry Select Addition

TDV Test Data Volume

VLSA Variable Latency Speculative Addition

WCE Worst Case Error

xxviii

Chapter 1
Introduction

In recent years, application domains like the Internet of Things (IoT), Machine

Learning (ML), and Big Data Analytics require intensive computations. Indus-

tries started building denser chips to meet these applications’ computational

needs and performance requirements. However, keeping a constant power re-

quirement and fulfilling the computational need is not possible at the same time.

Large computations require massive power. The advancement in technology scal-

ing pushes the operating voltage beyond its threshold, leading to a thermal vi-

olation and conceivably damaging the chip. The existing cooling solutions such

as dark silicon [1], Thermal Design Power [2], Dynamic Voltage and Frequency

Scaling (DVFS) [3], Power Gating (PG) [4], near threshold computing [5], and

adaptive scheduling [6] limits the power requirement but fails to achieve the rate

of performance improvement. Therefore, it is necessary to substantially or en-

tirely stray from the existing architecture and devise a new solution to fulfill the

computational need and achieve performance improvement.

The Approximate Computing (AxC) paradigm is emerging as a new architec-

ture to deliver better solutions in terms of energy gain, improved performance

by trading off the accuracy of the result [7]. Approximate computing technique

is driven by several error-resilient applications like multimedia, signal processing,

machine learning, and robotics. Based on the input data and nature of compu-

1

1. INTRODUCTION

C
o

m
p

le
xi

ty

C
o

m
p

le
xi

ty

En
er

gy

A
cc

u
ra

cy

En
er

gy

A
cc

u
ra

cy

Exact Design Approximate Design

Trade off

Error-resilient
Applications

• Improved
Performance

• Acceptable Accuracy
• Reduces Design

Complexity
• Consumes less energy

Figure 1.1: Approximate computing philosophy

tations, these applications do not demand exactness in the output. There are

several factors involved as a reason for this error resiliency [8]. (1) Users’ percep-

tual limits, in which a slight inaccuracy in visual data goes unnoticed by users

due to their psycho-visual limitations. (2) There is no such thing as a ”golden

solution” when numerous results for a given input are equally acceptable. (3)

Applications are said to be resilient to input noise when it produces acceptable

outputs, even in the presence of natural input noises. AxC is one such paradigm

that takes advantage of an application’s error resistance to improve the system’s

overall resource efficiency. Figure 1.1 shows the philosophy of AxC. An exact

design always produces accurate results, consumes sufficient energy, and is com-

plex. According to AxC’s philosophy, managing with a slight reduction in the

result’s accuracy saves a lot of energy and reduces complexity. AxC techniques

provide solutions to build less complex designs, which creates a trade-off between

the accuracy of the result with complexity and energy efficiency. Error resilient

applications can be built using these approximate circuits to have several ben-

efits like (1) performance improvement, (2) reduction in design complexity, and

(3) consuming less energy during operations.

This chapter presents some background information about the work discussed

in this thesis. The discussion begins with a brief overview of the areas in which

approximate computing techniques are used and a review of several features of

2

1.1 Approximate Computing Research Areas

Table 1.1: Categorization of Approximate Computing Techniques

Approximate Computing Research Approximate Computing Techniques

Approximate Arithmetic Circuits
Approximate adder [9–12]
Approximate multiplier [13–15]
Approximate divider [16,17]

Approximate Storage
Voltage overscaling [18]
Refresh rate reduction [19,20]
Inexact read/write [21, 22]

Approximate systems
Approximate accelerator [23,24]
Programmable processors [25]

Software Approximation
Loop perforation and Loop Unrolling [26,27]
Precision scaling [28,29]
Memoization [30,31]

Hardware/Software Codesign
Frameworks [32]
Compilers [33]

Approximate Computing for Security
Bitcoin mining [34]
Information Hiding [35,36]
Post Quantum Cryptography [37,38]

Approximate AI System Design Cross layer approximation [39,40]

AxC. Further, it discusses Approximate Integrated Circuit (AxIC) in particular,

which is the focus of our research. The testing aspect of digital VLSI circuits

is also discussed and how the approximation computing paradigm aids in their

improvement. In other words, the discussion focuses on two independent research

areas of approximate computing in this thesis: approximate arithmetic circuit

design and approximating test methodologies for hardware integrated circuits.

1.1 Approximate Computing Research Areas

Several approximation techniques have been effectively developed for system ar-

chitecture, software, storage elements, arithmetic circuits, and simulation in the

last decade. Table 1.1 shows seven different research areas of approximate com-

puting techniques. The main motive of this classification is to show the vast

application area of approximate computing techniques. This section provides a

brief overview of these classifications.

1. Approximate Arithmetic Circuit Design: In this, the researchers propose a

3

1. INTRODUCTION

simplified design of existing arithmetic circuits (such as addition, multipli-

cation, or division) that produce approximate results close enough to the

accurate result [9–17]. The main objective of modifying the circuit is to

reduce energy consumption during operation. Other benefits include the

gain in area and delay.

2. Approximate Storage: The accelerating power consumption and perfor-

mance cost caused by unavoidable memory refresh instructions are the

driving force behind approximate storage. Several approximation tech-

niques like voltage overscaling [18], refresh rate reduction [19, 20], inexact

read/write [21, 22] was proposed to reduce a significant portion of the sys-

tem’s power consumption.

3. Approximate Systems :To achieve approximation at the system level, one

can design an approximate accelerator or programmable processor. Works

in [23, 24] focus on the approximate accelerator, and [25] concentrate on

programmable processor designs.

4. Software Approximation: In software, the approximation is realized using

techniques such as loop perforation [26, 27], precision scaling [28, 29], and

memoization [30, 31]. Loop perforation is achieved by skipping some it-

erations of a loop, whereas memoization replaces the computation with

previously computed results.

5. Hardware/Software Codesign: The majority of approximation computing

research concentrates on either software or hardware. In literature, there

are several articles that show a coordinated architecture using both soft-

ware and hardware to generate effective, high-performance, and reliable

outcomes. A hardware/software codesign method in [32] and [33] is pro-

posed for frameworks and compilers, respectively.

6. Approximate Computing for Security : Several approximation techniques

are developed to strengthen cryptographic and hardware security to secure

4

1.1 Approximate Computing Research Areas

a system [41]. Techniques such as bitcoin mining [34] and post-quantum

cryptography [37, 38] benefit traditional cryptographic primitives. On the

other hand, techniques such as information hiding [35,36] benefits hardware

security.

7. Approximate AI System Design: The use of approximation computing to

Deep Neural Networks (DNN) is ideal since DNN have a lot of redun-

dancy and can tolerate errors. Currently, several articles focus on de-

signing a complete AI system build using cross-layer approximation tech-

niques [39, 40]. Some works are also used the approximation technique to

reduce the computations involved in Convolutional Neural Networks (CNN)

architectures [42].

Besides the categories explained above, one major challenge is automatically

synthesizing approximate circuits without depending on the designer’s skill. It

is also essential to develop techniques that synthesize approximate circuits from

the given high-level descriptions, such as C or behavioral Verilog. In [43], the

author reviews these techniques in detail. Approximating circuit testing is another

intriguing topic that has recently been investigated. Works in literature [44–46]

investigates a survey of testing procedures for approximation integrated circuits.

This thesis explores two research areas where the performance of existing

methodologies is improved by employing approximation techniques: (1) Approxi-

mate Adder Design (2) Approximating Testing. There have been several approx-

imation techniques proposed so far in approximate adder design. However, those

are ad-hoc and are not systematic. There is a need to improve the approximate

adder circuits’ design approach. Therefore, the first contribution of this thesis

focuses on proposing an efficient, systematic design procedure to produce an ap-

proximate adder. The proposed technique uses the idea of probabilistic pruning,

where controlling the energy-accuracy trade-off is much easier compared to pre-

vious approaches. The process is more elegant and easier to implement because

of its iterative nature. The technique removes a circuit element in every iteration

5

1. INTRODUCTION

and calculates its output deviation. The method stopped when the variation in

the output reached to required threshold. The other contribution of this thesis is

approximating the test flow architecture. The idea of approximating the test flow

architecture relies on two key questions: (1) Can we test an IC approximately? -

testing an IC that avoids 100% fault coverage (2) Is there a need to modify the

approximate test flow architecture to test an AxIC?. This dissertation discusses

the solution to the above questions and proposes several modifications to the

traditional test method.

1.2 Motivation and Research Focus

From the discussion in Section 1.1, it is pretty evident that AxC is now a widely

used method to improve performance in several areas. This section provides a

detailed explanation of the primary focus of this thesis. Mainly, it explores two

dimensions of approximation: (1) Digital VLSI Circuit Design and (2) Digital

VLSI Circuit Testing. Figure 1.2 shows an elaborated description of our research

focus. The significant contribution of this thesis is to propose approximation

techniques for circuit design and testing to improve their performances.

Approximate
Computing Techniques

Digital VLSI
Circuit Design

Digital VLSI
Circuit Testing

Approximate
Arithmetic Circuit

Conventional
IC Test Flow
Architecture

We cannot use
conventional testing

procedure to test AxICs

Can we approximate
the conventional test

flow architecture?

Approximating
IC Test Flow

Needs a
different test

technique

Yield
Improvement

Approximate
Testing

?

PASS

FAIL

Faulty IC
(FaIC)

Approximate
Adder Design

?

PASS

FAIL

Acceptable IC
(AcIC)

?

PASS

FAIL

Approximate IC
(AxIC)

1

2

3

4

Exact IC
(ExIC)

CUT

Figure 1.2: Research Focus

6

1.2 Motivation and Research Focus

Arithmetic circuits such as adders, multipliers, dividers, and subtractors are

the basic building blocks of any digital computing system. The basic building

blocks of any digital system constitute mostly standard arithmetic operations

such as adder, subtractor, multiplier, and divider. Figure 1.3 (a) shows that

typical benchmarks contain 25% of such operations. However, 90% of ALU energy

consumption occurs due to this 25% of arithmetic operations. Figure 1.3 (b)

shows the ALU energy consumption percentage of several benchmarks. Therefore,

redesigning these arithmetic circuits using approximate computing techniques

helps reduce energy consumption.

(a) (b)

1
1

.8

1
3

.6

1
1

.1

1
3

1
2

.5

1
1

.1 1
7

.2

3
.1 6

0
.6 6 3
.2

0
.2

0
.1

1
2

.2

2
.2

1
7

.3

4

0

1
8

.1

0

7
2

.9 7
8

.2

7
1 7

7

8
4

.3

7
0

.6

8
2

.7

B L A C K S C H O L E S F F T I N V E R S E K 2 J J M E I N T J P E G K M E A N S S O B E L

O
P

E
R

A
T

IO
N

 D
IS

T
R

IB
U

T
IO

N
 (

%
)

BENCHMARKS

Add/Sub Mul Div Others

1
3

.7 1
6

.6

1
3

.7

1
5

.2

3
1

.6

1
4

5
5

.8

2
1

.5

4
3

.5

4
.6

4
1

.4 4
7

.8

1
.1 2
.8

3
6

.4

6
.6

5
4

.9

1
1

.8

0

5
9

0

2
8

.4 3
3

.3

2
6

.8 3
1

.6

2
0

.6 2
5

.9

4
1

.4

B L A C K S C H O L E S F F T I N V E R S E K 2 J J M E I N T J P E G K M E A N S S O B E L

A
LU

 E
N

E
R

G
Y

 B
R

E
A

K
D

O
W

N
 (

%
)

BENCHMARKS

Add/Sub Mul Div Others*

Figure 1.3: ALU Energy Consumption with respect to basic Basic Arithmetic Opera-
tions (a) Number of Operations in Benchmarks (b) ALU Energy Consumption [47]

The addition is the most commonly utilized operation, whether on a general-

purpose system or a complex Digital Signal Processing (DSP) unit. A complex

system’s performance is significantly improved by an efficient adder design. It is

no surprise that adders have gotten a lot of attention from researchers, and as a

result, computer architects have several adder designs to choose from. Of course,

they want to employ the best adder. The major challenge that was always a

problem with the adder was the area, power, and delay. First, let us talk about

two incompatible terminologies: delay and area, enhancing one need sacrificing

the other. For instance, consider a RCA; n FAs are connected in series. In the

worst case, the carry of the rightmost FA may propagate to the extreme left

FA. Therefore, the delay of an n-bit RCA is almost O(n). RCA is the simplest

7

1. INTRODUCTION

adder that takes less area than the adder, such as KSA. KSA is faster with log-

arithmic delay than RCA but takes a large area (O(n log2 n)). Similarly, when

we consider power and area, they are proportional to each other. In summary,

delay and power consumption also increase when bit-width increases [48]. One

solution to this is to use an approximate computing technique to redesign the

conventional adders, that improve performance. As discussed above, the approx-

imate computing technique is driven by error-tolerant applications. Hence, due

to the error-tolerant nature of several applications and the idea of approximate

computing, several adder designs have been proposed that consume less energy,

area, and delay. On the other hand, these adders compromise on the accuracy

of the result. However, that does not impact the overall performance because

they are assumed to be used in error-tolerant applications. Previous techniques

on designing approximate adders are mainly grouped into three categories. The

first category is reducing the carry-chain, which is the most common method

followed in [11, 49–52]. With the second category, the designer modifies the fun-

damental FA block and deploys it to the Least Significant Bit (LSB) bit of the

conventional adder. It is assumed that errors in the LSB bit do not produce

a catastrophic result [53–55]. The third category is based on the probabilistic

pruning technique [56,57].

The first contribution of this thesis marked ➊ in Figure 1.2 presents an approx-

imation technique to reduce the size of the adder circuit through the gate-level

pruning method. The non-significant gates have been identified and removed

from the original adder circuit to reduce the size. Due to which the power and

delay of the circuit get reduced.

The second contribution of the thesis is on modifying the conventional test

flow architecture. There are multiple benefits as well as a necessity for this

modification. Before the discussion proceeds, let us introduce three circuit ter-

minologies: (1) Exact Integrated Circuits (ExICs), (2) Approximate Integrated

Circuits (AxICs), and (3) Acceptable Integrated Circuits (AcICs). ExICs are con-

ventional circuits that follow state-of-the-art circuit design and testing techniques.

8

1.2 Motivation and Research Focus

Table 1.2: A Comparison table that describes about ExICs, AxICs, and AcICs

Headings ExICs AxICs AcICs

Definition These are conven-
tional circuits and
follow the standard
design procedure,
pass all tests, and
finally produce the
IC’s semantics.

Analyze and redesign any
conventional IC to im-
prove performance by
reducing area, energy
consumption, and delay
while sacrificing the ac-
curacy of the result.

Refers to the ExICs
that are rejected dur-
ing testing and found
to be acceptable be-
cause the circuit’s er-
ror is not catastrophic.

Design
Procedure

Follows the conven-
tional design proce-
dure.

It was redesigned from
an existing architecture
by following a traditional
design technique.

No design procedure is
needed because these
circuits are the re-
sult of retesting tech-
niques.

Testing
Technique

Follows the conven-
tional testing tech-
nique.

Requires specialized test
techniques [44] because
errors are intentional in
these circuits. Therefore
testing procedure must
ignore these errors dur-
ing testing.

Requires new test
techniques to identify
acceptable rejected
ICs. Some litera-
ture refers to this as
threshold testing.

After completing the test application process, the resultant circuit that passes all

tests is called ExIC. Note that the conventional circuits that fail during the man-

ufacturing test are called Faulty ICs (FaICs). The second category (AxICs) is

redesigned from the existing fundamental circuits with an objective to reduce

design complexity in terms of area, power, and delay. These circuits produce

an incorrect result; however, the results are acceptable. The third category, i.e.,

AcICs, is identified by retesting FaICs. Like, ExICs these circuits produce an

incorrect output but are acceptable. A brief comparison of these three circuits is

given in Table 1.2.

To understand it further, consider a 2-bit exact multiplier circuit (ExIC)

shown in Figure 1.4 (a) and its corresponding AxIC in Figure 1.4 (b) [58]. Figure

1.4 (c) shows the same circuit with a stuck-at-0/1 fault at net i, and Figure 1.4

(d) shows the circuit with stuck-at-0/1 fault at net s. Now, consider testing these

circuits by using a single Stuck-at fault model. Before that, look at the truth

9

1. INTRODUCTION

a

Z0Z1Z2Z3

Y0 X0Y1 X0X1 Y0Y1 X1

bcdefgh

ijklm

nopqr

st

a

Z0Z1Z2Z3

Y0 X0Y1 X0X1 Y0Y1 X1

bcdefgh

ijklm

nopqr

st

O

St
u

ck
-a

t-
0

St
u

ck
-a

t-
1

a

Z0Z1Z2Z3

Y0 X0Y1 X0X1 Y0Y1 X1

bcdefgh

ijklm

nopqr

st O

St
u

ck
-a

t-
0

St
u

ck
-a

t-
1

Z0Z1Z2

Y0 X0Y1 X0X1 Y0

(a) Exact IC (b) Approximate IC (AxIC) (c) Acceptable IC (AcIC) (d) Unacceptable IC

Figure 1.4: Circuit Categories (2-bit Multiplier Circuit)

table analysis of all these circuits shown in Table 1.3. All the inputs and outputs

are represented with their integer equivalent. The first (X) and second (Y) col-

umn shows the integer equivalent of all the input patterns. The third and fourth

column shows the output produced by the exact circuit and the approximate cir-

cuit, respectively. A predefined threshold value δ = 2, originally decided by [58],

is considered here to analyze the output produced by the AxIC. A threshold is

defined as the absolute integer amount by which the output of a circuit may

deviate and considered acceptable. As shown in column 4, the output of AxIC

deviates from its correct result at four places marked as a ⊕ symbol. However,

the absolute difference is 2 in all cases, which is within the threshold (δ) defined

above. Hence, the outputs are acceptable. We use the ⊕ symbol to indicate an

output which is wrong but acceptable, and the ✓symbol indicates the correct

output. The fifth and sixth column shows the output of the acceptable circuit

(AcIC) in the presence of a stuck-at-0 (Sa0@i) and stuck-at-1 (Sa1@i) fault at

net i, respectively. Here we can notice the output at several places is wrong but

acceptable, annotated with a ⊕ symbol. That is why the circuit is known as an

acceptable circuit. According to the definition defined above, an AcIC may not

produce the correct result but still be usable in fault-tolerant applications like

image processing. Similarly, the seventh and eighth column shows the output of

10

1.2 Motivation and Research Focus

the unacceptable circuit (UnAcIC) in the presence of a stuck-at-0 and stuck-at-1

fault at net s, respectively. Here we can mark the output at several places are

wrong, annotated with a × symbol, and the deviation in the output is more than

the threshold defined above. That is why the circuit is known as an unacceptable

circuit. A × symbol here indicates a wrong and unacceptable result.

A conventional IC test procedure is used to determine whether the Circuit

Under Test (CUT) behaves as per the specification or not [59]. The inputs that

are supplied during the test procedure is known as test vector or test patterns,

and the entire collection of test patterns is called a test set. After applying the

test patterns, the CUT’s response is recorded and compared with the golden

response using a test response analyzer. If the response matches, the CUT is

considered“pass”; otherwise, it is faulty. The golden response is referred to as

the expected response of the CUT. The circuit’s quality depends on the test

patterns or the test set. A test-generation method is a process that helps the

tester to generate the test patterns. A brief description of the conventional test

flow architecture is discussed in Chapter 2.

One fundamental question is; is it true that the FaICs are not usable at

all? A conventional test flow architecture follows a sequential application of test

patterns. Test patterns are applied one after another, and the result is checked

for correctness. The test flow stops when it produces a wrong result without

applying the remaining test patterns. However, there is a possibility that the

CUT may produce the correct output for the leftover test patterns. Again, the

pattern for which the CUT produces a wrong result may not have much impact

on the overall output. The question creates a motivation to retest the FaICs and

find how many of them are acceptable.

Retesting a FaIC requires a new test flow architecture because the conven-

tional test technique is not designed to ignore a fault present in CUT. This raises

to think, “can we approximate the conventional test flow architecture?”. Using

the term “approximation” here is to indicate the relaxation requirement of the

retesting process. Rather than testing for all faults present in a circuit, we can

11

1. INTRODUCTION

Table 1.3: Truth Table Analysis of 2-bit Multiplier Circuit

X Y ExIC AxIC
AcIC UnAcIC

Sa0@i Sa1@i Sa0@s Sa1@s

0 0 0 0✓ 0 1⊕ 0✓ 4×
0 1 0 0✓ 0 1⊕ 0✓ 4×
0 2 0 0✓ 0 1⊕ 0✓ 4×
0 3 0 0✓ 0 1⊕ 0✓ 4×
1 0 0 0✓ 0 1⊕ 0✓ 4×
1 1 1 1✓ 0⊕ 1✓ 1✓ 5×
1 2 2 2✓ 0 3⊕ 2✓ 6×
1 3 3 3✓ 2⊕ 3✓ 3✓ 7×
2 0 0 0✓ 0 1⊕ 0✓ 4×
2 1 2 0⊕ 2 3⊕ 2✓ 6×
2 2 4 4✓ 4 5⊕ 0× 4✓

2 3 6 4⊕ 6 7⊕ 2× 6✓

3 0 0 0✓ 0 1⊕ 0✓ 4×
3 1 3 1⊕ 2⊕ 3✓ 3✓ 7×
3 2 6 6✓ 6 7⊕ 2× 6✓

3 3 9 7⊕ 8⊕ 9✓ 9✓ 13×

Absolute Error Threshold |δ| = 2

✓: Correct ⊕: Wrong but Acceptable ×: Not Acceptable
ExIC: Exact IC AxIC: Approximate IC

AcIC: Acceptable IC UnAcIC: Unacceptable IC

12

1.3 Scope and Objective of the Thesis

ignore some. The approach of relaxing the test flow is known as approximate

testing [60]. A fault modal is decided in a conventional test procedure, and then

test patterns are generated using an Automatic Test Pattern Generation (ATPG)

algorithm for all faults. Approximate testing relaxes in terms of generating test

patterns. It generates a test pattern only for those faults whose effect is dis-

astrous. The major challenge is to develop techniques that help identify those

catastrophic faults and again generate test patterns using a new or an old ATPG.

In this thesis, our first contribution towards circuit testing revolves around the

challenges described above and is marked as ➋ in Figure 1.2. A similar challenge

is also posed by approximate circuit design and manufacturing processes. The

test engineers must be careful while testing an AxIC because distinguishing ac-

tual defects (either caused during design or manufacturing) from what is being

approximated becomes more challenging, as design/manufactured defects may

result in very similar variations in results. Therefore, a different test procedure

is needed to test AxICs, shown in Figure 1.2 marked ➍.

Several rejected circuits (faulty ICs) will be found acceptable by approximat-

ing the test technique. Due to which there is an improvement in the yield occurs

in the entire manufacturing process. Therefore, there is a requirement to propose

a yield model to analyze the yield gain. The second contribution to circuit testing

is to design a yield model marked ➌ in Figure 1.2.

1.3 Scope and Objective of the Thesis

The primary objective of the thesis is to explore the usage of approximate com-

puting techniques in the area of digital VLSI design and testing. Mainly, the

study focuses on two areas: (1) proposing a universal approximation technique

to design an approximate adder and (2) approximating the conventional test flow

architecture to improve the manufacturing yield.

To achieve our first objective, we learned about the internal architecture of

several arithmetic adder circuits. We explored different proposed methods that

13

1. INTRODUCTION

can be used to generate an approximate version of the given adder. Note that

arithmetic adder circuits are the fundamental building block of any kind of circuit.

Several adders exist like RCA, KSA, Brent-Kung Adder (BKA), and Ladner-

Fischer Adder (LFA), for which researchers propose approximation techniques to

generate approximate adders. Techniques proposed so far are adder specific, and

the methods developed for one type of adder may not help generate approximate

adders of other types. For instance, a technique developed for generating an ap-

proximate adder from a given RCA circuit may not help generate an approximate

adder from a given KSA circuit. Therefore, a universal approximation technique

is required that can help generate an approximate adder for any existing adders.

The second objective builds around two fundamental questions based on the

error-resilience property of several applications.

1. Can we approximate the conventional test flow architecture to test a circuit

approximately?

2. Can we reuse the failed circuits (rejected during conventional testing) in

error-tolerant applications if that circuit produces an approximate result?

We explored the process flow of conventional testing and fault modeling to

achieve the second objective. Due to the decrease in the feature size, several

transistors are fabricated in a small area, increasing the circuit’s complexity. The

circuit’s complexity leads to several defects, and the test engineers must test it

adequately to ensure its correct functionality. However, rigorous testing is also not

useful for yield enhancement. Hence, relaxing the test process sometimes helps

in improving the yield. Therefore, a different testing methodology is required to

relax the test process with the objective of reducing test application time and

energy consumption and, most importantly, improving the yield.

14

1.4 Major Contribution of the Thesis

1.4 Major Contribution of the Thesis

As part of the research work on approximate computing, the contributions explore

two research areas: (1) approximate adder design and (2) approximating digital

VLSI test flow architecture - approximate testing. The following sections discuss

these contributions.

1.4.1 Contribution on Approximate Adder Design

Approximate adder design is the most explored area in the approximate com-

puting paradigm. A basic adder is a collection of FAs connected in series. The

addition starts from the rightmost FA produces a sum and a carry (if any). The

carry propagates through the series of connections from LSB to MSB and fi-

nally delivers the result. Most ideas proposed so far are either based on reducing

the carry propagation or ignoring the output impact of LSB bits. However, these

techniques are only applicable to traditional circuits like RCA. Further, this tech-

nique makes no area reduction possible though it produces an approximate result.

The first contribution of this thesis is to propose a systematic approach to design

an approximate adder. The following section explains the first contribution.

1.4.1.1 Systematic Design of Approximate Adder Using Significance
Based Gate-Level Pruning (SGLP)

It is well known that approximation techniques are applied to conventional adders

to improve their performance. Existing conventional adders are either built us-

ing a chain of FAs such as RCA or follows a complex architecture like KSA.

Techniques developed to design approximate adders are mainly applied to RCA

circuits. The approaches that are proposed to approximate the RCA circuit are

not suitable for complex architecture like KSA [11, 49–55]. Therefore there is a

requirement to propose a technique to approximate the complex architectures like

KSA, Brent-Kung Adder (BKA), Ladner-Fischer Adder (LFA), and Han-Carlson

Adder (HCA). Unfortunately, a single contribution exists in the literature to-

15

1. INTRODUCTION

wards approximating these complex architectures [56]. Our first contribution is

based on Significance-based gate-level pruning (SGLP) technique where a non-

significant gate is identified and is removed from the actual architecture to achieve

approximation. Using SGLP, the result’s accuracy of an adder circuit is restrained

and can be kept below the given threshold. Here threshold refers to the allowable

range of the deviated output from the original one. Interestingly, our approach

is applicable to approximate both simple and complex architectures. To approx-

imate an RCA, the procedure follows a two-step approach. First, it prunes the

non-significant gates of the fundamental FA block to get an Approximate Full

Adder (AFA) and then use those AFAs to generate the LSB bit of the RCA

circuit. Similarly to approximate complex architectures like KSA, we follow an

identical approach described in [56]. However, the technique proposed in [56] is

not suitable for approximating simple architectures like RCA.

Not only design but testing is also plays a significant role in overall circuit

performance and time to market. Therefore, modifying conventional test flow

architecture is a requirement for testing AxICs. Another benefit of altering the

test architecture is to test traditional ICs approximately. Thus the following

contribution is focused on proposing approximate test techniques.

1.4.2 Contribution on Approximate Testing

Contribution towards approximate testing begins with the proposal of avoiding

100% fault coverage. Rather than testing all faults, the idea is to test the ma-

lignant defects whose impact is catastrophic. In other words, avoid generating

the test patterns for all identified faults that automatically reduce the number of

test patterns. Further, it also took less time to apply these test patterns. The

following section discusses the contributions towards approximate testing.

16

1.4 Major Contribution of the Thesis

1.4.2.1 Approximate Testing of Digital VLSI Circuits using Error Sig-
nificance based Fault Analysis

A conventional test procedure follows a unique simple rule of achieving 100%

fault coverage during a circuit test. Therefore, it is mandatory to generate test

patterns for all faults identified earlier during test generation. That means to

attend a high test quality, a massive amount of test patterns are generated, which

increases the Test Data Volume (TDV). Applying such voluminous test patterns

requires more time and thus consumes more power. Therefore several works in the

literature focus on reducing the test data volume through compression techniques.

This contribution introduces the term ”approximate testing, ” which relaxes the

requirement of 100% fault coverage. The basic idea is to identify faults having

a catastrophic effect and generate test patterns for them only. The remaining

faults are left untested, and no test patterns are generated.

1.4.2.2 Retesting of Rejected Circuits using Approximation Tech-
nique

Error-resilient applications like image processing, machine learning, and speech

recognition can use circuits that may not deliver the exact result. To put it an-

other way, a circuit that has a fault but nevertheless produces a decent outcome

can be used in error-tolerant applications. These circuits are referred to as Ac-

ceptable Circuits (AcICs). However, when using the traditional testing process,

we discovered no technique for identifying AcICs through testing. Traditional

test procedure checks whether the circuit is good or bad; it never checks for ac-

ceptability. However, some bad (faulty) circuits may produce an erroneous result

for k input patterns out of n input patterns, and k may be much less than n.

Again, it may happen that the k input pattern for which the circuit yields erro-

neous output may not be catastrophic. Therefore, we have proposed a technique

to identify the circuit’s acceptability in this contribution. The idea is to continue

applying the test patterns even if it produces the wrong output and records the

deviation from the actual output. Finally, quantify this deviation and compare

17

1. INTRODUCTION

it with the allowable threshold decided previously. If the variation is within the

given threshold, the circuit is acceptable; otherwise, it is rejected.

1.4.2.3 Retesting Defective Circuits to Allow Acceptable Faults for
Yield Enhancement

We extend the idea to identify AcICs from the rejected ones using fault classifi-

cation in this contribution. The technique uses Hamming distance as a measure

to quantify the fault. More generally, it calculates the fault pay-off of each fault.

Fault pay-off is a numerical quantity based on Hamming distance. It is found

that a fault having the largest fault pay-off affects more than 50% of the output

line of the CUT. The technique assumes the fault is catastrophic (unacceptable)

if it alters more than 50% of output lines. The retesting phase checks for the ex-

istence of all such faults (unacceptable faults). If no such faults exist, the circuit

is considered as an acceptable circuit; otherwise, it is rejected. The effective-

ness of this technique is measured through experiments conducted using several

benchmark circuits from ISCAS85, ISCAS89, and ITC’99. The efficacy is also

studied on System on Chips (SOCs), and it is found that 30-40% of faults are

classified as acceptable. The proposed approach has the considerable benefit of

increasing yield. According to the proposed yield model, the effective yield gain

will be between 10-20% on average.

1.5 Organization of the Thesis

This thesis is divided into five chapters based on the contributions mentioned

above. The following is a list of the remaining chapters in this thesis.

Chapter 2: Research Background This chapter starts with a discussion of

approximate adder design philosophy. Further, it presents a brief survey of differ-

ent approximate adder circuits. This chapter also explains the principle behind

approximating the conventional test flow architecture. Then it discusses previ-

18

1.5 Organization of the Thesis

ously proposed techniques on approximating test techniques to test traditional

ICs and AxICs.

Chapter 3: Approximate Adder Design This chapter explains our pro-

posed SGLP technique to design an approximate adder, starting with the proposal

to design an AFA and then to construct an n-bit adder circuit using the AFA in

Most Significant Bit (MSB) bits. Finally, the chapter ends with an experimental

discussion on image processing.

Chapter 4: Approximate Testing: Approximating Conventional Test

Flow Architecture This chapter discusses approximate test techniques, which

are divided into two sections. In the first section, we present the notion of ap-

proximate testing through fault analysis to reduce the number of test patterns

required to test a conventional circuit. The second section presents the process

of identifying acceptable circuits from rejected ones using approximate testing.

Further, section two also introduces a yield model for approximate testing.

Chapter 5: Conclusion and Future Work The study covered in this thesis

comes to a close in this chapter. We highlight some of the most critical design

issues and future aspects of approximate adders. In addition to the thesis’s

contributions and benefits, we also describe the future element of approximate

testing of AxICs.

19

1. INTRODUCTION

20

Chapter 2
Research Background

This chapter presents a brief overview of approximate circuit design methodolo-

gies, particularly approximate adder designs. It also provides the introductory

description of conventional test flow architecture and the testing process in the

context of approximate computing. It first discuss the design principles behind

approximate adder circuits and then presents a survey of design approaches used

in designing approximate adder circuits. Further, it describes the fundamental

principle of digital testing and explains the process of approximating test tech-

niques available to test approximate circuits.

2.1 Approximate Adder Design Philosophy

Before reviewing the several approximate adder design techniques, it is necessary

to understand its principle. The basic adders like RCA and Carry Lookahead

Adder (CLA) are mainly studied for approximation. Other adder circuits such

as KSA, the LFA, the BKA, and the HCA have also been examined to design

approximate versions. The methods developed so far in designing approximate

adders depend on a particular type of adder and are not generic. In other words,

the method/technique developed for RCA may not be applicable for KSA. In [48],

we find the architecture and other characteristics of each adder circuits described

above.

21

2. RESEARCH BACKGROUND

FAFAFA FA

aibi cinaibiaibiaibi

cout si si si si

i=0i=1i=2i=n-1

Carry Propagation

Figure 2.1: Ripple Carry Adder

The basic building block of the RCA circuit is the FA. An n-bit RCA is a

collection of n FAs connected in series. Each FA takes three inputs: ai, bi, and cin,

where cin is the carry-in that comes from its previous FA, and two outputs: si and

cout. Here, ai and bi is the ith input, and si is the sum of ith FA. The formulation

for si and cout is si = ai⊕bi⊕cin and cout = aibi+(ai⊕bi)cin = aibi+aicin+bicin,

respectively. The carry-in of the 1st FA (rightmost) is 0, and for RCA, the carry

is propagated from the rightmost FA towards the FA present at extreme left.

An FA cannot start its operation unless it receives the carry-in from its previous

one. Therefore, in an n-bit RCA, the worst-case delay will be O(n). In other

words, the critical path of RCA depends on the length of the carry propagation.

However, in most cases, an n-bit adder’s carry chain is not n-bit; instead, k-bit is

sufficient to predict the carry, where k < n [9, 49]. This creates the opportunity

for a designer to think about approximating the RCA circuits and reducing the

delay caused due to the carry propagation. The first design philosophy is evolved

from the above description and is quoted below.

Design Philosophy-1: The carry propagation chain along the critical path is

primarily responsible for the delay in the RCA circuit. If carry propagation can

be abolished or reduced, speed, performance, and power consumption can be sig-

nificantly improved.

The second design philosophy has come from the fact that error in the LSB

bit does not affect the overall output of an adder. For instance, consider an 8-bit

22

2.1 Approximate Adder Design Philosophy

RCA shown in Figure 2.2.

FA1FA2FA3FA4FA5FA6FA7FA8

A0B0 Cin
A1B1A2B2

A3B3A4B4A5B5
A6B6A7B7

S0S1S2S3S4S5S6S7Cout

1111010010111100

000 11111

0

0

0 1 1 1 0 0 1 1 = (115)10

0 1 1 0 0 1 1 1 = (103)10

 1 1 0 1 1 0 1 0 = (218)10

Case-0

FA1FA2FA3FA4FA5FA6FA7FA8

A0B0 Cin
A1B1A2B2

A3B3A4B4A5B5
A6B6A7B7

S0S1S2S3S4S5S6S7Cout

1111010010111100

100 11111

0

0

1

0 1 1 1 0 0 1 1 = (115)10

0 1 1 0 0 1 1 1 = (103)10

 1 1 0 1 1 0 1 0 = (218)10

Case-1

 1 1 0 1 1 0 1 1 = (219)10

FA1FA2FA3FA4FA5FA6FA7FA8

A0B0 Cin
A1B1A2B2

A3B3A4B4A5B5
A6B6A7B7

S0S1S2S3S4S5S6S7Cout

1111010010111100

100 01111

0

0

0

0 1 1 1 0 0 1 1 = (115)10

0 1 1 0 0 1 1 1 = (103)10

 1 1 0 1 1 0 1 0 = (218)10

Case-2

 1 1 0 1 1 0 0 1 = (217)10

FA1FA2FA3FA4FA5FA6FA7FA8

A0B0 Cin
A1B1A2B2

A3B3A4B4A5B5
A6B6A7B7

S0S1S2S3S4S5S6S7Cout

1111010010111100

000 01111

0

0

0

0 1 1 1 0 0 1 1 = (115)10

0 1 1 0 0 1 1 1 = (103)10

 1 1 0 1 1 0 1 0 = (218)10

Case-3

 1 1 0 1 1 0 0 0 = (216)10

Figure 2.2: 8-bit RCA Circuit Showing Error at LSB bit [61]

Case-0 shows the correct adder circuit and produces the correct output. The

remaining cases (case-1 to 3) show the erroneous output produced due to an error

that occurred in FA1. In other words, three cases are possible if an error occurs

23

2. RESEARCH BACKGROUND

at FA1; the affected FA (FA1) might produce (1) an incorrect sum but correct

carry, (2) incorrect sum and incorrect carry, and (3) correct sum but incorrect

carry. Figure 2.2 also shows a numerical example that shows the deviations in

the outputs. Carefully analyzing different results, it is found that the errors can

be ignorable if it is due to a fault present in the LSB bit.

Design Philosophy-2: Erroneous output produced due to the error present in

the LSB bit does not affect the overall output much. In other words, making

modifications on FAs present in the LSB to gain in area, power or delay does not

affect the overall result of the adder circuit.

2.2 Approximate Adder Design Techniques

Section 2.1 introduces two design philosophies for approximate adders. The first

philosophy explains the effect of reducing the critical path, and the second one

shows the impact of the LSB bit on the overall result. Based on the above

two philosophies, the approximate adders designed so far are classified into three

categories: (1) Approximate Block Adder (AxBA) (2) Approximate Segment

Adder (AxSA) (3) Approximate Pruning Adder (AxPA). This section describes

the basic principle behind the categorization, and later, it provides an extensive

survey of previously published works on approximate adders under each category.

2.2.1 Approximate Block Adders (AxBA)

In this category, the adder is split into separate blocks and is based on the first

design philosophy described in Section 2.1. The approximation is achieved by

shortening the carry propagation chain. The result of a block is determined on

its carry-in bit, which is estimated based on previous LSB inputs. No modification

is done on any FAs, which are the fundamental blocks of any adder circuit. Tech-

niques proposed in approximate adder circuits like Variable Latency Speculative

Addition (VLSA) [49], Error Tolerant Adder Type II (ETAII) [50], Speculative

Carry Select Addition (SCSA) [11], Approximate Carry Skip Adder (ACSA) [51],

24

2.2 Approximate Adder Design Techniques

Carry Speculative Adder (CSPA) [52], and Efficient Carry Speculative Approxi-

mate Adder (EFCSA) [62] are coming under this category.

2.2.1.1 Variable Latency Speculative Addition (VLSA)

In [49], the author constructs an incredibly fast unreliable adder that provides

correct results for most input combinations and is referred to as Almost Correct

Adder (ACA). The sum (si) and carry (si) at bit position i are calculated using

the formula given below:

ci =

0, if ki = 1,

1, if gi = 1,

ci−1, otherwise (pi = 1)

si = ai ⊕ bi ⊕ ci−1

where, the generate, propagate, and kill signals will be defined as gi = aibi,

pi = ai ⊕ bi, and ki = ai + bi, respectively. The longest propagate sequence

is approximately logn. The VLSA is constructed using ACA as a component

and yields the result of the ACA as the output. Along with that, VLSA also

produces a signal denoting whether the result is correct or not. If an error is

found, then after two cycles, it yields the correct output. The major drawback

of this technique is the requirement of an error-correction circuit and some extra

clock cycles needed for the correct result. Furthermore, the area overhead (due

to error detection and correction circuitry) can not be negligible in practice.

2.2.1.2 Error Tolerant Adder Type II (ETAII)

In this technique [50], the author has split the entire carry propagation chain

into a number of smaller chains. The carry propagation occurs in these smaller

chains concurrently. Figure 2.3 shows the architecture of ETAII. A given N -bit

adder is divided into M blocks, and each block consists of N/M bits. Each block

contains two different circuitries: carry generator and sum generator. Different

from conventional adder circuits, in ETAII, the carry generator doesn’t take carry

signals from the previous blocks. However, the sum generator receives the carry-in

25

2. RESEARCH BACKGROUND

signal from the previous block.

Carry
Generator

Sum
Generator

Carry
Generator

Sum
Generator

Carry
Generator

Sum
Generator

N/M
Bits

N/M
Bits

N/M
Bits

M Blocks
Block

1
Block
M-1

Block
M

Sum Generator
takes the carry-in

Carry Generator
doesn’t take the

carry-in

N-bit Adder

Figure 2.3: Block diagram of ETAII [50]

Due to this block-level architecture, the speed and performance of ETAII

are remarkably enhanced. However, the power consumption of this architecture

remains the same as conventional adder circuits.

2.2.1.3 Speculative Carry Select Addition (SCSA)

The SCSA of [11] is very similar to ETAII and is based on the observation that

the critical path is rarely activated in traditional adders. Like ETAII, the key idea

is to divide the carry propagation chain into blocks of the same size known as

window. The general structure is shown in Figure 2.4. For a given N -bit adder

with window size k, the number of windows (m) will be calculated as m =
⌈
N
k

⌉
.

A window’s carry-in is speculated form all k-bits of its previous window. Thus,

it reduces the delay of the carry propagation.

For a given N -bit adder, the sum and carry will be calculated as using the

following:

si = pi ⊕ ci−1 and ci = gi + pici−1

where i represent the bit position, gi represents the generate signal and pi

26

2.2 Approximate Adder Design Techniques

... Cout

S(m-1)*

Window (m-1)

... Cout

S(m-2)*

Window (m-2)

Cout ...

S(0)*

Window (0)

(m-3)*(m-2)* (0)* ai

bi

Figure 2.4: Block diagram of SCSA [11]

represents the propagate signal. The gi and pi signal of ith bit is defined as

follows:

pi = ai ⊕ bi and gi = aibi

The most extended carry chain length will be the number of successive prop-

agate signals pi with value 1. Because one input is only coupled to one block

adder, the primary input fan out and the area are minimised when compared to

VLSA.

2.2.1.4 Approximate Carry Skip Adder (ACSA)

This paper follows the same approach of dividing the given adder into smaller

blocks and introducing a carry skip logic between blocks. The carry skip scheme

helps predict an accurate carry in a parallel manner. The technique also includes

an error magnitude reduction strategy that takes no extra clock cycle to calculate

the error-free result. Figure 2.5 (a) shows the block diagram of ACSA. Each block

consists of k-bit adder and k-bit carry generator. The total number of blocks

(m) will be calculated as m =
⌈
N
k

⌉
, where N represents the given N -bit adder.

Each k-bit adder is implemented through traditional adder circuits like RCA or

CLA. All block’s carry generators with their k inputs execute simultaneously and

generate the carry-out. Similarly, all block’s adders take the speculated carry-in

(generated using two preceding k-bit carry generators with a multiplexer) and

produce the partial sum.

The carry prediction scheme of the proposed technique is shown in Figure 2.5

27

2. RESEARCH BACKGROUND

i+1th
Carry

Generator

i+1th
Adder

ith
Carry

Generator

ith
Adder

i-1th
Carry

Generator

i-1th
Adder

ai-1bi-1ai+1bi+1 aibi

si si-1
si+1

ci ci-1
ci+1

outoutout

ci
inci+1

in

pppppppp

11111111

00000000

pppppppg

11111111

00000000

kppppppp

11111111

00000000

Adder

ci
out

ci-1
out

10000000 00000000 00000000

Carry Skip

i+1th Block ith Block i-1th Block

(a) (b)

Figure 2.5: (a) Block diagram of ACSA (b) Carry Prediction [51]

(b). It depends on the propagate signal p. The carry-out of i− 1th block is used

only when the ith block’s propagate signals are true. The propagate, generate,

and kill is calculated as gi = aibi, ki = āib̄i, and pi = ai ⊕ bi, respectively. The

carry signal is calculated using the following.

ci =

1, if gi = 1,

0, if ki = 1,

ci−1, if pi = 1

2.2.1.5 Carry Speculative Adder (CSPA)

Like other speculative adders discussed so far, the CSPA is also a unique high-

performance, low-power approximation adder that splits an N -bit adder into

multiple smaller block adders that can run in parallel. Every block adder contains

a carry predictor unit to predict the carry for each block. It uses the closest MSBs

as input to predict the carry. Therefore, the critical path time is minimized

because the carry predictor uses fewer bits. The overall architecture of a single

block is shown in Figure 2.6. The technique divides the given adder into multiple

blocks of size x-bits each. Therefore there will be m =
⌈
N
x

⌉
number of blocks

possible. Each block consists of three significant parts: a multiplexer, a sum

generator, and a carry generator. Every block uses a carry predictor to predict

28

2.2 Approximate Adder Design Techniques

the carry. The sum generator of every block generates the partial sum.

Carry Predictor

Internal Carry
Generator

Internal Carry
Generator

Sum Generator

1 0

From the
previous

Carry
Predictor

To the Next
Block’s

Multiplexer
and Sum

Generator

Sumi

B
lo

ck
 A

d
d

e
r

Block

aibi

Figure 2.6: A Single Block of CSPA [52]

There are two basic differences between CSPA and the previously described

techniques. The first difference is the use of two carry generators to generate the

internal carry signal, which is later used by the sum generator to generate the

sum. The second one is the use of a modified full adder as the internal adders.

Compared to the traditional ones, the modified full adder uses fewer cycles.

2.2.1.6 Efficient Carry Speculative Approximate Adder (EFCSA)

This paper [62] proposes a novel block-based reconfigurable carry speculative

approximate adder (EFCSA). It reduces the carry chain by dividing the adder

into fragments known as summation blocks and inputs into sub-inputs. An N-bit

approximate adder consists of [N/k] k-bit summation blocks. A summation block

contains two components, (1) summation logic (SL) and (2) carry prediction

logic (CPL). The sub-inputs are fed into the SL that generates the sum in a

non-blocking parallel manner. The carry input of a summation block is predicted

from its previous CPL. The unique feature of the EFCSA adder is that it limits

29

2. RESEARCH BACKGROUND

the carry chain and uses a layered approximation technique for each summation

block, enabling faster calculations.

2.2.2 Approximate Segment Adders (AxSA)

These adders follow the second design philosophy described in Section 2.1. The

approximation is achieved through employing inexact full adders in the LSB part

of the adder circuit. In other words, the basic building block of these cate-

gories of adders is the inexact Full Adders, commonly known as Approximate

Full Adders (AFAs) in most of the literature. The basic design principle of AxSA

is to partition the given n-bit adder into two segments: an inaccurate (inexact)

segment and an accurate segment, as shown in Figure 2.7. The former consists

of AFAs accepting the inputs from LSBs. The latter consists of conventional

Full Adders (FAs) receiving inputs from MSBs. Compared to AxBA, AxSAs

are more power-efficient and consumes lesser area [63]. Techniques proposed like

Gate-Level Simplification [53], Lower-part-OR Adder (LOA) [54], and Approxi-

mate Mirror Adder (AMA) [55] are coming under this category. Adder proposed

in [64], error reduced carry prediction approximate adder (ERCPAA) [65] slightly

modifies the above idea to enhance the performance of approximation.

AFA AFA AFAFA FA FA

a0b0bk-1akbk ak-1 bk-2 ak-2bn-1 an-1 bn-2 an-2

s0sk-2sk-1sksn-2sn-1cout

cin

n-k bit Accurate Segment

Figure 2.7: Basic Design Principle of AxSA

30

2.2 Approximate Adder Design Techniques

2.2.2.1 Gate-Level Simplification

A gate-level simplification of conventional FA circuit was proposed in [53] that

uses a re-design technique to reduce the complexity. The basic idea is to cut

the critical path by simplifying on-path gates. For instance, if a critical path

contains an OR gate, it can be replaced with 1, and an AND gate with 0. Figure

2.8 (a) shows a FA circuit with an indication of what needs to be done to cut the

critical path. A gate-level simplification of the given FA is done by substituting

the outcome of the AND gate with 0. The technique also removes the XOR gate

with an OR gate. Figure 2.8 (b) shows this modified design called Simplified Full

Adder (SFA).

ai

bi

cin

cout

si

ai

bi

cin

cout

si

Replace
with 0

Replace with
OR gate

cout scout scinbiai

0 00 0000
0 10 1100
0 10 1010
0 11 0110
0 10 1001
0 11 0101
1 01 0011
1 11 1111

SFAFAInputs

(b)(a) (c)

Figure 2.8: Gate Level simplification of FA [53]

Modifying the original FA using this technique leads to some amount of error

in the output. Figure 2.8 (c) shows the truth table that compares the result of

SFA with FA. The output of SFA differs in two places from the original one.

2.2.2.2 Lower-part-OR Adder (LOA)

The Lower-part-OR Adder (LOA) divides a given n-bit adder into two segments,

not necessarily equal [54]. The first segment is known as k-bit inaccurate segment.

All conventional FAs will be replaced with OR gates in this segment, as shown in

Figure 2.9 (a). The second segment that constitutes the remaining bits is called

the (n − k) bit accurate segment. The accurate segment computes the precise

result by taking inputs from the MSBs. The carry-in requirement for the accurate

31

2. RESEARCH BACKGROUND

FA FA FA

a0b0akbk bk-1 ak-1bn-1 an-1 bn-2 an-2

s0sk-1sksn-2sn-1cout

k bit Inaccurate Segmentn-k bit Accurate Segment

n bit adder

c i
n

(a)

Input Output
ai bi OR sum
0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 0

(b)

Comparing the
output of OR gate

and FA’s sum

Figure 2.9: Lower Part OR Adder Architecture [54]

segment is fulfilled by using an extra AND gate connected to (k− 1)th input bit

of the inaccurate part.

The objective of replacing the FAs with OR gates is simple: compare the sum

and OR gates output shown in 2.9 (b). Also, the overhead of carry-propagation

is removed in the inaccurate segment and the number of gates reduces to 1 only.

The error probability will increase with an increase in the lower-part length.

2.2.2.3 Approximate Mirror Adder (AMA)

A Mirror Adder (MA) is an economical implementation of a traditional FA at the

transistor level [66]. It consists of 24 transistors. Carefully removing transistors

leads to producing an Approximate Mirror Adder (AMA). Arbitrary removal

of transistors may cause an adverse effect, and the circuit may be unusable.

Therefore, we should ensure two things: (1) No input combinations result in short

circuits or open circuits, and (2) The simplified MA (after removal of transistors)

must not produce too many errors. In [55], the author proposes four simplified

versions of MA with lesser transistor count; attain a lower circuit complexity and

thus power.

The first approximation (AMA1) design reduces the number of transistors

to 16, producing one error in cout and two errors in sum. Similarly, for the

remaining approximate designs (AMA2, AMA3, AMA4), the number transistor

32

2.2 Approximate Adder Design Techniques

Table 2.1: Truth Table Comparisons of AMAs

Inputs MA AMA1 AMA2 AMA3 AMA4
ai bi cin sum cout sum cout sum cout sum cout sum cout
0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 1 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 0 1 1 0 0 1 0 0
0 1 1 0 1 0 1 0 1 0 1 1 0
1 0 0 1 0 0 0 1 0 1 0 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 0 0 1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 0 1 0 1 1 1
Transistor Count 24 16 14 11 11

count is reduced to 14, 11, and 11, respectively. Table 2.1 shows the errors of all

approximation designs with highlighted blocks.

In [67], the author proposes another simple and efficient design based on

traditional Mirror Adder (MA) named Light-weight Configurable Approximate

Adder (LCAA) with two extra transistors. A distinguishing feature of LCAA is

to dynamically switch between the accurate and approximate mode.

2.2.3 Approximate Pruning Adders (AxPA)

The approximate adder design techniques discussed so far are primarily applied

to RCA circuits, where a carry-chain or a fundamental block such as FA is present

in the design. Either the method reduces the carry-chain or re-designs the FA

block to achieve approximation. But, what about the adder circuits like KSA, the

LFA, the Brent–Kung adder BKA, where no fundamental blocks or carry chain is

available. These adders require unique treatments to generate an approximation

version of it. In [56,57], the author proposes one such technique based on proba-

bilistic pruning [68]. Probabilistic pruning is a circuit design approach in which it

is possible to systematically prune or eliminate components and their associated

wires along the circuit path. The error tolerance of the application determines

the amount of pruning.

33

2. RESEARCH BACKGROUND

a6 a5 a4 a3 a2 a1

s3 s2 s1 s0

1
1

1

1
2

2

2 1

6

2

2

4

44

4

8

8

8

8 4

8

1484208

20212224

Figure 2.10: Gate-Level Netlist Example and Significance [57]

Figure 2.10 shows a simple gate-level netlist. To prune a gate from this cir-

cuit depends on two parameters, combined called Significance Activity Product

(SAP): significance and activity (toggle count). The gate that has the lowest

SAP is pruned first. The toggle count of each wire can be obtained from the

.SAIF file (Switching Activity Interchange Format). The significance calculation

is obtained by assigning weighted significance to each output bit of the circuit. In

Figure 2.10, 20 is assigned to s0, and it is two times higher as we move from LSB

to MSB. Therefore, the weighted significance of s1, s2, s3 will be 21, 22, and 23,

respectively. A reverse topological traversal is performed to compute each nodes

significance using the following formula:

σi =
∑

σdesc(i)

where σi is the significance of the node i and σdesc(i) is the significance of the

direct descendants of node i. An implementation example of the technique is

described in [56] for adder circuits.

34

2.3 Approximate Testing Philosophy

2.3 Approximate Testing Philosophy

This section presents a literature review on test design for approximate circuits

and approximating test flow architecture. First, it introduces the flow of digital

VLSI testing and explains several associated terminologies. Then it presents the

motivation behind approximate testing and gives the idea of approximating the

test flow architecture for testing an approximate circuit.

2.3.1 Digital VLSI Testing

A system failure occurs when a system fails to produce the desired result. In

other words, the system fails to do what it has to do. A failure is caused by an

error that is nothing but a system’s state. We can say that the system is in an

erroneous state when it differs from the state in which it should be to produce

the expected service. A fault causes an error, and a circuit error can result in a

system failure [69].

Testing is an indispensable part of a typical digital system manufacturing

process. It ensures that all fabricated chips meet the desired specification. A

typical test flow architecture is shown in Figure 2.11, where CUT is referred to

as the Circuit Under Test [59]. The inputs that are supplied during the test

procedure is known as test vectors or test patterns, and the entire collection

of test patterns is called a test set. After applying the test patterns, the CUT’s

response is recorded and compared with the golden response using a test response

analyzer. If the response matches, the CUT is considered “pass”; otherwise, it is

faulty. The golden response is referred to as the expected response of the CUT.

From the test application process, it is evident that the circuit’s quality depends

on the test patterns prepared ahead of time by the test-generation method.

Testing a CUT with n inputs and m outputs requires 2n possible input pat-

terns, and if we do so to test the circuit, it is called exhaustive testing. However,

the exhaustive testing approach is not practical when n is large. The basic idea

of functional testing resulted from the concept of exhaustive testing. In other

35

2. RESEARCH BACKGROUND

Test Patterns Test Response

Golden Response

Pass

Fail

Test
Response
Analyzer

CUT

Figure 2.11: Conventional Test Flow Architecture [59]

words, with functional testing, a tester applies all possible input patterns (2n)

and tests the system for its correctness.

Instead of using functional testing, a more practical approach is followed,

known as structural testing [70]. A specific set of test patterns is chosen with

this technique based on the circuit’s structural information and a fault model.

Structural testing uses a subset of test patterns that saves time in applying it

and improves test efficiency compared to functional testing. However, structural

testing does not guarantee all manufacturing defect detection because the test

vectors that we use are generated for a specific fault model. Therefore, fault

coverage (fc) is defined as the ratio between the number of detected faults (df)

and the total number of possible faults (tf) (fc = df
tf
).

The purpose of test generation is to come up with a collection of test vectors

that can identify all of the faults that are relevant to that circuit. Because a set

of test vectors can normally discover a large number of faults in a circuit, fault

simulation is commonly used to assess the fault coverage produced by that set of

test vectors. As a result, fault models are required for both fault simulation and

the development of tests.

2.3.1.1 Fault Models

The technique of modeling defects at higher levels of abstraction in the design

hierarchy is known as fault modeling. An exemplary fault model satisfies two

36

2.3 Approximate Testing Philosophy

criteria: (1) it must represent the defect’s behavior accurately and (2) be com-

putationally efficient in fault simulation and test vector generation. Several fault

models have been proposed in the literature, and the most well-known and com-

monly used fault model is the Single Stack-At fault (s-a) model [70]. Though

there exist some other fault models, such as delay faults, bridging faults, and

n-detect faults, our focus only revolves around the s-a fault model.

w
Stuck-at-0

fb

c

a

w
Stuck-at-1

fb

c

a

(a) (b)

Figure 2.12: Stuck at Fault model example (a) Line w is stuck to 0 (b) Line w is stuck
to 1

In the s-a model, a line in a logical circuit is either stuck to 0 or 1, referred to

as stuck-at-0 (sa0) or stuck-at-1 (sa1), respectively. Figure 2.12 shows a circuit

with sa0 and sa1 faults for illustration purposes. A circuit with k lines can have

2k single stuck-at faults. Some similar faults, on the other hand, maybe removed

during implementation. Equivalent faults produce identical defective behavior

for all input vectors. The number of single stuck-at faults is reduced due to

the removal of equivalent faults. The process of detecting equivalent faults and

removing them to achieve a reduction in the entire set is known as fault collapsing.

Fault collapsing helps both test generation and fault simulation times.

2.3.1.2 Test Generation

Test generation is a process to generate a compelling set of test patterns for a

given fault model to accomplish a high fault coverage. It is possible to generate

an appropriate reduced set of test vectors manually, automatically, or both. The

goal of Automatic Test Pattern Generation, usually abbreviated as ATPG, is to

37

2. RESEARCH BACKGROUND

produce relevant test patterns to test the internal structure of a digital circuit.

D-algorithm, PODEM, and FAN are the most commonly used ATPG algorithms

found in industries. Most ATPG algorithms follow the path sensitization method

consists of three steps:

1. Fault Sensitization (fault activation or fault excitation): It is the process to

activate the stuck-at fault by forcing the fault value to its opposite value.

For instance, in Figure 2.12 (a), line w shows a stuck-at-0 fault, and to

sensitize it, we should assign 1 forcibly.

2. Fault Propagation (path sensitization): It is the process of propagating the

fault effect along the path to the primary output of the circuit.

3. Line Justification: It is the process of backward tracing to the circuit’s

primary inputs and set it appropriately so that the fault effect correctly

propagates to the observable output.

The algorithms described above are suggested for testing combinational cir-

cuits and will not effectively work for sequential circuits. Although ATPG al-

gorithms for sequential circuits exist, they are typically resource-intensive and

inefficient. The key challenge with sequential ATPG is controlling and observing

the circuit’s internal state, i.e. the values of all flip-flops. Consequently, De-

sign for Test (DFT) comes to the rescue that proposes several design techniques

striving to enhance the testability of the target design. One such technique is

called scan-chain design, which provides a solution to increase the observability

and controllability of flip-flops.

Figure 2.13 shows the basic concept of scan design. First, all the flip-flops

of the circuit are converted to an equivalent muxed flip-flop that has input data

pins and a scan-in pin. A select line will control the switching between the scan

state and the normal functional test. Figure 2.13 (a) shows the modified flip-flop.

A scan design is shown in Figure 2.13 (b) with their connection to form a scan

chain. The scan chain is activated during the test mode, and desired values are

38

2.4 Literature Review of Testing Techniques in the Context of
Approximate Computing

D QData

C

D Q
Data

Clock

Scan In

Scan Enable Scan OutClock

C

 Combinational

 Logic
C

D Q
Primary Input

Clock

Scan In

Scan Enable

C

D Q

Scan Out

P
ri

m
ar

y
O

u
tp

u
t

(a) (b)

Figure 2.13: Scan Chain Design Technique (a) Converting Traditional Flip-flop to
Scan Flip-flop (b) Scan Design

pushed to the flip-flips sequentially in each clock cycle. In the next step, the scan

mode is disabled, and the circuit operates in functional mode; finally, scan mode

is activated again to push the value to the primary output.

2.4 Literature Review of Testing Techniques in

the Context of Approximate Computing

This section present an overview of all research articles published in the context

of approximate testing. In [60], the author introduces the term Approximate

Test (AxT). The author assumes that an approximate system can be built using

approximate circuits that produce an inexact result. In other words, an approxi-

mate system does not require to be built using defect-free circuits. We can ease

the test and reliability limitations of the manufactured ICs under this assump-

tion. Testing solely for a subset of faults rather than all possible faults is one

technique to attain this goal. We can cut production costs by reducing the num-

ber of test patterns and, as a result, the test duration. The proposal presented in

this paper is primarily focuses on relaxing conventional test procedures and thus

will never assume a 100% fault coverage, which is against the state-of-the-art.

However, the technique is useful where a strict test is not required. A similar

process also exists in the literature known as Threshold Testing (TT) [71]. It is

based on the idea of how much error a design can tolerate and still produce the

39

2. RESEARCH BACKGROUND

acceptable output. The error for which the circuit has an acceptable outcome

called its error threshold. In [72], the author proposes three well-known measures

to quantify the error threshold used by all approximate/threshold-based testing

techniques: (1) Error Significance- the maximum deviation between a circuit’s

output and the matching error-free output, (2) Error Rate- the percentage of test

patterns that yield incorrect results, and (3) Error Accumulation- error rate vari-

ation over time. Testing AxICs also posed several issues and challenges [73, 74].

Testers can not use conventional test techniques to test AxICs because of their

inherent error tolerance. Based on the above discussions, test techniques in the

context of approximate computing are grouped into three categories: (1) Ap-

proximating Conventional Test Flow Architecture, (2) Threshold Testing, and

(3) Testing Techniques for Approximate Circuits (AxICs). The following sections

will provide a brief overview of several proposed techniques in each category.

2.4.1 Approximating Conventional Test Flow Architec-
ture

In [60], the author proposes a technique to approximate the conventional test flow

architecture to test a digital circuit approximately. The overall idea is to generate

test patterns for a subset of faults instead of all faults. The approach identifies

the fault subset through functional and structural analysis of the given netlist. If

prior knowledge of the application is known, functional analysis performs better.

For instance, functional analysis works well if the given netlist is an adder circuit

and is decided to be used in image processing applications. In structural analysis,

each primary output is analyzed based on the fact that the primary output’s

susceptibility depends on the number of nodes present in its fan-in logic core.

Figure 2.14 shows an example to estimate the susceptibility of each cone.

Each gate in the given circuit is assigned a weight (Wt), the number of input and

output of that gate. To find the weight of each cone, we can add all the gate’s

weight which is 15 for 1st fan-in cone and 10 for the 2nd. In the next step, the

fault list is generated using the result of structural and functional analysis. The

40

2.4 Literature Review of Testing Techniques in the Context of
Approximate Computing

Wt=3

Wt=3

Wt=3

Wt=3

Wt=3

Wt=3

Wt=4

Wt=3

Cone Weight

= 13 – 3 = 10

Cone Weight

= 15

1st Fan-in

Cone

2nd Fan-in

Cone

Fan-in Cone

Overlap

Wt=3

Wt=3

Wt=3

Figure 2.14: Structural Analysis of Primary Output [60]

final step generates test patterns for the previously identified fault list. Only a

subset of fault is identified and tested by this method, reducing the test data

volume, test application time, and energy.

In [75], the author examines the error tolerance nature of the target circuit

to relax the functional test requirements. The proposed method in this paper is

called approximate functional testing.

2.4.2 Threshold Testing

The idea of Threshold testing is first introduced in [71]. An IC tested using

this technique may contain faults but produce output below the identified error

threshold. As discussed in Section 2.4, the error threshold is estimated using three

quantification measures: error-significance, error-rate, and error-accumulation.

We classify previously published literature on threshold testing into three groups

based on these quantification measures. The first group uses error-rate (error-

rate testing) [76–78], the second uses error-significance [79–81], and the third uses

both [53,82]. No work is found that uses error-accumulation as its measure.

41

2. RESEARCH BACKGROUND

2.4.2.1 Error-rate based Threshold Testing (Error-rate Testing)

In [76], the author proposes a test methodology based on error-rate estimation.

First, the method uses the sampling method to find the error-rate of each fault

and define a system error-rate. A set of faults is identified based on these two

values, which are ignored during the testing. System error-rate is determined

using error-rate of each fault and its occurrence rate. Figure 2.15 (a) shows the

process flow of this technique which is sometimes referred to as fault-based test-

ing. Identifying the unacceptable fault list requires knowledge of the acceptable

error-rate. After estimating the error rate of each fault, it is compared with the

acceptable error-rate, and the unacceptable fault list is prepared. Finally, test

patterns are generated for them.

IC
Testing

Bad Chips

Error-rate
estimation

Classification based on
Error-rate estimation

Good Chips

Acceptable
Chip Set-1

Acceptable
Chip Set-k

Unacceptable
chips

Fabricated
Chips

Error-rate
estimation

Fault List

Identify
unacceptable

Faults

Acceptable
error-rate

Generate
Test

Patterns

Unacceptable
fault list

Final Test
Patterns

(a) (b)

Figure 2.15: (a) Fault-based test using error-rate [76] (b) Error-rate based Test
Methodology [77]

Another error-oriented test methodology is proposed in [77], which is based on

error-rate estimation and supports product grading. The overall outline is shown

in Figure 2.15 (b). The bad chips resulting from traditional testing are used in

42

2.4 Literature Review of Testing Techniques in the Context of
Approximate Computing

this technique, and their error rate is estimated. Finally, the chips are classified

based on their error estimation. These bad chips are now considered acceptable

with some percentage of errors in them. The next error-rate testing approach,

known as multi-vector testing, was proposed in [78]. Rather than one test vector

being generated for each fault as in traditional testing, many test vectors are

generated and added to a test set as a single session. If all of the vectors in a

session fail to give a proper output, then the CUT is discarded.

2.4.2.2 Error-significance based Threshold Testing

Threshold testing using error significance as error threshold is proposed in [79,80].

Each CUT is tested using a specifically created threshold test set, as illustrated

in Figure 2.16. A threshold test pattern is generated for each unacceptable fault

and forms the threshold test set. The process first applies the test pattern to

the chip and computes the error. If the error is within the threshold, the chip is

acceptable and rejected otherwise. A fault in the circuit is considered acceptable

if it does not generate an unacceptable error on any output bus for any vector.

Otherwise, the fault is referred to as an unacceptable fault.

…………
…………
…………
…………
…………

CUT

Threshold for each
output bus

Error within
threshold?

Error
Computation

Acceptable
Chip

Bad Chip

Threshold
Test Set

Expected
Responses

Yes

No

Figure 2.16: (a) Threshold testing using error significance as error threshold [79]

Works in [81] proposes another error-significance based threshold testing method

that employs standard ATPG rather than specialized ATPG. This work proposes

43

2. RESEARCH BACKGROUND

two test generation models: the difference model and the acceptable fault iden-

tification model. The difference model is used to create threshold test patterns

that can be utilized to identify acceptable and unacceptable faults. However,

this model required about twice the amount of hardware as the original circuit,

as well as a significant amount of work. As a result, the author suggested an

acceptable fault identification model that uses a masking technique to detect all

unacceptable faults while only identifying a portion of acceptable defects.

2.4.2.3 Threshold Testing Using Both Error-Rate and Error-Significance

Some chips’ acceptance is determined by the fraction of input patterns with error-

significance greater than a threshold. In other words, the acceptance is not de-

pendent on a test pattern whose error-significance is greater than a threshold.

In these situations, both error-rate, and error-significance is considered as the

quantification measure. In [82], a similar idea is presented where Significance

based Error-rate (SBER) is used. Consider a circuit C with n input pins, and

the given error-significance threshold is T . Let the circuit contain a static fault

f , then the SBER of C(f) is defined as the fraction of all 2n patterns whose

error-significance is greater than T . Similarly, in [53] the author uses the product

of error-significance and error-rate as the metric for error calculation. As shown

in Figure 2.17, the acceptance criterion is based on a predefined threshold T

specified earlier by the application: errorSignificance× errorRate ≤ T .

10

20

30

40

50

60

100 200 300

Error-Significance

Er
ro

r-
R

at
e

 (
%

)

Unacceptable

Threshold

Acceptable

Figure 2.17: Acceptance Threshold for Error-rate and Error-significance [53]

44

2.4 Literature Review of Testing Techniques in the Context of
Approximate Computing

2.4.3 Testing Techniques for Approximate Circuits (AxICs)

We know that in an AxIC, the errors are intentional. Therefore, we can not use

conventional test techniques to test these ICs. In this section, our focus is on test

aspects of AxICs. Works of literature found in this area are basically or can be

grouped into two categories. The first category explains the relative challenges in

testing AxICs [45, 73, 74], and the second is actually proposing some techniques

to test the AxICs [46,75,83–86]. Our focus is on the second category.

Works in [75] introduce the notion of testing approximation integrated cir-

cuits. The author presents a conceptual framework for performing approximation

functional testing based on the application’s error-tolerance feature. To elucidate

the suggested method’s flow, they analyse an image processing application. The

entire flow is divided into six steps, starting with examining the image’s qual-

ity property FSIMc (Feature SIMilarity index with chrominance information).

The author’s overall goal is to determine the absolute value difference between

neighboring pixels (pixel pairs) and keep it if it falls inside a certain range. The

recommended technique just explains an idea and does not go into detail about

how to put it into practice.

In [83], the author proposes the first workable model for testing Approxi-

mate Integrated Circuits (AxIC). The technique is introduced as a preprocess to

traditional ATPG, in which fault classification is performed by comparing non-

approximate design with its precise matching design with an injected fault under

the specified error metric limitations as shown in Figure 3. There are four essen-

tial components: a golden reference netlist G, a faulty approximate netlist Gf ,

an error computation network, and a fault classification network. G refers to a

nonfaulty circuit, and Gf refers to the approximate circuit containing a fault.

Error computation network compute the concrete error based on the given error

metric. Finally, the fault classification network classifies the faults either to an

approximation-redundant fault (E ≤ T) or non-approximation fault (E > T).

The test generation phase targets only the non-approximation fault and ignores

45

2. RESEARCH BACKGROUND

the presence of approximation-redundant faults.

G

Gf

Error
Computation

Network

Fault
Classification

Network
E > T ?

Approximation-
redundant fault

Non-
approximation

fault

In

In

Out

Out

E

Figure 2.18: Fault Classification Procedure for Approximate Aware Testing [83]

An SAT-based ATPG for approximation circuit is proposed in [86]. This

approach generates a testing circuit having three sub-components from the given

circuit under test : (1) A faulty approximate circuit (AxIC), (2) a fault-free

exact circuit (ExIC), and (3) a comparator that compares the output of ExIC

and AxIC with a given error metric. Figure 2.19 shows the basic arrangement of

these components.

Approximate
Circuit
(AxIC)

Equivalent
Exact Circuit

(ExIC)

Subtractor
Circuit

OExIC - OAxIC

Comparator
Block

SAT Solver

Test Patterns for
Non-approximable

faults

……………
……………
……………
……………
……………

An Injected Fault
Error Margin

Test Circuitry Gate-level Netlist

Figure 2.19: SAT-based ATPG for Approximate Circuit [86]

First, a fault is injected at the fault site of the approximate circuit. The next

46

2.5 Conclusion

step generates an SAT instance of the given test circuitry. An SAT solver is em-

ployed to solve the SAT instance. The SAT solver evaluates all propagation paths

starting from the injected fault location to any primary output. Then a decision is

taken to categorize the fault either as approximable or non-approximable. Finally,

the tool develops a collection of test patterns that can discover non-approximable

defects.

Triola et al. [84] propose three different test pattern generation techniques to

test AICs and compare these approaches on public benchmark suites. The first

approach, Architecture Under Test (AUT), is quite similar to [83] that requires

building a new circuit that embeds both the precise and approximate circuit and

receives the same input. The result is analyzed by comparing it with a given

application-specific threshold (deviation in actual and approximated output) for

acceptability.The second approach, Fault Simulation (FS), applies ATPG directly

to the approximated circuit and identifies the unacceptable faults, which require

the determination of error due to the presence of the faults in the precise circuit.

Finally, in the third approach, Pattern Sorting (PS), the author tries to sort the

test patterns (generated in the second approach) by their non-acceptable fault

coverage to achieve more pattern reduction. Methods described in this paper

consider one error metric: Worst Case Error (WCE), which is defined as the

maximum arithmetic difference between approximate and exact circuits.

2.5 Conclusion

This chapter discusses two research areas: (1) approximate adder design and

(2) testing techniques in the context of approximate computing. We first dis-

cussed approximate adder design techniques beginning with design philosophy.

The chapter also presents a survey of approximate block adders such as Vari-

able Latency Speculative Adder (VLSA), Error Tolerant Adders (ETAs), Carry

Skip, and Carry speculative adder. Similarly, approximate segment adders like

Lower-part-OR Adder (LOA), Approximate Mirror Adders (AMAs), etc., are

47

2. RESEARCH BACKGROUND

also discussed. Finally, the discussion on approximate adder design ends after

discussing the idea of approximate pruning adder.

A brief description of testing techniques in the context of approximate com-

puting is also presented in this chapter, beginning with an explanation of con-

ventional testing of digital VLSI circuits. Works of literature presenting the idea

of approximating test flow architecture are also discussed here. Other test tech-

niques such as threshold test techniques based on error-significance error-rate are

also given. The chapter ends with discussing all testing techniques developed for

Approximate Circuits (AxICs).

48

Chapter 3
Approximate Adder Design

This chapter mainly focuses on the design of an approximate adder circuit for im-

age processing application. Section 2.2 introduces different kinds of approximate

adder design techniques. We propose an ACD technique known as Significance-

based Gate-Level Pruning (SGLP) for designing adder circuits. Suppose the cat-

egories explained in section 2.2 are concerned. In that case, the SGLP method

combines the feature of AxPA and AxBA, i.e., we can apply this method to ob-

tain an approximate version of chained (adders made up of a chain of full-adders,

e.g., RCA), Unchained (e.g., KSA), and full adder block. As mentioned in [56],

chained adders are not suitable for the GLP approach, but with SGLP, this is

possible. In summary, the SGLP approach can do the following that defines our

contribution to this work.

� It is quite easy to get an FA approximation which can later be used in the

lower part of a multi-adder to get a multi-bit approximate adder (Block

adder category).

� We can apply SGLP directly on the chain of FA (gate-level netlist) to realize

its approximate variant.

� Unlike GLP [56], SGLP can also be used to obtain the approximate version

of uncut adders (e.g., KSA).

49

3. APPROXIMATE ADDER DESIGN

The other contribution of this work includes: (1) We introduces a way of

categorizing the ACD techniques for approximate adder design. To the best

of our knowledge, this is the first work that categorizes the ACD techniques.

(2) We propose a systemic approach that removes gates and reduces the logic

complexity at gate-level.(3) We demonstrate the benefits (in terms of power, area,

and accuracy) of SGLP over previous approximate procedures and conventional

adder design. (4) We built a DCT architecture using the approximate adders

generated through SGLP for image compression application, and the result is

outrightly acceptable.

3.1 SGLP Technique and Implementation

3.1.1 SGLP for FA Approximation

In this section, we describe the detailed procedure to generate an approximate

FA block (AFA) and later part of this section describes how this AFA block is

used to form a multi-bit adder circuit. We use RCA as the primary architecture

upon which the AFA is implemented to build the required approximate multi-bit

adder. SGLP follows a systematic approach and prune gates one by one and on

every removal, we get one approximate version of the FA.

Figure 3.1 shows the overall process. There are mainly two processes: (1)

Significance Assignment (SA) and (2) Prune and Truth Table Analysis (PTA).

The objective of SA is to assign an integer numeral to each gate of the given FA

netlist.The purpose of PTA is to prune the gate having the lowest significance

and analyze the effect in the truth table for all exhaustive set of inputs. One

gate removal originates one approximate FA (AFA) which is again going through

the SA and PTA method to produce another AFA. By connecting AFAs, we can

generate several multi-bit approximate adders.

Figure 3.2 shows the detail of the entire AFA generation started with the SA

shown in Figure 3.2 (a). There are two output lines y and cout, which is assigned

with an initial value 20 and 21, respectively. Hence, the significance of the gates

50

3.1 SGLP Technique and Implementation

Significance

Assignment

Prune &

Truth Table

Analysis

FA Block FA with Significance Approximate FA

A B Cin Sum Carry Sapx Capx

Truth Table AnalysisSA PTA

Figure 3.1: Systematic Process of SGLP for AFA

abcin

y 20

1

2

2 2

3

21cout

2

abcin

y 20

2

2

3

21cout

2

abcin

y 20

2

1

21cout

2

abcin

y 20

2

21cout

2

abcin

y 2021cout

(a) FA (b) AFA1 (c) AFA2 (d) AFA3 (e) AFA4

Figure 3.2: Systematic Generation of AFAs using SGLP

connected to y and cout will be 1 and 2, respectively. The significance of the

remaining gates follows a reverse topological order and is calculated by adding

the significance of its descendants. Figure 3.2(a) shows the significance of each

gate calculated through the above approach. We can now prune the gates one by

one to obtain AFAs starting with the gate having the lowest significance. Figure

3.2 (b) shows the first AFA obtained by removing one gate from the original FA.

After the removal, we recalculate the significance of the newly obtained AFA.

The similar process continues to obtain the remaining AFAs. Figure 3.2 (c) - (e)

shows the entire AFAs obtained through the above approach. Table 3.1 shows the

corresponding truth table analysis of each AFAs. The first five columns specify

the input combinations (a, b and Cin) and the output of a conventional FA (Sum

51

3. APPROXIMATE ADDER DESIGN

and Cout). The remaining columns show the outputs of all the AFAs (AFA1

through AFA4) where a tick mark (✓) is used to indicate the correct output and

cross (×) to indicate incorrect output. Now, we can construct multi-bit adders

using the AFAs depending on the application where it is used and accuracy of

output the application needs.

Table 3.1: Truth Table Analysis of Approximate FAs

FA AFA1 AFA2 AFA3 AFA4

a b Cin S Co S Co S Co S Co S Co

0 0 0 0 0 0✓ 0✓ 0✓ 0✓ 0✓ 0✓ 0✓ 0✓
0 0 1 1 0 0× 0✓ 0× 1× 0× 1× 0× 0✓
0 1 0 1 0 1✓ 0✓ 1✓ 0✓ 0× 0✓ 0× 0✓
0 1 1 0 1 1× 1✓ 1× 1✓ 0✓ 1✓ 0✓ 0×
1 0 0 1 0 1✓ 0✓ 1✓ 0✓ 1✓ 0✓ 1✓ 0✓
1 0 1 0 1 1× 1✓ 1× 1✓ 1× 1✓ 1× 0×
1 1 0 0 1 0✓ 1✓ 0✓ 1✓ 1× 1✓ 1× 1✓
1 1 1 1 1 0× 1✓ 0× 1✓ 1✓ 1✓ 1✓ 1✓

3.1.2 SGLP for Uncut Adder

This section describes the detailed procedure and algorithm of Significance based

Gate-Level Pruning (SGLP) method for Uncut adder. Figure 3.3 shows the overall

process flow of SGLP. The SGLP method comprehensively defined as the process

of removing (pruning) the netlist component (in our case, gate) such that, on

execution, the netlist may produce an error but within the threshold defined

by the designer. It is an iterative process (refer Figure 3.3), begins with (1)

significance assignment and pruning the gate with lower significance followed

by (2) average Error-Significance (ESavg) calculation and finally, (3) checking

whether ESavg is less than or equal to the error-threshold (∆). The process

repeats until ESavg ≤ ∆, and on completion, we get a pruned version of the netlist

with less number of gates, which produce a result within the error-threshold.

Algorithm 1 shows the detailed procedure of SGLP method. GN denote the given

Gate-Level netlist with xi and yi as the input and output lines, respectively.

52

3.1 SGLP Technique and Implementation

Gate-Level Netlist

Significance Assignment

and Gate Pruning
Calculate ESavg

Is ESavg ≤ ∆?

Approximate

Circuit

YES

NO

1 2

3

Figure 3.3: Significance-based Gate-Level Pruning Process

We represent the circuit under consideration (GN) as a tuple set shown in

Equation 3.1:

GN =
{〈

gi, s(gi)
〉}

(3.1)

Where: gi = represents gate(s) in GN and s(gi) = represents significance of each

gate Our algorithm generates a pruned version of GN (PGN) such that, the

following conditions hold:

1. |PGN(gi)| ≤ |GN(gi)|

2. |PGN(xi)| ≡ |GN(xi)| and |PGN(yi)| ≡ |GN(yi)|

3. ESavg(PGN) ≤ ∆

i.e., PGN has less number of gates and an equal number of input/output lines

compared to GN. Lastly, the result produced is less than or equal to the error-

threshold (∆). We use the following notations in our proposed algorithm:

� Te: Number of exhaustive test patterns of a circuit which is 2n, where n is

the number of input lines.

53

3. APPROXIMATE ADDER DESIGN

� Tk : Set of sample test patterns. Tk is much less than Te.

� T j
k : Represent a test pattern in Tk. i.e., T

j
k ∈ Tk.

� Υ: Output produced by the netlist (GN or PGN).

� R and R†: Set of all output produced by GN and PGN, respectively.

Our algorithm starts with the calculation of the golden result produced by the

given netlist (GN). For smaller circuits, we took exhaustive test patterns (Te),

and for a larger one, we randomly chose a subset (Tk). After applying them to

GN , the output (Υ) is calculated using the Equation 3.2 and stored in a set R

(refer line number 1 to 3 in Algorithm 1).

Υ = yn−12
n−1 + yn−22

n−2 + ...+ y02
0 (3.2)

The next task of our algorithm is to assign significance to each gate, which

helps in identifying the first one to be removed. The process starts with the

lowest level gates connected to output line and having no successor. It takes the

form 2m (assigns from the Least significant bit) where m = 0, 1, 2..., represents

the number of lines present in the output. Then a reverse topological traversal

is performed to assign significance to the remaining gates present in the circuit.

Significance calculation is carried out using Equation 3.3 (refer line number 6 to

12 in Algorithm 1.

s(gi) =
∑

s
(
gdescendanti

)
(3.3)

Where:

s
(
gdescendanti

)
Significance of the immediate descendant of gate i

After successfully assigning the significance to each gate of the circuit the

pruning process is carried out. Line number 13 and 14 of our algorithm is doing

this job. The function findSmallest(GN) is used to search the entire set and

finds the gate having the lowest significance.This gate is pruned from the GN

54

3.1 SGLP Technique and Implementation

ALGORITHM 1: Significance based Gate-Level Pruning

Input: Gate-Level Netlist (GN), Error Thershold (∆), Sample Test
Pattern (Tk)

Result: Pruned Gate-Level Netlist (PGN)
// Calculate the golden result of GN and store it in a set R

1 foreach T j
k ∈ Tk do

2 Υ = yy−12
n−1 + yn−22

n−2 + ...+ y02
0;

3 R = R
⋃
{Υ};

4 end
5 repeat

// Assign Significance to each gate

6 foreach gi ∈ GN do
7 if gi has no successor then
8 s(gi) = 2m,m = 0, 1, 2, ...;
9 else

10 s(gi) =
∑

s
(
gdescendanti

)
;

11 end

12 end
// Gate Pruning: Removing the gates from the netlist

having lowest significance

// Find smallest tuple w.r.t. s(gi)
13 τ = findSmallest(GN) ;
14 PGN = GN − τ ;

// ESavg Calculation

15 Initialization: ESsum = 0;

16 foreach T j
k ∈ Tk do

17 Υ = yy−12
n−1 + yn−22

n−2 + ...+ y02
0;

18 R† = R† ⋃{Υ};
19 end

20 ESsum =
∑|Tk|

i=1

(
|Ri −R†

i |
)
;

21 ESavg =
ESsum

|Tk|
;

22 GN = PGN ∖GN

23 until ESavg ≤ ∆;
24 return PGN;

55

3. APPROXIMATE ADDER DESIGN

in line number 14 to get the PGN. Again, the same set of test-pattern (Tk) is

applied on PGN to calculate the result. The output produced is stored in the

set R† (refer line number 16 to 19 in Algorithm 1. We have two sets of results R

and R†, obtained from GN and PGN , respectively. We subtract them element-

by-element using Equation 3.4 to get our error-significance sum (ESsum) in line

number 20.

ESsum =

|Tk|∑
i=1

(
|Ri −R†

i |
)

(3.4)

Line number 21 calculates the average error-significance, and in line number 23 it

is compared with the Error-Threshold (∆). The process repeats only if ESavg ≤
∆, else our algorithm returns the PGN shown in line number 24. In case it

reiterates then, the PGN obtained in the last iteration, is treated as the GN for

the current iteration (refer line number 22).

3.2 Experimental Evaluation

In this section, we describe the detailed implementation of the 16-bit adder circuit

for FA approximation. Due to size limitation, we are not showing the detailed

implementation of the approximate uncut adder. But we can follow the same

procedure as FA approximation to get our desired result. A simple Ripple Carry

Adder (RCA) is considered in our case which is implemented using Verilog HDL

in Xilinx Vivado 2018.1 environment (Vivado System Generator for DSP 2018.1).

Compatible version Matlab 2017b is used to run our design. A system with Core

i5 processor and 8GB RAM is used to execute our experiments.

For FA approximation, we divided the entire circuit into two segments not

necessarily equal. We replace the LSBs with the proposed AFAs, and the re-

maining MSBs uses the regular FA. We use the Design Compiler (DC) EDA tool

from Synopsys with 45-nm open cell library to transform the RTL design into

Gate-Level netlist. The detail of gain in terms of area, power, and delay is shown

in Table 3.2. Here lb represents the number of FA replaced with AFAs from LSB.

For instance, lb = 4 means we divide the entire circuit into two segments one

56

3.2 Experimental Evaluation

segment contains 4 FAs from LSB, and other contains 12 FAs from MSB. We

replace the 4 FAs from LSB with 4 AFAs.

Table 3.2: Area,Power, and Delay Characteristics

Adder Matrix lb = 2 lb = 4 lb = 8 lb = 16
RCA Area 68

Power 0.54
Delay 0.8

AFA1 Area 66 64 61 54
Power 0.52 0.51 0.48 0.43
Delay 0.78 0.76 0.72 0.64

AFA2 Area 64 62 55 41
Power 0.50 0.46 0.42 0.32
Delay 0.77 0.72 0.63 0.48

AFA3 Area 59 55 46 27
Power 0.49 0.45 0.37 0.21
Delay 0.74 0.68 0.56 0.32

AFA4 Area 61 54 40 14
Power 0.47 0.42 0.30 0.10
Delay 0.72 0.64 0.48 0.16

Area→[nm2], Power→[mW], Delay→[ns]

After obtaining all these approximate 16-bit Adders (AFA-16), we generate

the black box for each of them using Vivado System Generator Tool. These black

boxes will be further used to implement the DSP application for image processing.

We have generated black boxes for four AFA-16 with lb = 8 which replaces AFA1

through AFA4 in each of these AFA-16.

3.2.1 DCT Application

DCT is a computationally ideal component for image processing applications.

For our experiment, we took 8 × 8 pixel blocks DCT. Several DCT architecture

has been proposed in the literature [87–89]. The conventional method requires

64 multiplication and 56 addition operations which is a substantial number and

hence cannot solve our goal. The scope of our work needs a multiplier-less DCT

architecture. This work does not present any new DCT rather we are using an

57

3. APPROXIMATE ADDER DESIGN

existing multiplier-less state-of-the-art architecture to test our proposed method.

One such architecture is presented in [89] which is a multiplication-free transform

suitable for image compression commonly referred BAS-2011 in literature. The

proposed hardware architecture of BAS-2011 has total 18 addition operations

represent a 1D DCT. Using two 1D DCT block along with a transpose buffer, we

can realize a complete 2D-DCT transform.

3.2.1.1 FPGA Implementation

Initially, each 1D DCT is modeled by replacing the conventional adders with

the proposed adder circuit (implemented as black box using system generator

tool) and then linked to form a comprehensive 2D transform. The entire de-

sign is realized using Vivado System Generator tool. By this process, we get

four different 2D DCT model named as DCTv1, DCTv2, DCTopt, and DCTnop.

The realized models are physically built using Xilinx Virtex-6 XC6VLX240T field

programmable gate array (FPGA) and connected to the host computer running

Matlab Simulink version 2017b. Image processing activity is carried out by esti-

mating the DCT of sample images acquired from each model. The transformed

image is then fed into Inverse DCT function to obtain the compressed image.

Finally, we calculate the quality measure PSNR (peak signal-to-noise ratio) of

the original and compressed image for image degradation using Equation 3.5.

PSNR = 10 log10

(
MAX2

MSE

)
(3.5)

Where MAX represents the maximum possible pixel value and MSE is the

mean square error: the cumulative squared error between the original image I

and obtained compressed image Î using equation 3.6.

MSE =
1

MN

M∑
i=1

N∑
j=0

[I(i, j)− Î(i, j)]2 (3.6)

58

3.3 Conclusion

3.2.1.2 Image compression and Result Analysis

To show that our proposed approach does not provide any unreasonable output,

we conducted the image compression experiment described in [90] and carried

by [91–93]. We considered 45 512× 512 grayscale images obtained from a public

image library [94]. Each image is divided into 8× 8 blocks and submitted to the

2D transformation similar to [92]. For a particular transformation, each block

furnished 64 coefficients in the approximate transform domain. Following the

standard zigzag sequence [95] reconstruction of the image is done by employing

r(1 ≤ r ≤ 45) initial coefficient to each block and zero to the remaining coef-

ficient. Finally, we obtain the compressed image by applying the actual inverse

transformation. We then compare the original image with the compressed one for

image degradation using PSNR as the quality measure. Figure 3.4 shows the av-

erage PSNR plot obtained by the experiment. Analyzing the result, we conclude

that the proposed testing method does not produce any unreasonable output and

quite competent for image compression.

Our objective is not to compare our result with other existing DCT algorithm.

The main purpose of the experiment is to determine that approximate testing

of circuit generates a tolerable result. Hence we also present a visual quality

evaluation of our experimental result applied to the standard Lena image for

r=25. Figure 3.5 shows the effects of the experiment and supports our claim

acquainted in introduction section.

3.3 Conclusion

Approximate Computing technique is a novel design paradigm provides several

benefits in terms of area, power consumption, and delay. In this work, we have

presented an ACD technique named as SGLP which can be used to reproduce

adder circuits for chained and unchained adders. With the previously developed

technique, this is not possible that shows the novelty of our work. We have tested

our approach using a DCT architecture for image processing particularly image

59

3. APPROXIMATE ADDER DESIGN

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 P
S

N
R

, d
B

BAS2011
DCT-V1
DCT-V2
DCT-OPT
DCT-NOP
DCT

Figure 3.4: Average PSNR for several compression ratios

(a) (b) (c)

(d) (e) (f)

Figure 3.5: Lena image produced with (a) DCT, (b) BAS-2011, (c-f) Proposed method
DCTv1, DCTv2, DCTopt, DCTnop

60

3.3 Conclusion

compression and found that our result is acceptable to human perception-behavior

on image clarity.

61

3. APPROXIMATE ADDER DESIGN

62

Chapter 4
Approximate Testing

Approximate testing is a technique that dilutes the strictness of conventional test

procedures. The broad thought belongs to the idea of threshold testing described

in Section 2.4.2. After deciding on a fault model, instead of generating test

patterns for all faults, the method generates test patterns for some critical faults.

Due to this, some faults were left untested during the test application, leading

to incorrect results while the circuit was actually used. However, the circuit is

still acceptable because we are supposed to use these circuits in error-tolerant

applications. In this chapter, we explore different techniques for approximating

the test procedure.

Overall, the contribution is twofold. The first contribution explains a pro-

cedure that generates an approximate version of an original circuit and then

Approximate IC
(AxIC)

Exact IC
(ExIC)

Compare
&

Find

Exact IC (ExIC)

Tolerable
fault site

Generate test
patterns for the

remaining

Figure 4.1: Idea of approximate testing

63

4. APPROXIMATE TESTING

?

PASS

FAIL
Faulty IC

(FaIC)

?

PASS

FAIL

Acceptable IC
(AcIC)

Exact IC
(ExIC)

CUT

Conventional IC test flow architecture Approximating IC test flow architecture

Figure 4.2: Idea of approximating conventional IC test flow architecture

compares them (original and its approximate version) to identify the tolerable

fault sites in the original circuit. During the testing, faults in the tolerable fault

site are intentionally overlooked, assuming that the fault effect is benign. Figure

4.1 shows the idea of the proposed approximate testing. In the second contri-

bution, we propose an approximate retesting technique to test all faulty circuits

resulting from a conventional IC test flow. The objective is to identify all accept-

able circuits from the rejected ones. Figure 4.2 shows the idea of approximating

the IC test flow architecture to obtain acceptable ICs.

The chapter has two sections. In Section 4.1, we present a basic idea of testing

a conventional IC through the technique of approximate testing based on fault

analysis. Section 4.2 proposes retesting FaICs (rejected ICs during conventional

IC test flow) to identify AcICs, which obviously helps improve the manufacturing

yield.

4.1 Fault Analysis based Approximate Testing

The growing design complexity increases the number of fault sites in the circuit.

We require an enormous amount of test patterns to cover all these faults. The

ever-increasing Test Data Volume (TDV) causes extremely high test cost and

power because of extended Test Application Time (TAT) and large Automatic

Test Equipment (ATE) memory requirements. In today’s scenario, TDV exten-

sively contributes to the cost of an Integrated Circuit (IC) manufacturing. One

approach to reduce TDV is to use test data compression scheme [70], which is

64

4.1 Fault Analysis based Approximate Testing

the most widely used approach. It requires a decompressor unit which is addi-

tional hardware that needs to be deployed in the system to decompress test data

before applying to the Circuit Under Test (CUT). This work introduces a tech-

nique called Fault-based Approximate Testing (FAT) having the following initial

deliberations:

1. Application-oriented as compared to classical testing.

2. Based on the concept of Threshold Testing where a specific error threshold

(ET) is assigned depending on the application.

3. A classical testing approach is sometimes called stop on first error (SOFE)

because the testing continues with the next test vector only when the cap-

tured output matches the golden response else the CUT is discarded. Our

approach is not based on SOFE; the testing process continues until the

output is within the ET.

The basic idea of FAT is to identify the Approximate Fault sites (AFS) and

overlook them without testing it. In our case, each AFS is either represented

with a stuck-at-0 (SA0) or stuck-at-1 (SA1) fault. Overlooking an AFS means not

generating test patterns for SA0 and SA1 which leads to a reduction in the number

of test patterns.The essential part of our approach is to identify the AFS. To do

that, we need to quantify the adverse effect of a fault using some quantification

measure (QM) described in [72].The three well-known QM defined in [72] are as

follows: (i) Error-Significance (ES): The maximum amount by which the output

of a circuit deviates from the corresponding error-free output. (ii) Error-rate

(ER): Fraction of test patterns that produce erroneous output. and (iii) Error-

Accumulation (EA): Change in error-rate over time. For our purpose, we use

ES as the QM. The average ES is calculated for each fault and compared with

an ET provided by the designer of the circuit. The fault is considered tolerable

if the average ES is lower than or equal to the ET else it is intolerable. Before

the test generation, all intolerable fault sites have been identified using the above

65

4. APPROXIMATE TESTING

approach. Later, we have tested the circuit by injecting faults at the intolerable

fault site (identified above) for image processing application. Ultimately, we found

that even some area of the circuit remains untested does not affect the quality of

the image with respect to human perception.

As compared to the traditional testing method, We can define approximate

testing as the testing of digital circuits without 100% fault coverage with an as-

sumption that the uncovered fault, if it exists in the design, does not produce an

unacceptable result.

In summary, in this work the following contributions has been made:

� Identification of Tolerable and Intolerable fault sites in a given gate-level

netlist

� Provides a way to preprocess the circuit before actual ATPG is applied.

� May contribute to yield improvement if the rejected circuit (Due to SOFE)

is retested using our method and the faults for which it was rejected is

present in the tolerable area of the circuit.

4.1.1 Motivation

There are applications like image, video and audio processing that have a common

property called inherent application resilience property - producing an acceptable

output despite incorrect computation made by an underlying hardware. For

instance, Figure 4.3 shows two images which look almost the same but their

histograms are different. The reconstructed image is obtained by subtracting 20

from each pixel value of the original image. That means the image quality will

not be affected much by small changes in the pixel value. So the circuits used in

image processing applications can tolerate a small amount of error. Knowing this,

the image can also be readily accepted if we do not test some part of the circuit

and use the circuit in image processing applications. This discussion brings a

motivation to test a circuit approximately.

66

4.1 Fault Analysis based Approximate Testing

Original Image

100 200 300 400 500

100

200

300

400

500

Reconstructed Image

100 200 300 400 500

100

200

300

400

500

0

1000

2000

3000

4000

5000

6000

7000

8000

Histogram (Original Image)

0 50 100 150 200 250

0

1000

2000

3000

4000

5000

6000

7000

8000

Histogram (Reconstructed Image)

0 50 100 150 200 250

Figure 4.3: Histogram Comparison

Test techniques in the context of approximate computing are grouped into

three categories, as discussed in section 2.4. Category 1 describes the process

of approximating the conventional test flow architecture, category 2 refers to

threshold testing, and the third category explains the test techniques to test

AxICs. This work is based on category one. The traditional method of circuit

testing is based on 100% fault coverage, but category 1 relies on the classification

of the fault into tolerable and intolerable faults. The former is left untested,

and test patterns are generated to test the latter. Previously, Wali et al. [60, 96]

contributed towards this category, where they perform a structural analysis to

determine the vulnerable circuit elements and thus generate the test pattern for

those circuits. As they are not classifying the faults, they ignore the inherent

resilience property of the circuit. In this work, we consider the inherent resilience

property of the given circuit and classify the fault into tolerable and intolerable

faults.

67

4. APPROXIMATE TESTING

Gate-Level Netlist (GN)

Pruned Gate-Level
Netlist (PGN)

PGN
Generation

process

One-to-One
Mapping

GN

ATPG

Image
Compression

Result
Analysis

Tolerable Fault Site

Figure 4.4: Proposed Method

4.1.2 Proposed Approach

Our basic approach starts with the identification of tolerable fault site present in

the given gate-level netlist (GN). Figure 4.4 describes the overall procedure of our

approach. The first step in our process flow is to obtain a pruned version (PGN)

with less number of gates as compared to GN using the method described in

Section 3.1.2. But it is not possible to generate PGN for all types of circuits using

this method. Hence our approach is limited to the image processing applications.

The second step is to identify tolerable fault sites in GN which is achieved by

one-to-one mapping of fault site present in both GN and PGN. In the third

step, test patterns are generated only for intolerable faults that reduces the fault

coverage but, it does not affect the quality of the result produced by the circuit.

The experimental result shows that 40-50% reduction in test pattern is achieved

using our approach. Further, we conducted an image compression experiment by

injecting faults at the tolerable fault sites, and the result is absolutely satisfactory

with respect to human perception.

4.1.2.1 PGN Generation

Our technique requires a corresponding approximate circuit of the given gate-level

netlist. PGN generation process follows gate level pruning technique described

in Section 3.1.2. We use Error-Significance (ES) and Average-Error-Significance

(ESavg) as the criteria for pruning a node (gate). The process of PGN genera-

68

4.1 Fault Analysis based Approximate Testing

tion starts with weight assignments and pruning followed by average ES (ESavg)

calculation.

Figure 4.5(a) shows a 4-bit ripple carry adder (RCA) circuit for which our

approach generates the weight of each gate. Weight distribution takes the form

2n where n = 0, 1, 2, ... starting from the LSB output line and move towards MSB.

There are four full adders that make the 4-bit RCA; each full adder is considered

separately for weight assignment. Each carry line also takes part in the initial

weight assignment process. The gate connected to primary output is called level-

1 or first level and as we go up, the level number is increased. Starting with

LSB (y0) and moving towards MSB (cout) the output lines are assigned weight in

the form 2n. As mentioned earlier the carry lines are also assigned weight values

denoted in red oval shape in the figure. The first level gates use these values as

their weight. The weight of the top-level gate is calculated using Equation 3.3.

After finishing the weight allotment, the next process of our approach is to

prune the gates. The gate having lowest weight is removed first followed by aver-

age ES (ESavg) calculation. The average error significance (ESavg) is calculated

using Equation 4.1.

ESavg(PGN) =

∑
T j
k∈Tk
|RGN −RPGN |
|Tk|

(4.1)

where, RGN and RPGN represents the result produced by GN and PGN , respec-

tively.

The entire process is iterated until we get the PGN whose ESavg is less than

the ET supplied by the designer of the circuit. In every iteration one node is

removed from the circuit, ESavg is calculated, compared with ET and the process

is repeated until ESavg < ET .

Example: The gate having the lowest weight is pruned first. Consider the

example circuit shown in Figure 4.5(a). The gate shown in black is having the

lowest significance and recognized as a candidate to be pruned from the circuit.

Figure 4.5(b) shows the netlist after removal of 12 gates from the original one. Let

69

4. APPROXIMATE TESTING

a0b0a1b1a2b2a3b3

cin

cout y0y1y2y3

2022
242627

141664

128

128128

194

32

32 32

8

88

48 12

2

2 2

3

212325

FA1FA2FA3FA4

a0b0a1b1a2b2a3b3

cin

cout y0y1y2y3

2022
242627

64

128

128128

194

32

32 8

16

2

25

FA1FA2FA3FA4

GND1GND2

(a) 4-Bit Adder (GN) (b) 4-Bit Adder (PGN)

Figure 4.5: Example

(a3, a2, a1, a0) = (1011) and (b3, b2, b1, b0) = (1111) be the inputs applied to GN

and the corresponding output produced is (cout, y3, y2, y1, y0) = (11010) which is

the actual addition result. Result RGN of the circuit is obtained using Equation

3.2. The same input and the equation is utilized to calculate RPGN .

RGN = 1× 24 + 1× 23 + 0× 22 + 1× 21 + 0× 20 = 26

RPGN = 1× 24 + 0× 23 + 1× 22 + 1× 21 + 1× 20 = 23

The absolute difference between these two output represents the Error-significance

of PGN and is calculated as follows:

ES(PGN) = |RGN −RPGN | = |26− 23| = 3

Depending on the time and the size of the circuit the tester needs to decide and

calculate ES with an exhaustive test pattern (Te) or a set of sample test patterns

(Tk). For our example, we took (Te) because our circuit is small and Table 4.1

shows the analyzed result. We define the threshold value as 2. In total, 136 input

patterns are applied. It is interesting to note that by removing 12 gates from the

original netlist (RCA 4-bit with 20 gates) we get the PGN (highlighted in color

yellow). Out of 136 input patterns, the circuit does not produce any error for 28

patterns. For the remaining, the circuit produces approximate output within the

threshold.

70

4.1 Fault Analysis based Approximate Testing

Table 4.1: Analysis of the result obtained for RCA 4-bit

Criteria R1 R2 R3 R4 R5 R6 R7 R8 R9 PGN R10

Gate Removed (out of 20) 1 2 3 5 6 7 8 10 11 12 13
Test Pattern for which no error produced 136 136 64 64 64 28 28 28 28 28 28
Error Percentage (%) 0 0 52.94 52.94 52.94 52.94 79.41 79.41 79.41 79.41 92.64
Average ES 0 0 0.52 0.52 0.52 0.52 1.35 1.64 1.64 1.64 3.17

4.1.2.2 One-to-One mapping

We have two circuits (i) Original circuit (GN) (ii) Pruned gate-level netlist (PGN).

Because PGN is the pruned version of GN, it has less number of gates and less

number of fault sites as compared to GN. Each fault site represents either a stuck-

at-0 or stuck-at-1 fault. The set Pfs and Gfs denote the fault set corresponding

to PGN and GN, respectively and a fault pi belongs to Pfs corresponds to the

fault gj that belongs to Gfs and vice versa. This relation is represented using a

function shown in figure 4.6 and explained as follows:

k

p1
p2

pn

g1
g2

gr

Pfs

Gfs

gr+1

gm

Figure 4.6: Function representing the relationship between PGN and GN

Let Pfs and Gfs be two nonempty sets. A function k : Pfs −→ Gfs is defined

as a relation between pi ∈ Pfs and gj ∈ Gfs when both have same fault location (in

their respective circuits), as well as they, refer to the same type of fault (s-a-0 OR

s-a-1). Figure 4.6 represents the function k from Pfs to Gfs. The domain of k is

the set Pfs = {p1, p2, . . . , pn} and the codomain is the set Gfs = {g1, g2, . . . , gm}.
The range of k is the set {g1, g2, . . . , gr}, because {gr+1 . . . gm} is not related to

any element in Pfs.

71

4. APPROXIMATE TESTING

A subset of elements {gr+1 . . . gm} in the set Gfs is not mapped as it is an

onto function. Those elements (faults) though present in the original circuit (GN)

are treated as the candidate faults whose presence does not affect the output of

GN . During testing, these faults can be left untested and treated as tolerable.

The remaining elements {g1, g2, . . . , gr} which has a one-to-one mapping with the

element of Pfs has to be tested explicitly and are called intolerable faults.

Return to Example Circuit: RCA 4-bit We took the same example to

further explain the classification of faults. Figure 4.7 (a) shows the original RCA

4-bit netlist and 4.7(b) shows the optimal pruned netlist with its fault site marked

with red dot. Each red dot corresponds to either stuck-at-0 or stuck-at-1 fault.

There are 61 fault sites corresponding to 122 faults (61× 2 = 122) in the original

circuit. Similarly, 25 fault sites correspond to 50 faults in the pruned RCA 4-bit

circuit. Hence, we get approximately a 41% reduction in the number of faults.

4.1.3 Experimental Result

Our experimental result is two-fold. (i) Test pattern reduction analysis: We tested

a wide range of Arithmetic circuits as well as ISCAS-85 benchmark circuits and

summarized the results. (ii) Image compression: We use the arithmetic circuits

that are tested using our approach to see the impact of image compression.

4.1.3.1 Test Pattern Reduction Analysis

Identification of tolerable fault site is implemented using C++ program where

the input to the program is the gate-level netlist (GN). The simulation process

is executed on a machine with an Intel I5 processor and 8GB of RAM. Before

the ATPG generation process, we divided the circuit and identified the region of

fault tolerance. After that, the normal ATPG flow is carried out. We have taken

two types of circuits for the experiment (i) Standard arithmetic circuits that are

collected from [97], act as the perfect candidate for our approach (ii) ISCAS-85

benchmark circuits [98] that are fit to our proposed method.

72

4.1 Fault Analysis based Approximate Testing

a0b0a1b1a2b2a3b3

cin

cout y0y1y2y3

FA1FA2FA3FA4

a0b0a1b1a2b2a3b3

cin

cout y0y1y2y3

FA1FA2FA3FA4

(a)

(b)

Figure 4.7: Fault site shown in red dot

Table 4.2 summarizes the result produced by the experiment. The 2nd and

3rd column of the table indicates the number of primary input/output and the

number gates of each circuit, respectively. The 4th, 5th and 6th columns show the

total number of faults (#F) that include fault equivalence and fault dominance,

tolerable faults (#Tf) identified using our proposed approach and targetted fault

percentage (Ftar) which is calculated using the Equation 4.2, respectively.

Ftar =
F − Tf

F
(4.2)

73

4. APPROXIMATE TESTING

Table 4.2: Fault-based Test Technique Results for Benchmark Circuits

Circuit #PI/#PO gates #F #TF Ftar Tv RTv TVR %
Ripple Carry Adder 65/33 160 1024 296 71.09% 242 104 42.97%
Carry-Skip Adder 65/33 160 924 186 79.87% 184 96 52.17%
Carry Look-Ahead Adder 65/33 160 873 225 74.22% 216 89 41.20%
Kogge Stone Adder 64/33 839 1789 534 70.15% 313 134 42.81%
Han Carlson Adder 64/33 655 1415 410 71.02% 201 65 32.33%
Brent Kung Adder 64/33 745 1278 325 74.56% 317 156 49.21%
Ladner-Fisher Adder 64/33 545 1178 125 89.38% 210 96 45.71%
4-Operand Adder 64/18 614 1434 556 60.59% 292 162 55.47%
Wallace Multiplier 16/16 641 1641 285 82.63% 339 123 36.28%
Dadda Multiplier 16/16 641 1641 263 83.97% 275 52 18.90%
Array Multiplier 16/16 610 1585 321 79.74% 316 124 39.24%
ISCAS-85 Benchmark Circuits
c880 (8-bit ALU) 60/26 383 1074 293 72.71% 15 6 40.00%
c2670 (12-bit ALU and controller) 233/140 1193 1950 587 69.89% 44 19 43.18%
c3540 (8-bit ALU) 50/22 1669 2657 394 85.17% 63 31 49.20%
c5315 (9-bit ALU) 178/123 2307 4224 1341 68.25% 136 63 46.32%
c6288 (16× 16 multiplier) 32/32 2406 2314 541 76.62% 94 39 41.48%
c7552 (32-bit adder/comparator) 207/108 3512 4490 1184 73.63% 148 71 47.97%

Here, targetted fault percentage refers to the percentage of faults considered

for testing. Finally, the last three columns specify the total number of test vec-

tors (Tv), reduction in test vector (RTv) after ATPG is applied, and test vector

reduction percentage, respectively. The analysis result shows that we have a re-

duced amount of targetted fault compared to conventional testing. Therefore, our

approach provides a quite good reduction in the test vector. On average 40-50%

reduction in the test vector is achieved by this method.

4.1.3.2 Image Compression

We assess our technique by implementing three 16-bit adder circuits (Ripple Carry

Adder, Kogge Stone Adder, Han Carlson Adder) used to build a DCT (Discrete

Cosine Transform) for image compression. All experiments are executed using

a system having a Core i5 processor with 8GB RAM. We realize all the adder

circuits through Verilog code written in Xilinx Vivado 2018.1 design suite. The

implemented designs are extracted through the Vivado System Generator Tool,

and then we run it in Matlab 2017b. The approximated regions are identified

using our proposed approach, and then faults are injected into that region. We

74

4.2 Retesting Defective Circuits using Approximation Technique

took 100 input pairs with a different threshold that varies from 3 to 7. We did

not follow any specific rule to define the range of numbers rather we obtained five

different ranges (1-1000, 1-20000,10000-20000, 7000-15000, 5000-15000) of num-

bers. For each realized adder circuit, we generate the black box using the system

generator tool with an objective to utilize it to perform the image processing ex-

periment. Before processing an image, we replace all the standard adder circuit

with the proposed one by remodeling the 1D DCT architecture. Then we link

this 1D DCT to create a comprehensive 2D transform. The outcome obtained

from the above process is passed through an inverse DCT function, and the result

is a compressed image. Finally, we perform an experiment using the Lena image

from [99] to ensure that the stated method does not produce an output, which

may not be acceptable. Figure 4.8 shows the output obtained after performing

the experiment and has not violated the claim made by our approach. As per

the output, we can say that even some parts of an exact circuit are left untested,

it does not affect the behaviors of human perception towards image clarity. The

image generated with the injected fault on RCA (Figure 4.8b) produces better

visual clarity than the other two images shown in Figure 4.8 (c) and (d).

4.2 Retesting Defective Circuits using Approx-

imation Technique

In a conventional test procedure, test patterns are run sequentially, and the pro-

cess stops applying the test patterns when the CUT produces an incorrect result.

This procedure is known as SOFE (Stop on First Error). But we can not ignore

the fact that the faulty circuit identified above may produce error-free output for

the remaining test patterns. In other words, the circuit that contains a defect

but yet generates a satisfactory result can be usable. We call these circuits as Ac-

ceptable Circuits (AcICs). However, we found no technique to identify the AcICs

through testing while considering the conventional testing procedure. That’s why,

in this work, we propose a retesting technique that will identify the AcICs from

75

4. APPROXIMATE TESTING

Figure 4.8: Compressed Lena image produced using the proposed model (a) Conven-
tional DCT (b) RCA with injected fault (c) KSA with injected fault (d) HCA with
injected fault

the faulty (rejected) circuits. Approximate testing [60] is a new approach to test-

ing that is designed to reduce the time and cost of testing. It involves testing the

product against a set of approximate test cases. These test cases are designed

to be less strict than the conventional test cases. They allow for some degree of

error in the product. In this work, we use the idea of approximate testing to test

AcICs.

Another benefit of this work is yield improvement. According to the current

scenario of technology scaling, manufacturing yield is measured in terms of the

number of perfect chips produced [79]. However, an imperfect chip producing a

good-enough result can also be considered and helps enhance the yield. Hence,

identifying those acceptable circuits (AcIC) through retesting increases the effec-

tive yield indirectly.

76

4.2 Retesting Defective Circuits using Approximation Technique

Our approach uses the Hamming distance to calculate Fault Pay-off (Fpo). Fpo

is a quantification measure used here to classify the faults. From the experimental

analysis, we found that the location with the highest Fpo, if it contains a fault,

will likely affect more than 50% of the output lines (Hamming Distance is more

than 50%). Hence, in the approximate-test phase, we retest the faulty circuits by

generating the test patterns for the faults in the location having the lowest Fpo.

To show the benefit of our proposed method in terms of yield gain, we devise

a yield model. According to the analysis of the yield model, we found that, on

average, 10-20% of circuits are found acceptable.

4.2.1 Motivation and Analysis

According to [100], the error-tolerability of an AI system is more significant than

that of a human being. A human sensor system may not react to a minor change

in the pixel quality of an image, but if it contains more noise, it is unacceptable.

However, an AI system may not complain even if the image contains more noise.

It is illustrated using Figure 4.9 (c) where a pedestrian is still be detected by an

AI system, but a human being may conclude it as an erroneous image. Hence,

AI systems are more error-tolerant. From this, we can conclude that the circuits

that make an AI system and fail during conventional test flow are still usable if

it produces some minor error during regular operation. As per the definitions

provided in Table 1.2, both AcICs and AxICs can be employed in AI systems

because both can tolerate some amount of error.

Two major components are involved in identifying an AcIC. The first com-

ponent is the quantification measure (either error-significance or error-rate, and

sometimes both), and the second is a fault model. The analysis presented in

this section is based on the following fundamental questions and our contribution

includes the solutions to these questions.

� Which quantification measure correctly determines the acceptability of a

circuit irrespective of its type?

77

4. APPROXIMATE TESTING

(a) Original Image (b) Less Noise with no complaint
from a Human Being

(c) More Noise with no complaint
from an AI System

Figure 4.9: Motivating Example

� Is it required to choose a fault model, and if not, how it affects the deter-

mination of AcICs?

� Whether to choose the existing ATPG algorithm or a new algorithm is

needed to determine the circuit’s acceptability?

4.2.1.1 Analysis-1

Most works of literature use error-rate and ignore the requirement of a fault

model [76,77,101–105]. They calculate the fraction of input patterns that produce

an erroneous output and ignore the fault’s severity (also known as the overall fault

effect). The severity of a fault may reduce the effectiveness of these techniques.

Let us define the fault severity here, and a theoretical definition is given in section

4.2.2.1. The severity of a fault is defined as the product of two terms: (1) The

number of test patterns that excites the fault effect to the output, and (2) The

addition of the Hamming distance produced by each test pattern. For instance,

consider the circuit C shown in Figure 4.10 (a) with two faults, f1 and f2, where

f2 is more disastrous than f1. Let t be the total number of test patterns required

to test the given circuit C, out of which s test patterns generate incorrect output

due to f1, and k test patterns produce incorrect output due to f2. Assume that,

78

4.2 Retesting Defective Circuits using Approximation Technique

O

O

f1

f2
δ+

Output in the
presence of f2

δ-

Output in the
presence of f1

Correct
Output

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

(a) (b)

Test Pattern

Th
re

sh
o

ld
 R

an
ge

Figure 4.10: Example Circuit to explain Fault Severity

|k| << |s|, then according to the current technique, f1 is considered more severe

than f2. Figure 4.10 (b) shows the scenario: where t=11, t1 through t11 test

patterns are applied to test the circuit. The circuit produces the wrong output

7 times (s = 7) due to fault f1, 2 times (k = 2) due to f2. The error rate in

the presence of f1 will be 63% and 18% for f2. According to the techniques

proposed so far, f1 is estimated as more catastrophic than f2. But according to

our assumption, the procedure must identify f2 as more severe than f1. We are

claiming this because of the predefined threshold indicated in Figure 4.10 (b) as

δ+ and δ−. The incorrect output produced due to f2 is beyond the threshold.

Hence, we need a different technique based on the fault model and the severity of

each fault. The conclusion is that the current method considers only the fraction

of test patterns that produce an incorrect result, but our approach is based on the

fault model and the severity of each fault.

79

4. APPROXIMATE TESTING

4.2.1.2 Analysis-2

Some works of literature use error-significance as a measurement to identify the

acceptability of a circuit [71, 79–81, 106, 107]. Others, like [82], considers both

error-significance and error-rate (SBER). Error-significance of these circuits is

defined as the numerical difference between the actual output and the erroneous

output. The desired circuits’ output pins are marked as MSBs and LSBs. Com-

pared to MSBs, LSBs are assigned the lowest numerical significances. Figure

4.11 shows the error-significance calculation procedure. R represents the actual

output, and R† represents the output produced by the faulty circuit. In this ap-

proach, a predefined threshold is used to classify the faults. The major problem

with these techniques is that we can not use it to classify faults for all types of

circuits. For instance, circuits like an adder have the potentiality of identifying

MSBs and LSBs. Most arithmetic circuits allow us to mark the pins as LSBs

and MSBs, but several circuits (other than arithmetic circuits) exist for which

distinguishing impact of MSBs and LSBs on the overall output is different. For

example, let us consider a random circuit with four output lines, as shown in

Figure 4.12. In Figure 4.12(a), we choose pin 5 as the LSB and pin 8 as MSB,

and accordingly, we allocate the significance, 20 through 23, respectively. In Fig-

ure 4.12(b), the other way is chosen, i.e., pin 8 is referred to as LSB and pin 5

as MSB. In such a situation, the significance of the output pins vary depending

on the marking of MSB and LSB. However, the significance of an output pin

should be decided based on an output pin’s criticality. Here, criticality refers to

the effect of the circuit’s overall output due to a wrong result produced by the

considered output pin. To elaborate on the situation, assume that the criticality

of pin 8 is higher than pin 5. Hence, the significance of pin 8 and 5 should be

23 and 20, respectively. Figure 4.12(a) shows this ideal situation. According to

the current literature analysis, the worst-case state can occur if the technique

chooses pin 5 as MSB and pin 8 as LSB irrespective of its criticality, as shown

in Figure 4.12(b). Table 4.3 shows the output differences between both these cir-

80

4.2 Retesting Defective Circuits using Approximation Technique

Given Circuit

X0Xn-2Xn-1

Z0Zn-2Zn-1

Given Circuit with
Fault

X0Xn-2Xn-1

Z0Zn-2Zn-1

R = Zn-12n-1 + Zn-22n-2 + . . . +Z020 R† = Zn-12n-1 + Zn-22n-2 + . . . +Z020

Error Significance=|R - R†|

Input pins

Output pins

LSBMSBLSBMSB

Figure 4.11: Showing absolute numerical difference (error-significance) between out-
put of original circuit and the faulty circuit

cuits based on the calculation shown in Figure 4.11. The last column shows the

absolute numerical difference between these circuits. In 75% of cases, the outputs

are wrong, and in 50% of cases, the absolute numerical difference is more than

2. The analysis is presented for only a 4-output pin circuit, and if the number of

output pins increases, then the situation will worsen. So the conclusion is that

we should wisely choose the MSB and LSB of output pins while considering non-

arithmetic circuits. This work avoids determining the MSB and LSB bits because

our approach is purely based on the fault model and its impression on the output

pins.

4.2.2 Proposed Approach

This section will discuss the proposed two-phase testing architecture to determine

all the acceptable circuits (AcICs). First of all, we will describe the fundamental

principle that drives our proposed approach, which also explains why our tech-

81

4. APPROXIMATE TESTING

Input
Pins

Output
Pins

MSB

LSB

CUT

Input
Pins

Output
Pins

LSB

MSB

CUT

(a) (b)

Significance

20

21

22

23

Significance

20

21

22

23

Figure 4.12: Imaginary Circuits under Test (a) Circuit showing Z0 as LSB and Z3

as MSB (b) Circuit showing Z3 as LSB and Z0 as MSB

Table 4.3: Output analysis of the example circuit

Z3 Z2 Z1 Z0 R Z3 Z2 Z1 Z0 R† |R−R†|
0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 8 7

0 0 1 0 2 0 1 0 0 4 2

0 0 1 1 3 1 1 0 0 12 9

0 1 0 0 4 0 0 1 0 2 2

0 1 0 1 5 1 0 1 0 10 5
0 1 1 0 6 0 1 1 0 6 0

0 1 1 1 7 1 1 1 0 14 7

1 0 0 0 8 0 0 0 1 1 7
1 0 0 1 9 1 0 0 1 9 0

1 0 1 0 10 0 1 0 1 5 5

1 0 1 1 11 1 1 0 1 13 2

1 1 0 0 12 0 0 1 1 3 9

1 1 0 1 13 1 0 1 1 11 2

1 1 1 0 14 0 1 1 1 7 7
1 1 1 1 15 1 1 1 1 15 0

82

4.2 Retesting Defective Circuits using Approximation Technique

nique is better than the other technologies developed so far. Then we will describe

the architecture flow of our method in subsequent sections.

4.2.2.1 Fundamental Principle

Considering a rejected circuit that fails the conventional manufacturing test pro-

cedure due to some fault in the chip, our approach is based on two fundamental

principles:

� Not all input patterns propagate the fault effect to the output.

� Even if some input patterns propagate the fault effect; it may not affect all

output lines.

Let the given circuit C have m input lines and n output lines. During the

usage, the circuit may come across 2m patterns for which the circuit needs to

produce the correct result. Assume that a fault fi is present in the circuit, and

k input patterns drive the fault effect to the output. Hence, 2m − k patterns do

not propagate the fault effect, which means for the 2m − k patterns, the circuit

produces the correct output. Again, assume that the k input patterns that drive

the fault effect, alter r output lines (r may vary for each ki). We can quantify it

by finding the Hamming Distance between n and n†, where n represents the set

of all output lines and n† represents the set of output line with some output lines

get altered due to the fault effect. We need to calculate the value of r for each ki

using the formula
∑k

i=1HammingDistance(n, n†). Only finding the summation

of Hamming distance is not sufficient to identify the catastrophic fault. Consider

a situation where two faults (f1 and f2) having the same Hamming distance.

When this situation arises, we check the value of k; the number of input patterns

drives the fault effect to the output. For instance, at the presence of f1, let 3 test

patterns produce the wrong output with Hamming distance 3, 2, 2 (3+2+2=7).

Similarly, at the presence of f2, let 5 test patterns produce the wrong output with

Hamming distance 1, 2, 1, 2, 1 (1+2+1+2+1=7). The summation of Hamming

83

4. APPROXIMATE TESTING

distance for both faults is 7. Note that due to f2, 5 test patterns produce the

wrong output. Whereas in the presence of f1, 3 test patterns produce incorrect

output. Hence, f2 is assumed to be more catastrophic than f1. Multiplying k (k

is 3 for f1 and 5 for f2) makes it easy to identify this. Finally, we can calculate

the overall fault effect (OFE) due to the presence of fault fi using Equation 4.3.

OFE(f1) = k ×
k∑

i=1

HammingDistance(n, n†) (4.3)

Let us take an example to understand the overall fault effect of two faults, f1

and f2, that occur at different regions of the circuit C(m = 5, n = 10) but not

at the same time. Let at the presence of f1, 3 test patterns produce the wrong

output, which means k = 3. For each k, the Hamming distance will vary. Let

Hamming distances for each k be 3, 2, 2, respectively. Hence, the OFE(f1) will

be 3× (3+2+2) = 21. Similarly, let in the presence of f2, 4 test pattern produce

wrong output with Hamming distance 1, 1, 1, 1, respectively. Then the OFE(f2)

will be 4× (1 + 1 + 1 + 1) = 16. From the above example, we can conclude that

the presence of f1 causes the circuit to behave more incorrectly than f2.

Figure 4.13 shows the overall test flow architecture of our proposed technique.

It contains two phases: (1) Modified Conventional Test Flow (CTFm) and (2)

Approximate Test Flow (ATF). In CTFm, we have added a new block known as

the fault analysis block in the design phase, which is the significant contribution

of this work. First, we discuss the fault analysis technique, and then we will

describe the subsequent stages.

4.2.2.2 Fault Analysis

It is the process of determining a region (net), where if a fault exists (we consider

only stuck-at-fault), how many input patterns can propagate the fault effect to

the output line and how many output lines are affected by the fault propagation.

It serves three objectives:

� Calculate the fault pay-off (Fpo),

84

4.2 Retesting Defective Circuits using Approximation Technique

� Classify the fault according to the value of Fpo, and

� Determine the fault which acts as the primary input to the second phase.

Let us consider a given gate-level netlist C(G,N), where G represents the set

of gates, and N represents the set of nets (channels) connected between gates.

Here we will use the terms net, line, and channel interchangeably. Theoretically,

we can represent N , as N = {n1, n2, ..., nl}, where, nj represents a single net, and

each fan-in branch is treated individually, which means a fault can occur at any

branch. If faulty, each nj is either affected with Stuck-at-0 (sa0) fault or Stuck-at-

1 (sa1) fault. Hence, we represent nj as a three tuple variable, nj ⟨sa0, sa1, ff⟩,
where sa0 represents Stuck-at-0, sa1 represents Stuck-at-1, and ff represents

fault-free states. A value 1 at any tuple represents the existence of that fault

at nj, and a value 0 denotes its nonexistence. For instance, nj ⟨1, 0, 0⟩ means

that nj is faulty and is affected by sa0. Similarly, nj ⟨0, 0, 1⟩ means the channel

is fault-free. Our objective is to identify the faulty channel whose fault effect is

trivial. That is why we add another tuple to each nj, which is known as t, and

t represents whether the fault effect is trivial or non-trivial. Here, non-trivial

means the fault effect is catastrophic and trivial means we can ignore the effect

of this fault. If t = 1, the fault is trivial, whereas t = 0 means the fault is non-

trivial. Finally, every channel is represented as nj ⟨sa0, sa1, ff, t⟩. For instance,

nj ⟨1, 0, 0, 1⟩ means that nj is faulty, affected by sa0 and is trivial.

The faults for which the effects are non-trivial are known as unacceptable

faults and should be listed. The remaining faults (whose effects are trivial) can

be ignored. The triviality of a fault effect is known as fault pay-off (Fpo), and we

calculate the Fpo for each fault using Equation 4.4 and 4.5.

F ni⟨1,0,0,t⟩
po =

∣∣∣TPni⟨1,0,0,t⟩

∣∣∣× TFEni⟨1,0,0,t⟩ (4.4)

F ni⟨0,1,0,t⟩
po =

∣∣∣TPni⟨0,1,0,t⟩

∣∣∣× TFEni⟨0,1,0,t⟩ (4.5)

85

4. APPROXIMATE TESTING

where TPni⟨1,0,0,t⟩ and TPni⟨0,1,0,t⟩ represent the set of test patterns that detect

sa0 and sa1 at nj, respectively. Total Bit-flip Error (TFE) is the number of

modified bit positions (Hamming Distance) while comparing the output bits of

the circuit C with the output produced in the presence of a fault. TFE is

calculated by the formula given in Equation 4.6.

∀TP k
f , TFE =

n−1∑
i=0

(
CZn−1 ...CZ0

)
⊕

(
Cf

Zn−1
...Cf

Z0

)
(4.6)

where Zn−1...Z0 represent the output lines of the corresponding circuits, and

f represents either ⟨1, 0, 0, t⟩ or ⟨0, 1, 0, t⟩. k varies from 1 to the total number of

test patterns that detect f . That means, TFE is calculated for each test pattern

that detects f . Initially, the triviality of a fault is unknown, so the value of t is

unknown for Equation 4.4, 4.5, and 4.6.

The triviality of a fault can only be calculated by analyzing the fault pay-off

(Fpo). Our approach will calculate the Fpo for every fault and build a sorted

Fault Analysis set (FAs), where each entry represents a tuple with two ele-

ments: the fault and the fault pay-off. For instance,
(
nj ⟨0, 1, 0, t⟩ , F

nj⟨0,1,0,t⟩
po

)
=(

n2 ⟨0, 1, 0, t⟩ , 135
)

represents a stuck-at-1 fault at the net n2 and having the

fault pay-off as 135. Algorithm 2 shows the detailed steps to generate the FAs.

Initially, the FAs set is empty, as shown in step-1 of Algorithm 2. Every time

one iteration completes the loop mentioned in lines number 2 and 12, one fault

and its pay-off get added to the FAs mentioned in lines number 10 and 20 for

stuck-at-0 and stuck-at-1 fault, respectively. Line numbers 3 and 13 represent the

total number of test patterns that propagate the fault effect to the output line for

s-a-0 and s-a-1, respectively. When the fault effect is propagated to the output

line, we get a different output than the actual. To calculate the deviation in the

output, we use the concept of Hamming Distance. Line number 6 (for s-a-0) and

16 (for s-a-1) calculate the Hamming Distance using Equation 4.6. The deviation

in the output is calculated for each test pattern. That is why line number 5 and

15 is a loop that iterates for s-a-0 and s-a-1, respectively. Line number 9 and

86

4.2 Retesting Defective Circuits using Approximation Technique

ALGORITHM 2: Fault Analysis

Input: Simulated Gate-Level Netlist C, Test Pattern TP
Result: Fault Analysis Set (FAs)
// Initially Fault Analysis Set is Empty

1 FAs ←− {ϕ};
// Calculating Fault Pay-off for each stuck-at-0 fault occurs

in every net

2 for j=1 to l do

3 k =
∣∣∣TPni⟨1,0,0,t⟩

∣∣∣
4 r = 0
5 for s=1 to k do

6 TFEnj⟨1,0,0,t⟩ =
∑n−1

i=0

(
CZn−1 ...CZ0

)
⊕
(
C

nj⟨1,0,0,t⟩
Zn−1

...C
nj⟨1,0,0,t⟩
Z0

)
7 r = r + TFEnj⟨1,0,0,t⟩
8 end

9 F
nj⟨1,0,0,t⟩
po = k × r

10 FAs = FAs

⋃{(
nj ⟨1, 0, 0, t⟩ , F

nj⟨1,0,0,t⟩
po

)}
11 end

// Calculating Fault Pay-off for each stuck-at-1 fault occurs

in every net

12 for j=1 to l do

13 k =
∣∣∣TPni⟨0,1,0,t⟩

∣∣∣
14 r = 0
15 for s=1 to k do

16 TFEnj⟨0,1,0,t⟩ =
∑n−1

i=0

(
CZn−1 ...CZ0

)
⊕
(
C

nj⟨0,1,0,t⟩
Zn−1

...C
nj⟨0,1,0,t⟩
Z0

)
17 r = r + TFEnj⟨0,1,0,t⟩
18 end

19 F
nj⟨0,1,0,t⟩
po = k × r

20 FAs = FAs

⋃{(
nj ⟨0, 1, 0, t⟩ , F

nj⟨0,1,0,t⟩
po

)}
21 end
22 Return FAs

87

4. APPROXIMATE TESTING

Fault
Classification

Threshold

Error
Metric

Unacceptable
Fault Set

Acceptable
Fault Set

Test
Pattern

Manufactured
IC

Fault ModelGate-Level
Netlist

Union

Fault
Set

ATPG

Simulation

Test Responses

Compaction

ICIC

Test
Responses

Compaction

Actual Signature

Golden Signature

=?

PASS

FAIL

Yes

No

ATPG

Failed
IC

ICIC

Test Responses

Compaction

Actual Signature

Test
Pattern

Simulation

Test Responses

Compaction

Golden Signature

=?

PASS

FAIL

Yes

No

R
etesting P

hase
C

on
ventio

nal Test Flow

Test PhaseDesign Phase

Addition to Conventional Test Flow

Figure 4.13: Proposed Test Flow Architecture

19 calculate the Fpo for s-a-0 and s-a-1 using Equation 4.4 and 4.5, respectively.

Finally, Line number 14 returns the FAs.

4.2.2.3 Fault Classification

The next step in the fault analysis phase is to classify the fault into acceptable

and unacceptable ones. According to Algorithm 2 , we have a fault set FAs that

contains the fault list and its fault pay-off. Needless to say, the highest fault pay-

off leads to a large variation in the circuit’s output. The primary component in

calculating the fault pay-off is the Hamming distance. Thus, in our classification

technique, TFE plays a significant role. If half of the output bits are altered due

to a fault’s presence, we consider it unacceptable. Classifying fault is the main

component of our fault analysis phase.

A careful selection of faults help us achieve a better result. We have the fault

analysis set with all faults and their associated fault pay-offs. Our objective is to

classify these faults into benign and malignant. Let us use a simple notation to

represent the set FAs, which is shown in Equation 4.7.

88

4.2 Retesting Defective Circuits using Approximation Technique

FAs =
{
(n1, F

1
)
,
(
n2, F

2
)
,
(
n3, F

3
)
, ...,

(
ni, F

i)
}

(4.7)

where, ni represents the net, and F i represents the fault pay-off of each ni.

Our algorithm classifies it to two disjoint set, FAbenign
s and FAmalignant

s such that:

FAbenign
s

⋂
FAmalignant

s = ∅ (4.8)

First, we will find F i
max, the highest fault pay-off of any ni, and add it to

the malignant set. This is because of the fundamental principle explained in

Section 4.2.2.1. The next step in our algorithm is to choose δ, a numeric value

that defines the distance from F i
max. Finally, we follow the Algorithm 3 (Line

no. 5 to 11) to classify the fault as benign or malignant. In each iteration, an

element is chosen from the set FAs and compared with F i
max − δ. If the selected

element’s fault pay-off is less than or equal to F i
max− δ, then it is included in set

FAmalignant
s , else assigned to set FAbenign

s . Choosing a value for delta requires the

proper analysis of all the faults and its fault pay-off. We explain this process using

a case study in Section 4.2.3. Algorithm 3 starts with the initialization of two

empty sets FAbenign
s and FAmalignant

s at the line numbers 1 and 2, respectively.

Line numbers 3 and 4 find an element that belongs to FAs with the highest fault

pay-off returned from the function findMax and inserts that element to the set

FAmalignant
s .

4.2.2.4 Conventional Test Flow

In our proposed method (Figure 4.13), the first phase is the conventional test flow.

A significant addition to this phase is fault analysis and classification, discussed

in Sections 4.2.2.1 and 4.2.2.2. The rest of the components in this phase are

standard and straightforward. During the design phase, the designer must decide

on the fault model and generate a fault set. This fault list is tested during the

testing phase, and the fault coverage is analyzed. For clarity, we are elaborating

the process flow of fault analysis phase here in more detail.

89

4. APPROXIMATE TESTING

ALGORITHM 3: Fault Classification
Input: Fault Analysis set FAs generated in Algorithm 2 and δ, a

numeric value that defines the distance from F i
max

Result: FAbenign
s , acceptable fault set and FAmalignant

s , unacceptable
fault set

// Initially both sets are Empty

1 FAbenign
s ←− {ϕ};

2 FAmalignant
s ←− {ϕ};

// Initializing the malignant fault set

3 F i
max = findMax(FAs)

4 FAmalignant
s = FAmalignant

s

⋃
F i
max;

// classify the fault as benign or malignant

5 for F j ∈ FAs do
6 if F j ≥ F i

max − δ then
7 FAmalignant

s = FAmalignant
s

⋃
F j

8 else
9 FAbenign

s = FAbenign
s

⋃
F j

10 end

11 end
12 Return FAbenign

s and FAmalignant
s

90

4.2 Retesting Defective Circuits using Approximation Technique

Choose a Fault
model

Actual
SignatureModule

Under
Test

ATPG Test
Patterns

Manufactured
Module

Simulated
Module

Test
Response

Test
Response

Compaction

Compaction

Golden
Signature

?
Total
Fault
List

Pass

Fail

Simulated
Module

Choose a Fault
model

Inject Fault

Write Test
Bench

Calculate
Fault Pay-

off

Fault
Analysis Set

Decide δ
and

classify
fault

Benign Fault
List

Malignant
Fault List

Total
Fault
List

FAULT ANALYSIS

FAULT ANALYSIS

Figure 4.14: Traditional Test Flow Architecture With Enlarged View of the Fault
Analysis Steps

Figure 4.14 shows the traditional test flow architecture along with the position

of the fault analysis step. The Module Under Test (MUT) is either a monolithic

circuit or represents a SOC module. First, we decide on a fault model, which

is the single stuck-at-fault model in our case. Then for the entire fault list,

an ATPG generates the test patterns. These test patterns are applied to the

simulated module, and the test responses generated from this process are captured

as golden signatures using the compaction technique. On the other hand, the

same test pattern is applied to the manufactured module, and the test response is

compacted to form the actual signature. Finally, the actual signature is compared

with the golden signature to decide whether to accept (pass) or reject (fail) the

manufactured unit. Figure 4.14 also shows an enlarged process flow of the fault

analysis step. This step requires the simulated design of the MUT, where we can

inject faults one by one. We also wrote a test bench that generates random test

patterns and applied them to the simulated module. Our algorithm calculates

91

4. APPROXIMATE TESTING

the impact on the output for every injected fault, which is quantized as fault

pay-off. We store every fault, and its pay-off in a set called fault analysis set. In

our case, we get two sets of faults: (1) benign fault set and (2) malignant fault

set. Before the conventional test phase starts, we combine (union) these two sets

to form a single fault set.

4.2.2.5 Approximate Test Phase

The approximate test phase is an addition to the conventional test flow, and its

objective is to identify the acceptable circuits from the rejected ones. The phase

starts with the generating the test set for the malignant fault set (listed during

fault analysis) using any ATPG method. The rest of the steps are similar to the

conventional test flow. The test patterns are applied to the simulated model, and

the test responses generated from this process are captured as golden signatures

using the compaction technique. On the other hand, the same test pattern is

applied to the failed ICs (rejected during conventional test flow), and the test

response is compacted to form the actual signature. Finally, the actual signature

is compared with the golden signature to decide whether to accept (pass) or

reject (fail) the failed ICs. The ICs that are accepted are known as Acceptable

ICs (AcICs).

4.2.3 Case Study

To further explain the procedure and realize our technique’s effectiveness, we will

describe it using a case study. Figure 4.15 shows the C17 benchmark circuit

with the fault locations marked using cross marks. A cross mark represents

either a stuck-at-0 or a stuck-at-1 fault. For simplicity, we have not used any

fault collapsing method to reduce the number of faults; even collapsing does

not hamper the performance of our technique. The circuit has five input lines

(a, b, c, d, e) and two output lines (p, q). The remaining lines from f to o represent

the intermediate lines. We consider the stuck-at fault model, and any line among

them can be affected with a stuck-at-0 or a stuck-at-1 fault. In total, we examine

92

4.2 Retesting Defective Circuits using Approximation Technique

G1

G2

G3

G4

G5

G6

a

b

c

d

e

p

q

f

g

h

i

j

k

l

m

n

o

Stuck-at-0/Stuck-at-1

Figure 4.15: C17 Circuit showing the fault locations (nets) marked with cross symbols.
Each cross symbol either represents a stuck-at-0 or a stuck-at-1 fault

all 34 faults for our case study.

After designing the circuit with Verilog, we injected one fault at a time and

tested the impact by supplying a set of exhaustive test patterns. For C17, we

used all 32 test patterns and calculated the fault fay-off. Figure 4.16 shows the

result of the fault analysis and the fault pay-offs. The figure also shows the

value of k: the number of test patterns propagating the fault effect to the output

line. From the analysis, we found that the highest fault pay-off is 532 due to the

presence of sa0@l fault. On the other hand, the lowest fault pay-off is 16 due to

both sa1@f and sa1@k fault. An essential observation we noticed here is that the

fault pay-offs of several faults are similar or close to each other. For instance,

sa0@h, sa0@m, sa0@n, sa0@o, sa1@p, and sa1@q all have the same fault pay-offs

196. Similarly, sa0@a, sa1@a, sa0@f, sa1@h, sa0@k, sa1@m, and sa1@o have 36

as their fault pay-offs. This observation occurs not only with C17 but also with

every other ISCAS 85 benchmark circuit that we studied for our experimental

93

4. APPROXIMATE TESTING

6 6 11 11 9 9 6 6 10 10 6 4 6 6 14 6 18 6 11 4 6 4 19 11 14 6 14 10 14 6 18 14 18 14
36 36

176 176

108 108

48 48

120 120

36
16

48 60

196

36

522

48

176

24 36
16

532

176
196

36

196

100

196

36

324

196

324

196

sa
0@

a

sa
1@

a

sa
0@

b

sa
1@

b

sa
0@

c

sa
1@

c

sa
0@

d

sa
1@

d

sa
0@

e

sa
1@

e

sa
0@

f

sa
1@

f

sa
0@

g

sa
1@

g

sa
0@

h

sa
1@

h

sa
0@

i

sa
1@

i

sa
0@

j

sa
1@

j

sa
0@

k

sa
1@

k

sa
0@

l

sa
1@

l

sa
0@

m

sa
1@

m

sa
0@

n

sa
1@

n

sa
0@

o

sa
1@

o

sa
0@

p

sa
1@

p

sa
0@

q

sa
1@

q

0

100

200

300

400

500

600

Fa
ul

t P
ay

-o
ff

Fault-List

 k
 Fault Pay-off

Figure 4.16: C17 circuit’s fault analysis showing the fault list and the fault pay-off

analysis in Section 4.2.4. This also helps in the effective categorization of faults

into benign and malignant.

The next step in the process is to categorize the fault into benign and malig-

nant. Initially, both the set FAmalignant
s and FAbenign

s is empty. For C17 circuit,

the sets look as follows:

FAs =
{(

sa0@a, 36
)
,
(
sa1@a, 36

)
,
(
sa0@b, 176

)
, ...,

(
sa1@q, 196)

}
FAmalignant

s =
{
ϕ
}

FAbenign
s =

{
ϕ
}

We follow Algorithm 3 discussed in Section 4.2.1 for this classification. The

first step in this process is to find the maximum fault pay-off and store it in

F l
max, which is 532 for the fault sa0@l. Then we add this fault along with its fault

pay-off to the set FAmalignant
s . After the above assignment, the two sets will look

as follows.

FAmalignant
s =

{(
sa0@l, 532

)
, ϕ

}
FAbenign

s =
{
ϕ
}

At this point, we need to decide on the value of δ, which helps us identify the

fault that needs to be included either in the malignant set or benign set. We did

it with a two-step process: (1) Forming the clusters and (2) Finding the distance

of each cluster from Fmax. Forming the Cluster : It is easier because our analysis

says that the fault pay-offs that we calculate for each fault are either the same or

94

4.2 Retesting Defective Circuits using Approximation Technique

0 60050040030020010050 150 250 350 450 550

324

196

176

120108
60 100

48

36

24

16
532522

Fault Pay-off

Fa
u

lt
 L

is
t

Figure 4.17: C17 circuit’s fault analysis showing fault pay-off clusters in a number
line.

very close to each other. Figure 4.17 shows the fault pay-offs of the C17 circuit

when plotted in a line. From the diagram, it is much clear that the fault pay-offs

are closer to each other. Using a simple k-mean clustering, we found five clusters.

Finding the distance: In this step, we find the distance of each cluster (mean)

from F i
max. Figure 4.18 illustrates the scenario of the C17 benchmark circuit.

Clusters identified in Figure 4.17 are plotted in a 2d-plot (Figure 4.18), where

the point annotated as F i
max represents the highest fault pay-off. δ1 through δ5

shows the distance from F i
max to cluster 1 through 5, respectively. This distance

represents the numeric difference between F i
max and the mean of each cluster.

Table 4.4 lists out the details of these calculations. Column 1 and 2 show the

clusters and their mean. Column 4 shows the value of δ for each cluster. To

decide on the value of δ (for classification), we need to check the percentage of

patterns that alter more than 50% of the output lines. For our experiment, we

took 1000 random patterns, applied them on the C17 circuit in the presence of

a fault from the clusters, and recorded the variations in the output. The result

of this experiment is listed in Column 3. We can read it as, in the presence of

sa0@i, 79% of the input patterns alter more than 50% of the output lines. After

analyzing the result of Column 3, we choose δ = 421, and accordingly, the faults

get classified using Algorithm 3. Column 6 shows this classification for the C17

circuit.

95

4. APPROXIMATE TESTING

0

100

200

300

400

500

600

Fa
ul

t P
ay

-o
ff

 C17 Circiut's Fault Pay-off

d1

d2
d3

d4

Cluster 4

Cluster 3

Cluster 2

Cluster 1Fmax

532 522

324

Cluster 5

d5

i

Fault List

Figure 4.18: C17 circuit’s fault analysis showing fault pay-off clusters. The point
annotated with F i

max is the largest fault fay-off with value 532. The remaining fault
pay-offs are grouped into 5 clusters. δi shows the distance from the point F i

max.

Table 4.4: Deciding the value for δ

Cluster Mean Avg.% δ Fault List Class
cluster 1 522 79% 10 sa0@i
cluster 2 324 73% 208 sa0@p sa0@q
cluster 3 188 68% 344 sa0@b sa1@b sa0@j

sa1@l sa0@h sa0@m
sa0@n sa0@o sa1@p
sa1@q

Malignant

cluster 4 111 52% 421 sa1@n sa0@c sa1@c
sa0@e sa1@e

cluster 5 37 18% 495 sa1@f sa1@k sa1@j
sa0@a sa1@a sa0@f
sa1@h sa0@k sa1@m
sa1@o sa0@d sa1@d
sa0@g sa1@i sa1@g

benign

96

4.2 Retesting Defective Circuits using Approximation Technique

4.2.4 Evaluation

The first experiment that is conducted is to identify the acceptability and unac-

ceptability of faults for ISCAS-85 benchmark circuits [98, 108]. The test is con-

ducted using the HOPE fault simulator tool [109] for fault simulation. We choose

ten benchmarks that include C17, C432, C499, C1355, C880, C1908, C3540,

C5315, C6288, and C7552 with primary input lines 5, 36, 41, 41, 60 33, 50, 178,

32, 207, respectively. Applying an exhaustive test pattern to all these circuits is

time-consuming; that is why we chose a random test set of size 1000 for analyzing

the fault pay-off. In the presence of a fault (injected), 1000 patterns get applied,

and the method calculates the pay-off. Finally, we analyze the data to classify

the fault. Figure 4.19 shows the fault pay-off result of the selected benchmarks.

The X-axis represents the individual faults sorted according to their fault pay-off,

and Y-axis represents the fault pay-offs.

After analyzing the fault pay-off, we have summarized the results and classified

the faults. Table 4.5 shows this compiled result. Column 1 and 2 show the list

of circuits and the number of faults considered for analysis. Columns 3 and 4

show the number of malignant and benign faults. The highest fault pay-off and

delta value decided for each circuit are shown in columns 5 and 6, respectively.

Finally, we have also tested for the Hamming distance, which is listed in the last

column. The result shown in this column represents the average percentage of

input patterns that produce more than 50% Hamming distance in the presence

of any of the malignant faults in the circuit.

We conducted the following experiment on selected circuits of ITC’99 bench-

marks [110]. Seven benchmarks circuits are carefully chosen for this experiment

and described in Table 4.6. Because our method is based on the Hamming dis-

tance, we choose benchmarks having at least six output lines. We obtained the

gate-level netlist of the selected benchmarks from [111]. We chose a random

test set of size 10000 for analyzing the fault pay-off. In the presence of a fault

(injected), 10000 patterns get applied, and the method calculates the pay-off.

97

4. APPROXIMATE TESTING

Figure 4.19: Showing results of fault analysis and their fault pay-off

98

4.2 Retesting Defective Circuits using Approximation Technique

Table 4.5: ISCAS85 Benchmarks Result Analysis and Classification for Faults

Circuit # Faults # Malignant # Benign HFpo δ 50% HD
C17 34 19 15 532 421 68%
C432 524 389 135 7856 6238 71%
C499 758 482 276 10893 8456 65%
C1355 1574 818 756 21925 16968 65%
C880 942 638 304 17895 14945 68%
C1908 1879 1023 856 24128 21312 73%
C3540 3428 1952 1476 48436 42234 70%
C5315 5350 3335 2015 63298 57627 73%
C6288 7744 7056 688 15675 12598 68%
C7552 7550 4660 2890 32657 27189 74%

Table 4.6: ITC’99 Benchmark Circuits

Name PI PO #Gate #FF Fault List
b04 11 8 597 66 3356
b10 11 6 189 17 1054
b11 7 6 481 31 2868
b12 5 6 1036 121 6084
b13 10 10 339 53 1818
b14 32 54 4775 245 28990
b15 36 70 8893 449 55568

Finally, we analyze the data to classify the fault. Table 4.7 shows the compiled

result of this experiment. Column 2 shows the number of faults after fault col-

lapsing. Analyzing the result, we found that 30-40% of the faults are benign.

Our system assumes the SOC as testable cores having interconnected modules.

Figure 4.20 (a) shows an example of a hierarchical SOC containing several cores

having multiple modules in it. The dots show the faults in each module. Without

loss of generality, we can assume a simple model to access the faults and carry

out our fault analysis step: i.e. the multiplexing architecture [112]. With this

architecture, one module can be accessed at a time, and all modules get access

to full Test Access Mechanism (TAM) width. Figure 4.20 (c) shows a simplified

SOC design. The objective here is to show the fault analysis step and not SOC

test optimization. Any other test architecture design for SOCs will also work for

99

4. APPROXIMATE TESTING

Table 4.7: ITC’99 Benchmarks Result Analysis and Classification for Faults

Circuit # Faults # Malignant # Benign HFpo δ 50% HD
b04 1477 1005 472 24742 19655 68%
b10 468 373 95 8567 7689 64%
b11 1308 904 414 24876 21452 73%
b12 2777 2139 638 48356 37511 71%
b13 835 552 283 17568 12421 69%
b14 12643 7956 4687 93496 84387 73%
b15 23316 15387 7929 94621 85197 70%

the analysis step as well [113–115]. The fault analysis step carried out in test

generation phase of the simplified IC fabrication step is shown in Figure 4.20 (b).

We designed a simple SOC with selected modules from ISCAS-85 and ITC-99

benchmarks for our implementation [98, 108, 116]. Ten different modules have

been chosen, including C1908, C3540, C5315, C6288, C7552 from ISCAS-85, and

s298, s526, s641, s820, s1196 from ISCAS-89 benchmark circuits. We use Altera

Max Plus II software to design the SOC. We inject the fault at the appropriate

points and then start the fault analysis step, which requires a two-step method.

In the first step, we chose the core, and in the second step, we performed fault

analysis through fault simulation. Like other experiments, we consider a single

stuck-at-fault model here. Two different C programs are developed, one that asks

the user to choose a module. Once that is done, the program isolates that module

and assigns the TAM input to the input line and output line to the TAM output

line. Then the second program is invoked that applies the test patterns. We chose

a random test set of size 10000 for ISCAS89 benchmark modules. In the presence

of a injected fault, 10000 patterns get applied, and the method calculates the

pay-off. Finally, we analyze the data to classify the fault. Table 4.8 shows the

compiled result of this experiment.

The benefit of our approach mainly contributes to yield improvement like

other threshold testing methods. We formulate a separate yield enhancement

formula for our technique. A natural yield is defined as the number of good

circuits produced from the total number of circuits tested (Equation 4.9).

100

4.2 Retesting Defective Circuits using Approximation Technique

M-1

M-2

M-1 M-2

M-3 M-4

M-1

M-2

M-3

Core

Core

Core Design Phase

Test Generation
Phase

1. Simulation
2. Fault Analysis

Fabrication Phase

Test Application
Phase

S289

C432

C499

w w

SOC
w

w

in Out

Control

(a) (b) (c)

Figure 4.20: (a) Hierarchical SOC Containing Several Cores Having Multiple Modules
(b) Simplified IC Fabrication Steps (c) Simplified SOC Design

Table 4.8: SOC Test Result

Circuits Total Fault Malignant Benign Hfpo delta 50% HD
C1908 1879 1023 856 24128 21312 73%
C3540 3428 1952 1476 48436 42234 70%
C5315 5350 3335 2015 63298 57627 73%
C6288 7744 7056 688 15675 12598 68%
C7552 7550 4660 2890 32657 27189 74%
s298 308 235 73 6387 5275 59%
s526 555 346 209 8245 6978 62%
s641 467 283 184 8111 7003 75%
s820 850 572 278 10349 8566 70%
s1196 1242 859 383 14537 11655 71%

101

4. APPROXIMATE TESTING

NaturalY ield =
GoodCircuits

TotalCircuitsTested
(4.9)

But the natural yield does not contribute to the effective yield. Here effective

yield refers to the number of good circuits plus the acceptable circuits. Therefore

it is necessary to find an acceptable yield which is defined in Equation 4.10.

AcceptableY ield =
AcceptableCircuits

FaultyCircuits
(4.10)

Here, the faulty circuit refers to the fraction of circuits that fail during the

conventional testing process. The acceptable circuit refers to the fraction of

faulty circuits identified as acceptable during the approximate testing process.

To find the effective yield, it is necessary to find the data about the probability

of occurrence of a fault and the natural yield. In the following section, we will

describe the proposed yield model.

4.3 Discussion and Summary

This section highlights the process of approximate testing by analyzing the tech-

niques discussed in this chapter. Section 4.1 introduces the idea of approximate

testing and proposes a method to identify the sites where, even if a fault exists

does not affect the overall output. In section 4.2, we introduce a retesting tech-

nique to test the faulty circuits and find the usable circuits among them. The

idea in section 4.1 is built around the comparison between the Circuit Under Test

(CUT) and its corresponding approximate circuit. This technique can be help-

ful when the approximate version of the CUT is available. When approximate

versions are not available, they can be obtained through the proposed pruning

technique. A simple one-to-one mapping is made to identify the approximate

site, and then the faults (present in the identified site) are ignored during test-

ing. However, the idea in section 4.2 is based on fault classification using the

overall fault effect analysis. To find the overall fault effect, we use the hamming

102

4.4 Conclusion

distance and the number of test patterns that alters the output line in the pres-

ence of a fault. During the retesting process, some faults are not tested because

their overall fault effect is below a decided threshold. Another benefit of this

proposed method is yield enhancement. In Appendix A, we have explained how

the proposed technique improves the yield compared to the traditional testing

method.

4.4 Conclusion

This chapter proposes two different works under the heading ”approximate test-

ing.” The first work in section proposes a technique to approximate the conven-

tional test procedure with an objective to reduce the test data volume. The basic

idea is to design an efficient mechanism to classify the fault into two groups: tol-

erable fault and intolerable fault. By doing this, we can generate a test pattern

only for the intolerable fault that helps in reducing the amount of test data. In

this work, we propose a fault-based test technique of fault classification based

on the error-significance analysis. We use the conventional ATPG to generate

the test pattern for the classified faults (intolerable faults only). We use the im-

age compression experiment to examine our proposed technique’s correctness and

conclude that the output is quite adequate while considering human perception

behavior on image clarity. The immeasurable part of our proposed method is

that we can control the visual precision of an image. We have also applied the

technique to reduce test pattern for different kinds of arithmetic circuits as well

as ISCAS-85 benchmark circuits. Further, we have implemented our technique

in designing an adder circuit. For experimental analysis, we have chosen selected

benchmark circuits from ISCAS-85 to fit into our application domain. As the pro-

posed technique is based on error-significance classification, we could not include

circuits that may produce bit-flip errors.

While the first method proposed section 4.1 uses error significance as a quan-

tification measure, the second technique in section 4.2 uses bit-flip error to classify

103

4. APPROXIMATE TESTING

the faults. Due to the use of bit-flip error, the technique is also applicable to test

non-arithmetic circuits. In section 4.2, we presented a retesting technique to

identify accepted circuits among the rejected ones. This accepted circuit helps

in increasing the yield performance of the manufacturing process. Further, we

have extended the idea which introduces the notion of acceptable circuits that

are quite different from the approximate circuits. Identifying these acceptable

circuits requires a different testing method which is the main contribution of this

work. This testing method is known as the approximate testing method. Section

4.2 shows a complete architecture of approximate test flow by incorporating a

fault analysis technique into the design phase. The entire process flow follows

a two-phase execution; the first phase shows the conventional test flow, and the

second phase shows the approximate test flow. Finally, the proposed method is

evaluated using the ISCAS 85 and ITC’99 benchmark circuit, and the result is

encouraging. We have also constructed an SOC with selected benchmarks to test

the efficiency and scalability of our system and found that, on average, 30-40%

of the faults are identified as acceptable. Yield gain is a significant benefit of our

technique. The proposed yield model (refer Appendix A) shows that, on aver-

age, 10-20% of circuits are found acceptable when natural yield gain is between

35-65%.

104

Chapter 5
Conclusion and Future Works

We examine the concepts and strategies provided throughout this thesis in this

chapter and sketch out potential directions.

5.1 Summary of the Contributions

In the world of information technology, the introduction of the approximate com-

puting paradigm opened up a slew of new possibilities. The primary purpose of

approximate computing is to increase system efficiency (time, area, and energy)

by lowering the accuracy requirements for results. Approximate computing has

been used at various levels of computing systems, ranging from hardware to soft-

ware to architectures. Approximate computing has also been used to construct

a new class of integrated circuits, known as approximate integrated circuits or

AxICs, in all of the work done over the last two decades. With the advent of a

new class of circuits, new challenges and opportunities in chip design, test, and

verification arose.

Several research papers in the approximate computing paradigm have been

proposed at various levels of abstraction throughout the last decade. Meanwhile,

adders have gotten a lot of attention for approximation at the hardware level

of abstraction. Adders are believed to be the most basic and extensively used

arithmetic operator. The approximation adders are designed using one of three

105

5. CONCLUSION AND FUTURE WORKS

approaches: (1) AxBA, (2) AxSA, or (3) AxPA. The relevance, motivation, de-

sign philosophy, design strategy, and background of approximation adders were

covered in this thesis. Beginners can use this as a starting point to learn how to

use approximate adders in a methodical manner. We also looked at prior adder

strategies to see how good they were in producing effective approximate adders.

The following is a summary of the proposed adder circuit.

Systematic Design of Approximate Adder using SGLP: We proposed a

technique to design an approximate adder using pruning the insignificant gates

from the existing adder circuit. Pruning decision is made using the calculation of

significance for each gate. The gate that has the lowest significance is pruned first.

Significance is a numeric quantity assigned to each gate starting from the gates

contributing to the output. Removing gates from the circuit affects the accuracy

of the result. However, approximate design philosophy allows a certain amount

of error in the output, and the amount is guarded by a terminology called error

threshold. The designer decides the error threshold (which is error-significance

in our case) before the actual design. During the pruning process, after removing

one gate, the error significance is calculated, and if it is found to be below the

threshold, the method continues to prune the gates.

The technique discussed above is applicable to redesign simple adder architec-

ture like RCA or complex designs like KSA. The fundamental blocks, i.e., an FA,

are passed through the SGLP technique and produce an approximate version of

it for RCA. The approximate version of FA is known as AFA. To build an n-bit

adder, the most significant bits are replaced with these AFAs. The proposed

approximate adder design is tested for its efficiency and effectiveness. We have

chosen the image compression application to evaluate its performance by select-

ing 45 grayscale images. After compression, the image degradation is analyzed

using PSNR, and we found that image clarity is not degraded much as compared

to the state-of-the-art. We have also checked the visual quality of some images

and found that the image clarity is totally fine considering the human perception.

106

5.1 Summary of the Contributions

Circuit testing is another issue that has arisen due to the introduction of

approximation terminology. To achieve satisfactory results, approximate chip

designers meticulously alter the circuit structure to introduce acceptable flaws.

Designers use error metrics to accurately define the acceptable notion. Then, to

fix the maximum permissible (i.e. acceptable) error, they define error thresholds.

As a result, the concept of defective circuits is altered. Indeed, it introduces

two new types of faults: benign faults (faults that cause acceptable errors) and

malignant faults (i.e., faults causing catastrophic errors). The class of a detectable

defect can be identified in the testing context by measuring the caused error at

the defective circuit’s output. The circuit must be rejected if the measured error

is more than the permitted level. However, if the measured error remains below

the allowed threshold, the defective circuit does not need to be rejected. This

raises to introduce a new type of circuit called Acceptable IC (AcIC). The role of

a tester is affected due to the notion of circuit acceptability. Rejected circuits that

are identified during the conventional test are still acceptable. Rejected circuits

whose observed error is less than the tolerable threshold must be accepted and

contributes to the yield. These circuits are termed as AcICs. Identifying AcICs

from the rejected one requires approximately modifying the conventional test

flow architecture. Instead of generating a test vector for all selected faults, we

generate tests using approximate testing for a subset of faults. The following is

the summary of approximating test flow architecture.

Approximate Testing of Digital VLSI Circuits using Error Significance

based Fault Analysis: We know that a traditional test approach aims for 100

percent fault coverage by creating test patterns for all faults discovered during

the fault analysis phase. A large number of test patterns are generated in order to

maintain good test quality, which raises the Test Data Volume (TDV). Applying

such a large number of test patterns takes longer and consumes more power.

As a result, various studies in the literature have focused on using compression

techniques to reduce the size of test data. We introduce the term ”approximate

107

5. CONCLUSION AND FUTURE WORKS

testing” in this work, which softens the criterion of 100% fault coverage. The

primary aim is to find flaws that have a catastrophic effect and create test patterns

specifically for them. The remaining defects are not tested, and there aren’t any

test patterns generated.

We perform an image compression experiment to test the validity of our sug-

gested technique, and we find that the result is sufficiently appropriate when

human perception behavior on image clarity is taken into account. We have also

used the technique to minimize the number of test patterns for various types of

tests ISCAS-85 benchmark circuits and arithmetic circuits. We used our tech-

nique to design an adder circuit, and ISCAS-85 benchmark circuits were chosen to

meet our application domain. We could not add circuits that could cause bit-flip

errors because the proposed technique is based on error-significance classification.

Retesting of Rejected Circuits using Approximation Technique: Cir-

cuits that yield acceptable results can be employed in error-resilient applications

like Recognition, Mining, and Synthesis (RMS). To put it another way, an error-

prone circuit can be used in error-tolerant applications despite the fact that it has

a flaw. Acceptable Circuits are the circuits that meet these criteria (AcICs). We

found no technique for identifying AcICs through testing when using the usual

testing process. We must not forget that a defective circuit detected through

traditional testing may produce error-free output for the greater part of test pat-

terns. The basic concept is to divide testing into two sections. Using a standard

test flow architecture, we gather the rejected circuits in the first step. The rejected

circuits that were found to be defective in the first phase are retested utilising

the test patterns in the second stage. At this point, the circuit may produce

inaccurate results for certain test patterns, but we should ignore this and keep

testing until all of the test patterns have been applied. The test patterns for

which the circuit responds incorrectly (error) are measured and compared to the

golden output for deviation. If the amount of variation is negligible and has no

effect on the circuit’s overall performance, the circuit is acceptable.

108

5.2 Fulfilling the Aim and Objective

Retesting Defective Circuits to Allow Acceptable Faults for Yield En-

hancement In this contribution, we extend the idea of employing fault classi-

fication to distinguish AcICs from rejected ones. The Hamming distance is used

to classify the defect. First, we identify the issue, which, if present, will have

catastrophic outcomes for the majority of input patterns. To determine this lo-

cation, we calculate a Fault Pay-off for each fault that could be present in the

circuit. According to our observations, the location with the highest fault Pay-off

will most likely influence more than half of the output lines if it includes a fault

(Hamming Distance is more than 50 percent). As a result, during the retesting

phase, we retest the defective circuits by building test patterns for the faults at

the place with the lowest Fault Pay-off. We tested the proposed technique on the

ISCAS 85, ISCAS 89, and ITC’99 benchmark circuits to evaluate how effective it

is. We also used a SOC with predetermined benchmarks to evaluate the efficiency

of our method on large circuits, and found that on average, 30-40% of errors are

categorised as acceptable. The proposed method has the significant advantage of

boosting yield. The effective yield gain, according to the proposed yield model,

will be between 10% and 20% on average.

5.2 Fulfilling the Aim and Objective

With the above contributions, we achieve our objectives discussed in section 1.3.

The first objective of the thesis is to develop a generalized approach to designing

an approximate adder from an existing adder. The SGLP method provides a

perfect solution to achieve this objective. One can apply the pruning process on

any kind of adder to obtain its approximate version. The work has explained

how the approximate adders generated through the SGLP technique produce

good enough results in image processing applications. The other contributions

described above help achieve the objective of approximating the test flow ar-

chitecture. The fault analysis technique helps in identifying the critical faults,

generates and applies test patterns to test them, and finally concludes that test-

109

5. CONCLUSION AND FUTURE WORKS

ing a circuit approximately is possible. The remaining contributions propose an

approximate technique to retest all faulty circuits and found that 20-30% of them

are usable and contribute to enhancing the yield.

5.3 Future Works

While tremendous progress has been made in the field of approximation comput-

ing, there is still much to be discovered and many problems to overcome. While

considering the progress in approximate adder design and approximate testing,

the following design challenges need to be addressed in the near future.

� As discussed, the SGLP technique is used to design an AFA and later used

in the LSB part of RCA to generate approximate adders. It also proposed

an idea of generating approximate adders from complex designs like KSA

using the SGLP method. However, SGLP may not be a good candidate for

generating approximate design for non-arithmetic circuits. Because identi-

fying the LSB bits on a non-arithmetic circuit is difficult. Therefore, other

quantification measures such as Error-rate may work better. Thus, in the

future, we may propose Error Rate based Gate Level Pruning (RGLP) to

generate approximate designs for non-arithmetic circuits. Exploring other

quantification measures to prune the gates from the original non-arithmetic

designs is also possible.

� Considering approximate testing, the technique proposed in this thesis

mainly focuses on retesting FaICs to get AcICs. A similar challenge is also

posed by approximate circuit design and manufacturing processes. The

test engineers must be careful while testing an AxIC because distinguishing

actual defects (either caused during design or manufacturing) from what

is being approximated becomes more challenging, as design/manufactured

defects may result in very similar variations in results. Therefore, a dif-

ferent test procedure is needed to test AxICs. The technique proposed in

110

5.3 Future Works

this thesis for retesting is also appropriate for testing AxICs, but we have

not yet explored it. In the future, we may use the proposed approximate

testing technique to test the AxICs.

In summary, we can say that the approximate computing techniques are still

exploring and require further innovation in broad areas such as designing mem-

ories and I/O subsystems, designing approximate processors and accelerators,

etc.

111

5. CONCLUSION AND FUTURE WORKS

112

References

[1] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger,

“Dark silicon and the end of multicore scaling,” in 2011 38th Annual in-

ternational symposium on computer architecture (ISCA). IEEE, 2011, pp.

365–376.

[2] S. Pagani, H. Khdr, W. Munawar, J.-J. Chen, M. Shafique, M. Li, and

J. Henkel, “Tsp: Thermal safe power: Efficient power budgeting for many-

core systems in dark silicon,” in Proceedings of the 2014 International Con-

ference on Hardware/Software Codesign and System Synthesis, 2014, pp.

1–10.

[3] T. Komoda, S. Hayashi, T. Nakada, S. Miwa, and H. Nakamura, “Power

capping of cpu-gpu heterogeneous systems through coordinating dvfs and

task mapping,” in 2013 IEEE 31st International Conference on computer

design (ICCD). IEEE, 2013, pp. 349–356.

[4] K. Ma and X. Wang, “Pgcapping: Exploiting power gating for power

capping and core lifetime balancing in cmps,” in 2012 21st International

Conference on Parallel Architectures and Compilation Techniques (PACT).

IEEE, 2012, pp. 13–22.

[5] L. Wang and K. Skadron, “Implications of the power wall: Dim cores and

reconfigurable logic,” IEEE Micro, vol. 33, no. 5, pp. 40–48, 2013.

[6] N. Kapadia and S. Pasricha, “Varsha: Variation and reliability-aware appli-

cation scheduling with adaptive parallelism in the dark-silicon era,” in 2015

113

REFERENCES

Design, Automation & Test in Europe Conference & Exhibition (DATE).

IEEE, 2015, pp. 1060–1065.

[7] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Ap-

proximate computing and the quest for computing efficiency,” in 2015 52nd

ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 2015,

pp. 1–6.

[8] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis

and characterization of inherent application resilience for approximate com-

puting,” in Proceedings of the 50th Annual Design Automation Conference,

2013, pp. 1–9.

[9] S.-L. Lu, “Speeding up processing with approximation circuits,” Computer,

vol. 37, no. 3, pp. 67–73, 2004.

[10] N. Zhu, W. L. Goh, G. Wang, and K. S. Yeo, “Enhanced low-power high-

speed adder for error-tolerant application,” in 2010 International SoC De-

sign Conference. IEEE, 2010, pp. 323–327.

[11] K. Du, P. Varman, and K. Mohanram, “High performance reliable vari-

able latency carry select addition,” in 2012 Design, Automation & Test in

Europe Conference & Exhibition (DATE). IEEE, 2012, pp. 1257–1262.

[12] H. A. Almurib, T. N. Kumar, and F. Lombardi, “Inexact designs for ap-

proximate low power addition by cell replacement,” in 2016 Design, Au-

tomation & Test in Europe Conference & Exhibition (DATE). IEEE, 2016,

pp. 660–665.

[13] K. Y. Kyaw, W. L. Goh, and K. S. Yeo, “Low-power high-speed multiplier

for error-tolerant application,” in 2010 IEEE international conference of

electron devices and solid-state circuits (EDSSC). IEEE, 2010, pp. 1–4.

[14] K. Bhardwaj, P. S. Mane, and J. Henkel, “Power-and area-efficient ap-

proximate wallace tree multiplier for error-resilient systems,” in Fifteenth

International Symposium on Quality Electronic Design. IEEE, 2014, pp.

263–269.

114

REFERENCES

[15] S. Hashemi, R. I. Bahar, and S. Reda, “Drum: A dynamic range unbiased

multiplier for approximate applications,” in 2015 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD). IEEE, 2015, pp. 418–

425.

[16] ——, “A low-power dynamic divider for approximate applications,” in 2016

53nd ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE,

2016, pp. 1–6.

[17] R. Zendegani, M. Kamal, A. Fayyazi, A. Afzali-Kusha, S. Safari, and M. Pe-

dram, “Seerad: A high speed yet energy-efficient rounding-based approxi-

mate divider,” in 2016 Design, Automation & Test in Europe Conference

& Exhibition (DATE). IEEE, 2016, pp. 1481–1484.

[18] F. Frustaci, D. Blaauw, D. Sylvester, and M. Alioto, “Better-than-voltage

scaling energy reduction in approximate srams via bit dropping and bit

reuse,” in 2015 25th International Workshop on Power and Timing Model-

ing, Optimization and Simulation (PATMOS). IEEE, 2015, pp. 132–139.

[19] I. Bhati, Z. Chishti, S.-L. Lu, and B. Jacob, “Flexible auto-refresh: En-

abling scalable and energy-efficient dram refresh reductions,” in Proceedings

of the 42nd Annual International Symposium on Computer Architecture,

2015, pp. 235–246.

[20] C. Kushwah and S. K. Vishvakarma, “A sub-threshold eight transistor (8t)

sram cell design for stability improvement,” in 2014 IEEE International

Conference on IC Design & Technology. IEEE, 2014, pp. 1–4.

[21] S. Amanollahi, M. Kamal, A. Afzali-Kusha, and M. Pedram, “Circuit-level

techniques for logic and memory blocks in approximate computing sys-

temsx,” Proceedings of the IEEE, vol. 108, no. 12, pp. 2150–2177, 2020.

[22] Y. Fang, H. Li, and X. Li, “Softpcm: Enhancing energy efficiency and

lifetime of phase change memory in video applications via approximate

write,” in 2012 IEEE 21st Asian Test Symposium. IEEE, 2012, pp. 131–

136.

115

REFERENCES

[23] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural accel-

eration for general-purpose approximate programs,” in 2012 45th Annual

IEEE/ACM International Symposium on Microarchitecture. IEEE, 2012,

pp. 449–460.

[24] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke, “Rumba: An online

quality management system for approximate computing,” in Proceedings of

the 42nd Annual International Symposium on Computer Architecture, 2015,

pp. 554–566.

[25] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghu-

nathan, “Quality programmable vector processors for approximate comput-

ing,” in 2013 46th Annual IEEE/ACM International Symposium on Mi-

croarchitecture (MICRO). IEEE, 2013, pp. 1–12.

[26] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard, “Man-

aging performance vs. accuracy trade-offs with loop perforation,” in Pro-

ceedings of the 19th ACM SIGSOFT symposium and the 13th European

conference on Foundations of software engineering, 2011, pp. 124–134.

[27] M. Rodriguez-Cancio, B. Combemale, and B. Baudry, “Approximate loop

unrolling,” in Proceedings of the 16th ACM International Conference on

Computing Frontiers, 2019, pp. 94–105.

[28] S. Yesil, I. Akturk, and U. R. Karpuzcu, “Toward dynamic precision scal-

ing,” IEEE Computer Architecture Letters, vol. 38, no. 04, pp. 30–39, 2018.

[29] M. A. Anam, P. N. Whatmough, and Y. Andreopoulos, “Precision–energy–

throughput scaling of generic matrix multiplication and convolution kernels

via linear projections,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 24, no. 11, pp. 1860–1873, 2014.

[30] A. Rahimi, L. Benini, and R. K. Gupta, “Spatial memoization: Concur-

rent instruction reuse to correct timing errors in simd architectures,” IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 12,

pp. 847–851, 2013.

116

REFERENCES

[31] Z. Liu, A. Yazdanbakhsh, D. K. Wang, H. Esmaeilzadeh, and N. S. Kim,

“Axmemo: hardware-compiler co-design for approximate code memoiza-

tion,” in Proceedings of the 46th International Symposium on Computer

Architecture, 2019, pp. 685–697.

[32] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and

D. Grossman, “Enerj: Approximate data types for safe and general low-

power computation,” ACM SIGPLAN Notices, vol. 46, no. 6, pp. 164–174,

2011.

[33] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture sup-

port for disciplined approximate programming,” in Proceedings of the seven-

teenth international conference on Architectural Support for Programming

Languages and Operating Systems, 2012, pp. 301–312.

[34] M. Vilim, H. Duwe, and R. Kumar, “Approximate bitcoin mining,” in 2016

53nd ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE,

2016, pp. 1–6.

[35] Y. Wang, Q. Xu, G. Qu, and J. Dong, “Information hiding behind approx-

imate computation,” in Proceedings of the 2019 on Great Lakes Symposium

on VLSI, 2019, pp. 405–410.

[36] M. Gao, Q. Wang, M. T. Arafin, Y. Lyu, and G. Qu, “Approximate com-

puting for low power and security in the internet of things,” Computer,

vol. 50, no. 6, pp. 27–34, 2017.

[37] S. Bian, M. Hiromoto, and T. Sato, “Dwe: Decrypting learning with errors

with errors,” in 2018 55th ACM/ESDA/IEEE Design Automation Confer-

ence (DAC). IEEE, 2018, pp. 1–6.

[38] D. E. S. Kundi, S. Bian, A. Khalid, C. Wang, M. O’Neill, and W. Liu,

“Axmm: Area and power efficient approximate modular multiplier for r-

lwe cryptosystem,” in 2020 IEEE International Symposium on Circuits and

Systems (ISCAS). IEEE, 2020, pp. 1–5.

117

REFERENCES

[39] S. Venkataramani, X. Sun, N. Wang, C.-Y. Chen, J. Choi, M. Kang,

A. Agarwal, J. Oh, S. Jain, T. Babinsky et al., “Efficient ai system de-

sign with cross-layer approximate computing,” Proceedings of the IEEE,

vol. 108, no. 12, pp. 2232–2250, 2020.

[40] I. Chakraborty, M. Ali, A. Ankit, S. Jain, S. Roy, S. Sridharan, A. Agrawal,

A. Raghunathan, and K. Roy, “Resistive crossbars as approximate hard-

ware building blocks for machine learning: Opportunities and challenges,”

Proceedings of the IEEE, vol. 108, no. 12, pp. 2276–2310, 2020.

[41] W. Liu, C. Gu, M. O’Neill, G. Qu, P. Montuschi, and F. Lombardi, “Se-

curity in approximate computing and approximate computing for security:

Challenges and opportunities,” Proceedings of the IEEE, vol. 108, no. 12,

pp. 2214–2231, 2020.

[42] X. Jiao, V. Akhlaghi, Y. Jiang, and R. K. Gupta, “Energy-efficient neural

networks using approximate computation reuse,” in 2018 Design, Automa-

tion & Test in Europe Conference & Exhibition (DATE). IEEE, 2018, pp.

1223–1228.

[43] I. Scarabottolo, G. Ansaloni, G. A. Constantinides, L. Pozzi, and S. Reda,

“Approximate logic synthesis: A survey,” Proceedings of the IEEE, vol. 108,

no. 12, pp. 2195–2213, 2020.

[44] M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “A survey

of testing techniques for approximate integrated circuits,” Proceedings of

the IEEE, vol. 108, no. 12, pp. 2178–2194, 2020.

[45] I. Polian, “Test and reliability challenges for approximate circuitry,” IEEE

Embedded Systems Letters, vol. 10, no. 1, pp. 26–29, 2017.

[46] M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “A test

pattern generation technique for approximate circuits based on an ilp-

formulated pattern selection procedure,” IEEE Transactions on Nanotech-

nology, vol. 18, pp. 849–857, 2019.

118

REFERENCES

[47] M. Brandalero, A. C. S. Beck, L. Carro, and M. Shafique, “Approximate on-

the-fly coarse-grained reconfigurable acceleration for general-purpose appli-

cations,” in 2018 55th ACM/ESDA/IEEE Design Automation Conference

(DAC). IEEE, 2018, pp. 1–6.

[48] M. D. Ercegovac and T. Lang, Digital arithmetic. Elsevier, 2004.

[49] A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative addi-

tion: A new paradigm for arithmetic circuit design,” in Proceedings of the

conference on Design, automation and test in Europe, 2008, pp. 1250–1255.

[50] N. Zhu, W. L. Goh, and K. S. Yeo, “An enhanced low-power high-speed

adder for error-tolerant application,” in Proceedings of the 2009 12th Inter-

national Symposium on Integrated Circuits. IEEE, 2009, pp. 69–72.

[51] Y. Kim, Y. Zhang, and P. Li, “An energy efficient approximate adder

with carry skip for error resilient neuromorphic vlsi systems,” in 2013

IEEE/ACM International Conference on Computer-Aided Design (IC-

CAD). IEEE, 2013, pp. 130–137.

[52] C. Lin, Y.-M. Yang, and C.-C. Lin, “High-performance low-power carry

speculative addition with variable latency,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 23, no. 9, pp. 1591–1603, 2014.

[53] D. Shin and S. K. Gupta, “A re-design technique for datapath modules in

error tolerant applications,” in 2008 17th Asian test symposium. IEEE,

2008, pp. 431–437.

[54] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-inspired

imprecise computational blocks for efficient vlsi implementation of soft-

computing applications,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 57, no. 4, pp. 850–862, 2009.

[55] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power dig-

ital signal processing using approximate adders,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 1,

pp. 124–137, 2012.

119

REFERENCES

[56] J. Schlachter, V. Camus, K. V. Palem, and C. Enz, “Design and applications

of approximate circuits by gate-level pruning,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 25, no. 5, pp. 1694–1702, 2017.

[57] J. Schlachter, V. Camus, C. Enz, and K. V. Palem, “Automatic generation

of inexact digital circuits by gate-level pruning,” in 2015 IEEE International

Symposium on Circuits and Systems (ISCAS). IEEE, 2015, pp. 173–176.

[58] B. Garg and G. Sharma, “Acm: An energy-efficient accuracy configurable

multiplier for error-resilient applications,” Journal of Electronic Testing,

vol. 33, no. 4, pp. 479–489, 2017.

[59] M. Bushnell and V. Agrawal, Essentials of electronic testing for digital,

memory and mixed-signal VLSI circuits. Springer Science & Business

Media, 2004, vol. 17.

[60] I. Wali, M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio,

“Towards approximation during test of integrated circuits,” in 2017 IEEE

20th International Symposium on Design and Diagnostics of Electronic Cir-

cuits & Systems (DDECS). IEEE, 2017, pp. 28–33.

[61] S. K. Jena, “Fault classification based approximate testing of digital vlsi

circuit,” in Electronic Systems and Intelligent Computing. Springer, 2020,

pp. 641–651.

[62] S. Singh, V. Mishra, S. Satapathy, D. Pandey, K. Goswami, D. S. Banerjee,

and B. Jajodia, “Efcsa: An efficient carry speculative approximate adder

with rectification,” in 2022 23rd International Symposium on Quality Elec-

tronic Design (ISQED), 2022, pp. 1–7.

[63] A. S. Roy, R. Biswas, and A. S. Dhar, “On fast and exact computation

of error metrics in approximate lsb adders,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 28, no. 4, pp. 876–889, 2020.

[64] W. Ahmad, B. Ayrancioglu, and I. Hamzaoglu, “Low error efficient approx-

imate adders for fpgas,” IEEE Access, vol. 9, pp. 117 232–117 243, 2021.

120

REFERENCES

[65] J. Lee, H. Seo, H. Seok, and Y. Kim, “A novel approximate adder design us-

ing error reduced carry prediction and constant truncation,” IEEE Access,

vol. 9, pp. 119 939–119 953, 2021.

[66] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolić, Digital integrated cir-

cuits: a design perspective. Pearson education Upper Saddle River, NJ,

2003, vol. 7.

[67] H. Li, X. Fan, Q. Li, and H. Liu, “An efficient light-weight configurable

approximate adder design,” in 2021 IFIP/IEEE 29th International Confer-

ence on Very Large Scale Integration (VLSI-SoC), 2021, pp. 1–6.

[68] A. Lingamneni, C. Enz, J.-L. Nagel, K. Palem, and C. Piguet, “Energy

parsimonious circuit design through probabilistic pruning,” in 2011 Design,

Automation & Test in Europe. IEEE, 2011, pp. 1–6.

[69] N. K. Jha and S. Gupta, Testing of digital systems. Cambridge University

Press, 2003.

[70] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI test principles and architectures:

design for testability. Elsevier, 2006.

[71] Z. Jiang and S. K. Gupta, “An atpg for threshold testing: Obtaining ac-

ceptable yield in future processes,” in Proceedings. International Test Con-

ference. IEEE, 2002, pp. 824–833.

[72] M. A. Breuer, “Intelligible test techniques to support error-tolerance,” in

13th Asian test symposium. IEEE, 2004, pp. 386–393.

[73] L. Anghel, M. Benabdenbi, A. Bosio, M. Traiola, and E. I. Vatajelu, “Test

and reliability in approximate computing,” Journal of Electronic Testing,

vol. 34, no. 4, pp. 375–387, 2018.

[74] R. I. Bahar, U. Karpuzcu, and S. Misailovic, “Special session: Does approx-

imation make testing harder (or easier)?” in 2019 IEEE 37th VLSI Test

Symposium (VTS). IEEE, 2019, pp. 1–9.

121

REFERENCES

[75] T.-Y. Hsieh, T.-A. Cheng, and C.-R. Chen, “Approximate functional test-

ing for image applications based on error-tolerance,” in 2017 IEEE Interna-

tional Conference on Consumer Electronics-Taiwan (ICCE-TW). IEEE,

2017, pp. 203–204.

[76] K.-J. Lee, T.-Y. Hsieh, and M. A. Breuer, “A novel test methodology based

on error-rate to support error-tolerance,” in IEEE International Conference

on Test, 2005. IEEE, 2005, pp. 9–pp.

[77] T.-Y. Hsieh, K.-J. Lee, and M. A. Breuer, “An error-oriented test method-

ology to improve yield with error-tolerance,” in 24th IEEE VLSI Test Sym-

posium. IEEE, 2006, pp. 6–pp.

[78] S. Shahidi and S. Gupta, “Multi-vector tests: A path to perfect error-rate

testing,” in Proceedings of the conference on Design, automation and test

in Europe, 2008, pp. 1178–1183.

[79] Z. Jiang and S. K. Gupta, “Threshold testing: improving yield for nanoscale

vlsi,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 28, no. 12, pp. 1883–1895, 2009.

[80] ——, “Threshold testing: Covering bridging and other realistic faults,” in

14th Asian Test Symposium (ATS’05). IEEE, 2005, pp. 390–397.

[81] H. Ichihara, K. Sutoh, Y. Yoshikawa, and T. Inoue, “A practical approach

to threshold test generation for error tolerant circuits,” in 2009 Asian Test

Symposium. IEEE, 2009, pp. 171–176.

[82] Z. Pan and M. A. Breuer, “Basing acceptable error-tolerant performance on

significance-based error-rate (sber),” in 26th IEEE VLSI Test Symposium

(vts 2008). IEEE, 2008, pp. 59–66.

[83] A. Chandrasekharan, S. Eggersglüß, D. Große, and R. Drechsler,

“Approximation-aware testing for approximate circuits,” in 2018 23rd Asia

and South Pacific Design Automation Conference (ASP-DAC). IEEE,

2018, pp. 239–244.

122

REFERENCES

[84] M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “On the

comparison of different atpg approaches for approximate integrated cir-

cuits,” in 2018 IEEE 21st International Symposium on Design and Diag-

nostics of Electronic Circuits & Systems (DDECS). IEEE, 2018, pp. 85–90.

[85] M. Masadeh, O. Hasan, and S. Tahar, “Approximation-conscious ic test-

ing,” in 2018 30th International Conference on Microelectronics (ICM).

IEEE, 2018, pp. 56–59.

[86] A. Gebregiorgis and M. B. Tahoori, “Test pattern generation for approxi-

mate circuits based on boolean satisfiability,” in 2019 Design, Automation

& Test in Europe Conference & Exhibition (DATE). IEEE, 2019, pp.

1028–1033.

[87] G. Karakonstantis, N. Banerjee, and K. Roy, “Process-variation resilient

and voltage-scalable dct architecture for robust low-power computing,”

IEEE transactions on very large scale integration (VLSI) systems, vol. 18,

no. 10, pp. 1461–1470, 2009.

[88] R. J. Cintra and F. M. Bayer, “A dct approximation for image compres-

sion,” IEEE Signal Processing Letters, vol. 18, no. 10, pp. 579–582, 2011.

[89] S. Bouguezel, M. O. Ahmad, and M. Swamy, “A low-complexity parametric

transform for image compression,” in 2011 IEEE International Symposium

of Circuits and Systems (ISCAS). IEEE, 2011, pp. 2145–2148.

[90] T. I. Haweel, “A new square wave transform based on the dct,” Signal

processing, vol. 81, no. 11, pp. 2309–2319, 2001.

[91] K. Lengwehasatit and A. Ortega, “Scalable variable complexity approxi-

mate forward dct,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 14, no. 11, pp. 1236–1248, 2004.

[92] S. Bouguezel, M. O. Ahmad, and M. Swamy, “Low-complexity 8× 8 trans-

form for image compression,” Electronics Letters, vol. 44, no. 21, pp. 1249–

1250, 2008.

123

REFERENCES

[93] ——, “A fast 8× 8 transform for image compression,” in 2009 International

Conference on Microelectronics-ICM. IEEE, 2009, pp. 74–77.

[94] A. G. Weber, “The usc-sipi image database version 5,” USC-SIPI Report,

vol. 315, no. 1, 1997.

[95] G. K. Wallace, “The jpeg still picture compression standard,” IEEE trans-

actions on consumer electronics, vol. 38, no. 1, pp. xviii–xxxiv, 1992.

[96] I. Wali, M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio,

“Can we approximate the test of integrated circuits?” in WAPCO: Work-

shop On Approximate Computing, 2017.

[97] “Arithmetic module generator,” https://www.ecsis.riec.tohoku.ac.jp/

topics/amg/, accessed: 2020-04-21.

[98] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the iscas-85 bench-

marks: A case study in reverse engineering,” IEEE Design & Test of Com-

puters, vol. 16, no. 3, pp. 72–80, 1999.

[99] “The usc-sipi image database, university of southern california, signal

and image processing institute,” https://sipi.usc.edu/database/, accessed:

2020-04-21.

[100] T.-Y. Hsieh, P.-X. Wu, and C.-C. Cheng, “On classification of acceptable

images for reliable artificial intelligence systems: A case study on pedestrian

detection,” in 2020 IEEE 38th VLSI Test Symposium (VTS). IEEE, 2020,

pp. 1–6.

[101] T.-Y. Hsieh, K.-J. Lee, and M. A. Breuer, “Reduction of detected accept-

able faults for yield improvement via error-tolerance,” in 2007 Design, Au-

tomation & Test in Europe Conference & Exhibition. IEEE, 2007, pp.

1–6.

[102] ——, “An error rate based test methodology to support error-tolerance,”

IEEE Transactions on Reliability, vol. 57, no. 1, pp. 204–214, 2008.

124

https://www.ecsis.riec.tohoku.ac.jp/topics/amg/
https://www.ecsis.riec.tohoku.ac.jp/topics/amg/
https://sipi.usc.edu/database/

REFERENCES

[103] ——, “An error-tolerance-based test methodology to support product grad-

ing for yield enhancement,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 30, no. 6, pp. 930–934, 2011.

[104] T.-Y. Hsieh, Y.-H. Peng, and K.-H. Li, “Efficient error-tolerability testing

on image processing circuits based on equivalent error rate transformation,”

Journal of Electronic Testing, vol. 30, no. 6, pp. 687–699, 2014.

[105] S. Shahidi and S. K. Gupta, “Estimating error rate during self-test via one’s

counting,” in 2006 IEEE International Test Conference. IEEE, 2006, pp.

1–9.

[106] S. Sindia and V. D. Agrawal, “Tailoring tests for functional binning of

integrated circuits,” in 2012 IEEE 21st Asian Test Symposium. IEEE,

2012, pp. 95–100.

[107] S. K. Jena, S. Biswas, and J. K. Deka, “Approximate testing of digital vlsi

circuits using error significance based fault analysis,” in 2020 24th Inter-

national Symposium on VLSI Design and Test (VDAT). IEEE, 2020, pp.

1–6.

[108] “The description and verilog code for all iscas-85 benchmark cir-

cuits,” http://web.eecs.umich.edu/∼jhayes/iscas.restore/benchmark.html,

accessed: 2021-06-15.

[109] H. K. Lee and D. S. Ha, “Hope: An efficient parallel fault simulator for

synchronous sequential circuits,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 15, no. 9, pp. 1048–1058,

1996.

[110] F. Corno, M. S. Reorda, and G. Squillero, “Rt-level itc’99 benchmarks and

first atpg results,” IEEE Design & Test of computers, vol. 17, no. 3, pp.

44–53, 2000.

[111] “Politecnico di torino itc’99 benchkmarks,” https://github.com/squillero/

itc99-poli, accessed: 2021-06-16.

125

http://web.eecs.umich.edu/~jhayes/iscas.restore/benchmark.html
https://github.com/squillero/itc99-poli
https://github.com/squillero/itc99-poli

[112] S. K. Goel and E. J. Marinissen, “Effective and efficient test architecture

design for socs,” in Proceedings. International Test Conference. IEEE,

2002, pp. 529–538.

[113] K. Chakrabarty, V. Iyengar, and M. D. Krasniewski, “Test planning for

modular testing of hierarchical socs,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 24, no. 3, pp. 435–448,

2005.

[114] Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O. Samman, Y. Zaidan,

S. M. Reddy, and K. Chakrabarty, “On concurrent test of core-based soc

design,” in SOC (System-on-a-Chip) Testing for Plug and Play Test Au-

tomation. Springer, 2002, pp. 37–50.

[115] K. Chakrabarty, E. Marinissen et al., “Test access mechanism optimiza-

tion, test scheduling, and tester data volume reduction for system-on-chip,”

IEEE Transactions on Computers, vol. 52, no. 12, pp. 1619–1632, 2003.

[116] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of sequen-

tial benchmark circuits,” in IEEE International Symposium on Circuits and

Systems,. IEEE, 1989, pp. 1929–1934.

[117] S. K. Tewksbury, Wafer-level integrated systems: implementation issues.

Springer Science & Business Media, 2012, vol. 70.

[118] B. T. Murphy, “Cost-size optima of monolithic integrated circuits,” Pro-

ceedings of the IEEE, vol. 52, no. 12, pp. 1537–1545, 1964.

[119] R. Seeds, “Yield and cost analysis of bipolar lsi,” IEEE Transactions on

Electron Devices, vol. 15, no. 6, pp. 409–409, 1968.

126

Appendix: A

Yield Modeling and Analysis

In a traditional test paradigm, all testable defects should be discovered, and any

chip having a fault should be isolated. Under the approximate testing paradigm,

acceptable faults are found that can only generate errors of magnitudes more

diminutive than the set threshold. Consider the faults in the circuit shown in

Fig. 4.15. In traditional testing, each of these faults are identified as testable.

During approximate testing of C17 circuit, 15 faults are determined as acceptable.

This means that via approximate testing, some faults are identified as acceptable

and lead to the tested circuit being acceptable. During the discussion of fault

model, we will use the word chip and circuit interchangeably.

Several yield models proposed in the literature are based on a common theme:

“as the chip area increases, the yield essentially drops.” Some of the traditional

yield models extracted from [117] are listed in Table 1. These equations work only

when perfect chips (i.e., chips with no defects) contribute to the yield. However,

in threshold testing, chips having acceptable faults also contribute to the yield.

Therefore, a different yield model is necessary. Table 1 shows some threshold

testing yield models.

In our proposed method of approximate testing, any chip with a single fault

that belongs to the benign set is also considered while computing effective yield.

We follow a similar yield model like [79]. Assume that the mean number of faults

per chip is λ. According to Poisson distribution, the probability that a die has k

faults is discussed in [117] as:

127

Table 1: Existing Yield Models

Traditional Yield Models
Model Name Equation
Poisson Model Y1 = e−D0A

Binomial Model Y2 =
[
1− A

Aw

]D0Aw

Murphy’s Model Y3 =
[
1−e−D0A

D0A

]2
Seeds’ Model Y4 =

1
1+D0A

Threshold Testing Yield Models
Model Name Equation

Hsieh et al [77] EY = P0 +
AC1

Cn
1
× P1 +

AC2

Cn
2
× P2 +

AC3

Cn
3
× P3 + ...

Jiang et al [79] YN = 1
1+AD0

+ PAD0A
(1+AD0)2

Sindia et al [106] YN = 1
(1−p)N−b

Pk =
e−λλk

k!
(1)

To find the perfect chip, k must be 0. The expected chip yield is:

P0 = e−λ (2)

According to [118], let a be the susceptible area and D be the fault density,

then the probability that the device is good is:

P0 = e−Da (3)

As D varies from chip to chip and follows a nonuniform density distribution,

the overall device yield is:

Y =

∫ ∞

0

P0f(D)dD =

∫ ∞

0

e−Daf(D)dD (4)

where, f(D) denotes a nonuniform distribution function and the exact form is

unknown. Substituting the exponential distribution function f(D) = e−D/D0

D0
in

Equation 4, we get the yield as shown in Equation 5 and is known as Seeds’ model

for die yield [119].

Y =
1

1 + aD0

(5)

128

Benign Fault

Malignant Fault

Chip having fault (s)

Chip having no fault

Chip having exactly
one fault

Chip having more
than one fault

Chip having exactly one
benign fault
(Contributing to yield)

Chip having exactly one
malignant fault
(Not Contributing to yield)

(a) Classical Testing Yield Model (b) Approximate Testing Yield Model

Fault

Figure 1: Fault Distribution on a Wafer in Classical Yield Model and Approximate
Yield Model

where D0 represents the defect density. The above yield model is known as the

classical yield model or natural yield model, where a perfect circuit (chip having

no fault) contributes to the yield. Figure 1 (a) shows a visual representation of

faults on a wafer. The white square boxes and the gray boxes represent perfect

chips and faulty chips, respectively. The red dot on a chip refers to a fault. In our

proposed method of approximate testing, two types of fault can occur on a chip.

The red dot refers to a malignant fault, and the blue dot refers to a benign fault.

The situation is shown in Figure 1 (b). According to the proposed technique, a

chip with a single blue dot also contributes to the yield. Hence, first, we need to

identify the circuits having one fault. Substituting k as 1 in Equation 1 we get:

P1 = e−λλ = e−DaDa (6)

Finally, the modified yield formula for the proposed approximate testing is:

Ymod =

∫ ∞

0

(P0 + bP1)f(D)dD =

∫ ∞

0

(
e−Da + be−DaDa

)
f(D)dD (7)

129

where, b refers to the percentage of acceptable faults. Now, substituting the

exponential distribution function f(D) = e−D/D0

D0
in Equation 7, we get the yield

as shown in Equation 8.

Ymod =
1

1 + aD0

+
bD0a

(1 + aD0)2
(8)

The fractional increase in the effective yield can be found using the Equation

9.

Eyield =
Ymod − Y

Y
(9)

Analysis of the Yield Model

To analyze our proposed yield model, we have considered the entire range of

classical yield from 0% to 100%. For the given classical yield, we calculate D0

using Equation 5, where D0 = 1−Y
Y a

. As per the proposed technique 30-40% of

the fault belongs to the benign set. Considering the value of b to be 30%, we

can calculate the effective yield using Equation 9, where Eyield = bD0a
1+aD0

. Table

2 shows the Eyield for different values of Y when b = 30%. We found some

interesting observations from the result. When the natural yield (Y) decreases,

the effective yield increases and vice versa. The area of a chip takes part in

the result calculation but does not alter the effective yield value. The result of

effective yield depends on the value of natural yield and the percentage of benign

fault (b). The last row of Table 2 shows that when the natural yield is 100%,

no fault exists in the entire wafer, and the effective yield is 0. Finally, we have

plotted the result of effective yield for different values of b in Figure 2. The plot

shows the result for three values of b, viz 10%, 20%, and 30%. We observe that

the effective yield decreases when the value of b goes down and vice versa.

130

Table 2: Effective Yield for 30% Benign Fault

Area(mm2) Y D0 aD0 b Ymod − Y Eyield

514 0.05 0.036965 19 0.3 1.425 28.5
514 0.1 0.01751 9 0.3 2.7 27
514 0.15 0.011025 5.666667 0.3 3.825 25.5
514 0.2 0.007782 4 0.3 4.8 24
514 0.25 0.005837 3 0.3 5.625 22.5
514 0.3 0.00454 2.333333 0.3 6.3 21
514 0.35 0.003613 1.857143 0.3 6.825 19.5
514 0.4 0.002918 1.5 0.3 7.2 18
514 0.45 0.002378 1.222222 0.3 7.425 16.5
514 0.5 0.001946 1 0.3 7.5 15
514 0.55 0.001592 0.818182 0.3 7.425 13.5
514 0.6 0.001297 0.666667 0.3 7.2 12
514 0.65 0.001048 0.538462 0.3 6.825 10.5
514 0.7 0.000834 0.428571 0.3 6.3 9
514 0.75 0.000649 0.333333 0.3 5.625 7.5
514 0.8 0.000486 0.25 0.3 4.8 6
514 0.85 0.000343 0.176471 0.3 3.825 4.5
514 0.9 0.000216 0.111111 0.3 2.7 3
514 0.95 0.000102 0.052632 0.3 1.425 1.5
514 1 0 0 0.3 0 0

9.
5

9 8.
5

8 7.
5

7 6.
5

6 5.
5

5 4.
5

4 3.
5

3 2.
5

2 1.
5

1 0.
5

0

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

28
.5

27

25
.5

24

22
.5

21

19
.5

18

16
.5

15

13
.5

12

10
.5

9

7.
5

6

4.
5

3

1.
5

0

20 40 60 80 100
0

5

10

15

20

25

30

Ef
fe

ct
iv

e
Yi

el
d

(%
)

Classical Yield (%)

 b=10%
 b=20%
 b=30%

Figure 2: Result of Effective Yield for different values of b

131

132

Appendix: B

Journal Publications:

� Sisir Kumar Jena, Santosh Biswas, and Jatindra Kumar Deka, “Retest-

ing Defective Circuits to Allow Acceptable Faults for Yield En-

hancement”. Journal of Electronic Testing, Volume-37, (December 2021),

20 pages. DOI: https://doi.org/10.1007/s10836-021-05980-y

Conference Publications:

� Sisir Kumar Jena, Santosh Biswas and Jatindra Kumar Deka “Max-

imizing Yield through Retesting of Rejected Circuits using Ap-

proximation Technique,” 2020 IEEE REGION 10 CONFERENCE (TEN-

CON), 2020, pp. 182-187, doi: 10.1109/TENCON50793.2020.9293891.

� Sisir Kumar Jena, Santosh Biswas and Jatindra Kumar Deka, “Approx-

imate Testing of Digital VLSI Circuits using Error Significance

based Fault Analysis ,” 2020 24th International Symposium on VLSI De-

sign and Test (VDAT), 2020, pp. 1-6, doi: 10.1109/VDAT50263.2020.9190571.

� Sisir Kumar Jena, Santosh Biswas, and Jatindra Kumar Deka. “Sys-

tematic design of approximate adder using significance based

gate-level pruning (SGLP) for image processing application .”

International Conference on Pattern Recognition and Machine Intelligence.

Springer, Cham, 2019.

133

	1 Introduction
	1.1 Approximate Computing Research Areas
	1.2 Motivation and Research Focus
	1.3 Scope and Objective of the Thesis
	1.4 Major Contribution of the Thesis
	1.4.1 Contribution on Approximate Adder Design
	1.4.1.1 Systematic Design of Approximate Adder Using Significance Based Gate-Level Pruning (SGLP)

	1.4.2 Contribution on Approximate Testing
	1.4.2.1 Approximate Testing of Digital VLSI Circuits using Error Significance based Fault Analysis
	1.4.2.2 Retesting of Rejected Circuits using Approximation Technique
	1.4.2.3 Retesting Defective Circuits to Allow Acceptable Faults for Yield Enhancement

	1.5 Organization of the Thesis

	2 Research Background
	2.1 Approximate Adder Design Philosophy
	2.2 Approximate Adder Design Techniques
	2.2.1 Approximate Block Adders (AxBA)
	2.2.1.1 Variable Latency Speculative Addition (VLSA)
	2.2.1.2 Error Tolerant Adder Type II (ETAII)
	2.2.1.3 Speculative Carry Select Addition (SCSA)
	2.2.1.4 Approximate Carry Skip Adder (ACSA)
	2.2.1.5 Carry Speculative Adder (CSPA)
	2.2.1.6 Efficient Carry Speculative Approximate Adder (EFCSA)

	2.2.2 Approximate Segment Adders (AxSA)
	2.2.2.1 Gate-Level Simplification
	2.2.2.2 Lower-part-OR Adder (LOA)
	2.2.2.3 Approximate Mirror Adder (AMA)

	2.2.3 Approximate Pruning Adders (AxPA)

	2.3 Approximate Testing Philosophy
	2.3.1 Digital VLSI Testing
	2.3.1.1 Fault Models
	2.3.1.2 Test Generation

	2.4 Literature Review of Testing Techniques in the Context of Approximate Computing
	2.4.1 Approximating Conventional Test Flow Architecture
	2.4.2 Threshold Testing
	2.4.2.1 Error-rate based Threshold Testing (Error-rate Testing)
	2.4.2.2 Error-significance based Threshold Testing
	2.4.2.3 Threshold Testing Using Both Error-Rate and Error-Significance

	2.4.3 Testing Techniques for Approximate Circuits (AxICs)

	2.5 Conclusion

	3 Approximate Adder Design
	3.1 SGLP Technique and Implementation
	3.1.1 SGLP for FA Approximation
	3.1.2 SGLP for Uncut Adder

	3.2 Experimental Evaluation
	3.2.1 DCT Application
	3.2.1.1 FPGA Implementation
	3.2.1.2 Image compression and Result Analysis

	3.3 Conclusion

	4 Approximate Testing
	4.1 Fault Analysis based Approximate Testing
	4.1.1 Motivation
	4.1.2 Proposed Approach
	4.1.2.1 PGN Generation
	4.1.2.2 One-to-One mapping

	4.1.3 Experimental Result
	4.1.3.1 Test Pattern Reduction Analysis
	4.1.3.2 Image Compression

	4.2 Retesting Defective Circuits using Approximation Technique
	4.2.1 Motivation and Analysis
	4.2.1.1 Analysis-1
	4.2.1.2 Analysis-2

	4.2.2 Proposed Approach
	4.2.2.1 Fundamental Principle
	4.2.2.2 Fault Analysis
	4.2.2.3 Fault Classification
	4.2.2.4 Conventional Test Flow
	4.2.2.5 Approximate Test Phase

	4.2.3 Case Study
	4.2.4 Evaluation

	4.3 Discussion and Summary
	4.4 Conclusion

	5 Conclusion and Future Works
	5.1 Summary of the Contributions
	5.2 Fulfilling the Aim and Objective
	5.3 Future Works

	References
	Appendix A: Yield Modeling and Analysis
	Appendix B: Summary of Publications

