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Abstract

A Cyber-Physical System (CPS ) integrates two sub-systems, a cyber sub-system and a

physical sub-system. The cyber sub-system is often a heterogeneous distributed computing

system that executes applications for regulating mechanisms associated with the physi-

cal sub-system, typically consisting of electro-mechanical components. Real-Time Cyber-

Physical Systems (RT-CPSs) are characterized by their ability to respond to events that

may happen in their operating environment within stipulated time bounds. The accuracy

of these systems depends not only on the delivered results but also on their completion

times. Applications in today’s RT-CPSs are often represented by Directed Acyclic Graphs

(DAGs) due to their distributed nature and complex interactions among component func-

tionalities. In such DAGs, nodes represent tasks associated with the application, while edges

denote inter dependencies among tasks. To meet functionality specific high-performance de-

mands, these DAGs are often implemented on heterogeneous RT-CPS platforms where, (i)

the same task may exhibit different execution time requirements on different processors, and

(ii) inter-task messages containing the same amount of data may incur distinct transmission

times on the different communication channels, due to variations in channel bandwidths.

The RT-CPS applications may be aperiodically triggered by an external event or may exe-

cute in infinite loops, periodically acquiring data from the environment through sensors at a

particular frequency, processing the same, and then producing processed data via actuators.

This dissertation deals with the design of resource allocation mechanisms for DAG-

structured applications on heterogeneous distributed RT-CPSs. The thesis which unfolds

through the dissertation is as follows: For the mentioned system scenarios, list-based design

philosophy is effective towards obtaining low-overhead but efficient scheduling mechanisms

for satisfying diverse objectives/constraints related to resource usage efficiency, timeliness,

energy, security, temperature, etc. All list scheduling heuristics typically consist of two

phases, (i) Task Prioritization: for listing tasks in a specific priority order, and (ii) Task-

to-processor mapping : for allocating the tasks in the order of their priorities on suitable

processors and associating with them appropriate execution start times. The contributions

of this thesis are categorized into five phases as follows: (i) The first phase focuses on the de-

velopment of an efficient real-time DAG-scheduling framework which attempts to minimize

a generic penalty function. The designed penalty function can be amicably adopted towards

its deployment in various application domains such as real-time cyber-physical systems like

i



automotive and avionic systems, cloud computing, smart grids, etc. (ii) In the second phase,

we develop a state-space search guided heuristic scheduling algorithm called HMDS, whose

objective is to minimize schedule length. By controlling the nature and extent of state-space

exploration, HMDS can adapt itself to deliver the best possible solution within a given time

bound. (iii) A mechanism for co-scheduling multiple independent periodic DAG applications

has been devised in the third phase. The objective of the scheduling algorithm is to min-

imize dissipated energy. (iv) Subsequently, in the fourth phase, a security-aware real-time

DAG scheduling strategy has been designed. The scheme maximizes total security utility

for a given application having known minimum security strength specifications for its mes-

sages. (v) Finally, in the last phase of the dissertation, we have developed a mechanism to

construct minimum makespan schedules for precedence-constrained task graph applications

with known thermal characteristics on a heterogeneous processing platform. The efficacy of

the developed scheduling schemes has been extensively evaluated through simulation-based

experiments using real-world benchmark task graphs. Prototype real-platform implemen-

tations as well as real-world case studies have also been presented to exhibit the practical

applicability of the proposed algorithms.

Keywords: Cyber-physical systems (CPS), directed acyclic graph (DAG), real-time

systems, distributed systems, heterogeneous platforms, list scheduling, makespan minimiza-

tion, energy optimization, security-aware, temperature-aware
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Chapter 1
Introduction

1.1 Background

Cyber-physical systems (CPS) are transforming the way people interact with engineered sys-

tems. A CPS is composed of physical sub-systems together with computing and networking

(cyber sub-systems), where embedded computers and networks monitor and control the

physical processes [6]. Real-time Cyber-Physical Systems (RT-CPSs) must respond to ex-

ternal stimuli within stipulated upper bounds on time referred to as deadline [15]. Thus,

the correctness of these systems depends not only on the value of the computation but also

on the deadline by which the results are produced [83]. Applications in many computing

systems ranging from avionic, automotive and industrial control to telecommunication sys-

tems, health care and even a significant class of consumer electronic systems, are real-time in

nature. In general, an RT-CPS application is often represented by a Directed Acyclic Graph

(DAG) (alternatively referred to as task graph in the rest of the report) whose nodes denote

application tasks and edges denote inter-task dependencies [85]. To meet functionality spe-

cific high-performance demands, these DAGs are often implemented on heterogeneous plat-

forms [51] where the same task may exhibit different timing/performance characteristics on

the different processing elements. Given DAG-structured applications and a heterogeneous

processing platform, successful execution of application tasks while satisfying all resource,

timing and precedence related specifications, is essentially a scheduling problem.

Task scheduling problems are broadly classified as either offline (static) and online (dy-

namic) [5]. In offline scheduling, the decisions such as task-to-processor mappings, start

times for task execution, etc., are taken at design time. Such offline scheduling decisions
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1. INTRODUCTION

are typically based on complete or partial design-time knowledge, such as the worst-case

execution time of each task on every processor, precedence relationships and communication

costs between task pairs, etc. In dynamic scheduling, such partial or full information about

a task graph is not available before execution, and the scheduling decisions are exclusively

taken at run-time. Dynamic scheduling schemes usually achieve higher average performance

gains and are more flexible compared to static schemes. These relatively superior capabili-

ties associated with dynamic strategies are achieved through the use of additional run-time

information such as actual execution times of recently completed tasks, instantaneously

available channel bandwidths, actual energy dissipation, etc. [72]. However, these supe-

rior capabilities are achieved at the cost of reduced predictability (in terms of reasonably

accurate bounds on minimum performance guarantees) which static schemes are able to

deliver. For safety-critical hard real-time cyber-physical systems, predictability, as well as

performance and timeliness, is usually deemed to be more important than performance [15].

Hence, for safety-critical RT-CPSs such as automotive/avionic systems, static scheduling is

often the desired choice [40].

In general, the problem of DAG scheduling falls in the NP-complete class [70,87]. Com-

putation of optimal schedules for DAGs on heterogeneous distributed computing systems

requires exhaustive enumeration of an exponential state-space and is often prohibitively

expensive, even for moderately large problem sizes. Therefore, research in this domain has

often focused on designing low-complexity heuristics that produce quick but satisfactory

schedules [5, 85]. Traditionally, list-based scheduling heuristics are known to generate effi-

cient schedules for task graphs [26, 79]. A majority of list scheduling policies attempt to

build a static schedule to minimize the overall schedule length, also known as makespan.

Task graph application schedules with lower makespans are often beneficial in many ways,

especially in RT-CPSs. As an example, given the temporal constraints (deadlines) as re-

quired for stable operation of an RT-CPS, the additional slack time acquired due to a lower

makespan may be used to optimize one or more performance metrics such as expenditure

on resources [2, 93], energy [62,95], temperature [76], security [25], etc.

This thesis primarily aims at the development of a few low overhead list-based heuristic

scheduling strategies for RT-CPSs consisting of both single DAG or multiple independent

DAG applications on a distributed platform consisting of a set of fully connected heteroge-

neous processors. The ‘fully connected processors model ’ is widely being used by researchers

and employed in many practical scenarios such as ZigBee-based wireless sensor networks,
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WiFi networks, etc. In the scenario where the physical network is not fully connected, it

can be modeled as a fully connected overlay network structure. An overlay is a logical

network that uses virtualization to build connectivity on top of a physical infrastructure

using tunneling encapsulations via Multi-Protocol Label Switching (MPLS), Generic Rout-

ing Encapsulation (GRE), Virtual Extensible LAN protocol (VXLAN), Virtual Routing

and Forwarding (VRF), or other technologies [65]. The bandwidth of a link connecting

a given pair of nodes in the overlay network is determined by the effective bandwidth of

the path connecting the two nodes in the underlying physical network. This ‘overlay-based

network model ’ allows us to circumvent the problem of communication contention existing

in a shared network and helps in the design of a focused and efficient computation resource

allocation scheme on a given set of distributed heterogeneous processing elements. This

approach is practically useful and effective, especially in RT-CPSs which are usually dom-

inated by computation workloads with short inter-task messages leading to comparatively

low communication workloads.

The rest of the Chapter is organized as follows. The motivation and objectives of our

work are specified in Section 1.2. We present a summary of the work done by providing

a brief description of each algorithm developed by us in Section 1.3. The chapter ends by

providing the organization of this thesis in Section 1.4.

1.2 Motivation and Objectives

This thesis deals with RT-CPS as its target domain. RT-CPS applications are usually ded-

icated towards controlling physical plants. The applications may be aperiodically triggered

by an external event or may execute persistently in infinite loops, periodically acquiring

data from the plant/environment through sensors, processing the same, and then generat-

ing appropriate actuation data. Today, there is an increasing trend toward the execution

of RT-CPS applications over distributed network platforms, in diverse domains ranging

from consumer electronics, robotics, automotive and avionics etc., to large manufacturing

plants, smart grids and networked satellites. The control applications in these systems are

often complex and executed on distributed high-capacity processing elements at locations

which may potentially be geographically distant from the plant. On the other hand, the

sensors and actuators are generally co-located with the plant. The complex control ap-

plications are usually modeled as DAGs with multiple possibly interdependent component
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functionalities (tasks). Different component functionalities or tasks of an application may

execute on distinct geographically distributed processing elements. In this scenario, data

exchange between tasks executing on distinct processing elements as well as sensory/ac-

tuation data, must be transmitted as messages in a timely fashion over networks. The

overall problem therefore involves two distinct real-time scheduling issues: that of manag-

ing computation resources for application execution and managing communication resources

for message transmission.

Large systems such as those in today’s distributed manufacturing units may constitute

multiple control sub-systems. The associated control applications, each modeled as a DAG,

often execute in a federated fashion on a dedicated (separate) sub-group of processing ele-

ments, in order to keep the design methodology simple while meeting specifications related

to timing, energy, reliability, etc. However, it may be noted that such federated execution

generally leads to poor utilization of resource capacities due to a lack of resource sharing

among tasks and/or messages associated with the different DAG-structured applications.

Poor resource utilization in turn, can result in higher design costs as more resources must

be deployed to synthesize a given system, than is otherwise necessary. On the other hand,

executing tasks on consolidated processing platforms can reduce design costs, although it

can cause significantly increased design complexity due to a higher degree of contention for

shared resources.

In order to synthesize RT-CPSs composed of single or multiple DAG structured compo-

nents on a consolidated platform of network-interconnected processing elements, industries

have often adopted a hierarchical two-step design approach. Here, the first step is dedi-

cated to the allocation and scheduling of tasks on processing elements. Given the mapping

and execution order of tasks (obtained through the first step), the second step is dedicated

to the scheduling of messages between tasks while taking care that all schedulability con-

straints are satisfied. This separation of concerns between task and message scheduling

allows the adoption of simpler design methodologies and hence have often been employed in

practice. Thus, in the literature, we find a few studies dealing with parallel real-time task

graphs [84,95,99] which focus towards precedence-aware scheduling of tasks, but completely

ignore inter-task message transmission overheads. The schedule of tasks provides informa-

tion about the messages to be delivered along with latency requirements associated with

such delivery. There are separate streams of work which solely deal with the scheduling

of messages on a given communication platform [9, 33]. However, it may be noted that
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integrated scheduling of tasks and messages have the potential to provide improved opti-

mization, leading to possibly higher resource usage efficiencies and lower deployment costs.

Although there is a significant amount of work on the integrated scheduling of DAG tasks

and messages, a majority of them are oriented towards makespan minimization as their

scheduling objective [3, 5, 12, 20, 24, 36, 38, 44, 85, 112]. On the other hand, there exist a few

works which deal with the integrated real-time scheduling of DAG applications, they are

primarily targeted towards homogeneous platforms [47,48].

On the basis of the analysis presented here, we have envisaged the following broad

scopes of work for this Ph.D. dissertation. Firstly, although there are a significant number

of makespan minimization-based scheduling strategies for DAG structured applications on

heterogeneous platforms, there seems to be ample scope for designing more systematic and

efficient strategies by using the principles of any time heuristic search approaches. Secondly,

our analysis also shows that by employing an efficient makespan minimization strategy

as a core, effective task-message co-scheduling schemes for single/multiple real-time DAG

applications can be designed. Next, we present an overview of important state-of-the-art

works and discuss the objectives of this research work.

1.2.1 Makespan Minimization-based Scheduling Strategies

Researchers have made significant efforts to minimize the makespan of a task graph and

developed many list scheduling static heuristics [5,12,20,36–38,85]. Topcuoglu et al. in [85]

presented a list scheduling policy called HEFT which determines the priority of each task

via upward rank. The upward rank of task τj is an estimate of the computation overhead

of the path from τj to the sink task τexit of a task graph (including the execution overhead

of task τj). The processor selection phase of HEFT picks a task having the highest priority

and allocates it to a processor that minimizes its finish time. Canon et al. in [16] compared

20 list scheduling algorithms and concluded that HEFT outperforms the others for schedule

length. Later, a few more list scheduling algorithms: HPS [37], PETS [36], LDCP [20]

and Lookahead [12] are proposed, and these policies outperform HEFT with respect to

schedule length, albeit at the cost of higher computational overhead. In [5], Arabnejad et

al. proposed PEFT which outperforms HEFT, HPS, PETS, LDCP and Lookahead over

a majority of test cases while incurring quadratic computational overhead in terms of the

number of tasks. Authors in [24] and [112] proposed PPTS and PSLS as enhancements
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over the PEFT algorithm.

Objective 1: Although many makespan minimization-based scheduling strategies ex-

ist for DAG structured applications on distributed heterogeneous platforms, there is am-

ple scope for designing more efficient strategies using the principles of any time heuristic

search approaches, which allow the designer to obtain a judicious balance between perfor-

mance (makespan) and solution generation times. Hence, the first important objective of

this Ph.D. dissertation is to devise a new approach for obtaining makespan-minimizing DAG

schedulers which can opportunistically use the principles of systematic heuristic search and

deliver better performance than what the current state-of-the-art schedulers provide. A brief

discussion of this work is presented in Section 1.3.2.

1.2.2 Energy-aware Real-time Scheduling Strategies

The problem of minimizing energy dissipation of a real-time application with precedence-

constrained tasks on homogeneous processors has been solved in several studies [47, 48].

For real-time DAG applications on heterogeneous processors, Huang et al. [35] proposed

a strategy for reclaiming slack times of tasks on their pre-assigned processors, in order

to reduce energy dissipation. Xie et al. [99] proposed two schedulers: NDES and GDES.

Given a heterogeneous platform with different task-to-processor energy consumption affini-

ties, NDES solved the problem of energy-aware processor mapping for each task within a

given deadline. GDES solved the same problem for a DVFS-enabled system. Similarly, the

work in [95] has also developed DVFS-enabled scheduling heuristics to perform energy min-

imization. However, these works are targeted towards parallel DAG-structured applications

where inter-task communication times are ignored.

Objective 2: As discussed earlier in this section, there is a severe dearth of research

works on task-message co-scheduling of real-time precedence-constrained task graphs. As

a second objective, we have envisaged the design of a generic real-time DAG scheduling

framework which can be amicably adapted towards its deployment in various application

domains such as automotive and avionic systems, cloud computing, smart grids, industrial

automation, etc. Section 1.3.1 presents a brief discussion of this work.
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1.2.3 Scheduling Multiple Independent DAG Applications

A detailed survey on multiple independent task graph scheduling schemes for distributed

systems may be found in [31]. Authors in [111] proposed two policies to address the problem

of scheduling multiple independent DAGs on heterogeneous systems. While the first policy

attempts to minimize the overall makespan, the second policy aims at reducing unfairness

in the slowdowns experienced by each individual DAG within the given set of DAG. Hsu

et al. in [32] extended the first policy and proposed an algorithm called Online Workflow

Management (OWM ), targeted towards dynamically arriving task graph applications. Sim-

ilarly, Arabnejad et al. in [4] extended the second policy in [111] and presented an algorithm

called Fairness Dynamic Workflow Scheduling (FDWS ) for the online scheduling of dynamic

task graphs. However, none of the above works are applicable to task graphs having real-

time constraints. Hu et al. in [33] presented an approach for scheduling a set of periodic

real-time DAG applications on safety-critical time-triggered systems. In this system, they

assumed that task-to-processor allocations were known beforehand. The objective is to gen-

erate a schedule which satisfies the deadlines of all instances of every application. However,

this work focuses only on meeting the deadlines of all application instances and does not

endeavor to optimize additional performance metrics related to energy, cost, temperature,

reliability, security, etc.

Objective 3: As discussed, large systems which constitute multiple control subsystems

typically follow a federated resource allocation policy as it allows simpler design, albeit at

the cost of significantly lower resource utilizations in many cases. In order to improve the

usage efficiency of available processing and network resources, our real-time DAG scheduling

framework can be extended to enable the co-scheduling of multiple independent periodic real-

time applications. This forms the third objective of the thesis. A brief discussion of the

same is presented in Section 1.3.3.

1.2.4 Security-aware Real-time Scheduling

In the last two decades, researchers have made significant efforts towards developing security-

aware scheduling strategies using for both dynamic [101, 104, 105] as well as static [94, 102,

103] approaches. Authors in [101, 104, 105] proposed a family of dynamic security-aware

scheduling strategies for platforms ranging from uni-processor systems [105] and multi-core

homogeneous systems [101, 104], to heterogeneous distributed systems [103, 104]. While
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some of these studies focus on independent tasks set [101, 103–105], the others have dealt

with applications modeled as precedence-constrained task graphs [104]. On the other hand,

Xie and Qin in [102] proposed a static scheduling strategy SASES for independent periodic

tasks on uni-processor systems, which accounts for both timing and security requirements.

Given the risk probabilities associated with the execution of tasks on a set of available

processors, Tang et al. in [94] proposed a security-driven static list scheduling strategy

for performance-sensitive non real-time DAG-structured applications, whose objective is to

minimize schedule length.

Objective 4: The above discussion shows that there does not currently exist any sig-

nificant security-aware static real-time DAG scheduling algorithms for heterogeneous plat-

forms. Thus, the generic real-time DAG scheduling framework (discussed in the second

objective) can be extended with customized design strategies to maximize system security as

the scheduling goal. This forms the fourth objective of the thesis. Section 1.3.4 provides a

brief explanation of the security-aware real-time scheduler.

1.2.5 Temperature-aware Scheduling Strategies

A survey of a few important temperature-aware scheduling techniques for multi-core pro-

cessing systems may be found in [78]. Authors in [10] addressed a thermal-aware global

multiprocessor scheduling algorithm to increase the number of finished tasks. They also

examine the competitive ratios of a large class of scheduling techniques as a function of the

processors’ cooling factors. In [113], Zhou et al. presented a heuristic strategy for scheduling

independent tasks with reliability and temperature constraints on heterogeneous platforms

to minimize schedule length. A few recent scheduling techniques on this topic which target

independent tasks on homogeneous and heterogeneous systems may be found in [57,64] and

[52, 75], respectively. Sheikh et al. in [76] proposed a temperature-aware scheduling algo-

rithm to minimize the makespan of DAG-structured applications. In [77], the same authors

also proposed a DAG scheduling technique for simultaneously optimizing makespan, energy

and temperature. However, these works are focused on homogeneous multi-core systems.

Objective 5: In spite of the above efforts, there does not exist any temperature-aware

makespan minimizing DAG scheduler over distributed heterogeneous processing platforms.

Hence, the last objective of this dissertation is to develop a temperature-aware makespan

minimizing DAG scheduling policy. A brief elaboration of this work is presented in Sec-
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tion 1.3.5.

1.3 Summary of Contributions

As part of the Ph.D. work, we have developed different list-based scheduling schemes for

DAG-structured applications on heterogeneous distributed RT-CPSs. The entire thesis work

comprises multiple contributions categorized into five contributory chapters, each of which

is targeted to achieve different scheduling objectives. The contributions of this thesis are

summarized below.

1.3.1 PRESTO: A Penalty-aware Real-Time DAG Scheduler for
Heterogeneous Distributed Systems

PRESTO is an efficient real-time scheduling framework for DAG-structured applications.

The objective of PRESTO is to minimize a generic penalty function that can be amicably

adopted towards its deployment in various application domains. The basic intuition of

PRESTO is explained below.

At a given iteration, tasks in τS (tasks priority list) are allocated sequentially in or-

der. The task (say, τj) to be scheduled next, maybe potentially allocated to any proces-

sor pn on the heterogeneous platform. However, selection of the actual processor is made

by judiciously considering the following two parameters, for each such possible allocation:

(i) MEP [τj, pn]: Minimum Estimated Penalty of τj on a potential processor pn, and (ii)

ESL[τj, pn]: Estimated Schedule Laxity of τj on pn. ESL[τj, pn] is a throttled estimate of

the spare time that should remain before deadline D and after completion of the sink node

τexit, for the case when all tasks in τS before τj, have already been scheduled and τj is re-

stricted to execute on pn. Among available allocation options, a task τj is first considered for

allotment within that subset of processors say, PS = {ps1, ps2, . . . , psr}, for which ESL[τj, pn]

is non-negative. It may be noted that, as the number of iterations grow and the value of

ESL gets increasingly throttled, the number of processors which remain eligible towards

inclusion in PS, reduces progressively. Now, τj is actually allocated to that processor psi

in PS for which MEP [τj, psi] is minimal. Hence, higher the iteration number larger is the

penalty associated with the schedule generated in that iteration. However, if ESL[τj, pn] is

negative for all available processors (i.e., PS = NULL), τj is allocated on that processor for

which ESL[τj, pn] is minimally negative.
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Figure 1.1: NPRs w.r.t varying #tasks for Gaussian Elimination and Epigenomics.

Experimental analysis using two benchmark task graphs, Gaussian Elimination (GE)

and Epigenomics (EP) reveals that PRESTO performs appreciably over extensive sets of

test scenarios, pointing to the practical effectiveness of the scheme. It can be observed from

Fig. 1.1 that for any given number of tasks, the average Normalized Penalty Ratio (NPR)

increases as the deadline extension rate (∂) increases, indicating that PRESTO is able to

efficiently harness higher available slack to achieve better penalty reductions. As is obvious,

NPR values decrease as the workload becomes higher with an increase in the number of

tasks.

1.3.2 HMDS: A Makespan Minimizing DAG Scheduler for Het-
erogeneous Distributed Systems

This work presents a low-overhead depth-first branch and bound-based search approach,

called HMDS. HMDS has been equipped with a set of novel tunable pruning mechanisms,

which allow the designer to obtain a judicious balance between performance (makespan)

and solution generation times, depending on the specific scenario at hand.

Given a fixed task priority order taskList, HMDS generates a static schedule by de-

termining: (i) a processor allocation, (ii) an actual start time, and (iii) an actual finish

time, such that the makespan is minimized. The task (say, τj) in taskList to be scheduled

next may be potentially allocated to any processor pn on the heterogeneous platform. Each

such recursive task-processor allocation procedure (say, ⟨τj, pn⟩) is associated with three

attributes: (i) Effective Start Time (EST), (ii) Effective Finish Time (EFT), and (iii) Op-

timistic Effective Finish Time (OEFT ). OEFT [τj, pn] provides an estimate of the sink task’s

completion time relative to the effective execution finish time of the current task τj on pn.
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The recursive procedure first tries to extend the schedule with τj allocated to p′1, the proces-

sor on which τj’s OEFT is minimum. Subsequently, when the schedule backtracks, it extends

with τj on p′2, the processor for which τj’s OEFT is second best, and this process continues

likewise. After a complete schedule is generated, the currently known best schedule and its

associated makespan are returned.

Table 1.1: Pair-wise makespan comparison of the scheduling algorithms

HEFT PEFT PPTS PSLS
better equal worse better equal worse better equal worse better equal worse

HMDS 85.2% 5.5% 9.3% 82.9% 14.3% 2.8% 86.0% 8.0% 6.0% 80.8% 12.0% 7.3%

Experimental analyses using two real-world benchmarks show that HMDS is able to

comprehensively outperform state-of-the-art algorithms such as HEFT, PEFT, etc., in terms

of archived makespans. It can be observed from Table 1.1 that HMDS performs better, equal

and worse in 85.2%, 5.5% and 9.3% test cases respectively, compared to HEFT.

1.3.3 DPMRS: Energy-aware Real-time Scheduling of Multiple
Periodic DAGs on Heterogeneous Distributed Systems

The third contribution of our work presents an energy-aware static scheduler called DPMRS

for a set of real-time control applications co-executing in a heterogeneous distributed envi-

ronment. The objective of DPMRS is to minimize dissipated energy.

DPMRS consists of three functions: (i) DPMRS(), (ii) periodicMerge(), and (iii) ER-

RRank(). The main function DPMRS(), which conducts the overall scheduling, and calls

function periodicMerge() to merge all independent application DAGs into a single DAG at

the first step. Given the merged DAG, DPMRS() next calls ERRRank() to compute two dif-

ferent parameters namely, (1) Expected Relative Residual-workload for each task-processor

pair and (2) A rank value for each task which is used to generate a task priority order.

DPMRS extends our real-time DAG scheduling framework PRESTO and is equipped with

the necessary critical features that are required to handle multi-application merged DAGs.

These features include:

(a) An enhanced task prioritization mechanism, where ranks of the source nodes of all

application instances (within the merged DAG) are designed to be aware of the relative
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arrival times (within the hyperperiod) of the respective application instances. Similarly,

ranks of the sink nodes of all application instances must be made aware of application

instance deadlines. Finally, the ranks of all other intermediate nodes within each application

instance (within the merged DAG) must be sensitive to the instance’s relative deadline.

(b) In addition to such an enhanced task prioritization mechanism which is necessary

for improved task ranking, the allocation phase during partial schedule generation must be

able to recognize and take corrective actions in situations when: (i) the scheduler attempts

to assign to a source task node a start time which is earlier than stipulated relative arrival

time. (ii) the scheduler attempts to assign to a sink task node a start time which causes the

application instance’s relative deadline to be missed.

Table 1.2: Normalized Energy-dissipation (NE; in W ) w.r.t. varying processors.

Processors 8 16 32
Algorithms DPMRS NDES&GDES DPMRS NDES&GDES DPMRS NDES&GDES

Average NE 13.66 159.17 3.69 70.45 1.51 23.97

Compared to state-of-the-art energy-aware single DAG scheduler NDES and GDES, the

global nature of DPMRS allows it to harness significantly improved processor/communica-

tion resource sharing among different benchmark DAGs, in addition to better exploitation

of task-processor affinities in the heterogeneous environment. Due to such efficient sharing

and affinity awareness, DPMRS is able to achieve considerably lower energy dissipation as

compared to NDES and GDES. For example, in the scenario consisting of 16 processors in

Table 1.2, it may be observed that the Normalized Energy-dissipation suffered by DPMRS is

3.69 W . In comparison, NDES and GDES suffer significantly higher dissipation − 70.45 W .

1.3.4 SHIELD: Security-aware Scheduling for Real-time DAGs on
Heterogeneous Systems

SHIELD is a real-time static scheduler whose objective is to maximize total security utility

for a given task graph application having known minimum security strength specifications

for its messages. Salient facets incorporated within the design of SHIELD include:

(a) An enhanced task prioritization mechanism which not only is task-precedence aware

but also possesses the following important properties: rank of each task τj is an estimate of
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the overall relative remaining workload (combining task execution, message transmission as

well as security overhead) associated with the sub-graph rooted at τj (up to the sink task

node of the DAG).

(b) A processor allocation mechanism in which, for each task (chosen in reverse chrono-

logical order of the rank values) an appropriate processor is selected from the pool of available

heterogeneous processors and a suitable start time is assigned for the task on this chosen

processor. The overall aim of this mechanism is to generate a makespan minimizing schedule

in which a chosen set of security service protocols are applied on the messages in accordance

with their minimum security performance demands.

(c) SHIELD returns with failure, if the minimum makespan schedule generated by the

previous step overshoots the given deadline. Otherwise, SHIELD runs a “security enhance-

ment procedure” over the schedule generated in the previous step. Specifically, keeping the

task-to-processor assignment and task scheduling order undisturbed, SHIELD attempts to

utilize the inter-task as well as overall slacks available before the deadline, to maximize

aggregate security performance of the system.

Experimental analysis using two benchmark task graphs: Gaussian Elimination and

Cybershake, reveal that SHIELD significantly outperforms two greedy baseline strategies

SHIELDb in terms of solution generation times (run-times) and SHIELDf in terms of

achieved security utility, over various input test scenarios.

1.3.5 TMDS: A Temperature-aware Makespan Minimizing DAG
Scheduler for Heterogeneous Distributed Systems

The final contribution of this dissertation presents a low-overhead temperature-aware algo-

rithm called TMDS for DAG-structured applications. The objective of TMDS is to generate

a makespan minimizing schedule while satisfying, (i) execution and communication demands

of application tasks, (ii) processor capacity and communication bandwidth constraints of

the platform, and (iii) temperature threshold bound associated with all processors, over the

entire schedule.

The TMDS comprises three phases, namely task prioritization, processor allocation and

temperature-aware scheduler. (a) The fast phase decides a fixed task priority order among

the ready tasks that ensure the satisfaction of all precedence constraints associated with the

task graph. (b) The second phase determines a suitable processor for the highest priority
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unallocated task, at a given intermediate point during partial schedule generation. In order

to obtain this processor, a temperature-aware evaluation on the allocation-goodness of the

selected task on all available processors, is conducted. (c) This temperature-aware schedule

generation strategy adheres to two design principles for minimizing the total execution

length of τj on pn in the presence of an active-to-idle transition overhead. (i) An interval

in which task τj actually executes on processor pn is never interrupted/terminated until

the threshold temperature of pn is reached, (ii) Whenever the temperature of pn reaches its

threshold value, it is switched to idle mode. Thereafter, pn continuously cools off in this

idle state for a minimum duration which either allows: (a) continuous execution of τj up to

completion (while not violating pn’s threshold) in the execution interval which follows this

cool-off interval, or (b) cools down up to the designed cut-off temperature.

Table 1.3: Pair-wise comparison of algorithms using Gaussian Elimination

TPSLS TPPTS TPEFT THEFT
better equal worse better equal worse better equal worse better equal worse

TMDS 66.2% 6.7% 27.1% 61.1% 1.4% 37.5% 53.9% 14.4% 31.7% 65.5% 1.4% 33.1%

The proposed temperature management strategy is a generic approach that can be easily

used to adapt existing makespan minimizing DAG schedulers (for example, HEFT, PEFT,

etc.), so that the delivered schedules never violate threshold temperature bounds of proces-

sors. This generic approach is important because as shown in Table 1.3, although TMDS is

better or comparable in performance to the other state-of-the-art algorithms in a majority

of considered test cases, there still are a significant number of test case scenarios in which

one or more existing algorithms deliver slightly better results than TMDS.
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1.4 Organization of the Thesis

The thesis is organized into eight chapters. A summary of the contents in each chapter is

as follows:

• Chapter 2: This chapter introduces the essential terminology and background of

real-time systems, which are needed to understand the following chapters and discuss

important state-of-the-art scheduling strategies that are related to this dissertation.

• Chapter 3: This chapter presents PRESTO, a real-time static scheduler for DAG-

structured applications which attempts to optimize a generic penalty function of the

processor and bus allocations corresponding to a particular schedule. Theoretical

analysis and experimental results of PRESTO have been presented and discussed.

• Chapter 4: In this chapter, we discuss a low-overhead depth-first branch and bound

based search approach called HMDS for task graphs, whose objective is to minimize

the overall makespan. HMDS is adaptable and can be tuned to provide approximate

solutions having varied solution qualities with associated differences in solution gen-

eration times, by controlling the nature and extent of solution space exploration.

• Chapter 5: This chapter deals with a real-time static list scheduler for multiple

independent periodic DAG applications. The objective of the scheduler is to minimize

energy dissipated by the system during execution of a given set of DAGs.

• Chapter 6: Here, we present a real-time policy SHIELD for heterogeneous platforms,

whose objective is to maximize total security utility for a given DAG-structured ap-

plication having known minimum security strength specifications for its messages.

• Chapter 7: This chapter deals with the design of a low-overhead temperature-aware

heuristic scheduler called TMDS, for DAG-structured applications. The objective

of TMDS is to minimize the overall schedule makespan of task graphs by deciding

task-processor allocations on a heterogeneous distributed platform while ensuring that

processor temperatures never overshoot their respective threshold cutoff values.

• Chapter 8: The thesis concludes with this chapter. We discuss the possible extensions

and future works that can be done in this area.

;;=8=<<
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Chapter 2
Background on Real-time Systems and
Literature Survey

2.1 Introduction

Real-time systems are characterized by their ability to respond to events that may happen in

their operating environment within stipulated time bounds. Thus, the correctness of these

systems depends not only on the value of the computation but also on the deadline by which

the results are produced [15,83]. Real-time systems span a wide range of domains, including

industrial control systems, multimedia systems, automotive and aviation systems, consumer

electronics, etc. A typical example of a real-time system is provided by a temperature

controller in a chemical plant that is required to switch off the heater within 30 milliseconds

when the temperature reaches 250◦, to avoid an explosion. Ensuring temporal correctness is

ultimately a scheduling problem. The chapter starts with a brief overview on the structure

of real-time systems and then discusses important state-of-the-art works related to this

dissertation.

2.2 Real-time Systems

Typically, real-time systems are composed of the Application Layer, Real-time Scheduler and

Hardware Platform [61]. The Application Layer consists of all applications that should be

executed. The Real-time Scheduler takes scheduling decisions and provides services to the

application layer. The Hardware Platform consists of processors, memories, communication
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networks, etc., on which the applications are executed. We will now present each of these

layers in detail and introduce important theoretical models for enabling the analysis of these

systems, which will in turn allow the design of efficient scheduling strategies.

2.2.1 Application Layer

The application layer comprises all the applications that the system needs to execute. In

general, a real-time application is represented as a Directed Acyclic Graph (DAG). In a DAG,

each node represents a piece of code (or program) called task, while edges denote inter-task

dependencies [85]. Fig. 2.1a depicts an example DAG, G(V,E), where the set of vertices V =

{τ1, τ2, . . . , τ|V |} represents tasks and the set of edges E represents precedence constraints

between task pairs. For example, an edge ei,j = (τi, τj) ∈ E denotes the dependency between

tasks τi and τj; that is, τj can only start after τi completes execution and its output arrives

τj. Edge ei,j is assigned with a positive weight datai,j (e.g., data4,5 = 16) which represents

the amount of data to be transferred from task τi to task τj. The DAG has an end-to-end

deadline of 100 milliseconds. We assume that the task graph has a single source/entry

task τentry and a single sink/exit task τexit. Scenarios in which a task graph has multiple

sources (sinks) are handled by adding a dummy source (sink) task. We now discuss the set

of definitions related to a real-time application.

τ1

τ2 τ3 τ4

τ5

τ6

2 5 1
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(a) A sample DAG

p2 τ1 τ3 τ5

τ2

τ6

p1 τ4

A DS F

ex1,2

time

(b) Typical parameters of a real-time DAG application

Figure 2.1: (a) A DAG G(V,E), |V |=6, |E|=7; (b) Parameters of a real-time DAG application.
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2.2.1.1 Real-time Application Model

Formally, a real-time DAG-structured application G (refer Figure 2.1) can be characterized

by the following parameters:

• Arrival time (A) is the time at which an application becomes ready for execution.

It is also referred as release time or request time of the application.

• Start time (S) is the time at which the source task τentry (i.e., τ1 of G; refer Fig-

ure 2.1a) of the application G starts its execution.

• Execution time or Computation time (exj,n) is the time taken by the processor pn

to finish the computation of τj without interruption.

• Finishing time or Completion time (F ) refers to the time at which the sink task τexit

(i.e., τ6 of G; refer Figure 2.1a) finishes its execution.

• Deadline (D) is the time before which the application’s sink task τexit should complete

its execution without causing any damage to the system. If a deadline is specified with

respect to the application’s source task arrival time, is called relative deadline, whereas

if it is specified with respect to time zero, it is called an absolute deadline.

• Worst-case execution time (ωj,n) is the largest computation time of a task τj among

all of its possible executions on processor pn (i.e., exj,n ⩽ ωj,n).

• Slack time or Laxity (slack) is the maximum amount of time by which execution

of an application can be delayed after its activation/arrival, to complete within its

deadline (slack = D − exexit,n; exexit,n is the execution time of sink task τexit of G on

processor pn).

• Priority is the importance given to the application’s tasks in context of a schedule

at hand.

• Criticality is a parameter related to the consequences of missing a deadline (typically,

it can be hard, firm, or soft).

A real-time application G can be classified as periodic, aperiodic or sporadic based on

regularity of its activations [15, 22].
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• A Periodic application arrives strictly periodically, separated by a fixed time interval

(say, π). For example, the track correction application of a rocket recurs periodically

every 50 milliseconds.

• An Aperiodic application arrives randomly and is not known a priori. Examples

are provided by interactive applications such as in railway reservation systems, it

is difficult to predict the number of clients that will be accessing the system at a

particular instant.

• A Sporadic application that may arrive at any time once a minimum interarrival

time has elapsed since the arrival of the previous instance of the same application.

For example, tasks encountered by a fire prevention system may be considered spo-

radic because there is usually a minimum duration between the occurrence of two

consecutive fires.

There are three levels of constraints with respect to the placement of deadlines relative to

the repetition periodicity of periodic and sporadic tasks.

• Implicit Deadlines: All application deadlines are equal to their periods (D = π).

• Constrained Deadlines: All application deadlines are less than or equal to their

periods (D ⩽ π).

• Arbitrary Deadlines: Application deadlines may be less than, equal to, or greater

than their periods.

• Hyperperiod (H): Given a static application system, H represents the minimum

time interval after which the schedule repeats itself. For a set of periodic applications,

G = {G1, G2, . . . , G|G|} with periods {π1, π2, . . . , π|G|}, hyperperiod is given by the

LCM of the periods (H = LCM(π1, π2, . . . , π|G|)).

This dissertation deals with both periodic as well as aperiodic applications .

2.2.2 Real-time Scheduler

A real-time scheduler acts as an interface between applications and the hardware platform.

The scheduler generates a schedule by sequentially determining: a processor allocation and
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an execution start time for each task of the application, in the order prescribed by a prede-

termined task priority order such that the scheduling objective is optimized. A set of rules

that, at any time, determines the order in which tasks are executed is called a task priority

order. In our system, a generated schedule is referred to as feasible/valid, if the sink task

τexit finishes its execution on or before the stipulated deadline D. An application is said to

be schedulable, if there exists at least one algorithm that can produce a feasible schedule.

In a work-conserving scheduling algorithm, processors are never kept idle while there exists

a task waiting for execution.

2.2.3 Hardware Platform

Based on the number of processors, a system can be classified into uniprocessor and mul-

tiprocessors systems. A processor is a hardware element (digital circuit) that executes

programs or tasks.

• Uniprocessor systems can execute only one task at a time and must switch between

tasks.

• A Multiprocessor system may range from several separate uniprocessors tightly

coupled using high-speed networks to multi-core. It can be classified as follows:

– Homogeneous: The processors are identical; hence the rate of execution of all

tasks is the same on all processors.

– Uniform: The processors are architecturally identical, but may execute at dif-

ferent clock speeds (operation frequencies). Thus the rate of execution of a task

depends only on the speed of the processor. A processor running at speed say,

2 GHz, will execute all tasks at exactly twice the rate of a processor executing

at speed 1 GHz.

– Heterogeneous: The processors are different; hence the rate of execution of a

task depends on both the processor and the task. That is, the same task may

exhibit different execution time requirements on different processors.

In this dissertation, we have considered heterogeneous multiprocessor systems. Memory in

multiprocessor systems can either be distributed or shared. In distributed memory, each
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processor has its own private memory. For any given processor, task execution and com-

munication with other processors can be conducted simultaneously without any contention.

In contrast, a shared memory multiprocessor offers a single memory space used by all pro-

cessors. This thesis deals with distributed memory multiprocessor systems. In distributed

systems, processors communicate with each other through message passing using the un-

derlying communication network. Processors in the network can either be fully connected

or connected through a shared bus-based network.

p1 p2

p3 p4

Figure 2.2: Fully connected multiprocessor system.

1. Fully-connected multiprocessor system: In a fully connected system, each pair of

processors have a dedicated communication channel to send/receive data or messages.

Figure 2.2 shows a typical fully connected multiprocessor system where all processors

are connected to each other through dedicated bidirectional communication links. For

example, processor p1 has separate communication links to processors p2, p3 and p4.

Processor p1 Processor p2 · · · Processor p|P |

Bus B1

Bus B2

Bus B|B|

· · · · · · · · ·

··
·

Figure 2.3: Shared bus-based multiprocessor system.

2. Shared bus-based multiprocessor system: In this system, processors are con-

nected through a shared bus-based communication network. Here, processors can be
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connected to all buses or a subset of buses. Further, buses can be homogeneous or

heterogeneous in nature. Figure 2.3 shows a shared bus-based multiprocessor system.

For example, processor p1 is connected to all buses B1, B2, . . . , B|B|.

In this dissertation, we have considered heterogeneous distributed multiprocessor systems

where processors are fully connected through heterogeneous communication links. The fully

connected processors model is widely being used by researchers and employed in many

practical situations using ZigBee-based wireless sensor networks, WiFi networks, Z-Wave,

etc. WiFi and Zigbee are currently the most popular protocols for smart homes, smart

grids, healthcare, robotic industrial systems, etc. Even if the physical network is not fully

connected, it can be modeled as a logically fully connected overlay network structure. An

overlay is a virtual network built on top of an underlay physical network infrastructure.

It creates a tunnel that is designed to provide the services necessary to implement any

standard point-to-point encapsulation scheme via Multi-Protocol Label Switching (MPLS),

Generic Routing Encapsulation (GRE), Virtual Extensible LAN protocol (VXLAN), Virtual

Routing and Forwarding (VRF), or other tunneling protocols. A tunnel looks like a single-

hop and tunneling protocols prefer a tunnel over a multi-hop physical path. For example,

in the topology depicted in Figure 2.4, messages from processor p1 will appear to travel

across network segments N1, T and N5 to get to processor p2 instead of taking the path N1,

N2, N3, N4 and N5. In fact, the messages going through the tunnel will still be traveling

across switches SW1, SW2, SW3 and SW4. In the figure, processor p1 (p2) is connected to

switch SW1 (SW2) by a low-bandwidth communication link and link delays are given as

edge weights.

N1

N2 N3 N4

p1 p2

Tunnel T

SW1 SW2 SW3 SW4

N55

20 30

7

25

Figure 2.4: Tunneling in an overlay network.
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The bandwidth of a tunnel/link connecting a given pair of processors in the overlay net-

work is determined by the effective bandwidth of the path connecting the two processors in

the underlying physical network. This overlay-based network model allows us to circumvent

the problem of communication contention existing in a shared network and allows us to

focus our attention on the design of efficient computation resource allocation schemes for

given heterogeneous execution platform scenarios. This approach is practically useful and

effective, especially in distributed cyber-physical systems where messages typically tend to

be short and are heavily dominated by computation workloads.

2.3 Types of Real-time Application Constraints

Designing efficient real-time DAG-structured application scheduling strategies for RT-CPSs

must encounter several challenges. We now enumerate a few such critical challenges and

discuss them [15].

1. Timing Constraints: Real-time systems are characterized by computational activi-

ties with stringent timing constraints that must be met in order to achieve the desired

behavior. A typical timing constraint on a task is the deadline. Depending on the

consequences of a missed deadline, real-time tasks are usually distinguished into three

categories:

– Hard: A real-time application is said to be hard if missing its deadline may cause

catastrophic consequences on the system under control. Examples: autopilot

systems, planetary rovers, anti-missile systems, etc.

– Firm: A real-time application is said to be firm if missing its deadline does

not cause any damage to the system, but the output has no value. Examples:

satellite-based tracking applications, financial forecast systems, video conferenc-

ing applications, etc.

– Soft: A real-time application is said to be soft if missing its deadline has still

some utility for the system, although causing a performance degradation. Exam-

ples: railway ticket reservation, online transaction processing systems, weather

monitoring systems, etc.

2. Precedence Constraints: In DAG-structured applications, computational activities

cannot be executed in an arbitrary order but have to respect some precedence relations
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defined at the design stage. The set of all direct predecessor tasks (successor tasks)

for a task τj is represented as pred(τj) (succ(τj)). Figure 2.1a illustrates a DAG

that describes the precedence constraints among six tasks. From the figure, it can

be observed that task τ1 do not have any predecessor and can immediately start its

execution. Tasks with no predecessors are called source task nodes. It can also be

seen that τ2, τ3 and τ4 can start executing only after the predecessor task τ1 completes

its execution. Tasks with no successors, as τ6 in the figure, is called sink task.

3. Resource Constraints: The hardware platform in a real-time system consists of a

limited number of resources which are shared among multiple applications. So, the

resources must be used in a mutually exclusive way. For example, multiple tasks can

not execute on the same processor at a single time instant, i.e., a processor can execute

at most one task at a moment.

4. Energy Minimization: Energy dissipation in real-time systems has become an im-

portant issue with the increase in the number of processing elements. Effective en-

ergy management is essential for battery-powered embedded systems, such as those

deployed in hand-held devices, space missions, industrial controllers, pacemakers in

health care, etc. Replacing or recharging batteries in such systems is not always feasi-

ble or practical. Hence, effective energy management can enhance the lifetime of the

batteries resulting in higher performance and financial advantages. Even for systems

directly connected to the power grid, reducing energy consumption provides significant

financial and environmental gains [7]. Scheduling schemes for real-time systems must

minimize energy consumption while satisfying other constraints like timing, resource,

precedence, etc.

5. Security-awareness: As discussed earlier, DAG-structured applications are often

executed on distributed heterogeneous platforms. Further, messages which deliver

data between tasks are often transmitted over public networks, and are hence suscep-

tible to multiple security threats such as snooping, alteration and spoofing. Several

alternative security protocols having varying security strengths and associated imple-

mentation overheads (particularly at source and destination tasks of messages) are

available in the market, for incorporating confidentiality, integrity and authentica-

tion on the transmitted messages. Hence, given a resource-constrained computation
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platform, a security-aware RT-CPS scheduler should be able to judiciously choose ap-

propriate schemes for the three types of security services, so that overall security of

the system is maximized while adhering to stipulated timeliness constraints.

6. Thermal Constraints: Real-time systems implemented on heterogeneous platforms

need to satisfy Thermal Design Power (TDP) thresholds employed by processor man-

ufacturers [52]. The elevation in temperature beyond TDP may trigger Dynamic

Thermal Management (DTM) to ensure the thermal stability of the system. However,

the application of DTM makes the system susceptible to higher unpredictability and

performance degradations for real-time applications [45,58]. This necessitates the de-

velopment of schedulers that can guarantee adherence to a system-level peak thermal

constraint.

Given a hard real-time application modeled as a DAG and a heterogeneous processing

platform, successful execution of application tasks while satisfying all timing, precedence

and resource-related specifications, is ultimately a scheduling problem.

We now provide a brief description of a few common classifications of the different

scheduling policies relevant to real-time systems.

2.4 A Classification of Real-Time Scheduling Policies

Among the great variety of strategies proposed for scheduling real-time applications, the

following main classes can be identified:

• Preemptive Vs. Non-preemptive Scheduling: In preemptive strategies, a run-

ning task of an application can be interrupted at any time to assign the processor to

another active task, according to a predefined scheduling policy. The unfinished por-

tion of the interrupted task may be reallocated to the same processor or to a different

processor [27]. On the contrary, in non-preemptive strategies, a task of an application,

once started, is executed by the processor until completion. In this case, all scheduling

decisions are taken as the task terminates its execution.

• Offline Vs. Online Scheduling: In offline scheduling, the scheduler has a priori

knowledge of the application’s tasks and its constraints, such as arrival times, exe-

cution times, precedence constraints, etc. The schedule is generated and stored at
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design time and dispatched later during runtime of the system. Static schedulers are

typically offline in nature. On the other hand, online scheduling algorithms make

their scheduling decisions at runtime based on information about the application that

has arrived so far. Although they are often flexible and adaptive, they may incur

significant overheads because of runtime processing. However, online schedulers are

essential in systems that do not have enough information before run-time, to design

the schedule statically. Online scheduling is also referred to as dynamic or runtime

scheduling.

• Optimal vs. Heuristic: An algorithm is said to be optimal if it minimizes or max-

imizes some given cost function defined over all the tasks of an application. When no

cost function is defined and the only concern is to achieve a feasible schedule, then an

algorithm is said to be optimal if it is able to find a feasible schedule, if one exists.

On the other hand, an algorithm is said to be heuristic if it is guided by a heuris-

tic function in making its scheduling decisions. A heuristic algorithm tends toward

the optimal schedule but does not guarantee finding it. In general, scheduling of an

application modeled as DAG has been shown to be NP-complete [18,28,87]. Compu-

tation of optimal schedules for DAGs on heterogeneous platforms requires exhaustive

enumeration of an exponential state-space and are often prohibitively expensive even

for moderately large problem sizes. Therefore, research in this domain often focuses

towards the design of low-complexity heuristics that produce quick and satisfactory

schedules which are generally sub-optimal in nature [38,80].

This thesis deals with non-preemptive task execution of hard real-time DAG-structured

applications which are scheduled using heuristic-based offline/online strategies on heteroge-

neous distributed systems. We have added a taxonomy in Figure 2.5 and the highlighted

boxes represent scope of this thesis.

Next, we present a few important state-of-the-art works related to this dissertation.

2.5 Survey of Scheduling Algorithms

DAG scheduling can be conducted statically, based on information available about the ap-

plication and platform at design time (before putting the system into operation), or dy-

namically, at run-time. In the last two-three decades, researchers have made significant
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Figure 2.5: Taxonomy; highlighted boxes represent the scope of this thesis.

efforts towards developing effective RT-CPSs scheduling strategies using both static [5, 20,

85, 93–95, 102, 103] as well as dynamic [30, 57, 101, 104, 105] approaches. We now present a

category-wise discussion of state-of-the-art scheduling strategies relating to this dissertation.

2.5.1 Makespan Minimization Scheduling Strategies

Researchers have made significant efforts to minimize the makespan of a task graph and

developed many list scheduling heuristics [5,12,20,36,38,85]. In [85], Topcuoglu et al. pro-

posed two list scheduling strategies called HEFT and CPOP. These two algorithms differ

in both their task prioritization and processor selection phases. The HEFT algorithm com-

putes the priority of every task using a parameter called upward rank. The upward rank of a

task τj is an estimate of the computation cost of the path from τj to the sink task (exit node

of a DAG) including the computation time of τj. In the processor selection phase, HEFT

selects the highest priority task and assigns it to the processor which minimizes the task’s

finish time. On the other hand, CPOP prioritizes tasks based on the summation of upward

and downward rank values and schedules all critical tasks (that is, tasks on the critical path

of the DAG) onto a single processor, in an attempt to minimize the total execution time

of the critical tasks. The non-critical tasks are assigned to the other processors such that

the makespan is minimized. The HEFT algorithm is faster and produces lower schedule

lengths than CPOP. The authors in [16] compared 20 heuristic schedulers using randomly

generated DAGs and montage task graphs as inputs and concluded that HEFT outperforms

the others for both makespan and robustness. In [92], the authors have introduced the no-

tion of successor-tree consistent deadline to compute task priorities. Compared to the other
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prioritization schemes, the successor-tree-consistent deadline approach attempts to consider

both precedence constraints and resource constraints, in a more accurate manner. However,

the computation of successor-tree-consistent deadlines has been found to be computation-

ally intensive [87]. Later, Ilavarasan et al. in [37], Ilavarasan et al. in [36], Daoud et

al. in [20] and Bittencount et al. in [12] presented the list-based heuristic schemes named

High-Performance Task Scheduling (HPS ), Performance Effective Task scheduling (PETS ),

Longest Dynamic Critical Path (LDCP) and Lookahead, respectively. All these schemes out-

perform HEFT with respect to makespan, albeit at the cost of higher time complexity. In

2014, Arabnejad et al. [5] proposed Predict Earliest Finish Time (PEFT ). The algorithm

is critically pivoted on a function called OCT () which is used to construct a matrix called

Optimistic Cost Table (OCT ), containing values corresponding to each task-processor pair.

This OCT matrix has two important functions: (1) Determination of a rank value for each

task based on which a sorted task list is generated during task prioritization phase. This

list governs the order in which the tasks are considered for processor assignment, and (2)

Determination of the most suitable processor for a task in terms of minimizing the overall

makespan of the schedule. PEFT outperforms HEFT, CPOP, HPS, PETS, LDCP, Looka-

head and others [54] over a majority of test cases while incurring quadratic time complexity

in terms of the number of tasks, similar to HEFT. Since then, PEFT has been popularly

used and referred by researchers in different domains such as Cloud Computing [25], Grid

Computing [42], and Embedded Systems [112]. Recently, the strategies PPTS [24] and

PSLS [112] have been proposed as enhancements over the PEFT algorithm. Authors in [3]

proposed PALG, an extension to the HEFT algorithm.

2.5.2 Monetary Cost Minimization Real-time Scheduling Policies

In recent years, monetary cost-aware scheduling schemes have been extensively studied

especially with service-oriented computing models like cloud computing. A comprehensive

survey of task graph scheduling schemes in a cloud environment may be found in [91]. The

authors in [50,93] studied the monetary cost-aware real-time task graph scheduling problem

for cloud computing platforms. In [93], two algorithms namely L-ACO and ProLis have

been proposed. While the first algorithm L-ACO is based on ant colony optimization,

the second scheme ProLis uses list scheduling. At each task node, ProLis estimates the

computational and communication workload for the remaining task graph and uses these
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estimates to distribute an application’s total available slack to individual task nodes by

assigning an appropriate sub-deadline to each of them. Each task is then mapped to the

cheapest Virtual Machine (VM) while taking care that its sub-deadline is not violated. If no

sub-deadline satisfying assignment is found, the task is allocated to the fastest available VM.

A noteworthy aspect of this algorithm is that, although it takes inter-VM data transmission

times into account, prices corresponding to data transmissions have been ignored. The

authors in [50] proposed an energy and monetary cost-aware scheduling scheme for real-time

applications. Similar to the previous scheme, this work also first distributes the application-

wide slack to individual task nodes so that a minimal monetary cost task-to-VM assignment

can be realized for all tasks while not violating the overall application deadline. The next

phase attempts to minimize energy consumption by trying to merge subsets of two or more

tasks into a single VM such that data transmission times are reduced and the deadline is

still satisfied.

2.5.3 Energy-aware Real-time Scheduling Strategies

A detailed survey on different energy-aware scheduling schemes for real-time systems may

be found in [7]. Weiser et al. in [90] first introduced an energy-saving strategy by using

fine-grain control of processor speed by an operating system scheduler. The primary idea

is to monitor processor idle time to reduce energy consumption by lowering clock speed

and idle time to a minimum. Subsequently, Yao et al. in [106] analyze offline and online

policies to schedule tasks with arrival times and deadlines on a uniprocessor system with

minimum energy consumption. These works have been extended further in [49,108] to min-

imize processor energy consumption while still satisfying the deadline for task execution.

The problem of minimizing energy consumption of a real-time application with precedence-

constrained non-preemptive tasks has been solved recently in a number of studies [47, 48].

However, these studies mostly focused on homogeneous multiprocessors with shared mem-

ory. The authors in [35,84,95,98,99] studied the problem of minimizing energy consumption

of real-time systems assuming a heterogeneous computation platform. However, these works

ignored inter-processor data communication costs. The authors in [99] proposed two algo-

rithms NDES and GDES. Given a heterogeneous platform with distinct task-to-processor

energy dissipation affinities, NDES solved the problem of energy-aware processor allocation

for each task within a stipulated deadline. GDES solved the same problem for a DVFS-
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enabled (Dynamic Voltage and Frequency Scaling) processor platform. In [95], the authors

have presented an algorithm called DECM which utilizes the slack available between the

finish time of the sink task and the deadline of a DAG, in order to minimize processor oper-

ating frequencies. Further, they extended DECM to a new policy called DUECM. DUECM

improves on DECM by utilizing the slack between adjacent tasks assigned onto the same

processor, while still meeting deadline of the DAG. Similarly, the work in [35] has also devel-

oped DVFS-enabled scheduling algorithms to perform energy optimization. The task graph

scheduling strategies in [84, 98] used a combination of both processor slowdown (DVFS)

and opportunistic processor low-powering (DPM; Dynamic Power Management) for overall

system energy minimization. In spite of the above efforts, there still exists a severe dearth

of research works which have attempted to address the problem of energy optimization

for precedence-constrained real-time task graphs in a heterogeneous and distributed setting

where inter-processor data communication costs cannot be ignored.

2.5.4 Scheduling Multiple Independent DAG Applications

A detailed survey on multiple independent task graph scheduling schemes for distributed

systems may be found in [31]. The authors in [111] proposed two policies to address the

problem of scheduling multiple independent DAGs on heterogeneous computing systems.

While the first policy attempts to minimize the overall schedule length, the second policy

aims at reducing unfairness in the slowdowns experienced by each individual DAG within

the given set of DAG. Hsu et al. in [32] extended the first policy and proposed an algorithm

called Online Workflow Management (OWM ), targeted towards dynamically arriving task

graph applications. Similarly, Arabnejad et al. in [4] extended the second policy in [111] and

presented an algorithm called Fairness Dynamic Workflow Scheduling (FDWS ) for the online

scheduling of dynamic task graphs. However, none of the above works are applicable to task

graphs having real-time constraints. Hu et al. in [33] presented an approach for scheduling

a set of periodic precedence-constrained real-time task graph applications on safety-critical

time-triggered systems. In this system, they assumed that task-to-processor allocations were

known beforehand. The objective is to generate a schedule which satisfies the deadlines of all

instances of every application. However, this work focuses only on meeting the deadlines of

all application instances and does not endeavor to optimize additional performance metrics

related to energy, cost, temperature, reliability, security, etc.
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2.5.5 Security-aware Real-time Scheduling Strategies

In the last two decades, researchers have made significant efforts towards developing security-

aware scheduling strategies using for both dynamic [101, 104, 105] as well as static [94, 102,

103] approaches. Authors in [101, 104, 105] proposed a family of dynamic security-aware

scheduling strategies for platforms ranging from uni-processor systems [105] and multi-core

homogeneous systems [101,104], to heterogeneous distributed systems [103,104]. While some

of these studies focus on independent tasks set [101,103–105], the others have dealt with ap-

plications modeled as precedence-constrained task graphs [104]. Xie et al. in [105] proposed

a real-time scheduling policy with security awareness for independent tasks on uni-processor

systems. In this, they proposed a security overhead model to estimate the computation time

overhead of commonly used security services such as confidentiality, integrity, and authen-

tication. Authors in [101] proposed a scheduling algorithm named SAREC for independent

tasks on multi-core homogeneous systems. The scheduler accepts a new dynamically arriv-

ing task only if its deadline and minimum security requirements can be guaranteed. Once

a task is accepted, SAREC attempts to strengthen its security strength while ensuring

that this operation does not lead to deadline violations of any task in the system including

the newly accepted task. Targeting independent task sets and heterogeneous platforms,

a scheduling strategy named SATS has been presented in [103]. The goal of SATS is to

decide a task allocation while satisfying security requirements such that average response

time is minimized. Authors in [104] proposed two dynamic security-aware soft real-time

resource allocation schemes called TAPADS and SHARP. TAPADS is designed for parallel

DAG-structured applications (where inter-task communication times are ignored) on ho-

mogeneous multi-processor systems, whereas SHARP is targeted for independent tasks on

heterogeneous systems. The objective of these two schemes is to maximize the quality of

security and the probability of meeting application deadlines.

The dynamic run-time scheduling schemes as mentioned above, usually achieve higher

average performance gains and are more flexible compared to static schemes (which perform

scheduling at design time). These relatively superior capabilities associated with dynamic

strategies are achieved through the use of additional run-time information such as actual

execution times of recently completed tasks, instantaneously available channel bandwidths,

actual energy dissipation etc [72]. However, these superior capabilities are achieved at the

cost of reduced predictability (in terms of reasonably accurate bounds on minimum perfor-
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mance guarantees) which static schemes are able to deliver. For safety-critical hard real-time

cyber-physical systems (as is the focus of this thesis), predictability in terms of security guar-

antees as well as performance and timeliness, is usually deemed to be more important than

performance [69]. Hence, for safety-critical RT-CPSs such as automotive/avionic systems,

static scheduling is often the desired choice [73].

Xie and Qin in [102] proposed a static scheduling strategy SASES for independent pe-

riodic tasks on uni-processor systems, which accounts for both timing and security require-

ments. Given the risk probabilities associated with the execution of tasks on a set of available

processors, Tang et al. in [94] proposed a security-driven static list scheduling strategy for

performance-sensitive non real-time DAG-structured applications. The strategy attempts

to minimize schedule length while ensuring that the overall risk probability related to the

execution of tasks in the DAG remains within a stipulated bound. From the above discus-

sion, it may be highlighted that there exists a severe dearth of security-aware static real-time

DAG scheduling algorithms.

2.5.6 Temperature-aware Scheduling Strategies

The introduction of sub-micron VLSI advancements have led to highly dense multi-million

gates per chip, where power dissipation rates and thermal management have become critical

design issues [82]. Unconfined temperature surges may increase cooling costs and decline

system performance and life expectancy. Therefore, the processor’s temperature manage-

ment has become a topic of great concern for researchers and practitioners over the past few

years. A survey of a few important temperature-aware scheduling techniques for multi-core

processing systems may be found in [78]. Huang et al. in [34] proposed two throughput man-

agement policies for uni-processor systems with given temperature limits. The first policy

shuffles the processor between sleep and active states to meet the goal. The second policy

recommends a scheduling technique considering the task’s thermal characteristics and the

processor’s sleep/active levels. Bampis et al. in [8] presented the makespan minimization

problem under a given temperature bound. They studied the temperature-aware scheduling

problem for systems consisting of unit-length independent tasks and homogeneous proces-

sors with known thermal characteristics. Authors in [10] addressed a thermal-aware global

multiprocessor scheduling algorithm to increase the number of finished tasks. They also

examine the competitive ratios of a large class of scheduling techniques as a function of the
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processors’ cooling factors. In [113], Zhou et al. presented a heuristic strategy for scheduling

independent tasks with reliability and temperature constraints on heterogeneous platforms

to minimize schedule length. A few recent scheduling techniques on this topic which target

independent tasks on homogeneous and heterogeneous systems may be found in [57,64] and

[52,75], respectively.

Research works on the temperature-aware scheduling of precedence-constrained task

graphs are relatively fewer. Sheikh et al. in [76] proposed a temperature-aware scheduling

algorithm to minimize the makespan of DAG-structured applications. In [77], the same

authors also proposed a DAG scheduling technique for simultaneously optimizing makespan,

energy and temperature. However, these works are focused towards homogeneous multi-

cores.

2.6 Summary

This chapter started with a brief overview of the basic terms and definitions of real-time

systems, followed by a literature survey of various scheduling algorithms for real-time sys-

tems. These concepts and definitions will be either referred or reproduced appropriately

later in this thesis, to enhance readability. In the next chapter, we present an efficient

real-time DAG-scheduling framework that attempts to minimize a generic penalty function.

The designed penalty function can be amicably adapted towards its deployment in various

application domains such as real-time cyber-physical systems.

;;=8=<<
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Chapter 3
PRESTO: A Penalty-aware Real-time
Scheduler for Task Graphs on Heterogeneous
Platform

3.1 Introduction

In the last chapter, we discussed various scheduling algorithms for real-time systems with the

consideration of different design parameters. Most real-time scheduling algorithms typically

attempt to optimize performance of the system with respect to a set of one or more chosen

resource parameters while satisfying deadline constraints. Resource optimization objectives

related to many commonly used parameters like energy, monetary cost, reliability, tempera-

ture, power, etc. can many-a-times be defined as functions of the specific task-to-processor

and message-to-communication channel mappings, associated with a given schedule. Thus,

for a given task or message we could say that a task (message) consumes lower energy

or monetary cost on a processor (communication channel) compared to another. Inspired

through these observations, we felt the usefulness of the design of real-time scheduling

strategies which attempt to optimize generic objective functions of the above nature, be-

cause such objective functions can generally be adapted to model many common real-world

resource parameters like energy, monetary cost, security, etc., with moderate effort. In this

chapter, we propose an efficient scheduling framework for executing a real-time task graph

on a distributed platform consisting of a set of fully connected heterogeneous processors.

The objective of the scheduling framework is to minimize a generic penalty function which
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can be amicably adapted towards its deployment in various application domains such as

real-time embedded systems, cloud/fog computing, industrial automation and IoTs, smart

grids, automotive and avionic systems, etc.

The main contributions of this work are summarized as follows:

1. We have first encoded the problem as a constraint satisfaction problem and then devel-

oped an efficient list-based heuristic scheduling algorithm called Penalty-aware REal-

time Scheduler for Task graphs on heterOgeneous platforms (PRESTO), to generate

a minimal penalty deadline-meeting static schedule. The proposed static heuristic

solution PRESTO is scalable to large real-world scenarios. Theoretical analysis re-

veals that PRESTO incurs comparatively low, polynomial time scheduling overheads.

This analysis has been supported through experimental evaluations which show that

PRESTO consumes less than 25 ms of execution time for benchmark task graphs with

up to 250 task nodes on platforms consisting of 32 heterogeneous processors.

2. Experiments have been conducted using real-world benchmark task graphs namely,

Gaussian elimination and Epigenomics. Results show that the proposed algorithm

works equally efficiently for both benchmarks, over diverse variations in different

parameters such as number of tasks, Communication-to-Computation Ratio (CCR),

number of processors and degree of heterogeneity.

3. The practical applicability of PRESTO in diverse scenarios has further been exhibited

by using the scheme in two different real-world case studies. In the first case study,

PRESTO has been used to schedule and map an (automotive) adaptive cruise control

application such that energy consumption is minimized. In the second case study,

PRESTO has been used to minimize the total monetary cost involved in the execution

of an intelligent surveillance application running in a fog environment.

4. PRESTO has been designed to converge to a penalty oblivious makespan minimizing

scheduling strategy called Minimum Makespan Scheduler for Heterogeneous platforms

(MMSH ) in worst-case scenarios when deadline satisfaction becomes more impor-

tant than the incurred penalty. Experimental evaluation and comparison has shown

that MMSH is able to outperform state-of-the-art algorithms HEFT [85], PEFT [5],

PPTS [24], PSLS [112] and PALG [3], in terms of makespan.
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5. In addition to the simulation-based experiments, a simple proof-of-concept implemen-

tation of the proposed work has been conducted on a real platform consisting of two

heterogeneous processors ATmega328p (Arduino Uno) and ATmega2560 (Arduino

Mega) inter-connected through their serial ports.

This chapter is organized as follows. In the next section, we present the system model

and problem statement, while Section 3.3 describes the problem formulation. In Section 3.4,

we present the proposed scheduling policy. Section 3.5 provides the experimental results.

Section 3.6 presents a prototype real-platform implementation. The generic applicability

of our proposed methodology is illustrated using two real-world case studies in Section 3.7.

Finally, we conclude in Section 3.8.

3.2 System Model

The system under consideration consists of a real-time application having a deadline D,

modeled as a Precedence-constrained Task Graph (PTG), to be scheduled on a platform

consisting of a set of fully connected heterogeneous processors. Fig. 3.1a depicts an example

PTG represented as a DAG G(V,E), where the set of vertices V = {τ1, τ2, . . . , τ|V |} rep-

resents task nodes and the set of edges E represents precedence constraints between task

pairs. Edge ei,j is labeled with a positive weight datai,j (e.g., data1,4 = 7) representing the

size of this output.

The platform P = {p1, p2, . . . , p|P |} consists of |P | heterogeneous processors. The proces-
sors are fully interconnected through a set of (|P |×(|P |−1)/2) bidirectional communication

links having heterogeneous (potentially distinct) bandwidths (refer Fig. 3.1b). A matrix B

of size |P | × |P | is used to capture the bandwidths between all pairs of processors. An

element bm,n of B denotes the data transfer rate between processors pm and pn. Obviously,

as the links are bidirectional, bm,n = bn,m (e.g., b2,3 = b3,2 = 3). The processors being het-

erogeneous, each task may have possibly distinct Worst Case Execution Times (WCETs)

on the different processors. The WCETs of the tasks on different processors is stored in

a matrix W of size |V | × |P |, as shown in Fig. 3.1c. An element ωj,n ∈ W denotes the

WCET of task τj on processor pn (e.g., ω5,2 = 19). Given datai,j and bm,n, the data trans-

mission/communication time (cm,n
i,j ) between task pairs τi (executing on processor pm) and

τj (executing on pn; τj ∈ succ(τi)) may be calculated as:
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Tasks p1 p2 p3

τ1 16 16 23

τ2 14 9 12

τ3 20 43 17

τ4 18 23 5

τ5 8 19 27

τ6 17 24 19

τ7 15 24 31

τ8 12 35 26

τ9 29 34 10

τ10 21 16 22

(c) Matrix W (|V | × |Q|)

Figure 3.1: (a) A sample DAG with 10 tasks; (b) A heterogeneous platform with 3 processors;
(c) Execution time of each task on each processor.

cm,n
i,j =

{
0, if m = n

datai,j/bm,n, otherwise
(3.1)

Equation 3.1 reveals that data transmission overhead is assumed to be negligible (i.e., cm,n
i,j =

0) when τi and τj are mapped on to the same processor.

In this work, we assume that the execution of tasks on processors and data transmis-

sions over communication links are associated with penalties which are levied by the system

on completion of a task execution or data transmission. As both processors and commu-

nication links are heterogeneous, the penalization rates associated with the different pro-

cessors/communication links are also heterogeneous. A vector ρe = {ρe1, ρe2, . . . , ρe|P |} is
used to represent the penalization rates associated with task executions on different pro-

cessors and a matrix ρc = {ρc1,1, . . . , ρc1,|P |, . . . , ρc|P |,1, . . . , ρc|P |,|P |} is used to represent the

penalization rates associated with data transmissions over different communication links.

The exact values of the penalization rates will vary depending on the actual parameters

that these penalization rates measure in a real-life problem setting to which the proposed

solution procedure is applied. For example, in a service-oriented computing environment

such as fog computing, penalties may relate to the actual monetary expenditure incurred

in, (i) transmitting the data and/or code associated with a task onto a particular fog node,
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and (ii) executing the task on that node. Similarly, in a problem setting such as execution

of real-time tasks in a heterogeneous multiprocessor environment, penalties may be equated

to distinct energy dissipation overheads associated with the transmission and execution of

tasks on different processors.

In the example system depicted in Fig 3.1, we assume the application deadline to be

110. The penalty per unit processing time spent on the processors p1, p2, and p3 are 0.54,

0.35, and 0.25 respectively, while the penalty for each unit of data transfer through the

communication links l1,2, l1,3, and l2,3 are 0.48, 0.38, and 0.14, respectively. For simplicity,

we have ignored the units of all the parameters.

Based on the above system model, we define our problem statement as follows:

Problem Statement: Given a real-time application graph G and a fully connected

heterogeneous distributed processing platform P, determine a feasible static schedule which

minimizes aggregate penalty while satisfying resource, deadline and dependency constraints.

3.3 Constraint Satisfaction Problem Formulation

In order to present a formal model of the problem and its objective, we have formulated it as

a constraint optimization problem. First, let us consider a set of binary decision variables:

x = {xj,n,t : j = 1, 2, . . . , |V |;n = 1, 2, . . . , |P |; t = 0, 1, . . . , D}. xj,n,t = 1 denotes that

task τj is allocated for execution on processor pn starting from the tth time step; xj,n,t = 0,

otherwise. We now present the objective function and the required constraints on the binary

variables to model the scheduling problem.

Objective Function: Our objective is to minimize the overall scheduling penalty as-

sociated with the execution of tasks and data communication, by selecting appropriate

task-processor mappings and execution start times. The objective function can be written

as:

min

|V |∑
j=1

|P |∑
n=1

D∑
t=0

[
xj,n,t × ωj,n × ρen +

∑
i∈pred(j)

|P |∑
m=1

t−1∑
t′=0

xj,n,t × xi,m,t′ × cm,n
i,j × ρcm,n

]
(3.2)

It may be noted that, if both tasks τi and τj are mapped to the same processor then the

communication time is assumed to incur negligible overhead, i.e., m = n|cm,n
i,j = 0.

Next, we present the constraints in equations 3.3 - 3.6.
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Unique Start Time Constraints: The start time of each task should be unique; that

is,

∀j ∈ [1, |V |],
|P |∑
n=1

D∑
t=0

xj,n,t = 1 (3.3)

The above constraint indicates that each task τj must start its execution at a unique time

step t on a distinct processor pn.

Dependency Constraints: The dependency constraints enforce satisfaction of the

precedence relationships among task nodes of a task graph. That is, the start time of a

task τj must be greater or equal to the latest time of arrival of an output from one of

the predecessors of τj. For any given predecessor say τi, this arrival time is given by the

summation of the finish time of τi and the communication time from τi to τj.

∀(τi, τj) ∈ E,

|P |∑
n=1

D∑
t=0

t × xj,n,t ⩾
|P |∑
n=1

D∑
t=0

|P |∑
m=1

D∑
t′=0

xi,m,t′ × xj,n,t(t
′ + ωi,m + cm,n

i,j ) (3.4)

Resource Constraints: Processor usage bounds must be satisfied at each time step.

Any processor pn can execute at most one task at a given time. In this regard, it may be

noted that a task τj can only be executing on processor pn at time t, if it has started at

most t− ωj,n + 1 time steps earlier. Thus, the expression
∑t

l=t−ωj,n+1 xj,n,l assumes a value

of ‘1’ when τj starts on pn between time steps [t− ωj,n +1, t]. This constraint can therefore

be written as:

∀n ∈ [1, |P |],∀t ∈ [0, D],

|V |∑
j=1

t∑
l=t−ωj,n+1

xj,n,l ⩽ 1 (3.5)

Deadline Constraint: The deadline constraint enforces the exit task node τexit to

complete execution on or before the application deadline D.

|P |∑
n=1

D∑
t=0

xexit,n,t(t+ ωexit,n) ⩽ D (3.6)

The scheduling problem encoded as above amicably lends itself towards its computation

using standard optimization tools like CPLEX [1]. However, the existence of a large number

of decision variables and constraints makes the problem computationally highly complex.

Hence, solution techniques using standard optimizers often take huge amounts of time and

space even for moderate problem sizes with respect to number of tasks, heterogeneous

processors, latency bounds, nature of inter-task dependencies, etc.
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We reiterate here that the principal motivation towards encoding of the problem as

above is the clarity it lends in understanding and appreciating the structure of the scheduling

problem at hand. Such an understanding proves immensely useful in the design and analysis

of efficient lower overhead heuristic strategies for the problem. We now present PRESTO,

an efficient list-based greedy heuristic algorithm for the problem discussed above.

3.4 PRESTO: The Proposed Scheduler

The proposed algorithm PRESTO takes a task graph G(V,E), application deadline D, and

a target platform P as inputs. The objective is to map all tasks to appropriate processors

in the heterogeneous platform such that the overall penalty in executing the task graph is

minimized while ensuring that the sink node (and thereby, all other task nodes) completes

execution before deadline D. PRESTO is an efficient list-based heuristic scheduling algo-

rithm and consists of two phases namely, initialization phase and allocation phase. We now

provide an overview of these two phases before discussing the detailed algorithm.

3.4.1 Initialization Phase

The initialization phase computes three different parameters which are used in the sub-

sequent allocation phase namely, (1) Optimistic Finish Time OFT [τj, pn], 1 ≤ j ≤ |V |;
1 ≤ n ≤ |P |, for each task-processor pair, (2) A Rank value Rank[τj] for each task τj, which

is employed to construct a priority order among tasks. In the allocation phase, this priority

list of tasks is used to determine the actual order in which tasks are considered for pro-

cessor allocation and scheduling, and (3) Minimum Estimated Penalty value MEP [τj, pn],

1 ≤ j ≤ |V |; 1 ≤ n ≤ |P |, for each task-processor pair. The OFTs of all task-processor

pairs and the Ranks of all tasks are determined through a function OFT Rank() (refer

Algorithm 1).

OFT[τj , pn ]: Optimistic Finish Times for different task-processor pairs are represented

as a table where rows indicate tasks and columns indicate processors as shown in Table 3.1,

for the example system presented in Fig. 3.1. OFT [τj, pn] essentially provides an estimate

of the total time required to complete execution of the current task τj on processor pn,

along with execution of the remaining yet to be allocated task nodes. It may be observed

from steps 5 and 6 of Algorithm 1 that OFT [τexit, pn] = ωexit,n, for the exit task. For all

other tasks, OFT [τj, pn] is computed in a two-level process as depicted in step 8. At the
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first level, given a successor task τk (of τj) and a certain processor pr (say), an estimate of

the total processing time from the start of the execution of τj on pn to the completion of

the exit task τexit, is determined. This is a recursive step and the value is obtained as the

summation of: (i) the Optimistic Finish Time (OFT [τk, pr]) corresponding to the execution

of the successor τk on processor pr, (ii) the execution time (ωj,n) of τj on processor pn, and

(iii) communication time (cn,rj,k ) required to transmit the output of τj to τk. At the second

level, OFT [τj, pn] is obtained as the maximum over the minimum estimated processing

times, considering the execution of τj and all its successor tasks as step 8 reveals. The

value of OFT [τj, pn] obtained through this process is potentially subject to further scaling

depending on the value of Rank[τj] and the values of the Ranks of the successors of τj, as

discussed below.

Algorithm 1: OFT Rank(G,P )

Input: Task graph G(V,E), processor set P
Output: Determines Optimistic Finish Time for all task-processor pairs and Rank of all

tasks
1 Construct a queue openQ; Initialize openQ = {τexit};
2 while openQ ̸= empty do
3 Dequeue a task τj from openQ;
4 for each processor pn in P do
5 if τj = τexit then
6 OFT [τj , pn] = ωj,n;

7 else

8 OFT [τj , pn] = max
τk∈succ(τj)

[
min
pr∈P
{OFT [τk, pr] + ωj,n + cn,rj,k }

]
;

9 Rank[τj ] =
∑|P |

n=1OFT [τj , pn]/|P |;
10 maxSuccRank = max

τk∈succ(τj)
Rank[τk];

11 if Rank[τj ] ⩽ maxSuccRank then
12 for each processor pn in P do

13 OFT [τj , pn] = OFT [τj , pn]× maxSuccRank+δ
Rank[τj ]

;

14 Rank[τj ] = maxSuccRank + δ;

15 Enqueue all immediate predecessors of τj in openQ;

16 return [OFT , Rank];

Rank[τj]: Processor allocation of tasks occur in non-increasing order of Rank values.

This is intended to serve two important objectives, the first of which is mandatory while
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the second is desirable. Objective 1: Ensuring that all ancestors of a given task are always

considered for processor allocation before the task itself, so that precedence constraints

associated with the task graph are never violated. Objective 2: Tasks having relatively

higher total estimated workloads corresponding to the remaining (still to be allocated)

tasks in the task graph should be considered earlier for processor allocation. Given the

OFT values of a task τj on each processor, its average is considered as the Rank (Rank[τj])

of τj (step 9 of Algorithm 1). This scheme naturally takes care of objective 2 as OFT

values represent remaining estimated workloads, as discussed above. However sometimes,

the initially calculated Rank (Rank[τj]; calculated in step 9) of a task τj may possibly be

smaller than the maximum of the Ranks of τ ′js successors. In this case, schedule generation

in the non-increasing order of Ranks will result in violation of objective 1.

In order to rectify this situation, the initially calculated OFT values of τj are appropri-

ately scaled (as shown in steps 12 and 13) so that the resulting Rank value of τj becomes

equal to max
τk∈succ(τj)

Rank[τk] + δ, where δ is a small constant (in our work we have assumed

δ = 0.01) and succ(τj) denotes the set of all immediate successors of task τj. After obtain-

ing the Rank values, a priority list taskList = {τs1, τs2, . . . , τs|V |} of tasks is generated such

that: Rank[τs1] ≥ Rank[τs2] ≥ · · · ≥ Rank[τs|V |]. Table 3.1 lists the Rank values for the

ten tasks of the example system depicted in Fig. 3.1.

Table 3.1: OFT, Rank, and MEP values corresponding to the example system depicted in Fig. 3.1

Tasks
OFT

Rank
MEP

p1 p2 p3 p1 p2 p3
τ1 72 86.3 86.5 81.61 19.22 15.18 15
τ2 53 60 55.5 56.17 18.22 11.8 11
τ3 56 83 65.3 68.11 28.8 29.05 17.5
τ4 60 74 52 62 21.52 16.98 9.25
τ5 45 54.3 59 52.78 14.22 15.12 14.75
τ6 50 68 57.5 58.5 23.27 20.91 16.75
τ7 36 40 53 43 18.73 14 13.25
τ8 33 51 47 43.67 14.83 17.85 12
τ9 50 50 32 44 24.77 17.5 8
τ10 21 16 22 19.67 11.34 5.6 5.5

MEP[τj , pn ]: As the name suggests, Minimum Estimated Penalty MEP [τj, pn] provides

an estimate of the minimum penalty considering all tasks on every available processor over

all paths, starting from the execution of τj on pn to the completion of τexit. The MEP value
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of τj on processor pn is determined through a recursive definition by traversing the graph

backward from τexit to τj, as depicted in equation 3.7.

MEP [τj , pn] =


ωexit,n × ρen, if τj = τexit

min
τk∈succ(τj)

[
min
pr∈P
{MEP [τk, pr] + ωj,n × ρen + cn,rj,k × ρcn,r}

]
, otherwise

(3.7)

It may be noted that the data transmission penalty vanishes (ρcn,r = 0) when τj and its

successor τk are executed on the same processor (i.e., pn = pr). The MEP [τj, pn] values for

different task-processor pairs of the example system in Fig. 3.1, is represented in Table 3.1.

3.4.2 Allocation Phase

The objective of the allocation phase is to generate a real-time static schedule obtained by

sequentially determining: (i) a processor allocation aloc[τj], and (ii) an actual start time

AST [τj] for each task τj, in the order prescribed by priority list taskList, such that overall

penalty is minimized. In our system, a generated schedule is referred to as valid, if the exit

task τexit finishes its execution on or before the stipulated deadline D (that is, makespan ≤
D). The allocation phase is essentially an iterative process which continues either until a

valid schedule is successfully generated in a certain iteration, or finally exits with a minimal

makespan invalid schedule. Each new iteration uses knowledge of the actual makespan

obtained for the invalid schedule generated in the previous iteration and calculates the

Deadline Overshoot (DO) suffered, as:

DO = makespan−D (3.8)

At a given iteration, tasks in taskList are allocated sequentially in order. The task (say, τj)

to be scheduled next, maybe potentially allocated to any processor pn on the heterogeneous

platform. However, selection of the actual processor is made by judiciously considering

the following two parameters, for each such possible allocation: (i) MEP [τj, pn]: Minimum

Estimated Penalty of τj on a potential processor pn (refer equation 3.7), and (ii) ESL[τj, pn]:

Estimated Schedule Laxity of τj on pn. ESL[τj, pn] is a throttled estimate of the spare time

that should remain before deadline D and after completion of the sink node τexit, for the

case when all tasks in taskList before τj, have already been scheduled and τj is restricted to

execute on pn. Hence, ESL[τj, pn] is calculated as the throttled difference between deadline

D and the current estimate of the makespan considering τj on pn, as follows:

ESL[τj , pn] = D − (EST [τj , pn] +OFT [τj , pn])× TF−1 (3.9)
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where EST [τj, pn] denotes the Effective Start Time of τj on pn and TF is the Throttling

Factor (0 < TF ≤ 1). The exact mechanism for determining EST [τj, pn] is discussed later;

refer equation 3.12). The value of TF is initialised to 1, and is decremented after each

unsuccessful iteration in proportion to the deadline overshoot (DO) corresponding to that

iteration:

TF =

{
TF − ϵ, if ⌈DO

D × 100⌉ = 1

TF − ϵ× log2⌈DO
D × 100⌉, otherwise

(3.10)

where ϵ is a constant and set to 0.01 as a default value in our experiments (for more detail,

refer to Experiment 3).

Among available allocation options, a task τj is first considered for allotment within

that subset of processors say, PS = {ps1, ps2, . . . , psr}, (1 ≤ r ≤ |P |) for which ESL[τj, pn]

is non-negative. It may be noted that, as the number of iterations grow and the value of

ESL gets increasingly throttled, the number of processors which remain eligible towards

inclusion in PS, reduces progressively. Now, τj is actually allocated to that processor psi

in PS for which MEP [τj, psi] is minimal. Hence, higher the iteration number larger is the

penalty associated with the schedule generated in that iteration. However, if ESL[τj, pn] is

negative for all available processors (that is, PS = NULL), τj is allocated on that processor

for which ESL[τj, pn] is minimally negative. Therefore, the processor finally allocated to

task τj may be represented as:

aloc[τj ] =


pn|MEP [τj , pn] = min

pλ∈PS

MEP [τj , pλ], if PS ̸= ϕ

pn|ESL[τj , pn] = max
pλ∈P

ESL[τj , pλ], if PS = ϕ
(3.11)

MMSH Algorithm: It may be noted that theminimum makespan schedule is naturally

produced in a situation where the processor set PS = NULL for all tasks in a given iteration.

In such a scenario, the PRESTO algorithm terminates with this minimum makespan sched-

ule. Further, it may be also observed that a non-real time minimum makespan scheduler

similar to PEFT [5] can be easily derived from PRESTO as follows. In the initialization

phase, we compute the OFT and Rank values and also generate the prioritized task list

taskList. The allocation phase runs for a single iteration in which each task τj is assigned

to that processor pn for which the expression EST [τj, pn] + OFT [τj, pn] is minimal. We

refer to this algorithm as the Minimum Makespan Scheduler for Heterogeneous Platforms

(MMSH).

Effective Start Time: The calculation of EST [τj, pn] is based on the assumption
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that the following information is already known: (i) aloc[τi], the processor allocated to

each predecessor task τi of task τj (aloc[τi] = pm, say), (ii) the actual finish time of each

predecessor task τi (AFT [τi]) on its allocated processor pm, and (iii) the earliest time at

which a particular processor (say, pn) becomes available for execution (avail[n]). The three

assumptions mentioned above are valid since task-to-processor allocations are conducted

strictly based on Rank prescribed by the priority order in taskList. EST [τj, pn] is defined

as:

EST [τj , pn] =

0, if τj = τentry

max{avail[n], max
τi∈pred(τj)

(AFT [τi] + cm,n
i,j )}, otherwise

(3.12)

where cm,n
i,j is the time required to transmit the output of τi (executing on pm) to τj (on pn)

as defined in equation 3.1. Actual start time of task τj on processor aloc[τj] is given by:

AST [τj ] = EST [τj , aloc[τj ]] (3.13)

Given the value of AST [τj], AFT [τj] is obtained as:

AFT [τj ] = AST [τj ] + ωτj ,aloc[τj ] (3.14)

The allocation of tasks to processors is known from equation 3.11. Additionally, equation

3.13 provides the actual start times of the tasks. The total penalty (ρpresto) can be computed

by appropriately rewriting the objective function in equation 3.2 as depicted in the equation

below:

ρpresto =

|V |∑
j=1

{
ωj,aloc[τj ] × ρealoc[τj ] +

∑
τi∈pred(τj)

c
aloc[τi],aloc[τj ]
i,j × ρcaloc[τi],aloc[τj ]

}
(3.15)

3.4.3 PRESTO Algorithm

Pseudocode of the Penalty-aware REal-time Scheduler for Task graphs on heterOgeneous

platforms (PRESTO), is presented in Algorithm 2. Steps 1, 2 and 3 correspond to the

initialization phase of PRESTO. As discussed in Section 3.4.1, these steps calculate OFT ,

MEP and Rank values; additionally, the tasks are stored in list taskList in non-increasing

order of their Ranks. The remaining steps correspond to the allocation phase. The while loop

in steps 5-7 iterates either until a minimal-penalty deadline meeting (valid) schedule is suc-

cessfully produced by function scheduleTasks() in step 6 of algorithm 2, or terminates with
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Algorithm 2: PRESTO (G,D, P )

Input: Task graph G(V,E), deadline D and processor set P
Output: A valid schedule, which minimizes penalty

1 [OFT,Rank] = OFT Rank(G,P );
2 Compute MEP values using equation 3.7;
3 Sort tasks in non-increasing order of Rank; store in taskList;
4 validSched = false,minLenSched = false, TF = 1;
5 while validSched = false and minLenSched = false do
6 [validSched,minLenSched, ρpresto]= scheduleTasks(G,P,MEP,D, taskList);
7 Update TF using equation 3.10;

8 if validSched = false then
9 Output: Invalid schedule having min. makespan;

10 else
11 Output: Valid schedule having penalty = ρpresto;

Algorithm 3: scheduleTasks (G,P,MEP,D, taskList)

Input: G(V,E), P , MEP , D, taskList
Output: A valid schedule having minimal penalty or an invalid schedule having minimal

makespan
1 minLenSched = true;
2 for each task in taskList do
3 Extract the first task (say, τj) from taskList;
4 for each processor pn in P do
5 Compute ESL[τj , pn] using equation 3.9;
6 PS = Set of processors for which ESL[τj , pn] ⩾ 0;

7 if PS ̸= ϕ then
8 Assign τj on the processor pn ∈ PS for which MEP [τj , pn] is minimal (refer

equation 3.11);
9 minLenSched = false;

10 else
11 Assign τj on processor pn ∈ P for which ESL[τj , pn] is minimally negative (refer

equation 3.11);

12 if AFT [τexit] ⩽ D then
13 Compute ρpresto using equation 3.15;
14 return [true,minLenSched, ρpresto];

15 return [false,minLenSched, ϕ];
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the minimum makespan deadline violating (invalid) schedule, after atmost 100 unsuccessful

iterations. This upper-bound of 100 on the number of iterations may be derived from equa-

tion 3.10. Production of a valid schedule at any given iteration of the while loop is indicated

by the truth of the flag validSched. On the other hand, truth of the flag minLenSched

indicates generation of the penalty-oblivious minimum makespan MMSH schedule.

The scheduleTasks() function presented in Algorithm 3, allocates an appropriate proces-

sor to each task in taskList considering both timing and penalty constraints as discussed

in Section 3.4.2.

p1

p2

p3

0 10 20 30 40 50 60 70 80 90 100 110

τ1 τ3 τ4 τ2 τ9 τ10

τ6 τ7

τ5 τ8

Figure 3.2: Gantt chart of the schedule generated by PRESTO for the PTG in Fig. 3.1a:
makespan = 110, penalty = 74.03.
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Figure 3.3: Gantt charts depicting the schedules: (a) MMSH (makespan = 101); (b) PEFT
(makespan = 108); (c) HEFT (makespan = 110), for the PTG in Fig. 3.1a.

Example Continued: As mentioned above in Section 3.4.1, Table 3.1 lists the OFT,

MEP and Rank values corresponding to the example system shown in Fig. 3.1. The priority

list of tasks is obtained as: taskList = ⟨τ1, τ3, τ4, τ6, τ2, τ5, τ9, τ8, τ7, τ10⟩. The allocation

phase for this example continues for 8 iterations and finally generates a valid schedule with
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makespan 110 and penalty 74.03 as depicted in Fig. 3.2.

Using the same example system, we have also compared the MMSH, PEFT and HEFT

algorithms by presenting Gantt charts for the schedules generated by them in Fig. 3.3. It

may be observed that for this example, MMSH delivers the least makespan 101, while PEFT

and HEFT produces schedules with makespans 108 and 110, respectively.

3.4.4 Complexity Analysis

The complexity of the PRESTO algorithm is composed of the complexities of its two con-

stituent phases, namely the initialization and allocation phases. While steps 1-4 of the

main function PRESTO() (refer Algorithm 2) comprises the initialization phase, steps 5-11

comprise the allocation phase. In the initialization phase, the computation of OFT and

MEP considers each edge of the task graph exactly once and iterates over |P | proces-
sors to find the minimum value. Hence, the overall complexity of generating the OFT

and MEP tables require O(|P |(|V | + |E|)) time (steps 1 and 2). As the overhead of

generating the Rank value for a single task is O(|P |) (refer step 1), the total overhead

of determining the Ranks for all tasks becomes O(|V | × |P |). The sorting operation in

step 3 runs in O(|V | log |V |) time. Therefore, the complexity of the initialization phase is

O(|P |(|V |+ |E|)+ |V |× |P |+ |V | log |V |). Assuming |E| to be larger than |V |, O(|V |log|V |)
may be considered to be proportional to O(|P |×|E|) for even considerably large task graphs

(containing upto a few 100 nodes). Hence, the overall complexity of the initialization phase

may be expressed as O(|E| × |P |).
In the allocation phase, the scheduleTasks() function is called in a while loop (steps 5-7).

The complexity of scheduleTasks() is primarily governed by the computational overhead

of calculating ESL[τj, pn] (refer equation 3.9; in step 5 of scheduleTasks()) for all task-

processor pairs within the nested for loops (outer loop: steps 2-11; inner loop: steps 4-6).

The complexity of computing ESL[τj, pn] in turn, is primarily dependent on the overhead

of determining EST [τj, pn], as the other terms required in its calculation are either known

or constant. It may be observed that calculation of EST for any given task-processor pair

requires constant time calculations over all predecessors of the task and hence, incurs an

overhead of O(#predecessors). However, the total number of predecessors over all tasks is

same as the total number of edges in the task graph. Therefore, the amortized complexity

for calculating EST [τj, pn] (and also ESL[τj, pn]) becomes O(|P |(|V |+ |E|)/(|P | × |V |)) =

49



3. PRESTO: A PENALTY-AWARE REAL-TIME SCHEDULER FOR TASK
GRAPHS ON HETEROGENEOUS PLATFORM

O((|V | + |E|)/|V |) = O(|E|/|V |). Given this complexity, the total overhead incurred in

calculating ESL[τj, pn] for all task-processor pairs become O(|E|/|V |×|P |×|V |) = O(|E|×
|P |). Thus, in the main function PRESTO(), the overhead corresponding to a single call to

the scheduleTasks() function is O(|E| × |P |).
Observing equations 3.9, 3.10 and function scheduleTasks(), it may be inferred that

scheduleTasks() can return false for both flags validSched and minLenSched, at most

100 times. Hence, the number of iterations of the while loop (in steps 5-7 of PRESTO())

is upper bounded by 100. However in practice, PRESTO is able to restrict the number

of iterations to a small value (typically, < 8; this observation is also validated through

our experimental results (refer Fig. 3.6)). The above phenomena may be attributed to

two reasons: (i) PRESTO delivers a valid schedule (making validSched = true) within a

few iterations in most cases, and (ii) the expression: ⌈DO
D
× 100⌉ is often greater than 1,

making the throttling factor (TF ) decrease at a significantly faster rate than 0.01/iteration

(refer equation 3.10). The remaining steps of PRESTO() take O(1) time. Hence, the

overall complexity of PRESTO() comprising overheads related to both its initialization and

allocation phases, may be expressed as O(|E| × |P |).
The Algorithm MMSH, being very similar to PRESTO in its structure, incurs an over-

head of O(|E| × |P |).

3.5 Experiments and Results

In this section, we have experimentally evaluated the performance of the proposed algo-

rithms PRESTO and MMSH (a non-real-time makespan minimization algorithm obtained

as a spin-off from PRESTO ; refer Section 3.4.2) through an extensive set of simulation-based

experiments, in two phases. Experiments 1-2 comprise the first phase. Here, the perfor-

mance of MMSH has been compared against the well known state-of-the-art makespan

reduction algorithms HEFT [85], PEFT [5], PPTS [24], PSLS [112] and PALG [3]. Ex-

periments 3-5 comprise the second phase. Here, we measure the performance of PRESTO

against variations in different input parameters and also provide comparative results with

four slightly restricted implementations of PRESTO. In the next subsections, we explain the

experimental setup and the performance metrics before presenting the detailed experimental

results.
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3.5.1 Experimental Setup

The experiments have been conducted using two real-world DAG-based parallel applications

namely, Gaussian Elimination [85] and Epigenomics [39]. While Epigenomics is highly CPU-

intensive, Gaussian Elimination is relatively more I/O-intensive.

Gaussian Elimination is an algorithm for solving systems of linear equations and its

task graph representation is influenced by the size of the matrix (ν) corresponding to a given

set of equations. The total number of task nodes and edges in a Gaussian Elimination graph

is equal to ((ν2 + ν − 2)/2) and (ν2 − ν − 1), respectively. As example, for the Gaussian

Elimination task graph shown in Fig. 3.4a, matrix size ν = 5 and therefore, the graph has

14 task nodes and 19 edges.

Epigenomics is a data processing pipeline that represents the execution of various

genome sequencing operations. The size of an Epigenomics task graph is influenced by

the number of parallel branches (ϑ). The total number of task nodes and edges in an

Epigenomics task graph is equal to (4ϑ+ 4) and (5ϑ+ 2), respectively. As an example, for

the Epigenomics task graph shown in Fig. 3.4b, the number of parallel branches ϑ = 4 and

therefore, the graph has 20 task nodes and 22 edges.
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Figure 3.4: Benchmark DAGs.

Data Generation Framework: An exhaustive set of experiments have been carried out

using randomly generated data sets obtained by carefully varying a set of parameters.

1. Number of task nodes and edges: Matrix size (for Gaussian Elimination) ν =

{6, 9, 14, 17, 22}; with these values of ν, five types hypothetical task graphs having distinct

number of task nodes |V | and edges |E| are generated (|V | = {20, 44, 104, 152, 252}; |E| =
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{29, 71, 181, 271, 461}). Similarly, parallel branch (for Epigenomics) ϑ = {4, 10, 25, 37, 62};
task graphs having |V | = {20, 44, 104, 152, 252} task nodes and |E| = {22, 52, 127, 187, 312}
edges, are generated. The values of ν and ϑ have been carefully chosen in order to be able

to generate Gaussian Elimination and Epigenomics task graphs having the same number

of task nodes in them. This approach helps towards better performance evaluation and

comparison of the algorithms against Gaussian Elimination and Epigenomics task graphs

having the same size (in terms of number of task nodes).

2. Number of processors: |P | = {4, 8, 16, 32, 64}.
3. Task execution times: Generation of execution times of all tasks on each hetero-

geneous processor is accomplished in three steps: (i) Selection of average execution time

(denoted as ωDAG) over all tasks in the task graph. Although for a given value of ωDAG,

individual tasks with vastly varying execution times can still possibly be generated, ωDAG

helps towards providing a certain degree of control and determinism on the overall execution

requirement of an application. The experiments conducted in this work use the following

values of average execution time: ωDAG = {40, 80, 120, 160, 200}. (ii) Given ωDAG, the next

step is to determine the average execution time (denoted as ωj) over all processors, for

each task node (τj) in the task graph. The ωj values of the task nodes are generated from

normal distributions having mean µ = ωDAG and various values of standard deviation σ

(= {10, 20, 30}). Each distinct value of σ allows the generation of average task node execu-

tion times with a certain known degree of skewness among them. (iii) After determining ωj

for each task τj, the final step is to generate the actual worst case execution time (WCET )

(denoted as ωj,n) of τj, on each processor pn. For any given task, the values of ωj,n are

determined from normal distributions having mean µ = ωj and various values of standard

deviation σ = (ωj × β); here the parameter β is referred to as the heterogeneity factor and

determines the degree of skewness among the execution times of a task on the different

heterogeneous processors. Normal distributions with the following β values have been gen-

erated: β = {0.1, 0.25, 0.5, 0.75, 1}. The obtained ωj,n values are then appropriately scaled

so that
∑|V |

j=1

∑|P |
n=1 ωj,n becomes equal to |V | × |P | × ωDAG.

4. Inter-task data transmission workload: The overall workload with respect to a

task graph has two major components: (i) execution time requirements of the task nodes

on processors (discussed above), and (ii) inter-task message transmission time workload on

the communication links. The ratio of the overhead related to message transmission and

execution, which we refer to as Communication-to-Computation Ratio (CCR), is an impor-
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tant characterizing parameter of a task graph and may significantly vary depending on the

nature of the application a task graph represents. We have evaluated the performance of the

proposed algorithms MMSH and PRESTO for different values of CCR (= {0.1, 0.5, 1, 2, 5}).
Given CCR, the average communication related workload cDAG is obtained as:

cDAG = CCR× ωDAG

The average inter-task message size (denoted as dataDAG; in Bytes) for a task graph is

determined as:

dataDAG = cDAG ×B

where B is the average communication bandwidth of the considered platform. Experiments

have been conducted for two different values of B (= {5 Mbps, 10 Mbps}). As there are

|P | × (|P | − 1)/2 communication links on a platform of |P | processors, B can be expressed

as:

B =
1

|P | × (|P | − 1)/2

|P |∑
m=1

m−1∑
n=1

Bm,n

where Bm,n is the actual bandwidth of the communication link between processors pm and

pn. The values of Bm,n are generated from a normal distribution having mean µ = B and

various values of standard deviation σ (= 0.2 × B). The obtained Bm,n values are then

appropriately scaled so that
∑|P |

m=1

∑m−1
n=1 Bm,n becomes equal to |P | × (|P | − 1)/2 × B.

Similarly, the size of the output message (datai,j) for each edge (τi, τj) in the task graph

is determined from a normal distribution having mean µ = dataDAG and various values of

standard deviation σ (= 0.2×dataDAG). The obtained datai,j values are then appropriately

scaled so that
∑|V |

i=1

∑|V |
j=1 datai,j becomes equal to |E| × dataDAG.

5. Penalties: The penalty associated with each time unit of execution on a processor

pn is denoted as ρen, while the penalty corresponding to each unit of data transfer on a

communication link ⟨pm, pn⟩ is denoted as ρcm,n. The values of ρen and ρcm,n are generated

from uniform distributions within the ranges [0.1, 1] and [0.1, 0.5], respectively.

6. Deadline Extension Rate: It may be noted that the MMSH algorithm proposed

as part of this work, typically delivers the shortest makespan schedule, while completely

ignoring penalties that may be incurred thereof. Therefore, while the schedule length de-

livered by MMSH may be small, the corresponding penalty suffered may be high. Also,

the PRESTO algorithm ultimately boils down to the MMSH algorithm in the interest of

generating a valid schedule, when the stipulated deadline is very stringent with respect to
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the workload imparted by a task graph. Thus, when the stipulated deadline is lower than

MMSH’s makespan, PRESTO can rarely generate a valid schedule. PRESTO is expected to

generate valid but high penalty schedules when the deadline is larger but close to MMSH’s

makespan. Further for a given task graph, valid schedules with progressively lower penalties

should be produced by PRESTO as the deadline is relaxed more and more with respect

to MMSH’s makespan. We define deadline extension rate (∂) as the ratio of the stipulated

deadline of a task graph ‘G’ with respect to the makespan produced by MMSH for ‘G’. The

performance of PRESTO with respect to penalty minimization has also been evaluated by

determining the average normalized penalties for different values of deadline extension rate.

The different values of ∂ used in our experiments are: ∂ = {1, 1.2, 1.4, 1.6}.
Simulation Framework: The simulation framework is written in C and executed on

a system having the following configuration: (i) Intel® Core™ i5-6500 CPU @ 3.20GHz ×4,
(ii) Ubuntu 16.04 LTS OS (64 bit), and (iii) 8 GB Memory.

3.5.2 Performance Metrics

The performance of the proposed methodology has been evaluated using five different pa-

rameters:

1. Normalized Makespan: This metric is used to compare performance of the proposed

makespan minimization algorithm MMSH against the existing state-of-art algorithms

HEFT [85], PEFT [5], PPTS [24], PSLS [112] and PALG [3]. Given a DAG, Nor-

malized Makespan (NM) is defined as:

NM =
Xms∑

τj∈CPAV G
ωj

(3.16)

where Xms represents the makespan achieved by an algorithm like, HEFT, PEFT,

PPTS, PSLS, PALG or MMSH. Assuming execution time of each task to be the

average value over all heterogeneous processors, the denominator represents the sum

of the execution times of all tasks in the critical path (CPAV G) of the task graph. It

may be noted that lower the value of achieved NM, better is the performance of the

scheduling algorithm.

2. Number of Occurrences of Better Solutions: This metric exhibits pair-wise

tabular comparisons between the performances of two algorithms in terms of the per-
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centages of test cases in which one algorithm performs better, equal or worse than the

other.

3. Iteration Count: This metric counts the average number of iterations of the while

loop (steps 5-7) in function PRESTO (refer Algorithm 2). Lower the value of this

metric, better is the performance of PRESTO towards quickly converging to a solution.

4. Computation Time: This metric measures the average run time (in ms) incurred by

PRESTO to produce schedules over data generated through a fixed set of parameter

values.

5. Normalized Penalty Ratio: This metric attempts to evaluate and compare the

efficiency of PRESTO towards penalty minimization, against the penalty ignorant

makespan minimization strategy MMSH. For a given task graph, Normalized Penalty

Ratio (NPR) is the ratio between the average penalty suffered by MMSH to that

suffered by PRESTO. That is:

NPR =
ρmmsh

ρpresto
(3.17)

It is easy to observe that higher the value of NPR, more is the efficiency of PRESTO

towards penalty minimization.

3.5.3 Performance Results

In this subsection, we present detailed results corresponding to five conducted experiments.

In these experiments, each data point is obtained as the average of 250 different task graph

data (except Experiment 1 which uses 156250 test cases), corresponding to a fixed set of

parameters.

3.5.3.1 Experiment-1: Pair-wise makespan comparison of algorithms

Table 3.2 shows pair-wise performance comparisons among the following algorithms MMSH,

PALG, PSLS, PPTS, PEFT and HEFT. Specifically, the result corresponding to the (row i,

column j)th- entry in the table depicts the percentages of test cases for which the algorithm

corresponding to the ith row performs better, equal or worse than the algorithm in column j.

A total of 156250 test cases using Gaussian Elimination task graphs have been considered for

each pair of algorithms. For example in Gaussian Elimination, the (1, 5)th- entry in Table 3.2
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shows that MMSH performs better, equal and worse in 75.8%, 1.8% and 22.4% test cases

respectively, compared to HEFT. It may be observed from the first row of the table that

MMSH performs better than all the other algorithms for a majority of the considered test

cases. MMSH also performs at par with the other algorithms for Epigenomics, with trends

of the results being similar to that of Gaussian Elimination. Hence, results for Epigenomics

have not been separately shown in the chapter.

Table 3.2: Pair-wise makespan comparison of the scheduling algorithms

PALG PSLS PPTS PEFT HEFT

better 95.6% 50.7% 61.0% 55.1% 75.8%

MMSH equal 0.5% 4.5% 3.8% 11.2% 1.8%

worse 3.9% 44.8% 35.2% 33.7% 22.4%

better 87.1% 26.7% 32.8% 26.4%

HEFT equal 3.2% 2.4% 1.2% 2.6%

worse 9.7% 70.9% 66.0% 71.0%

better 94.6% 37.0% 55.7%

PEFT equal 0.7% 12.8% 3.7%

worse 4.7% 50.2% 40.6%

better 92.9% 40.5%

PPTS equal 0.4% 2.2%

worse 6.7% 57.3%

better 95.6%

PSLS equal 0.6%

worse 3.8%

3.5.3.2 Experiment-2: Normalized makespans vs. varying processors

This experiment measures the Normalized Makespan (NM) ofMMSH, PEFT, HEFT, PPTS,

PSLS, and PALG, for varying values of #processors (|P |). Obtained results for both Gaus-

sian Elimination and Epigenomics are presented in Table 3.3. Here, the values of the

parameters |V |, CCR, and β have been fixed at 104, 0.5 and 0.25, respectively. For both

Gaussian Elimination and Epigenomics, MMSH seems to deliver slightly better results than

the existing algorithms in almost all cases (44 out of 50 cases considered in Table 3.3).
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Table 3.3: Normalized Makespans for varying number of processors

Gaussian Elimination Epigenomics
4 8 16 32 64 4 8 16 32 64

HEFT 1.16 0.95 0.90 0.86 0.81 2.97 1.65 1.06 0.91 0.84
PEFT 1.15 0.91 0.85 0.81 0.77 3.05 1.68 1.08 0.90 0.81
PPTS 1.15 0.92 0.87 0.83 0.79 2.93 1.63 1.07 0.91 0.83
PSLS 1.16 0.91 0.86 0.81 0.77 3.06 1.71 1.09 0.89 0.80
PALG 1.37 1.14 1.05 0.98 0.93 2.92 1.66 1.26 1.09 0.97
MMSH 1.14 0.90 0.84 0.80 0.75 2.99 1.67 1.06 0.89 0.80

3.5.3.3 Experiment-3: Normalized penalty ratios and run-times

One of the key facets of PRESTO is the interplay between the conflicting parameters

makespan and penalty. Typically, lower a schedule’smakespan, higher is the suffered penalty.

Over the iterations of the allocation phase (refer to the while loop in steps 5-7 of Algo-

rithm 2), PRESTO strives to converge to the largest makespan deadline meeting schedule,

so that the lowest penalty valid schedule may be delivered. In this regard, the deadline

Throttling Factor (TF) essentially acts as the tuning knob which determines the trade-off

balance between makespan and penalty. Thus, the rate of TF reduction over iterations de-

cides the pace at which solution makespans get reduced. This pace in turn plays a vital role

towards controlling, (i) how quickly PRESTO produces a valid solution (run-time) and (ii)

quality of the generated solution (penalty).

As revealed through equation 3.10, PRESTO has adopted a deadline overshoot aware

dynamic rate change policy for the throttling factor TF. Additionally, the amount by which

TF may be reduced in one step is lower bounded by a constant ϵ whose value is fixed at

ϵ = 0.01. In order to evaluate this policy, we have compared this with four other policies.

The first two of these policies named, PRESTO10 and PRESTO20, employ a constant rate

change strategy which takes the form: TF = TF − ϵ′ (ϵ′ = 0.1, for PRESTO10 and ϵ′ = 0.2,

for PRESTO20 ). The third and fourth policies named, 2PRESTO and 4PRESTO, employ

dynamic rate change similar to the proposed work, but fixes the value of ϵ at 0.02 and 0.04,

respectively.

Fig. 3.5a and Fig. 3.5b depict the average Penalty Ratio (NPR) and average run-time

respectively, as a function of the number of tasks (|V |). The parameters |P |, CCR, β and

∂ are set to 32, 0.5, 0.25 and 1.2. It may be observed from Fig. 3.5b that the different

variations of PRESTO can be clearly ordered in terms of there average run-times from

fastest to slowest as: PRESTO20 < PRESTO10 < 4PRESTO < 2PRESTO < PRESTO.
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Figure 3.5: Penalty Ratios and run-times of PRESTO for Gaussian Elimination.

The first two strategies in the list are constant rate change policies, with the TF reduction

rate of PRESTO20 being double that of PRESTO10. A look at the PRESTO pseudocode

(Algorithms 2 and 3) shows that PRESTO20 and PRESTO10 ensure convergence to a

solution within 5 and 10 iterations, respectively. The other three approaches follow dynamic

rate change policies in which the rate of change of TF reduction decreases as the amount

of makespan overshoot beyond deadline becomes lower. The use of such a strategy allows

PRESTO to make a higher number of attempts towards the generation of a valid solution

as the deadline overshoot reduces, and thereby enhances the chances of obtaining better

quality solutions. This fact may be observed from Fig. 3.5a where the dynamic rate change

policies clearly outperform both PRESTO20 and PRESTO10. However, this more intensive

search for lower penalty solutions make the dynamic rate change policies slightly slower than

the two constant rate change strategies, as revealed from Fig. 3.5b. Among the dynamic

approaches, PRESTO has the finest resolution (ϵ = 0.01) in the rate of change of TF,

4PRESTO has the crudest resolution (ϵ = 0.04), with 2PRESTO being in the middle

(ϵ = 0.02). As is expected with this setting, PRESTO performs better than 2PRESTO and

2PRESTO performs better than 4PRESTO, as may be seen from Fig. 3.5a. On the flip side,

PRESTO typically incurs a higher number of iterations than 2PRESTO, while 2PRESTO

incurs more iterations than 4PRESTO for converging to a solution, and this describes

the observation with respect to their run-times. Here, we have not shown the results for

the Epigenomics application. This is because, the trends of the results as obtained for

Epigenomics are similar to that of Gaussian Elimination.
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Figure 3.6: Iteration counts and run-times of PRESTO for Epigenomics.

3.5.3.4 Experiment-4: Iteration counts and run-times

This experiment measures and compares the number of iterations (refer to the while loop

in steps 5-7 of Algorithm 2) and execution times incurred by the PRESTO algorithm for

different number of tasks (|V |). Values of the parameters |P |, CCR and β have been

fixed at 32, 0.5 and 0.25, respectively. From Fig. 3.6a and Fig. 3.6b, it may be seen that

both the average number of iterations and the average run-times of PRESTO decreases as

deadline extension rate increases from 1 to 1.6. This is because, the deadlines get more and

more relaxed for higher deadline extension rates, allowing higher slack time which PRESTO

can use to quickly converge to a valid solution point. The figures show results for the

Epigenomics application. The results for Gaussian Elimination have not been presented as

they exhibit trends very similar to Epigenomics.

3.5.3.5 Experiment-5: Normalized penalty ratios w.r.t. tasks, processors, CCR
and heterogeneity

This experiment depicts Normalized Penalty Ratios (NPR) which measure the ratio of the

penalty suffered by MMSH to that suffered by PRESTO, for varying values of #tasks (|V |),
#processors (|P |), Communication-to-Computation Ratios (CCR), and heterogeneity (β).

Fig. 3.7 and Fig. 3.8 show the results obtained for both the Gaussian Elimination and

Epigenomics applications. In each figure, solid and dashed lines represent the results of

Gaussian Elimination and Epigenomics, respectively.

Fig. 3.7a depicts the obtained NPR values for different number of tasks |V |. The pa-
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Figure 3.7: Normalized Penalty Ratios w.r.t varying #tasks and #processors for Gaussian Elim-
ination and Epigenomics.

rameters |P |, CCR and β are set to 32, 0.5 and 0.25, respectively. It is observed that for

any given number of tasks, average NPR increases as deadline extension rate (∂) increases,

indicating that PRESTO is able to efficiently harness higher available slack to achieve better

penalty reductions. As is obvious, NPR values decrease as workload becomes higher with

increase in the number of tasks.

Fig. 3.7b shows NPR results as number of processors vary. In this, the values of the

parameters |V |, CCR and β have been fixed at 104, 0.5 and 0.25, respectively. Similar to

Fig. 3.7a, normalized penalty ratios seem to improve with higher deadline extension rate

values for any fixed value of the number of processors. As a higher number of processors

allows higher slack capacity, increase in the number of processors results in a consequent

improvement in NPR.

Fig. 3.8a shows the effect of variation in CCR over obtained NPR values. The parameters

|V |, |P | and β are set to 104, 32 and 0.25, respectively. It may be seen that due to differences

in structure, while NPR values show an approximately increasing trend with higher CCR for

Gaussian Elimination, the trend is reverse for Epigenomics. This is because, with increase

in CCR, a significantly higher number of parent-child node pairs get allocated to the same

processor for Gaussian Elimination, compared to Epigenomics.

In Fig. 3.8b, we show the variation in NPR values as the degree of heterogeneity is

increased from 0.1 to 1. Parameters |P |, CCR, and |V | are fixed at 32, 0.5, and 104,

respectively. As the average task-to-processor affinity reduces with increasing heterogeneity,
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Figure 3.8: Normalized Penalty Ratios w.r.t varying Communication-to-Computation Ratios and
heterogeneity for Gaussian Elimination and Epigenomics.

performance of PRESTO in terms of achieved NPR is observed to become poorer when

heterogeneity becomes higher.

3.6 A Prototype Implementation

In addition to the above simulation-based experiments, a proof-of-concept implementation

of the proposed work has been carried out on a real platform consisting of two processors,

ATmega2560 (Arduino Mega) and ATmega328p (Arduino Uno) that are connected through

their serial ports. We discussed this implementation by first presenting the task graph model

of the application and the platform. Then, we discuss construction of the PRESTO schedule

along with a step-by-step description of task execution on the platform.

Application Model: We have used a hypothetical application whose task graph model

is shown in Fig. 3.9a. The task graph has six tasks and seven edges. The execution times of

all tasks on ATmega328p and ATmega2560 have been determined by separately executing

them in a standalone fashion on each processor. A list of these execution times may be found

in Fig. 3.9b. The application is assumed to have an end-to-end deadline (D) of 750 ms.

Each edge of the task graph is labeled with a positive weight ‘1’ (in bytes) representing the

size of the data to be transmitted between associated task pairs.

The Platform: The platform is created using two Arduino processors (ATmega2560

(Arduino Mega) and ATmega328p (Arduino Uno)) and establishing a serial communication

channel (with 9600 baud rate) between them by connecting pins 10 (RX ) and 8 (TX ) of
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Figure 3.9: (a) A DAG G(V,E); (b) Execution time (in ms) of each task on two processors;
(c) The connection layout of real platform using ATmega2560 (Arduino Mega) and ATmega328p
(Arduino Uno) processor.

Arduino Mega to pins 6 (TX ) and 5 (RX ) of Arduino Uno, respectively. A few additional

pieces of equipment such as: a Push-button, 2 Resistors (220 Ohm), a Breadboard, 10 Jumper

wires and an LED has also been used. Fig. 3.9c shows the interconnection layout for the

designed heterogeneous platform. The commencement of task executions on both processors

have been synchronized by attaching a single Push-button which is connected to digital pin

2 of both Arduinos. We have assumed the penalty per unit processing time spent on the

processors ATmega328p, and ATmega2560 to be 0.85 and 0.80, respectively. The penalty

for each unit of data transfer through the communication links is taken to be 0.5.

Table 3.4: OFT, Rank and MEP values corresponding to the example system depicted in Fig. 3.9

Tasks
OFT

Rank
MEP

ATmega328p ATmega2560 ATmega328p ATmega2560

τ1 736 740 738.0 425.90 411.20
τ2 178 179 178.5 146.85 143.20
τ3 404 406 405.0 331.50 326.40
τ4 353 354 353.5 288.15 284.80
τ5 296 299 297.5 247.15 239.20
τ6 115 116 115.5 97.75 92.80

Schedule Generation: Table 3.4 displays the OFT, MEP and Rank values corre-

sponding to the initialization phase of PRESTO for the considered example system. The

priority list of tasks is obtained as: taskList = ⟨τ1, τ3, τ4, τ5, τ2, τ6⟩. The allocation phase

for this example continues for one iteration and generates a valid schedule with makespan
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743. The associated penalty is obtained as 698.40. Fig. 3.10a depicts the Gantt chart of the

obtained schedule. The generated schedule indicates the processor allocation and actual ex-

ecution start time of each task. For example, it may be seen that τ3 starts on ATmega2560

(Arduino Mega) processor at time 335 ms relative to the start of the schedule.
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Figure 3.10: (a) Gantt chart of PRESTO: makespan = 743 ms, penalty = 698.40; (b) Snap-
shots of the monitor displays representing the execution of tasks on processors ATmega2560 and
ATmega328p, for the DAG shown in Fig. 3.9a; (c) Real platform using ATmega2560 (Arduino
Mega) and ATmega328p (Arduino Uno) processors.

Implementation Procedure: To setup the execution environment, two separate code

pieces (which include the task schedulers) have been written for the ATmega328p (Ar-

duino Uno) and ATmega2560 (Arduino Mega) processors. The structure of the code for

ATmega328p is displayed in Listing 3.1.

Lines 1 and 2 of Listing 3.1 include the SchedTask and SoftwareSerial libraries to allow

multitasking in the system and serial communication between the two processors, respec-

tively. Lines 3-5 declares the functions τ4(), τ2() and scheduler(). Lines 6-8 initializes

objects of SchedTask and SoftwareSerial classes.

The setup() function in Lines 9-15 runs only once when the Arduino board is switch

on, followed by the loop() which contains instructions that get repeated until the board is

turned off. The setup() function first initializes hardware pin 2 for Push-button (Line 11),

the COM port for monitor display (Line 12), and the serial communication channel (Line 13)

of Arduino Uno. After this, setup() finally calls the scheduler() function in Line 14. The

value 9600 in line numbers 12 and 13 indicates bandwidth (baud rate) of the communication

channels.

63



3. PRESTO: A PENALTY-AWARE REAL-TIME SCHEDULER FOR TASK
GRAPHS ON HETEROGENEOUS PLATFORM

1 #include <SchedTask.h>

2 #include <SoftwareSerial.h>

3 void τ4();
4 void τ2();
5 void scheduler ();

6 SchedTask Task4(-1, 0, τ4);
7 SchedTask Task2(-1, 0, τ2);
8 SoftwareSerial s(5,6); // RX ,TX for Uno

9 void setup()

10 {

11 pinMode(2, INPUT); // Initialize hardware pin 2 for Push -button

12 Serial.begin (9600); // Initialize COM port for monitor display

13 s.begin (9600); // Initialize serial communication channel

14 scheduler (); // Call task scheduler

15 }

16 void loop()

17 {

18 SchedBase :: dispatcher (); // Dispatch ready tasks for execution

19 }

20 void scheduler ()

21 {

22 while(digitalRead (2)==LOW){} // Wait until Push -button is pressed

23 Task4.setNext (336); // Set Task 4 to start after 336 ms from

the current time

24 Task2.setNext (393); // Set Task 2 to start after 393 ms from

the current time

25 }

Listing 3.1: The code Structure of ATmega328p

The scheduler() function is displayed in Lines 20-25 of Listing 3.1. The scheduler first waits

in a loop until the Push-button is pressed (Line 22). Then it sets tasks τ4 and τ2 to enable

the commencement of their executions after 336 ms and 393 ms (respectively), from the

time at which the Push-button is pressed (refer Lines 23 and 24).

The loop() function in Lines 16-19 (of Listing 3.1) goes on executing the dispatcher()

function repetitively. The dispatcher() correctly dispatches τ4 and τ2 at times 336 and 393

(relative to Push-button press), as may be observed from the screenshot of the monitor

display in Fig. 3.10b. It may be noted that both tasks τ4 and τ2 commence by reading the

serial communication channel (s.read()) in order to receive the output data transmitted at

the completion of execution of task τ1 on the ATmega2560 processor.

A similar code piece as displayed in Listing 3.2 is written for the ATmega2560 (Arduino

Mega) processor. From the screenshot of the monitor display (Fig. 3.10b) corresponding to

the execution of tasks on Arduino Mega, it may be observed that Listing 3.2 is also able to
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currently govern the execution of tasks as prescribed by the PRESTO schedule in Fig. 3.10a.

An annotated photograph of the actual setup built for this prototype implementation is

shown in Fig. 3.10c.

1 #include <SchedTask.h>

2 #include <SoftwareSerial.h>

3 void τ1();
4 void τ3();
5 void τ5();
6 void τ6();
7 void scheduler ();

8 SchedTask Task1(-1, 0, τ1);
9 SchedTask Task3(-1, 0, τ3);

10 SchedTask Task5(-1, 0, τ5);
11 SchedTask Task6(-1, 0, τ6);
12 SoftwareSerial s(10 ,8); // RX ,TX for Mega

13 void setup()

14 {

15 pinMode(2, INPUT); // Initialize hardware pin 2 for Push -button

16 Serial.begin (9600); // Initialize COM port for monitor display

17 s.begin (9600); // Initialize serial communication channel

18 scheduler (); // Call task scheduler

19 }

20 void loop()

21 {

22 SchedBase :: dispatcher (); // Dispatch ready tasks for execution

23 }

24 void scheduler ()

25 {

26 while(digitalRead (2)==LOW){} // Wait until Push -button is pressed

27 Task1.setNext (0); // Set Task 1 to start immediately

28 Task3.setNext (335); // Set Task 3 to start after 335 ms from

the current time

29 Task5.setNext (444); // Set Task 5 to start after 444 ms from

the current time

30 Task6.setNext (627); // Set Task 6 to start after 627 ms from

the current time

31 }

Listing 3.2: The code Structure of ATmega2560

3.7 Case Studies

To illustrate the generic applicability of our proposed scheduling strategy in real-world

designs, we present two case studies using (i) an Adaptive Cruise Controller (ACC) [13] in

automotive systems, (ii) Intelligent Surveillance Application (ISA) [29] in a fog computing
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environment.

3.7.1 Adaptive Cruise Controller in Automotive Systems

Adaptive Cruise Controller (ACC) automatically maintains a safe distance between two

cars [41]. Fig. 3.11a shows the block diagram of ACC adapted from [13] and Fig. 3.11b de-

picts its corresponding DAG representation. We assume that this DAG consisting of 20 task

nodes {τ1, τ2, ..., τ20} is to be scheduled on a distributed platform having two heterogeneous

processors {p1, p2}. The end-to-end application deadline is assumed to be 150 ms.
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Figure 3.11: Adaptive Cruise Controller (ACC).

Table 3.5 depicts the computation times of the ACC application task nodes on the two

heterogeneous processors. We assume a non-DVFS [99] platform with static power ratings

associated with the two processors p1 and p2 to be: spow,1 = 0.01 W and spow,2 = 0.02 W

respectively, while the corresponding dynamic power ratings are: ρe1 = 0.62 W and ρe2 =

0.99 W , respectively. Similarly, the power rating of the link connecting the two processors

in the platform is assumed to be: ρc1,2 = 0.5 W . The total energy consumption (Etotal)

associated with the execution of the application is given by the sum of both the static and

dynamic energy dissipation [99]. That is:

Etotal =

|P |∑
n=1

spow,n ×makespan+ ρpresto
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where ρpresto denotes the penalty for the generated execution schedule (refer equation 3.15)

and gets directly mapped to the dynamic energy dissipation for the ACC application. Gantt

chart representation of the PRESTO schedule is shown in Fig. 3.12a. It may be observed

that PRESTO delivers a schedule which consumes an overall energy of 241.28 W while

successfully completing within the deadline of 150ms (PRESTO schedule length = 141ms).

Table 3.5: ACC: Execution time table

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 τ13 τ14 τ15 τ16 τ17 τ18 τ19 τ20
p1 11 9 29 10 15 8 10 28 12 7 8 12 10 4 12 13 15 27 17 27
p2 16 10 14 12 13 13 22 6 11 14 12 5 13 12 15 9 10 16 19 28

0

20

40

60

80

100

p1 p2

10

30

50

70

90

110

120

130

140

150

τ3

τ1

τ4

τ2

τ5

τ6

τ11

τ12

τ7

τ8

τ9

τ16

τ10

τ15

τ20

τ14

τ13

τ18
τ19

τ17

(a) ACC

0

50

100

150

200

AS IG CD

25

75

125

175

225

250

C1 C2 C3 C4

275

300

τ1
τ2 τ5τ4τ3

τ22 τ23

τ24 τ25

τ6

τ7

τ8
τ9

τ10
τ11
τ12
τ13

τ14

τ15

τ20

τ21

τ16

τ17

τ18
τ19

(b) ISA

Figure 3.12: Gantt charts depicting the schedules of PRESTO on (a) ACC (makespan =
141 ms,Etotal = 241.28 W ), and (b) ISA (makespan = 297 ms, cost = $145).

3.7.2 Intelligent Surveillance in a Fog Environment

Intelligent Surveillance Application (ISA) aims at coordinating multiple cameras with dif-

ferent fields of view (FOVs) to surveil a vulnerable area. Coordination between cameras

requires cooperative tuning of their Pan-Tilt-Zoom (PTZ) parameters, so that the best view

of an area can be obtained. Moreover, the system sends alarms to the user in case of any

unusual event which may demand the attention of security personnel for manual interven-

tion. Here, we have considered two separate areas (Area1 and Area2), with each area being

surveilled by two cameras. Fig. 3.13a shows the block diagram of ISA adapted from [29]

and Fig. 3.13b depicts its corresponding DAG representation. This DAG consisting of 25
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tasks {τ1, τ2, ..., τ25} is to be scheduled on a Cloud-Fog environment having three processing

nodes, in addition to the embedded processing elements within the four cameras. Among the

processing nodes, one is a Cloud Data Center (CD), while the other two are Fog computing

nodes (consisting of say, an Area Switch (AS) and an ISP Gateway (IG)). We assume that

each computing device is associated with a certain geophysical location and is fully inter-

connected through an overlay network. The bandwidths of the bidirectional links between

CD and the other devices is set to be 1 Mbps, bandwidths between IG and AS/cameras

is 50 Mbps, while that between AS and cameras is 100 Mbps. The end-to-end application

deadline is assumed to be 300 ms.
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Figure 3.13: Intelligent Surveillance Application (ISA).

Table 3.6: ISA: Execution time table

τ1 τ6 τ7 τ8 τ9 τ10 τ11 τ12 τ13 τ14 τ15 τ16 τ17 τ18 τ19 τ20 τ21
AS 10 18 18 18 18 17 17 17 17 20 20 67 67 67 67 19 19
IG 15 16 16 16 16 22 22 22 22 15 15 60 60 60 60 20 20
CD 8 11 11 11 11 14 14 14 14 13 13 34 34 34 34 15 15

Table 3.6 depicts the execution times of the ISA application tasks on three heterogeneous

Cloud/Fog computing devices. The tasks τ2-τ5 and τ22-τ25 in Fig. 3.13b are associated with

video stream capture and PTZ actuation respectively, and are exclusively executed on the

embedded processing elements in the cameras. The tasks associated with video stream

capture and PTZ actuation are assumed to consume 12 ms and 11 ms of execution time,
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respectively. The processing elements in the cameras do not play any role in the execution of

other modules of ISA. All edges in the ISA block diagram (Fig. 3.13a) other than those from

AC to cameras and PC to cameras are associated with the transmission of video stream data

having size 12288 bytes. Data size corresponding to the rest of the edges (AC → cameras,

PC→ cameras) is considered to be 512 bytes. The monetary cost associated with each time

unit of execution on the Area Switch, ISP Gateway and Cloud DC are considered as $0.2,

$0.4 and $0.8 respectively, while the cost of execution on a camera’s processing element is

assumed to be negligible. Similarly, the monetary cost corresponding to each unit of data

transfer between any two devices available in the local network is set to $0.001, while data

transfer with the Cloud DC incurs $0.002.

In this case study, we represent the generic penalty function (defined in equation 3.15) as

the total monetary cost and the attempt is to minimize the overall cost incurred. Fig. 3.12b

shows the Gantt chart representation of the generated PRESTO schedule. It may be ob-

served that PRESTO delivers a schedule which incurs a total monetary cost of $145 while

successfully completing within the deadline of 300ms (PRESTO schedule length = 297ms).

3.8 Summary

In this work, we have presented a static list scheduling policy called PRESTO, for real-time

task graphs to be executed on a system of fully-connected heterogeneous processors. The

proposed scheme minimizes a generic penalty function while satisfying resource, precedence

and timing constraints. Experimental analysis using two benchmark task graphs reveals

that PRESTO performs appreciably over extensive sets of test scenarios, pointing to the

practical effectiveness of the scheme. The practical applicability of PRESTO is presented

using two case studies. In the first case, the objective is to minimize energy consumption

of an adaptive cruise control application in an automotive system. In the second case,

PRESTO generates a schedule for an intelligent surveillance application running in a fog

environment, with the objective of minimizing associated monetary cost. A penalty ignorant

makespan minimization algorithm called MMSH to which PRESTO converges in worst-

case scenarios has also been designed. Experimental evaluation shows that MMSH is able

to outperform the state-of-the-art makespan minimization strategies HEFT, PEFT, PPTS,

PSLS and PALG in most cases. Finally, the practical adaptability of the proposed work is

shown using a prototype real-platform implementation using two heterogeneous processors,
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an Arduino Uno (ATmega328p) and an Arduino Mega (ATmega2560).

While designing MMSH, we realized that there is ample scope for improving MMSH as

well as other state-of-the-art makespan minimizing DAG scheduling strategies mentioned

above, by systematically applying the principles of any time heuristic search approaches.

Based on this insight, Chapter 4 presents a low-overhead makespan minimizing depth-first

branch and bound based search algorithm called PRESTO. PRESTO is equipped with a

set of novel tunable pruning mechanisms, which allows the designer to obtain a judicious

balance between performance (makespan) and solution generation times.

;;=8=<<
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Chapter 4
HMDS: A Makespan Minimizing DAG
Scheduler for Heterogeneous Distributed
Systems

4.1 Introduction

In the previous chapter, we used a greedy makespan minimizing resource allocation scheme

called MMSH at the core of the proposed real-time scheduling strategy called PRESTO.

In this chapter, we extend MMSH to obtain an anytime branch and bound strategy called

HMDS which is able to comprehensively outperform MMSH.

The problem of scheduling DAGs to minimize makespan, is a challenging and computa-

tionally hard problem. Computation of makespan minimizing optimal schedules for DAGs

on heterogeneous distributed computing systems requires exhaustive enumeration of an

exponential state-space and is often prohibitively expensive even for moderately large prob-

lem sizes. Therefore, research in this domain has often focused on designing low-complexity

heuristics that produce quick and satisfactory schedules [5, 85]. Heuristic-based algorithms

provide approximate solutions, usually good solutions, with polynomial time complexity.

In this work, we develop a list-based heuristic scheduling algorithm called Heterogeneous

Makespan-minimizing DAG Scheduler (HMDS) for task graphs, whose objective is to mini-

mize the overall makespan on a given set of heterogeneous processors. The HMDS algorithm

is empowered with a guided state-space search technique [89]. The guided state-space search

technique is typically an extension of the well-known branch and bound search approach [53]
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in which only some nodes of the solution space are explored. In this search approach, at

any level, only the promising nodes which are likely to deliver good solutions are retained

for the branching while the remaining nodes are pruned. Through such aggressive pruning,

exploration of a significant portion of the search tree can be avoided, which often helps to

control solution generation times below acceptable limits.

The main contributions of this work are summarized as follows:

1. We first propose a list-based greedy static scheduling algorithm called Heterogeneous

Makespan-minimizing DAG Scheduler-Baseline (HMDS-Bl) for the problem at hand.

Experimental results show that HMDS-Bl is able to perform marginally better than

state-of-the-art algorithms such as HEFT, PEFT, PPTS, etc.

2. Subsequently, HMDS-Bl is extended by employing a low-overhead depth-first branch

and bound based search technique which is able to further deliver significant improve-

ments in performance over HMDS-Bl. This enhanced scheduling technique is named

Heterogeneous Makespan-minimizing DAG Scheduler (HMDS).

3. Experiments have been conducted using two real-world benchmark task graphs, namely

Gaussian Elimination and Epigenomics. Results reveal that the proposed algorithms

work equally efficiently over diverse variations in input parameters, such as number of

tasks, different number of processors, Communication to Computation Ratio (CCR),

and degree of heterogeneity. HMDS has been experimentally shown to comprehen-

sively outperform the currently known state-of-the-art algorithms.

4. A real-world case study on traction control application has been presented to exhibit

the practical applicability of the proposed work.

The rest of the chapter is organized as follows: Section 4.2 provides the system model

and problem statement. In Section 4.3, we present the proposed schedulers and describe

both scheduling policies, namely HMDS-Bl and HMDS. Experimental results and analysis

have been provided in Section 4.4. Section 4.5 presents a real-world case study using an

automotive traction control application. Finally, Section 4.6 concludes the chapter.

72



4.2 System Model

4.2 System Model

The system under consideration consists of an application modeled as a Directed Acyclic

Graph (DAG), to be scheduled on a platform consisting of a set of heterogeneous processors.

Fig. 4.1a depicts an example DAG, G(V,E), where the set of vertices V = {τ1, τ2, . . . , τ|V |}
represents tasks and the set of edges E represents precedence constraints between task pairs.

Edge ei,j is assigned with a positive weight datai,j which represents the amount of data to

be transferred from task τi to task τj. The set of all direct predecessor and successor tasks

of a task say, τj are represented as pred(τj) and succ(τj), respectively.

τ1

τ2 τ3 τ4 τ5 τ6

τ7 τ8 τ9

τ10

17
21

14 21 18

16
22

20
26

15

16
7

38 20
24

τj p1 p2 p3

τ1 16 21 33
τ2 13 25 43
τ3 64 55 51
τ4 30 18 29
τ5 54 35 93
τ6 48 50 42
τ7 18 32 9
τ8 51 27 40
τ9 35 55 60
τ10 63 81 44

τj
PFT

rankpftp1 p2 p3

τ1 145 142 148 145.00
τ2 91.7 106 98.5 98.72
τ3 56.5 55.3 53.0 54.94
τ4 97 107 101 101.67
τ5 91 107 102 100
τ6 92 77.7 83 84.22
τ7 63 56.7 44 54.56
τ8 54 50.7 44 49.56
τ9 56 52 44 50.67
τ10 0 0 0 0

(a) A DAG G(V,E); |V | = 10, |E| = 15 (b) Matrix W (|V | × |P |) (c) Matrix PFT and rankpft

Figure 4.1: An Example: (a) DAG of 10 tasks; (b) WCETs of 10 tasks on 3 processors; (c) PFT
and rankpft values corresponding to the example system depicted in this Figure.

The platform P = {p1, p2, . . . , p|P |} consists of |P | heterogeneous processors. These

processors are fully interconnected through a set of (|P |× (|P |−1)/2) bidirectional commu-

nication links having heterogeneous (potentially distinct) bandwidths. A matrix B of size

|P |× |P | is used to store the data transfer rates between all pairs of processors. An element

bm,n ∈ B denotes the bandwidth between processors pm and pn. Given datai,j and bm,n, the

data communication/transmission cost (cm,n
i,j ) between task pairs τi and τj (τj ∈ succ(τi)),

when τi and τj are executed on distinct processors pm and pn respectively, may be deter-

mined as: cm,n
i,j = Lm+datai,j/bm,n, where Lm is the communication startup cost of processor

pm. The Lm values of the different processors are stored in a vector L of size |P |. When

τi and τj are mapped to the same processor, the communication overhead is assumed to be

negligible. Thus, when m = n, cm,n
i,j = 0. As processors are heterogeneous, each task may

have distinct Worst-Case Execution Times (WCETs) on the different processors. W is a
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|V | × |P | computation cost matrix (Fig. 4.1b) in which an element ωj,n is the WCET of

task τj on processor pn.

Problem Statement: Given an application modeled as DAG G and a fully connected

platform of heterogeneous processors P, the scheduling objective is to determine the execution

start times and processor assignments for all tasks such that the schedule length/makespan

is minimized while satisfying resource and precedence constraints.

4.3 The Proposed Schedulers

In this section, we first describe the proposed list-based heuristic scheduling algorithm called

Heterogeneous Makespan-minimizing DAG Scheduler-Baseline (HMDS-Bl). Subsequently

in section 4.2, we present Heterogeneous Makespan-minimizing DAG Scheduler (HMDS),

obtained by extending HMDS-Bl with a novel adaptive guided search mechanism.

4.3.1 HMDS-Bl: The Baseline List Scheduler

HMDS-Bl is a list-based heuristic makespan minimizing scheduler having two phases: (i)

Task Prioritization: for listing tasks in a specific priority order (this priority order en-

sures, (a) satisfaction of all precedence constraints, (b) construction of a schedule having

low makespan), and (ii) Processor Selection: for mapping the highest priority unscheduled

task to a processor that minimizes the sink task node’s finish time.

The algorithm is critically pivoted on a function called PFT () which is used to construct

a matrix called Predicted Finish Time (PFT ), containing values corresponding to each task-

processor pair. This PFT matrix has two important functions: (1) Determination of a rank

value for each task based on which a sorted task list as mentioned above, is generated during

task prioritization phase. This list governs the order in which the tasks are considered for

processor assignment, and (2) Determination of the most suitable processor for a task in

terms of minimizing the overall schedule makespan. We now discuss the design of the PFT ()

in more detail.

PFT[τj , pn ]: Predicted Finish Time for different task-processor pairs are represented as

a matrix where rows indicate tasks and columns indicate processors, as shown in Fig. 4.1c,

for the example system presented in Figs. 4.1a and 4.1b. PFT [τj, pn] essentially provides

an estimate of the total cost required to complete the execution of all dependant nodes of
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task τj, assuming τj to be allocated for execution on processor pn. Formally, PFT [τj, pn] is

calculated as follows:

PFT [τj , pn] =


0, if τj = τexit

max
τk∈succ(τj)

[
min
pr∈P
{PFT [τk, pr] + ωk,r + cn,rj,k }

]
, otherwise

(4.1)

where the communication cost cn,rj,k = 0 when τj and its successor τk are scheduled on the

same processor (i.e., n = r). It may be observed from equation 4.1 that PFT [τexit, pn] = 0

corresponding to the exit task. For all other tasks, PFT [τj, pn] may be considered to be

computed as a three-step process. In the first step, given a successor task τk (of τj) to be

assigned to a certain processor pr (say), an estimate of the total processing cost from the

completion of τj on pn to the completion of the exit task τexit is determined. This is a

recursive step and the value is obtained as the summation of (i) the predicted finish time

value corresponding to the execution of τk on pr (PFT [τk, pr]), (ii) the execution cost of

τk on processor pr (ωk,r), and (iii) the actual communication cost required to transmit the

output of τj to τk (cn,rj,k ). For any given successor task τk (of τj), the second step calculates

the minimum estimated processing time considering τk to be executed on all the different

available processors in the system (minpr∈P{. . . }). Finally at the third step, PFT [τj, pn]

is obtained as the maximum over the minimum estimated processing costs considering all

successor tasks of τj (maxτk∈succ(τj)[. . . ]).

In the task prioritization phase, the average PFT for a given task τj over all processors

is considered to determine the rank (rankpft[τj]) of τj. That is:

rankpft[τj ] =

∑|P |
n=1 PFT [τj , pn]

|P | (4.2)

The task priority order for considering them during processor selection is derived by gener-

ating a sorted vector called taskList arranged in non-increasing order of ranks. The priority

order of tasks is responsible for maintaining the precedence constraints in the task graph

and determining the task’s execution order. However, due to the nature of the structural

relationship between rankpft() and PFT (), there may be situations when the rank of a task

becomes smaller than the maximum among the ranks of all its successors. The ready list of

tasks when constructed in the order of rankpft values, will violate the stipulated precedence

order among tasks. This case can be rectified with the following adaptation (refer Algo-

rithm 4): whenever the rank of a task τj is less than the maximum rank of its successors
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(MSR = maxτk∈succ(τj) rankpft[τk]), rankpft[τj] is minimally upscaled to: MSR + δ, where

δ is a small constant. In our experiments, the value of δ has been considered as 0.1. The

PFT values of τj on different processors are also proportionately upscaled.

Algorithm 4: pft rank(G,P )

Input: Task graph G(V,E) and processor set P
Output: Predicted Finish Time, rank of all tasks

1 for τj = τexit to τentry do
2 for each processor pn in P do
3 Calculate PFT [τj , pn] using equation 4.1;

4 Calculate rankpft[τj ] using equation 4.2;
5 MSR = max

τk∈succ(τj)
rankpft[τk];

6 if rankpft[τj ] ⩽ MSR then
7 for each processor pn in P do

8 PFT [τj , pn] = PFT [τj , pn]× MSR+δ
rankpft[τj ]

;

9 Recalculate rankpft[τj ] using equation 4.2;

10 return [PFT, rankpft];

The objective of the processor selection phase is to generate a static schedule obtained by

sequentially determining: (i) a processor allocation, and (ii) an actual start time for each task

τj in the order prescribed by taskList such that the schedule length is minimized. The task

(say, τj) in the taskList to be scheduled next, can be potentially allocated to any processor pn

on the heterogeneous platform. Each such possible task-processor allocation (say, ⟨τj, pn⟩) is
associated with three attributes: (i) Effective Start Time (EST), (ii) Effective Finish Time

(EFT), and (iii) Optimistic Effective Finish Time (OEFT ).

EST[τj , pn ]: The effective execution start time of the entry task τentry on any processor

pn is zero. For other tasks, effective execution start time EST [τj, pn] of task τj on processor

pn is defined as:

EST [τj , pn] =

0, if τj = τentry

max{avail[n], max
τi∈pred(τj)

(AFT [τi] + cm,n
i,j )}, otherwise

(4.3)

where avail[n] is the earliest time at which processor pn is available for task execution and

AFT [τi] is the actual finish time of task τi. The inner max function in equation 4.3 returns

the time at which all input data (required by τj) from τj’s predecessors arrive at processor

pn.
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EFT[τj , pn ]: Given EST [τj, pn], the effective execution finish time EFT [τj, pn] of task

τj on processor pn is obtained as:

EFT [τj , pn] = EST [τj , pn] + ωj,n (4.4)

OEFT[τj , pn ]: This function provides an estimate of the sink task’s completion time rela-

tive to the effective execution finish time of the current task τj on pn. Formally, OEFT [τj, pn]

is calculated as:
OEFT [τj , pn] = EFT [τj , pn] + PFT [τj , pn] (4.5)

Now, the task τj is actually allocated to a processor pn for which OEFT [τj, pn] is minimal.

After τj is scheduled on pn, the EST and EFT of τj on pn become the Actual Start Time

AST [τj] and the Actual Finish Time AFT [τj] of task τj. The makespan of the schedule

is equal to AFT [τexit] of the exit task τexit. The pseudocode of HMDS-Bl is presented in

Algorithm 5.

Algorithm 5: HMDS-Bl(G,P )

Input: Task graph G(V,E) and processor set P
Output: A schedule which minimizes makespan

1 [PFT, rankpft] = pft rank(G,P );
2 Sort tasks in non-increasing order of their rankpft values and store in taskList;
3 for each task in taskList do
4 Extract the first task (say, τj) from taskList;
5 for each processor pn in P do
6 Compute EFT [τj , pn] and OEFT [τj , pn] of all task-processor pairs using equations

4.4 and 4.5;

7 Determine: pn|minpr∈P OEFT [τj , pr];
8 Assign τj on processor pn;

Complexity Analysis: The computation of PFT considers each edge of the DAG

exactly once and iterates over |P | processors. Thus, PFT matrix creation overhead becomes

O(|P |(|V | + |E|)) (refer equation 4.1; line 1 of HMDS-Bl (Algorithm 5)). Finding rankpft

for one task requires O(|P |) time. Hence, the complexity of computing rankpft for all tasks

becomesO(|V |×|P |). In line 2, the sorting operation requiresO(|V | log |V |) time. Therefore,

the complexity of the task prioritization phase is O(|P |(|V |+ |E|)+ |V |×|P |+ |V | log |V |) =
O(|P |(|V |+|E|)). The overhead of the processor selection phase is primarily governed by the

computational complexity of determining EFT [τj, pn] and OEFT [τj, pn] (refer equations 4.4
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and 4.5; in line 6) for all task-processor pairs within the nested for loops (outer loop:

lines 3-8; inner loop: lines 5-6). Overhead of the remaining lines of HMDS-Bl take O(1)

time except line 7 which requires O(|P |) time. The overhead of computing EFT [τj, pn]

is mainly dependent on the complexity of determining EST [τj, pn] (refer equation 4.3).

Determination of EST [τj, pn] require O(1) computations over all predecessors of task τj and

hence has an overhead of O(#predecessors). The aggregate count of predecessors of all tasks

is equal to the total number of edges in the DAG. Hence, the amortized overhead of finding

EST [τj, pn] becomes O(|P |(|V |+ |E|)/(|P | × |V |)) = O((|V |+ |E|)/|V |) = O(|E|/|V |). So,
the overall complexity for computing EST [τj, pn] on all task-processor pairs is O(|E|/|V | ×
|P | × |V |) = O(|E| × |P |). The overhead of determining OEFT [τj, pn] for all task-processor

pairs is O(|V | × |P |). Hence, the complexity of HMDS-Bl including overheads for both task

prioritization and processor selection can be expressed as: O(|P |(|V | + |E|) + |P | + |E| ×
|P |+ |V | × |P |) ≈ O(|E| × |P |).
Example: Fig. 4.1c lists the PFT and rankpft values corresponding to the example system

shown in Figs. 4.1a and 4.1b. Here, we assume that the communication links between

each pair of processors have heterogeneous bandwidths (b1,2 = b2,1 = 1, b2,3 = b3,2 =

3, b3,1 = b1,3 = 2, and b1,1 = b2,2 = b3,3 = ∞) and the communication startup costs

are negligible for all processors (i.e., Lm = 0). The priority list of tasks is obtained as:

taskList = ⟨τ1, τ4, τ5, τ2, τ6, τ3, τ7, τ9, τ8, τ10⟩. The Gantt chart in Fig. 4.2g shows the schedule

generated by HMDS-Bl. It can be noted that from Fig. 4.2, HMDS-Bl (makespan 182)

outperforms HEFT (makespan 198), PEFT (makespan 189), PALG (makespan 200), PPTS

(makespan 187), PSLS (makespan 184) and MMSH (makespan 184).

Next, we discuss the Depth-First Branch and Bound (DFBB) search-based extension to

HMDS-Bl called, Heterogeneous Makespan-minimizing DAG Scheduler (HMDS).

4.3.2 HMDS: DFBB Search Based Extension to HMDS-Bl

In HMDS-Bl, for a fixed allocation order dictated by rankpft values, each task has |P |
heterogeneous processor choices during allocation. Given this scenario, it may be observed

that it is possible to derive up to |P ||V | distinct solutions for a task set of size |V |. It may be

noted that HMDS-Bl solves the processor selection problem for each task τj by allocating

that processor pn for which OEFT [τj, pn] assumes the minimum value. However, this strategy

may not always deliver the minimum makespan among the |P ||V | possible solutions, as
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Figure 4.2: Gantt charts depicting the schedules: (a) HEFT (makespan = 198); (b) PEFT
(makespan = 189); (c) PALG (makespan = 200); (d) PPTS (makespan = 187); (e) PSLS
(makespan = 184); (f) MMSH (makespan = 184); (g) HMDS-Bl (makespan = 182); (h) HMDS
(makespan = 177), for the DAG in Fig. 4.1a.
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illustrated next by continuing with the same example discussed in Section 4.3.1. For this

example, Fig. 4.2g shows the schedule Gantt chart obtained using HMDS-Bl. Using the

same task allocation order suggested by rankpft, Fig. 4.2h shows the outcome of a strategy

where not all tasks have been assigned to the processors in which their OEFT values are

minimum. For the schedule in Fig. 4.2h, while tasks τ1, τ2, τ3, τ7, and τ10 are allocated to

the processors where their OEFT values are minimum, tasks τ4, τ5, τ6, τ8, and τ9 have been

assigned to processors where their OEFT values are the second best (i.e., second minimum).

The HMDS-Bl schedule in Fig. 4.2g delivers a makespan of 182, while the schedule depicted

in Fig. 4.2h has a lowermakespan of 177. We see that the modified task-processor assignment

in Fig. 4.2h has allowed the possibility to assign tasks τ8 and τ9 on processors where their

execution times are significantly lower than on other processors. This may be observed to be

an important reason towards the achievement of a lower makespan in Fig. 4.2h. However,

due to the inherent exponential solution space associated with the problem, we purview that

it may be difficult to design a deterministic/greedy procedure which avoids actual solution

enumeration for determining the choice of processor for each task, such that the delivered

makespan may be significantly lower than HMDS-Bl. With this understanding, we have

resorted to the design of an efficient DFBB search based scheduler called HMDS.

HMDS uses the same PFT () function (equation 4.1) for task-processor pairs and the

same task ranking scheme as HMDS-Bl. However, with HMDS-Bl as the underlying scheme,

HMDS employs a low-overhead heuristic depth-first branch and bound search approach to

provide significant performance gains, while incurring low and bounded additional solution

generation times compared to HMDS-Bl. The pseudocode of HMDS is presented in Algo-

rithm 6. It consists of two phases: (i) initialization phase and (ii) allocation phase. While

lines 1 - 4 of function HMDS() comprises the initialization phase, line 5 and line 6 which

calls function assignTasks() presented in Algorithm 7 and outputs the final schedule, com-

prises the allocation phase. Table 4.1 lists the important variables used in algorithm HMDS

and describes their associated meanings.

Initialization Phase: Line 1 of Algorithm 6 records the current CPU clock time. Line 2

initializes the global variables FSTime to 1, msl to infinity (∞), ops to 2, λ to 5 and capT

to 210. Line 3 computes two different parameters which are used in the subsequent allocation

phase namely, (1) Predicted Finish Time PFT [τj, pn] (refer equation 4.1). (2) A rank value

rankpft[τj]. Given the PFT values of task τj on each processor, its average is considered as

the rank (rankpft[τj]) of τj (refer equation 4.2). The PFT [ ] values for all task-processor
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Table 4.1: List of important variables used in HMDS and their meanings

Variables Definitions

initT Stores the current CPU clock time.
msl Records the best schedule length generated so far by HMDS.
ops Bound on the number of processor choices (pruning mechanism-2).
λ Allowable OEFT degradation bound in percentage (pruning mechanism-3).

capT
Allowable run-time bound; set as a multiple of HMDS-Bl ’s run-time (pruning
mechanism-4).

BAST ,
BAFT ,
BPRO

Maintains enumerations of the best schedule at any given time using three arrays
of size |V |. For all tasks in the schedule BAST stores the start times, BAFT
holds finish times, and BPRO stores the processor allocations.

p′
An array of size ops containing processor ids representing processor choice prior-
ities for a task; sorted in non-decreasing order of OEFT .

taskListID Index of the task in taskList being currently processed.

FSTime
Time required to generate the first solution in HMDS ; this is approximately equal
to the solution generation time of HMDS-Bl.

pairs and the rankpft[ ] values of all tasks are determined through the function pft rank()

(refer Algorithm 4). The tasks are stored in a vector taskList in non-increasing order of

their ranks (line 4).

Algorithm 6: HMDS(G,P )

Input: Task graph G(V,E), processor set P
Global Variables: initT , FSTime, msl, capT , ops, λ, BAST , BAFT and BPRO

Output: A schedule which minimizes makespan
1 initT = clock();
2 FSTime = 1, msl =∞, ops = 2, λ = 5, capT = 210;
3 [PFT, rankpft] = pft rank(G,P );
4 Sort tasks in non-increasing order of their rankpft values and store in taskList;
5 assignTasks(G, P , 1);
6 Print lists BAST , BAFT and BPRO, representing the generated schedule;

Allocation Phase: The objective of the allocation phase is to generate a static sched-

ule obtained by determining: (i) a processor allocation BPRO[τj], (ii) an actual start time

BAST [τj], and (iii) an actual finish time BAFT [τj] for each task τj in the order prescribed

by the priority vector taskList such that the makespan is minimized. The task (say, τj)

in taskList to be scheduled next may be potentially allocated to any processor pn on the

heterogeneous platform. Each such possible task-processor allocation (say, ⟨τj, pn⟩) is associ-
ated with three attributes: (i) Effective Start Time (EST) (refer equation 4.3), (ii) Effective
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Finish Time (EFT) (refer equation 4.4), and (iii) Optimistic Effective Finish Time (OEFT )

(refer equation 4.5). In order to allocate each task to a specific processor, we have designed

an efficient DFBB search-based schedule generation scheme called assignTasks().

Algorithm 7: assignTasks(G, P , taskListID)

Input: Task graph G, processor set P , taskListID
Global Variables: initT , FSTime, msl, capT , ops, λ, BAST , BAFT and BPRO

Output: A schedule which minimizes makespan
1 if (clock()− initT )/FSTime > capT then
2 return;

3 if taskListID = |V |+ 1 then
4 if msl =∞ then
5 FSTime = clock()− initT ; // Time to generate 1st sol.

6 if AFT [τexit] < msl then
7 msl = AFT [τexit];
8 Copy lists AST , AFT and PRO into BAST , BAFT and BPRO;

9 return;

10 τj = taskList[taskListID];
11 for each processor pn in P do
12 Compute EST [τj , pn], EFT [τj , pn] and OEFT [τj , pn] for task τj using equations 4.3, 4.4

and 4.5;

13 Let p′ be an array of size ops such that OEFT [τj , p
′
1] ⩽ OEFT [τj , p

′
2] ⩽ · · · ⩽ OEFT [τj , p

′
ops];

14 limit = OEFT [τj , p
′
1]× (1 + λ/100);

15 for i = 1 to ops do
16 if OEFT [τj , p

′
i] ⩽ limit and OEFT [τj , p

′
i] < msl then

17 Assign τj to p′i;
18 Copy EST [τj , p

′
i], EFT [τj , p

′
i] and p′i to AST [τj ], AFT [τj ] and PRO[τj ];

19 prevAvail = avail[p′i];
20 avail[p′i] = EFT [τj , p

′
i];

21 assignTasks(G, P , taskListID + 1);
22 avail[p′i] = prevAvail;

Pseudocode of this recursive assignTasks() function is presented in Algorithm 7. Each

call to assignTasks() attempts to extend the currently generated partial schedule (stored

within lists AST , AFT and PRO) by one more task (say, τj; line 10) in rank order, allocating

it on a certain processor (say, p′i; lines 10-22). In lines 11-12, the EST [τj, pn], EFT [τj, pn]

and OEFT [τj, pn] values of task τj for each processor pn are calculated using equations 4.3,

4.4 and 4.5, respectively. Next, a sorted list p′ of processor ids is constructed such that
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OEFT [τj, p
′
1] ⩽ OEFT [τj, p

′
2] ⩽ · · · ⩽ OEFT [τj, p

′
ops] (line 13), where p

′
i denotes the i

th element

in the list p′; i = 1, 2, . . . , ops. We first try to extend the schedule with τj allocated to p′1,

the processor on which τj’s OEFT is minimum. Subsequently, when the schedule backtracks,

we try to extend it with τj on p′2, the processor for which τj’s OEFT is second best, and this

process continues likewise. After assigning τj to a certain processor p′i (line 17), a recursive

call to assignTasks() is made in the attempt to further extend the schedule by one more

task (line 21). assignTasks() returns to its caller by generating a complete schedule when

all tasks in DAG G have been explored (lines 3-9). After a complete schedule is generated,

the currently known best schedule (stored in the lists BAST , BAFT and BPRO) and its

associated makespan msl are updated, if makespan of the current schedule is lower than

msl (lines 6-8).

In order to keep solution generation times comparable to HMDS-Bl (to at most a small

multiple of HMDS-Bl ) while ensuring significantly better solutions, the search procedure

has been equipped with the following novel pruning mechanisms.

4.3.2.1 Pruning Mechanism 1: Using a lower bound heuristic function

Pruning a partial schedule if its estimated lower bound on makespan is higher than the

makespan of the best actual schedule obtained thus far : The condition, OEFT [τj, p
′
i] < msl

in line 16 of the assignTasks() function (refer Algorithm 7) implements this mechanism.

Theorem 4.3.2 proves that OEFT [τj, pn] is a lower bound on the makespan achievable by

any complete schedule which includes the current partial schedule along with the allocation

of τj on pn. With OEFT being a lower bound, the search strategy gets empowered with

the following salient property: when the condition, OEFT [τj, p
′
i] < msl holds, there is no

possibility of finding any complete schedule whose makespan is lower than the current best

(msl), by extending further with the current partial schedule and allocating of τj on pn.

Lemma 4.3.1. Given a fixed rank list of tasks, PFT [τj, pn] is a lower bound on the time

required to complete execution of the remaining unscheduled task nodes in the rank list,

subsequent to the completion of task τj on processor pn.

Proof. (by Induction) We prove this property by induction, traversing through the rank list

of tasks in reverse order from the exit task τexit, until the current task τj is reached.

Base case: When τj = τexit, PFT [τj, pn] is set to 0 (equation 4.1), which is obviously a

lower bound.
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Induction hypothesis: When τj is any other task node (τj ̸= τexit), we assume that for all

immediate successors τk of τj, PFT [τk, pr] is a lower bound, ∀r ∈ [1, |P |].
Induction step: It may be appreciated that cn,rj,k is the actual time required to transmit the

output of τj (on pn) to the input of τk (on pr), and ωk,r is the actual execution time of τk (on

pr). Hence when τk executes on pr, the expression PFT [τk, pr]+ωk,r+cn,rj,k represents a lower

bound on the time required to complete the schedule subsequent to the generation of τj’s

output (on pn). Consequently, the minimum value that is attained by this expression over all

processor choices for τk, is also a lower bound. Finally, as the output of τj must be received

by all its successors τk, PFT [τj, pn] = maxτk∈succ(τj)
[
minpr∈P{PFT [τk, pr] + ωk,r + cn,rj,k }

]
is

a lower bound.

Theorem 4.3.2. Given a DAG G, OEFT [τj, pn] is a lower bound on the makespan achievable

by any complete schedule which includes the current partial schedule along with the allocation

of τj on pn.

Proof. From equation 4.5, it can be seen that OEFT [τj, pn] is obtained as a summation of

two components, EFT [τj, pn] and PFT [τj, pn]. Given the current partial schedule, the first

component EFT [τj, pn] denotes the actual finish time of τj on pn. Lemma 4.3.1 proves that

PFT [τj, pn] is a lower bound on the time required to complete execution of the remaining

unscheduled task nodes in the rank list, subsequent to the completion of τj on pn. Hence,

OEFT [τj, pn] is a lower bound.

4.3.2.2 Pruning Mechanism 2: Cap on maximum #processor choices

Bounding the number of processor choices for each task to a small constant : A task τj is

attempted to be allocated on different alternative processor choices with the choices being in

non-decreasing order of τj’s OEFT values on those processors. As discussed above, schedules

with lower makespans than that produced by HMDS-Bl may possibly be obtained for any

of these processor choices. However, the likelihood of better solutions with later choices

(beyond the first two processor choices, say) is often very low. This is because in most

cases, the OEFT values (which provide a lower bound on schedule length) for the later

processor choices are significantly higher than the OEFT value for the first choice. This

observation is also validated by our experimental results. As an illustration let us analyse

Fig. 4.4e (Experiment 4, Section 4.4.3), which shows the schedule length ratio values for

the Gaussian Elimination task graph as the number of tasks vary from 20 to 55. It may
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be seen that for task graphs containing 54 task nodes, average schedule lengths reduce by

about 7.4% when the value of the number of processor choices (ops) is increased from 1 to

2. However, when ops is increased from 2 to 3, the average decrease in schedule lengths

reduces to only 0.19%. Further, there is no decrease in schedule lengths when ops increases

from 3 to 4. On the other hand, solution generation times increase exponentially as the

value of ops becomes larger. For example, Fig. 4.4f shows that the average run-time values

for ops equal to 1, 2, 3 and 4 are 0.08 ms, 13 secs, 110 secs and 250 secs, for the case when

the DAGs contain 54 task nodes. Although the exact values may be different, this general

trend has been found in all our experiments. Based on these observations, the number of

alternative processor allocation choices ops, for any task τj has been limited to 2 (line 2 of

Algorithm 6 and line 15 of Algorithm 7) in the HMDS algorithm.

4.3.2.3 Pruning Mechanism 3: OEFT based cap on #procssor choices

Bounding the number of processor choices for each task based on the allowable increase in

OEFT values compared to the best choice: For any given task τj, the likelihood of finding

lower makespans compared to HMDS-Bl reduces to a low value with a certain processor

choice p′i (i > 1), if the value of OEFT [τj, p
′
i] is significantly higher than OEFT [τj, p

′
1]. Our

experimental results also validate this observation. For example, with the value of ops fixed

to 2, Fig. 4.5b depicts the schedule length ratios and run-times when search corresponding

to the second processor choice (p′2) is only conducted if the values of OEFT [τj, p
′
2] is at most

λ percent larger than OEFT [τj, p
′
1], for all tasks τj. It may be derived from the table that for

54 task node DAGs, compared to HMDS-Bl, average schedule lengths for HMDS improve

by 3.9%, 6.1%, 6.9%, 7.2%, 7.3%, 7.39%, and 7.4% for λ equal to 1%, 3%, 5%, 10%, 15%,

20%, and 100%, respectively. At the same time, average run-times increase by about 23.3,

28.9, 211.6, 215.3, 216.7, 217.1, and 217.3 times for λ equal to 1%, 3%, 5%, 10%, 15%, 20%, and

100%, with respect to HMDS-Bl. Based on this observation, in our experiments, we have

assumed the value of λ to be 5% (line 2 of Algorithm 6 and line 14 of Algorithm 7) as a

judicious trade-off between solution quality and corresponding solution generation times. It

may be noted that for λ = 5%, HMDS is able to achieve 93% of the maximum possible

reduction (for the case with λ = 100%) in schedule lengths with ops being fixed to 2. In

addition, the average run-time for this case is also acceptable being around 0.25 sec.
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4.3.2.4 Pruning Mechanism 4: Cap on solution generation times

Terminating the search based on the amount of time consumed with respect to that taken

by HMDS-Bl : HMDS follows a depth-first branch and bound strategy where the first valid

solution is generated when all task nodes have been explored once. It may be noted that

for this case, all tasks are allocated to the processors where the OEFT values are minimum,

and so this solution is same as that produced by HMDS-Bl. The time taken to generate

the first solution (say, FSTime) is slightly higher than the average run-time of HMDS-Bl,

primarily because of the additional bound conditions in the HMDS algorithm. Further,

HMDS is assured to return a solution at least as good as HMDS-Bl, if it is terminated

after any length of time beyond FSTime. In the algorithm, the parameter capT denotes

the upper bound on the allowable run-time of HMDS as a multiple of FSTime. Thus,

capT = 210 indicates that HMDS will be allowed to run for at most 210 × FSTime ms.

Table 4.3 (Experiment 6, Section 4.4.3) shows the Average Improvement in Schedule lengths

(AIS) with respect to HMDS-Bl, for various values of λ (= 3%, 5%, and 10%) and capT

with ops fixed to 2. Here, AIS denotes the fractional decrease in the schedule length of

HMDS with respect to the schedule length of HMDS-Bl (in percentage). As an acceptable

balance between schedule length improvement and additional time overhead, we have fixed

the value of capT to 210 in our experiments. It may be observed from the table that for task

graphs containing 54 nodes, ops = 2, λ = 5% and capT = 210, HMDS is able to achieve

6.4% improvement in average schedule lengths (about 1% less than the maximum possible

makespan reduction), while still incurring run-times of less than 100 ms (≈ 81 ms).

4.3.2.5 Complexity Analysis

To generate a single solution HMDS requires O(|E|×|P |) time, similar to HMDS-Bl. Given

this base overhead, the total complexity of the algorithm is governed by the computational

complexity associated with the assignTasks() function. In the absence of the four pruning

mechanisms, the overhead of assignTasks() becomes O(|P ||V |). By introducing the 1st and

2nd (ops = 2) pruning mechanisms of HMDS, the overhead reduces to O(2|V |). In practice,

through further addition of the 3rd and 4th pruning mechanisms, the HMDS algorithm

is seen to scale appreciably well, as validated through our experiments. The 4th pruning

mechanism puts a cap on the run-time of HMDS, relative to HMDS-Bl.

Example Continued: We continue with the example in Section 4.3.1. Fig. 4.1c lists the

86



4.4 Experiments and Results

PFT and rankpft values corresponding to the example system shown in Figs. 4.1a and 4.1b.

The priority list of tasks is obtained as: taskList = ⟨τ1, τ4, τ5, τ2, τ6, τ3, τ7, τ9, τ8, τ10⟩. The

Gantt chart in Fig. 4.2h shows the schedule generated by HMDS. Comparing Fig. 4.2, we

observe that HMDS (makespan 177; ops = 2, λ = 10%, capT = 22) comprehensively

outperforms HMDS-Bl (makespan 182), HEFT (makespan 198), PEFT (makespan 189),

PALG (makespan 200), PPTS (makespan 187), and PSLS (makespan 184).

4.4 Experiments and Results

In this section, we experimentally evaluate the performance of HMDS-Bl, HMDS, and com-

pare them against the state-of-art algorithms HEFT [85], PEFT [5], PALG [3], PPTS [24]

and PSLS [112]. In our experiments, we consider the values of ops = 2, λ = 5%, capT = 210,

for the HMDS algorithm. In addition to these simulation-based experiments, a simple proof-

of-concept implementation of the proposed work has been conducted on a real platform

consisting of two heterogeneous processors ATmega328p (Arduino Uno) and ATmega2560

(Arduino Mega) inter-connected through their serial ports. We are not including detailed

description of the proof-of-concept real platform implementation here, as Chapter 3 contains

an elaborate discussion on a similar implementation (refer Section 3.6). Before presenting

the detailed results, we now describe the experimental setup and the performance metrics

used by us.

4.4.1 Experimental Setup

The performance evaluation has been conducted through extensive simulation-based ex-

periments using two real-world benchmark task graphs, namely, Gaussian Elimination [85]

(refer Fig. 3.4a) and Epigenomics [39] (refer Fig. 3.4b). We now discuss data generation

framework.

Data Generation Framework: An exhaustive set of experiments have been carried

out using randomly generated data sets obtained by carefully varying a set of parameters.

1. Number of tasks |V |: Experiments have been conducted with different values of

matrix size ν = {6, 7, 8, 9, 10}. With these values of ν, five types of hypothetical DAGs

having different number of tasks |V | and edges |E| are generated (|V | = {20, 27, 35, 44, 54};
|E| = {29, 41, 55, 71, 89}). Similarly, parallel branch ϑ = {6, 7, 8, 9, 10}; DAGs having |V | =
{28, 32, 36, 40, 44} tasks and |E| = {32, 37, 42, 47, 52} edges are generated.
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2. Number of processors: |P | = {4, 8, 16, 32}

3. Task execution times: We have followed a three-step procedure to generate task

execution time on each heterogeneous processor. First, the average execution time (ωDAG),

considering all tasks is determined in the task graph. Values of ωDAG used in this work:

ωDAG = {40, 80, 120, 160, 200}. Next, the average execution time (ωj) for each task (τj), over

all processors is found out. Values of ωj for the tasks are obtained from normal distributions

having mean µ = ωDAG and different values of standard deviation σ = {10, 20, 30}. Finally,
the execution time (ωj,n) of τj on each processor pn is determined. The ωj,n values of a task τj

are obtained for a normal distribution having mean µ = ωj and different standard deviation

values σ = (ωj × β). The parameter β acts as the heterogeneity factor and ascertains

the amount of skewness of a task’s execution times on different processors. Values of β

considered in this work are: β = {0.1, 0.25, 0.5, 0.75, 1}. After obtaining the initial ωj,n

values of a task τj, they are appropriately updated such that
∑|V |

j=1

∑|P |
n=1 ωj,n is equal to

|V | × |P | × ωDAG.

4. Data communication workload: Ratio of the time overhead associated with message

transmission and task execution is referred to as Communication-to-Computation Ratio

(CCR). Performance of the proposed schedulers HMDS-Bl and HMDS have been eval-

uated for different CCR values (CCR = {0.1, 0.5, 1, 2, 5}). The average communication

workload cDAG is then obtained as cDAG = CCR × ωDAG. Given cDAG, the average inter-

task message size (dataDAG; in Bytes) for a DAG is calculated as: dataDAG = cDAG × B,

where B (= 1
|P |×(|P |−1)/2

∑
bm,n (1 ⩽ m ⩽ |P |; 1 ⩽ n < m)) denotes the average data

communication bandwidth. We have carried out experiments for two different B values

(B = {5 Gbps, 10 Gbps}). The actual bandwidth bm,n of the communication channel be-

tween two processors pm and pn are obtained from a normal distribution having µ = B and

σ = 0.2×B. These bm,n values are further updated appropriately such that
∑|P |

m=1

∑m−1
n=1 bm,n

becomes |P | × (|P | − 1)/2 × B. The length of the output message (datai,j) between a de-

pendant task pair (τi, τj) is obtained from a normal distribution having µ = dataDAG and

σ = 0.2 × dataDAG. The datai,j values are then scaled in order to make
∑

datai,j equal to

|E| × dataDAG.

Simulation Framework: The simulation framework is written in C and is executed

on a system having the following configuration: (i) Intel® Core™ i7-8550U CPU @ 1.80GHz

×8, (ii) 8 GiB Memory, and (iii) Ubuntu 18.04.2 LTS OS (64-bit).
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4.4.2 Performance Metrics

Performance of the proposed methodology has been evaluated using three different param-

eters:

1. Schedule Length Ratio: The most commonly used performance measure of a

scheduling algorithm on a task graph is the schedule length/makespan. Since a large set

of task graphs with different input properties are used, we have employed a normalised

schedule length measure called Schedule Length Ratio (SLR). This metric is used to

compare performance of the proposed makespan minimization algorithms HMDS-

Bl and HMDS against the existing state-of-art algorithms HEFT [85], PEFT [5],

PALG [3], PPTS [24] and PSLS [112]. Given a task graph, Schedule Length Ratio

(SLR) is defined as:

SLR =
Xms∑

τj∈CPmin
minpn∈P ωj,n

(4.6)

where Xms represents the makespan achieved by an algorithm like, HEFT, PEFT,

PALG, PPTS, PSLS, HMDS-Bl or HMDS. Assuming execution time of each task to

be its minimum value over all heterogeneous processors, the denominator represents

the sum of the execution times of all tasks in the critical path (CPmin) of the task

graph. It may be noted that lower the value of achieved SLR better is the performance

of the scheduling algorithm.

2. Number of Improved Solutions: We used this metric to pair-wise compare the

performance of two scheduling strategies in a tabular format. In the table, we show

the percentages of cases for which one strategy has performed better, similar or worse

compared to the other.

3. Run-time: Through this metric, we have determined the average solution generation

time taken by a scheduling strategy for data sets obtained by using a fixed set of

parameter values.

4.4.3 Performance Results

In this subsection, we present detailed experimental results using two benchmark task graph

models. In these experiments, each data point is the average over solutions generated with

100 different task graph data corresponding to a fixed set of parameters.
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4.4.3.1 Experiment-1: Pair-wise makespan comparison of algorithms

Table 4.2 shows pair-wise performance comparisons among the following algorithms HEFT,

PEFT, PALG, PPTS, PSLS, HMDS-Bl and HMDS. Specifically, the result corresponding to

the (row i, column j)th- entry in the table depicts the percentages of test cases for which the

algorithm corresponding to the ith row performs better, equal or worse than the algorithm

in column j. A total of 50000 test cases using Gaussian Elimination task graphs have

been considered for each pair of algorithms. For example, the (1, 1)th- entry in Table 4.2

shows that HMDS performs better, equal and worse in 85.9%, 3.6% and 10.5% test cases

respectively, compared to HEFT.

Table 4.2: Pair-wise makespan comparison of the scheduling algorithms

PALG PSLS PPTS PEFT HEFT HMDS-Bl

better 97.4% 81.7% 85.7% 81.9% 85.9% 78.9%

HMDS equal 0.6% 9.4% 7.4% 10.4% 3.6% 21.1%

worse 2.0% 8.9% 6.9% 7.7% 10.5% 0.0%

better 95.7% 52.7% 62.1% 59.2% 76.8%

HMDS-Bl equal 0.4% 3.5% 3.6% 9.2% 2.8%

worse 3.9% 43.9% 34.3% 31.6% 20.4%

better 86.1% 26.5% 33.9% 27.6%

HEFT equal 4.3% 2.6% 1.1% 2.4%

worse 9.7% 70.9% 65.0% 70.0%

better 93.7% 35.0% 52.6%

PEFT equal 0.7% 13.8% 3.7%

worse 5.6% 51.2% 43.7%

better 90.8% 42.3%

PPTS equal 2.5% 2.2%

worse 6.7% 55.5%

better 94.8%

PSLS equal 0.6%

worse 4.6%

4.4.3.2 Experiment-2: Comparison of schedule length ratios

This experiment measures the schedule length ratios (SLR) of HEFT, PEFT, PALG, PPTS,

PSLS, HMDS-Bl and HMDS for varying values of #tasks (|V |), #processors (|P |), het-
erogeneity (β) and Communication-to-Computation Ratios (CCR). Obtained results for
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both Gaussian Elimination and Epigenomics are presented in Figs. 4.3, 4.4a and 4.4b. It

may be observed that for all figures, HMDS comprehensively outperforms all the algorithms

throughout in terms of achieved makespans.

Figs. 4.3a and 4.3b show average SLR values for the Gaussian Elimination and Epige-

nomics DAGs, as the number of tasks vary between 20 and 55 (ν for Gaussian Elimination

and ϑ for Epigenomics are varied from 6 to 10). Here, the parameters |P |, CCR and β

have been fixed at 4, 0.5 and 0.75, respectively. For Gaussian Elimination, HMDS-Bl is

seen to deliver better results than HEFT, PEFT, PALG, PPTS and PSLS, in all cases, For

Epigenomics, HEFT performs a bit better compared to PEFT, PALG, PPTS, PSLS and

HMDS-Bl, when the number of tasks increases. HMDS-Bl delivers slightly better results

than PEFT, PALG and PSLS, in all the cases.

Figs. 4.3c and 4.3d show average SLR as a function of #processors, while fixing |V | to
44, CCR to 0.5 and β to 0.75. As an example of HMSD’s performance, it may be observed

in Fig. 4.3c (Gaussian Elimination) that for |P | = 32, the average schedule lengths of HMDS

is lower than HEFT, PEFT, PALG, PPTS, PSLS and HMDS-Bl by approximately 16%,

6%, 22%, 13%, 5% and 3%, respectively. For Epigenomics (Fig. 4.3d), HMDS outperforms

HEFT, PEFT, PALG, PPTS, PSLS and HMDS-Bl by approximately 17%, 7.4%, 25%, 15%,

7.1% and 3%, respectively. It may be noted that for both applications, the performance

of HMDS-Bl, PEFT and PSLS improves with respect to HEFT, PALG and PPTS as the

number of processors goes on doubling.

In Figs. 4.3e and 4.3f, we depict the average SLR as CCR is varied between 0.1 and

5. The parameters |V |, |P | and β are set to 44, 4 and 0.75, respectively. For this case,

the performance of HMDS-Bl is nearly same with PEFT, PPTS and PSLS. It may be seen

that the average SLR increases with higher values of CCR due to an increase in overall

workload. However, because of higher available parallelism, Gaussian Elimination generates

shorter makespans than Epigenomics. It can also be observed from both the figures that the

performance of HEFT and PALG gradually decreases with an increase in overall workload.

In Figs. 4.4a and 4.4b, we show the variation in SLR values as the degree of heterogeneity

is increased from 0.1 to 1. Parameters |P |, CCR and |V | are fixed at 4, 0.5 and 44. For

Gaussian Elimination, it can be observed that HMDS-Bl, PEFT, PPTS and PSLS perform

better than HEFT, while the trend is reverse for Epigenomics. For both applications, PALG

may be seen to deliver worse results than the existing algorithms in all cases.
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Figure 4.3: SLRs for varying #tasks, #processors and Communication-to-Computation Ratios.
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4.4.3.3 Experiment-3: Comparison of run-times

This experiment is a comparative analysis of the run-times of HMDS-Bl, HEFT, PEFT,

PALG, PPTS and PSLS, for varying values of #tasks (Fig. 4.4c) and #processors (Fig. 4.4d)

using Gaussian Elimination.

Fig. 4.4c shows average run-times, as the number of tasks is varied between 20 and 55.

Values of the parameters |P |, CCR and β have been fixed at 4, 0.5 and 0.75. It can be

observed that PEFT, PPTS and HMDS-Bl take similar run-times to generate the schedules,

which is slightly higher than HEFT and PALG’s run-times. Further in the figure, run-times

of all the compared algorithms may be seen to be upper bounded by ≈ 80 microseconds, in

all cases except PSLS.

Fig. 4.4d shows average run-times as a function of processors, while fixing |V | to 44,

CCR to 0.5, and β to 0.75. It can be observed that the run-times of all the algorithms

strictly increase with the number of processors. The algorithms’ ranking can be viewed in

terms of their average run-times from fastest to slowest as: PALG ⩽ HEFT < HMDS-Bl

< PEFT < PPTS < PSLS. For Experiments-3, 4, 5, 6 and 7, we have not shown results

for the Epigenomics application, since the trends of the results as obtained for Epigenomics

are similar to that of Gaussian Elimination.

4.4.3.4 Experiment-4: Bound on #processor choices

This experiment measures the schedule length ratios (SLRs) (Fig. 4.4e) and run-times

(Fig. 4.4f) of HMDS, as the number of tasks are varied from 20 to 54 and the number

of processor choices (ops) vary from 1 to 4. In this, the parameters |P |, CCR, and β are set

to 4, 0.5 and 0.75. From Fig. 4.4e, it may be observed that for any given number of tasks,

the average SLR value decreases sharply with an increase in the number of processor choices

from ops = 1 to ops = 2. However, further increment of ops (from 2 to 3 or 3 to 4) delivers

negligible additional decrease in SLRs. On the other hand, the solution generation times

increase exponentially as the value of ops is increased from 2 to 4 (Fig. 4.4f). A detailed

analysis of these result trends has been provided as part of the discussion on mechanism-2

of the pruning techniques applied in HMDS (refer Section 4.3.2).
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Figure 4.4: (a) and (b) SLRs for varying heterogeneity; (c) and (d) Run-times for varying
#tasks and #processors using Gaussian Elimination; (e) and (f) SLRs and run-times of HMDS
for Gaussian Elimination.
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4.4.3.5 Experiment-5: Effect of OEFT based bound

Fig. 4.5a depicts the average SLRs and run-times of HMDS-Bl as the number of tasks |V |
vary from 20 to 55 for Gaussian Elimination. Using Fig. 4.5a as the basis for comparison,

Fig. 4.5b presents the Average Improvement in performance achieved by HMDS, while

simultaneously showing the average slowdown suffered in the process, with respect to HMDS-

Bl. Here, performance is measured in terms of Average Improvement in Schedule length

ratios (AIS), which is defined as:

AIS =
SLRHMDS-Bl − SLRHMDS

SLRHMDS
× 100 (4.7)

On the other hand, average slowdown ASD is defined as:

ASD =
run-timeHMDS

run-timeHMDS-Bl
(4.8)

SLR Run-time

20 1.799453 0.02 ms
27 1.860302 0.03 ms
35 1.892773 0.04 ms
44 1.915857 0.05 ms
54 1.951962 0.08 ms

|V | λ = 1 λ = 3 λ = 5 λ = 10 λ = 15 λ = 20 λ = 100

AIS
20

0.69 1.3 2.1 2.38 2.48 2.48 2.5
ASD 20.5 20.6 21.8 23 23.5 23.8 24.3

AIS
27

1 1.9 2.3 2.65 2.7 2.74 2.8
ASD 20.7 22.4 23.8 26.1 27.2 27.6 28

AIS
35

1.7 3.6 4.1 4.51 4.58 4.58 4.6
ASD 21.3 23.8 26.1 28.8 29.8 210.3 210.9

AIS
44

2 3.9 4.6 4.9 5.12 5.13 5.14
ASD 22 26.2 28.8 212.2 213.7 214.3 215

AIS
54

3.9 6.1 6.9 7.2 7.3 7.39 7.4
ASD 23.3 28.9 211.6 215.3 216.7 217.1 217.3

(a) (b)

Figure 4.5: (a) SLRs and run-times of HMDS-Bl for Gaussian Elimination; (b) Average Improve-
ment in Schedule length ratios (AIS in percentage) and Average slowdown (ASD) by HMDS; for
varying λ using Gaussian Elimination. λ is the allowable OEFT degradation bound in percentage.

.

For any given number of tasks, results are presented for varying values of λ, which

represents the allowable OEFT (refer equation 4.5) degradation bound in percentage. Values

of |P |, CCR and β are set to 4, 0.5 and 0.75. Discussion for the trends of the results in

Fig. 4.5b has been done within the description of pruning mechanism-3 (refer Section 4.3.2).

4.4.3.6 Experiment-6: Effect of hard run time caps

Using the same experimental setup as employed for Experiment 5, we further examine

the comparative performance of HMDS with respect to HMDS-Bl (by determining AIS;
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refer equation 4.7) for various upper bounds on the allowable run-times for HMDS. Here,

the upper bounds are obtained through the parameter capT , which is set as a multiple of

HMDS-Bl ’s run-time. capT essentially provides a mechanism to stop HMDS’s search for

better solutions after a pre-specified duration subsequent to search commencement. HMDS

then returns the best solution found within this duration. The results obtained in Table 4.3

show that HMDS achieves a steady improvement in performance as more time is allowed

in its search for better solutions. Further analysis on these results are provided in the

discussion of the 4th mechanism corresponding to the pruning techniques applied to HMDS

(refer Section 4.3.2).

Table 4.3: Average Improvement in SLR (AIS in percentage) by HMDS; for varying capT and
λ using Gaussian Elimination. λ is the OEFT degradation bound in percentage and capT is the
allowable run-time bound

λ 3% 5% 10%
capT 21 22 24 26 28 210 212 21 22 24 26 28 210 212 21 22 24 26 28 210 212

AIS 1.6 2.4 3.8 5 5.8 6 6.1 1.5 2.2 3.2 4.5 5.6 6.4 6.7 1.4 2 2.9 3.9 5.2 6 6.5

4.4.3.7 Experiment-7: HMDS vs. HMDS-Bl

Using Gaussian Elimination as the task graph structure, Fig. 4.6a lists the average SLRs

and run-times of HMDS-Bl as the number of tasks |V | is varied from 54 to 209, on systems

containing 4 and 8 processors, respectively. Fig. 4.6b depicts the Average Improvement in

SLR achieved by HMDS over HMDS-Bl (Fig. 4.6a) along with corresponding run-times of

HMDS. The parameters CCR and β are set to 0.5 and 0.75, while value of capT is varied

from 6% to 10%. In Fig. 4.6b, we observe that for any given number of tasks, HMDS

achieves a steady improvement in performance as more time is allowed in its search for

better solutions. On the other hand, as is obvious, for any given bound on run-time, the

performance degrades as the number of tasks and/or the number of processors increase. In

spite of this, HMDS may be considered appreciably scalable and we see that even for 209

tasks, HMDS is able to deliver more than 3% (1.5%) performance gains on 4 (8) processors

in less than 0.5 Sec (0.9 Sec). It may be noted that, these performance gains may be critical

especially in many real-time cyber-physical control systems which often run in a repetitive

loop, continuously controlling its associated plant. For example, a performance gain of say

2% means that control actuations can now be effected every 98 ms, if the original makespan
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was 100 ms. This increased control actuation rate may potentially be critical towards

enhancing stability of the designed system.

|P | 4 8
|V | 54 77 104 135 152 189 209 54 77 104 135 152 189 209

SLR 1.951962 2.072274 2.166477 2.236507 2.392265 2.497077 2.582901 2.639374 2.689752 2.755731 2.771818 2.789517 2.791327 2.830357
Run-time 0.08 ms 0.14 ms 0.20 ms 0.28 ms 0.34 ms 0.49 ms 0.56 ms 0.16 ms 0.23 ms 0.36 ms 0.50 ms 0.63 ms 0.88 ms 0.93 ms

(a)

capT
|P | 4 8
|V | 54 77 104 135 152 189 209 54 77 104 135 152 189 209

26
AIS (%) 4.50 3.95 2.96 2.53 2.03 1.90 1.87 1.43 1.36 1.21 1.20 1.18 1.16 1.1

Run-time (Sec) 0.005 0.009 0.01 0.02 0.02 0.03 0.04 0.01 0.01 0.02 0.03 0.04 0.06 0.06

28
AIS (%) 5.60 4.89 4.05 3.49 2.98 2.40 2.29 1.60 1.57 1.47 1.38 1.34 1.32 1.30

Run-time (Sec) 0.02 0.04 0.05 0.07 0.09 0.13 0.14 0.04 0.06 0.09 0.13 0.16 0.23 0.24

210
AIS (%) 6.40 5.74 4.97 3.79 3.68 3.28 3.02 1.80 1.76 1.67 1.59 1.56 1.55 1.53

Run-time (Sec) 0.08 0.14 0.20 0.29 0.35 0.50 0.57 0.16 0.24 0.37 0.51 0.65 0.90 0.95

(b)

Figure 4.6: (a) SLRs and run-times of HMDS-Bl for varying |P | and |V | using Gaussian Elimina-
tion; (b) AIS and run-times of HMDS for varying |P |, |V | and capT using Gaussian Elimination.

4.5 Case Study: Traction Control System

To exhibit the practical applicability of proposed algorithms to real-world designs, we present

a case study using the Traction Control (TC ) application in automotive systems. The TC

application helps to improve stability of the car when road conditions are slippery [41].

τ1 τ2 τ3 τ4

τ6τ5 τ7

τ8

τ9 τ10

512
512 512 512

128
128

64

512 512

Left-rear
wheel speed

Left-front
wheel speed

Right-rear
wheel speed

Right-front
wheel speed

Yaw rate

Desired
breaking force

Actuate throttle Actuate breakes

Lateral
acceleration

Hand-wheel
position

(a) TC Block Diagram (b) TC DAG (c) TC Execution time table

p1 p2 p3
τ1 205 200 195
τ2 207 200 193
τ3 190 210 200
τ4 200 198 202
τ5 150 155 145
τ6 297 300 303
τ7 175 180 170
τ8 405 400 395
τ9 146 154 150
τ10 199 201 200

p1 p2 p3
pown,ind 0.07 0.04 0.03
Cn,ef 1.0 0.8 0.8
mn 2.5 2.5 2.9
fn,ee 0.29 0.21 0.22
fn,max 1.0 1.0 1.0

(d) Power parameters

Figure 4.7: Traction Control (TC): (a) TC Block Diagram; (b) TC DAG; (c) Execution times
(in ms) of tasks in TC DAG on three processors; (d) Power parameters of three heterogeneous
processors.

Fig. 4.7a displays the block structure of TC as adapted from [41] and Fig. 4.7b shows

its corresponding task graph representation. This task graph consists of 10 task nodes that
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need to be scheduled on a distributed platform having three heterogeneous processors p1, p2

and p3. The bandwidths of the communication links between each pair of processing devices

are considered to be: b1,2 = b2,1 = 250 KB/s, b2,3 = b3,2 = 500 KB/s, b3,1 = b1,3 = 1 MB/s,

and b1,1 = b2,2 = b3,3 =∞. Fig 4.7c depicts the execution times of each task associated with

traction control, on the three heterogeneous processors. Each edge ei,j is assigned with a

positive weight datai,j (in bytes; for example, data1,6 = 512 bytes) that represents the size of

the message to be transferred from task τi to task τj. We have employed HMDS, HMDS-Bl

and PEFT to generate three separate schedules for the TC task graph. Figs. 4.8a, 4.8b

and 4.8c show the Gantt charts of the schedules obtained using HMDS (ops = 2, λ = 5%,

capT = 21), HMDS-Bl and PEFT. It may be observed that, HMDS is able to deliver a

schedule with a lower makespan (1284 ms) compared to HMDS-Bl (makespan = 1288 ms)

and PEFT (makespan = 1298 ms).

Discussion: In Real-Time Cyber-Physical Systems (RT-CPSs) involving control tasks sim-

ilar to the TC application discussed above, having execution schedules with lower makespans

may be beneficial in many ways. As an instance, we now present an illustration to show

how the additional slack time acquired through a lower makespan schedule may be used in

a Real-Time Traction Control (RT-TC ) system to improve its energy efficiency.

Let us assume an end-to-end application deadline of 1500 ms for our RT-TC task graph

(Fig. 4.7b). Given the makespans of the HMDS (1284 ms; Fig. 4.8a), HMDS-Bl (1288 ms;

Fig. 4.8b) and PEFT (1298 ms; Fig. 4.8c) schedules, the available slack times for HMDS,

HMDS-Bl, PEFT become 216 ms (1500 ms − 1284 ms), 212 ms (1500 ms − 1288 ms),

202 ms (1500 ms− 1298 ms), respectively. Now, we use a prominent existing energy-aware

scheduling algorithm called DECM [95] to minimize dynamic energy dissipations associated

with the obtained HMDS, HMDS-Bl and PEFT schedules, by using the slack times available

with them. For the three processors considered in the TC case study, we assume the same

power parameters as used in [95]. Fig. 4.7d depicts an adapted version of the processor power

parameters presented in Table 3 of [95]. The DECM algorithm takes as input a schedule

along with its associated slack. In order to reduce energy dissipation, DECM modifies the

input schedule by changing task start times and processor operation frequencies during task

execution, while keeping task-to-processor assignments and task execution order same as

the input schedule. The algorithm also ensures that task executions do not overlap and

the end-to-end deadline is not violated in the process. It may be noted that all processors

are assumed to operate at their maximum frequencies for the entire makespan in the input
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schedule.
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Figure 4.8: TC Schedule Gantt charts: (a) HMDS (makespan = 1284 ms); (b) HMDS-Bl
(makespan = 1288 ms); (c) PEFT (makespan = 1298 ms); (d) DECM: HMDS (makespan =
1495 ms, E(G) = 1610.47 W ); (e) DECM: HMDS-Bl (makespan = 1499 ms, E(G) =
1624.35 W ); (f) DECM: PEFT (makespan = 1470 ms, E(G) = 1643.31 W ).

Figs. 4.8a and 4.8d depict the Gantt charts of the input HMDS schedule and correspond-

ing DECM generated modified schedule for the considered RT-TC application. It may be

observed from the figures that task start times and normalized processor frequencies (where

the maximum normalized processor frequency is represented as 1.0) may get changed in the

output schedule. For instance, in Figs. 4.8a and 4.8d, we see that the ⟨start time, processor

frequency⟩ for tasks τ6, τ10 get changed from ⟨390 ms, 1.0⟩ and ⟨1084 ms, 1.0⟩ in the input

schedule to ⟨438 ms, 0.9⟩, ⟨1209 ms, 0.7⟩ in the output schedule. Using the same mecha-

nism for calculating the energy consumed by the schedule as presented in [95], the energy

consumed by the original and modified HMDS schedules are obtained as 1986.56 W and

1610.47 W , respectively. Similarly, energy consumed by the modified DECM generated

HMDS-Bl and PEFT schedules are obtained as 1624.35 W and 1643.31 W , respectively.

Thus, we observe that even for this small RT-TC task graph, due to the lower makespan and

higher associated slack time with HMDS (compared to HMDS-Bl and PEFT ), the DECM

algorithm is able to fetch higher energy savings when HMDS is used as the input schedule.

This outcome therefore highlights an important advantage towards deriving lower makespan

schedules for real-time embedded systems.
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4.6 Summary

In this chapter, we have first proposed a list-based static scheduler named HMDS-Bl, whose

objective is to generate schedules with minimum makespans for task graphs on heteroge-

neous platforms. Unlike the existing works such as HEFT, PEFT, etc., HMDS-Bl employs

the actual communication cost between dependent task pairs (instead of average communi-

cation cost) to accurately incorporate the effects of heterogeneous data transmission times

during task priority evaluation. Experimental evaluation shows that HMDS-Bl is able to

deliver slightly better performance than state-of-the-art algorithms such as HEFT, PEFT,

PPTS, etc. Subsequently, HMDS-Bl is empowered with a low-overhead depth-first branch

and bound search technique called HMDS, to provide further improvements in performance.

Experiments using two benchmark task graphs reveal the scheme’s practical efficacy. From

the experimental results, we can conclude that among the static scheduling algorithms stud-

ied in this chapter, HMDS comprehensively outperforms the others. Finally, the practical

adaptability of the proposed work is shown using a real-world case study on traction control.

As discussed in the motivation section (refer Section 1.2 of Chapter 1), large systems

which constitute multiple control subsystems typically follow a federated resource alloca-

tion policy as it allows simpler design, albeit, at the cost of significantly lower resource

utilizations, in many cases. In order to improve the usage efficiency of available processing

and network resources, in the next chapter, we extend our heterogeneous DAG schedul-

ing framework to enable the co-scheduling of multiple independent real-time periodic DAG

applications.

;;=8=<<
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Chapter 5
DPMRS: An Energy-aware Real-time
Scheduling of Multiple Periodic DAGs on
Heterogeneous Systems

5.1 Introduction

The works are done in Chapters 3 and 4 dealt with single DAG-structured applications

on heterogeneous distributed platforms. Large and complex Cyber-Physical Systems such

as those in the automotive domain consists of multiple sub-systems, such as cruise con-

trol systems, anti-lock braking systems, fuel injection system, etc. These sub-systems are

operated with their own dedicated control applications, each of which is represented as

a precedence-constrained task graph. Traditionally, these individual task graphs are im-

plemented on their own dedicated processing platforms. These systems are said to follow

a federated architecture as each sub-component is associated with its own separate plat-

forms. In contrast, an integrated execution architecture allows the combined execution of

multiple task graph applications on a single consolidated platform. In general, federated

architectures allow specification requirements related to timeliness, safety, energy, etc., to

be satisfied while keeping the design methodology simpler compared to an integrated exe-

cution architecture. However, federated execution results in systems where processing, as

well as network resources, are often severely under-utilized due to poor sharing of resources

between sub-components. As a consequence, a federated architecture may result in higher

design costs compared to an integrated execution.
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Very few research works have targeted the co-scheduling of multiple real-time DAG

applications on a single consolidated processing platform (refer Section 2.5 of Chapter 2), in

spite of its practical importance. This is primarily due to the inherent computational and

design complexity involved in this problem. Therefore in this work, we have endeavored to

develop a scheduling strategy for multiple real-time task graphs on a distributed platform

consisting of heterogeneous processors.

The key contributions of this work are summarized as follows:

1. We propose a static list-based real-time scheduling algorithm for multiple independent

periodic DAG applications on a distributed heterogeneous platform while satisfying

timing, resource and precedence constraints.

2. The objective of the scheduling algorithm is to minimize energy dissipated by the

system during execution of a given set of DAGs using the DVFS approach.

3. The efficacy of the designed algorithm has been exhibited through four benchmark task

graphs: CyberShake [39], Stencil [68], Gaussian Elimination [85] and Epigenomics [67].

The benchmarks have been chosen from diverse application domains namely, earth-

quake science, partial differential equations, linear algebra and bioinformatics.

The remainder of the chapter is organized in the following manner. Section 5.2 presents

the system models and an example system that is used as a running example in the rest

of the chapter. Section 5.3 describes the details of the proposed scheduling policies. Sec-

tion 5.4 provides the experimental results. Section 5.5 exhibits a real-world case study on

an automotive control system. Finally, Section 5.6 concludes the chapter.

5.2 System Models

This section presents the application and platform model, power and energy model, problem

statement along with an example system, related to the proposed work.

5.2.1 Application and Platform Model

A real-time application say, r having deadlineDr is represented as aDAG Gr(V r, Er), where

the set of vertices V r = {τ1, τ2, .., τ|V r|} represents tasks and Er, the set of edges, represents

precedence-constraints between task pairs. While individual tasks within an application are
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non-preemptive, the application as a whole can be considered to allow restricted preemp-

tion. For example, an edge say, ei,j = (τi, τj) ∈ Er denotes the dependency/precedence

constraint between two tasks τi and τj. That is, τj can only start after τi completes ex-

ecution and its output reaches τj. The edge ei,j is labeled with a positive weight datai,j

indicating size of the message to be transmitted. We assume that each independent DAG

has a single source node and a single sink node. A dummy source (sink) node with dummy

edges connecting actual source (sink) nodes, is used in the situation where a DAG has more

than one source (sink) node. The set of all direct successors (predecessors) of a task τj is

represented as succ(τj) (pred(τj)). The considered system consists of a set of independent

persistently executing periodic real-time DAG applications G = {G1, G2, . . . , Gr, . . . , G|G|}
having respective deadlines D = {D1, D2, . . . , Dr, . . . , D|G|} (refer Fig. 5.1). Each of these

applications are assumed to commence execution at system start (i.e., time zero) and con-

tinue to execute periodically until the system is turned off. Each application Gr has an

implicit deadline in which the deadline of the application is exactly equal to its period.

The period is known to be the time interval between the release times of two consecutive

application instances.
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Figure 5.1: An example of three independent application DAGs.

We consider a fully-connected heterogeneous computing platform P = {p1, p2, ..., p|P |},
where each processor pair ⟨px, py⟩ is connected using logically dedicated (possibly distinct

bandwidths) communication links. As these bidirectional logical links can possibly have

distinct bandwidths (heterogeneous), a matrix B of size |P | × |P | is used to represents

the bandwidths between all processor pairs. An element say, bx,y of B indicates the data

transmission rate between processor pairs px and py. Any processor say, py in the platform

can operate at a set of αy discreet frequencies Fy = {fy,1, fy,2, . . . , fy,α, . . . , fy,αy}, such
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that fy,1 and fy,αy represent the minimum and maximum available frequency of py. The

worst case execution time (WCET ) of a task τj on py at frequency fy,αy is denoted as

ωj,y. Then, the WCET of τj on py at its frequency fy,α can be determined as ωj,y × fy,αy

fy,α
.

Table 5.1 shows the WCETs of each task on three heterogeneous processors when they are

at maximum frequencies. Given bx,y and datai,j, the message communication time cx,yi,j from

τi (executes on px) to τj (executes on py) is determined as: cx,yi,j = datai,j/bx,y. The message

communication overhead is assumed to be negligible (i.e., cx,yi,j = 0) when both the tasks τi

and τj are allocated to the same processor.

Table 5.1: Execution times of tasks on three heterogeneous processors

G1 G2 G3

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ1 τ2 τ3 τ4 τ5 τ1 τ2 τ3 τ4 τ5 τ6
p1 11 9 29 10 15 8 10 28 12 9 8 8 4 12 13 15 27 17
p2 16 10 14 12 13 13 22 7 11 7 17 6 12 15 9 10 16 19
p3 12 23 18 8 9 15 21 13 15 14 12 12 23 32 11 21 25 6

5.2.2 Power and Energy Model

During the active operation of an embedded processor py, power is usually dissipated in

three different ways: (i) static power pows
y, (ii) dynamic power powd

y and (iii) independent

power powind
y . The static power component pows

y is present for the entire duration when the

processor is on and can be majorly attributed to the leakage from the millions of gates that

constitute the processor. The frequency-dependent dynamic power loss powd
y depends on

processor activity and is heavily sensitive to the processor’s operating frequency at a given

time. powind
y represents the frequency-independent dynamic power loss which can only be

removed when the processor is in sleep state. Thus, the total power dissipation combining

these three factors when py is operating at frequency fy,α is given by the expression:

pow(fy,α) = pows
y + h × (powind

y + powd
y) = pows

y + h × (powind
y + Cef

y × (fy,α)
my) (5.1)

where h represents the processor state (h = 1 indicates the active state and 0, the sleep

state) and fy,1 ⩽ fy,α ⩽ fy,αy ; fy,αy denotes the maximum frequency of py. The effective

switching capacitance Cef
y and the dynamic power exponent my are processor-dependent

constants.
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Two types of energy management schemes are typically used at the operating system

level. The first one is Dynamic Power Management (DPM), where certain parts of a system

are strategically turned off when the processors are not in the active state. The other

is Dynamic Voltage and Frequency Scaling (DVFS), which reduces power dissipation by

slowing down processor speeds (operating frequency). In this work, we employ DVFS as

our chosen energy management mechanism.

Dynamic energy dissipation for a task τj on a processor py (having maximum frequency

fy,αy) at current frequency fy,α is determined as:

Ed(τj , py, fy,α) = (powind
y + Cef

y × (fy,α)
my)× ωj,y ×

fy,αy

fy,α
(5.2)

The total dynamic power dissipation associated with the execution of all tasks of an appli-

cation Gr is calculated as

Ed(G
r) =

|V r|∑
j=1

Ed(τj , pρ[j], fρ[j],ϱ[j]) (5.3)

where ρ[j] and ϱ[j] denote the assigned processor and selected frequency level (of ρ[j]) for

the execution of τj. Thus, fρ[j],ϱ[j] denotes the operating frequency of processor ρ[j] when τj

executes on it. Static energy dissipation of the rth application is given by

Es(G
r) =

|P |∑
y=1

pows
y × SL(Gr) (5.4)

where SL(Gr) represents the schedule length of an application Gr, obtained by a specific

scheduling algorithm. The total energy consumption (E(Gr)) associated with the execution

of Gr is given by the sum of both its static and dynamic energy dissipation [99] components,

that is:
E(Gr) = Es(G

r) + Ed(G
r) (5.5)

Reducing the frequency of a processor usually causes reduction in power and energy but

longer task execution times. Although, dynamic power powd
y reduces as processor frequency

is lowered, it may not always lead to lower energy, as task’s execution times become higher.

In general, a processor py has a critical operating frequency f cr
y at which energy consumed

during the execution of a task is minimum. This frequency f cr
y is represented as [56, 88]:

f cr
y = my

√
powind

y /(my − 1)Cef
y .
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Problem Statement Given a periodic real-time application set G and a fully connected

heterogeneous distributed processing platform P , where each processor py can operate at αy

discreet frequency levels, determine a feasible static schedule which minimizes overall energy,

while satisfying constraints related to precedence, resource and timing.

An Example System: Let us consider three independent real-time applications given

in Fig. 5.1 to be executed on three heterogeneous processors. D1 = 180, D2 = 60 and

D3 = 90, are the deadlines of applications G1, G2 and G3, respectively. Edge weights in

any of these DAGs denote message sizes. The WCETs of each task on three processors are

shown in Table 5.1. Here, we assume that the communication links between each pair of

processors have heterogeneous bandwidths (b1,2 = b2,1 = 1, b2,3 = b3,2 = 3, b3,1 = b1,3 = 2,

and b1,1 = b2,2 = b3,3 = ∞). The power parameters of the three processors have been

adopted from [95,99]. Table 5.2 depicts the power parameters.

Table 5.2: Power parameters of three heterogeneous processors

py pows
y powind

y Cef
y my f cr

y fy,αy

p1 0.01 0.02 1.3 2.9 0.19 1.0
p2 0.01 0.05 0.5 2.1 0.32 1.0
p3 0.01 0.04 0.2 3.0 0.46 1.0

5.3 The Proposed Schedulers

This section presents a list-based heuristic algorithm for DVFS-enabled energy-aware schedul-

ing of a set of periodic independent DAGs, executing on a heterogeneous computing system.

The proposed strategy has been named DVFS-enabled Periodic Multi-DAG Real-time Sched-

uler for heterogeneous systems (DPMRS ).

5.3.1 The DPMRS Algorithm

The proposed scheduler DPMRS takes a set of periodic applications G and a heterogeneous

computing platform P as inputs. All applications are assumed to commence execution at

system start (i.e., zero) and continue to execute periodically until the system is turned

off. The objective of DPMRS is to generate an energy-efficient static schedule for the set

of applications for one hyperperiod. During system operation, this schedule repeats every

hyperperiods. The goal of DPMRS is to non-preemptively assign each task of each instance
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of the set of co-executing applications to a specific processor at an appropriate frequency

with a chosen start time (which respect periodicity of the concerned application instance),

such that the aggregate energy dissipated over the schedule length is minimized.

The pseudocode of DPMRS is presented in Algorithm 10. It consists of three functions:

(i) DPMRS() (Algorithm 10), (ii) periodicMerge() (Algorithm 8), and (iii) ERRRank()

(Algorithm 9). The main function DPMRS(), which conducts the overall scheduling, calls

function periodicMerge() to merge all independent application DAGs into a single DAG at

the first step. Given the merged DAG, DPMRS() next calls ERRRank() to compute two

different parameters namely, (1) Expected Relative Residual-workload for each task-processor

pair and (2) A rank R value for each task which is used to generate a task priority order.

This priority order of tasks is used to fix the actual sequence in which tasks are considered

for processor mapping and scheduling in the DPMRS() function. Next, we discuss these

functions in detail and present their pseudocodes.

Algorithm 8: periodicMerge(G,P )

Input: Application set G and processor set P
Output: Determines merged periodic DAG G0

1 D0 = LCM(D);
2 for (r = 1; r ⩽ |G|; r ++) do
3 for (n = 1;n ⩽ Ir;n++) do

4 ι =
∑r−1

k=1 I
k + n; /* Id of the nth instance DAG (Gr

n) of application Gr(V r, Er)
within merged DAG G0 */

5 AT [ι] = (n− 1)×Dr;
6 RD[ι] = n×Dr;
7 ET [ι] = |V 0|+ 1; /*id of source node of Gr

n within G0*/
8 V 0 = V 0 ∪ V r; E0 = E0 ∪ Er;
9 if 1 < n and n ⩽ Ir then

10 E0 = E0 ∪ {e}; /* Add a dummy edge e from sink node of Gr
n−1 to source node

of Gr
n */

11 ST [ι] = |V 0|; /* id of sink node of Gr
n within G0 */

12 Add dummy source node τ0 and sink node τexit to G0;
13 Update V 0, E0;
14 return G0(V 0, E0);
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5.3.1.1 Function periodicMerge()

Each persistently executing application Gr ∈ G starts at time zero (i.e., arrival time of the

first instance AT [Gr
1]) and repeats at its own periodicity Dr (i.e., the nth instance starts at

AT [Gr
n] = (n−1)×Dr). The applications being periodic, the time interval say D0 (referred

to as hyperperiod), after which arrival times of all application instances synchronize, is given

by D0 = LCM(D) where, D = {D1, D2, . . . , D|G|}. In each hyperperiod, any application

Gr sequentially invokes Ir (= D0/Dr) instances. It may be appreciated that, sequential

execution of the Ir instances of any application DAG Gr can be modeled as the execution of

a single composite DAG, where (i) end-to-end deadline of the composite DAG is D0, (ii) the

Ir DAG instances are arranged such that the sink node of any instance say Gr
n−1 is connected

to the source node of Gr
n, through a dummy edge to enforce precedence relationship between

them, (iii) the execution start time of the source node of any instance say Gr
n happens on

or after AT [Gr
n] = (n − 1) ×Dr, (iv) the completion time of any instance say Gr

n happens

on or before n×Dr. All these composite DAGs can further be modeled as a single merged

DAG G0 by connecting their individual source and sink nodes to a single dummy source

(τ0) and sink node (τexit). It may be noted that G0 has an end-to-end deadline of D0.

The nodes of G0 are indexed such that the number associated with the jth node of Gr
n

(in G0) becomes:
∑r−1

a=1 |V a| × Ir +
∑n−1

b=1 |V r| + j (refer Fig. 5.2). The pseudocode of

periodicMearge() is presented in Algorithm 8. In the algorithm, the vectors AT , RD, ET

and ST store respectively the arrival times, relative deadlines, entry tasks and sink tasks of

all instances in G0.
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Figure 5.2: Merged periodic application DAGs.

Using the same example detailed in Section 5.2, Fig. 5.2 shows the merged DAG G0

obtained by combining the three DAGs in Fig. 5.1. The task nodes inG0 have been uniformly

renumbered. Deadline of G0 is: D0 = LCM(D) = 180.
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5.3.1.2 Function ERRRank()

This function determines two parameters: (i) Expected Relative Residual-workload and (ii)

rank.

Algorithm 9: ERRRank(G0, P )

Input: Task graph G0 and processor set P
Output: Determines Expected Relative Residual-workloads for all task-processor pairs and

rank of all tasks
1 ι = ST.length; /* total number of application instances in G0 */
2 for τj = τexit down to τ0 do
3 for each processor py in P do
4 if τj = τexit then
5 ERR[τj , py] = 0;

6 else
7 if τj = ST [ι] and ι ⩾ 1 then
8 ERR[τj , py] = D0 − RD[ι];
9 ι = ι− 1;

10 else
11 ERR[τj , py] = max

τk∈succ(τj)

[
minpz∈P {ERR[τk, pz] + ωk,z + cy,zj,k}

]
;

12 Compute R[τj ] using equation 5.6;
13 HRS = max

τk∈succ(τj)
R[τk];

14 if R[τj ] ⩽ HRS then
15 for each processor py in P do

16 ERR[τj , py] = ERR[τj , py]× HRS+δ
R[τj ]

;

17 Recompute R[τj ] using equation 5.6;

18 return [ERR, R];

Expected Relative Residual-workload (ERR[τj , py ]): This parameter gives an optimistic

estimate of the relative residual workload over all paths from node τj (after τj completes ex-

ecution on processor py) to the sink node τexit. The function ERRRank() (refer Algorithm 9)

calculates the ERR values of all task-processor pairs by traversing the merged task graph G0

backward from τexit to τ0. It may be observed from lines 4 and 5 that the residual-workload

for the sink task τexit of G
0 on each processor py is zero (i.e., ERR[τexit, py] = 0). For the

other tasks in general, ERR[τj, py] is recursively determined relative to the minimum ERR

value of τexit over all processors available in the system as depicted through the equation
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in line 11. The ERR value of τj on py is obtained as the maximum (maxτk∈succ(τj)[. . . ])

optimistic residual-workload over all paths starting from τj leading to the sink node. The

optimistic residual workload over paths via a particular successor node, say τk (of τj) is cal-

culated in the following manner. We find the minimum (minpz∈P{. . . }) residual workload
for the path through τk, considering τk to be mapped to each of the available alternative

processor choices. The residual workload for any particular processor choice, say pz (for

τk) is calculated as the summation over three terms: (i) ERR[τk, pz]: the expected relative

residual-workload of task τk on pz, (ii) ωk,z: the execution time of τk on pz, and (iii) cy,zj,k :

the actual communication workload required to transmit the output of τj (executing on py)

to τk (executing on pz).

As discussed earlier, the merged task graph G0 consists of several application instances

with each of them having a specific relative deadline. Due to these additional timeliness

constraints, determination of ERR values for the sink nodes of application instances within

G0 requires special treatment. For a task node τj (∈ V 0) which is the sink node of the ιth

application instance in G0 (τj = ST [ι]), the ERR value for any processor py is determined

as: D0−RD[ι]. Let τj be the sink node of the nth instance of the rth application. Hence, the

term D0−RD[ι] equals to (Ir − n)×Dr. That is D0−RD[ι] represents the total duration

corresponding to the summation of the end-to-end period lengths of the Ir − n instances

of application Gr which appear after instance Gr
n in G0. For example, the task τ12 (refer

Fig. 5.2) is the sink task of 1st instance of 2nd application in G0. ERR[τ12, py] = 180− 60 =

120, where py ∈ P (refer Table 5.3). This ERR value denotes the aggregate estimated

makespan for the subsequent instances (2nd and 3rd instances) of the 2nd application in G0.

R[τj]: Given the ERR values, rank R of any task τj is calculated as the task’s average

ERR value over all processors:

R[τj ] =

|P |∑
y=1

ERR[τj , py]

|P | (5.6)

The rank of a task associates an appropriate priority value to the task. This priority governs

the sequence (captured in list taskList) in which the tasks are considered for processor

allocation. A task’s priority value is intended to serve two objectives. Primary Objective:

Preserving the precedence constraints associated with the merged DAG by ensuring that

every parent of a given task is considered for processor mapping before the task itself.

Secondary Objective: Tasks having higher residual workloads (workload imposed by still to
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Table 5.3: ERR and R values corresponding to the merged periodic DAG depicted in Fig. 5.2
and Table 5.1

Tasks
ERR

R
p1 p2 p3

τ0 149.0 149.0 149.0 149.00

τ1 46.5 40.2 41.5 42.72
τ2 25.0 25.8 23.5 24.78
τ3 25.0 26.2 23.5 24.89
τ4 18.0 24.0 21.0 21.00
τ5 10.0 19.0 14.5 14.50
τ6 10.0 13.0 11.5 11.50
τ7 0.0 0.0 0.0 0.00

τ8 139.0 142.0 139.3 140.11
τ9 128.0 126.0 128.0 127.33
τ10 128.0 126.0 128.3 127.44
τ11 128.0 126.0 127.3 127.11
τ12 120.0 120.0 120.0 120.00

τ13 79.0 82.0 79.3 80.11
τ14 68.0 66.0 68.0 67.33
τ15 68.0 66.0 68.3 67.44
τ16 68.0 66.0 67.3 67.11
τ17 60.0 60.0 60.0 60.00

τ18 19.0 22.0 19.3 20.11
τ19 8.0 6.0 8.0 7.33
τ20 8.0 6.0 8.3 7.44
τ21 8.0 6.0 7.3 7.11
τ22 0.0 0.0 0.0 0.00

τ23 134.7 125.0 128.3 129.33
τ24 114.0 108.0 114.7 112.22
τ25 124.0 116.0 118.7 119.56
τ26 99.0 98.0 96.0 97.67
τ27 102.0 100.0 96.0 99.33
τ28 90.0 90.0 90.0 90.00

τ29 44.7 35.0 38.3 39.33
τ30 24.0 18.0 24.7 22.22
τ31 34.0 26.0 28.7 29.56
τ32 9.0 8.0 6.0 7.67
τ33 12.0 10.0 6.0 9.33
τ34 0.0 0.0 0.0 0.00

τ35 0.0 0.0 0.0 0.00
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be allocated tasks) in the merged DAG should be considered earlier for processor mapping.

However, due to the inherent structural relationship between ERR and rank R, there

may be situations when a task’s rank is not greater than the maximum among the ranks

of all its successor tasks. In this case, one or more successors of a task (say τj) may be

considered for processor allocation before τj, thus violating the primary objective. This case

is corrected by minimally increasing R[τj] to: maxτk∈succ(τj) R[τk] + δ, where δ is a small

constant (refer lines 13-17 of Algorithm 9). We have used δ = 0.1 in our experiments. The

ERR values of task τj on different processors are also increased in a proportionate fashion.

5.3.1.3 Function DPMRS()

Line 1 of DPMRS (refer Algorithm 10) merges the given set of independent application

DAGs into a single task graph G0, using function periodicMerge(). Line 2 calculates ERR

and rank R values using function ERRRank(). In line 3, the tasks are stored in a vector

taskList in non-increasing order of their rank values. Line 4 reorders the elements of ST ,

ET and RD in non-increasing order of their rank (R) values.

Line 5 determines Minimum Estimated Energy value (MEE[τj, py], 0 ⩽ j ⩽ |V 0|; 1 ⩽

y ⩽ |P |), for each task-processor pair. Considering a task τj to be executed at the αth

minimum frequency fy,α on a processor py, this parameter estimates the minimum total

dynamic energy that will be dissipated for executing τj along with the remaining still-to-be-

allocated tasks up to the sink node τexit. The MEE value of τj on processor py at current

frequency fy,α is calculated recursively by traversing the merged DAG G0 backwards from

τexit to τj, as shown below:

MEE[τj , py, fy,α] =


Ed(τexit, py, fy,α), if τj = τexit

min
τk∈succ(τj)

[
min

pz∈P,fz,β∈Fz

{
MEE[τk, pz, fz,β ] + Ed(τj , py, fy,α)

}]
, otherwise

(5.7)

The while loop (lines 7-30) sequentially generates a static schedule of the tasks in the

order as specified by list taskList. The schedule determines for each task τj: (i) a processor

ρ[j] where τj is to be executed, (ii) an operating frequency ϱ[j] at which τj should be executed

on ρ[j], and (iii) τj’s execution start time AST [τj]. In this work, a schedule for τj is referred

to as feasible, if its completion (start) of execution happens on or before (after) the relative

deadline (arrival-time) of the application instance in which τj belongs. The assignment of

AST [τj] (discussed later) takes care that arrival-time constraint related to τj’s application
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instance is satisfied.

Each iteration of the for loop (lines 8-29) attempts to schedule, add a new task τj to

an existing partial schedule (line 9). This task may potentially be mapped to any processor

py and at any of py’s available frequencies fy,α. Among these alternative choices, selection

of the actual ⟨processor, frequency⟩-pair is made by judiciously considering two parameters:

(i) MEE[τj, py, fy,α]: Minimum Estimated Energy with τj on py at frequency fy,α (refer

equation 5.7), and (ii) EDO[τj, py, fy,α]: Estimated Deadline Overshoot with τj on py at

frequency fy,α (refer equation 5.9). The parameter EDO[] tries to estimate the duration

by which deadline (RD[ι] of the application instance say ι to which τj belongs) may be

overshoot if the remaining schedule is generated with τj being allocated on processor py at

frequency fy,α.

Among possible mapping options, the allotment of a task τj is first considered within that

subset X (X = {⟨p1, f1,1⟩, . . . , ⟨p1, f1,β⟩, ⟨p2, f2,1⟩, . . . , ⟨pλ, fλ,β⟩}; (1 ⩽ λ ⩽ |P |, fλ,1 ⩽ fλ,β ⩽

fλ,αλ
)) of ⟨processor, frequency⟩-tuples for which the value EDO[τj, pλ, fλ,β] is atmost zero

(line 13). Now, τj is actually allocated to the tuple ⟨pλ, fλ,β⟩ inX for whichMEE[τj, pλ, fλ,β]

is minimal (line 15). This step is an attempt to minimize dynamic energy dissipation while

not violating stipulated relative deadlines. However, when the set X is empty (it indicates

that there is no ⟨processor, frequency⟩-pair which the estimated scheduled makespan can

meet deadline), τj is allocated to that ⟨pλ, fλ,β⟩-tuple for which EDO[τj, pλ, fλ,β] is minimal

(line 17). Thus, the ⟨processor, frequency⟩-tuple finally mapped to task τj is:

⟨ρ[j], ϱ[j]⟩ =


⟨py, fy,α⟩ |MEE[τj , py, fy,α] = min

⟨pλ,fλ,β⟩∈X
MEE[τj , pλ, fλ,β], if X ̸= ϕ

⟨py, fy,α⟩ | EDO[τj , py, fλ,α] = min
pλ∈P,fλ,β∈Fλ

EDO[τj , pλ, fλ,β], if X = ϕ
(5.8)

In a certain iteration of the for loop, if all tasks can be scheduled while satisfying the

relative deadline of each application instance, the DPMRS algorithm successfully terminates

with a feasible energy efficient schedule (line 32).

Handling Deadline Overshoot: Line 21 within the inner for loop (lines 19-29) checks

whether the current task τj is a sink task, while lines 22-23 determine if there is an actual

Deadline Overshoot (DO). In case of an actual overshoot (DO > 0), DPMRS updates

the workload inflation factor (Γ[τj]; refer equation 5.10) values of a chosen subset of tasks

(lines 26-27) and then attempts to regenerate a fresh schedule from the beginning, in a

new iteration of the while loop (lines 7-30). This iterative process continues either until a

feasible energy efficient schedule is generated (safeFlag is set) or when there is no possibility
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Algorithm 10: DPMRS (G,P )

Input: Application set G and processor set P
Output: A feasible schedule which minimizes energy

1 G0 = periodicMerge(G,P );
2 [ERR,R] = ERRRank(G0, P );
3 Sort tasks in non-increasing order of R and store in taskList;
4 Reorder ST , ET , RD in non-increasing order of R;
5 Determine MEE values using equation 5.7;
6 safeFlag = false, exitFlag = false, ∀τj∈V 0Γ[τj ] = 1;

7 while safeFlag = false and exitFlag= false do
8 for c = 1 to |V 0| do
9 Let taskList[c] be the jth task τj in G0;

10 for each processor py ∈ P do
11 for each frequency fy,α ∈ Fy do
12 Compute EDO[τj , py, fy,α] using equation 5.9;
13 X = A set of ⟨processor, frequency⟩ tuples (⟨py, fy,α⟩) for which

EDO[τj , py, fy,α] ⩽ 0;

14 if X ̸= ϕ then
15 Assign τj to py at frequency fy,α, (⟨py, fy,α⟩ ∈ X) for which MEE[τj , py, fy,α] is

minimal using equation 5.8;
16 Goto line 29; /* Skip remaining lines within for loop */

17 Assign τj to that ⟨py, fy,α⟩ for which EDO[τj , py, fy,α] is minimal using equation 5.8;
18 /* ST.length is the total number of instances in G0 */
19 for ι = 1 to ST.length do
20 /* τj is the sink task of the ιth instance in G0 */
21 if τj = ST [ι] then
22 DO = AFT [τj ]−RD[ι];
23 if DO ⩽ 0 then Goto line 29; /* Throttling is not necessary if there is no

deadline overshoot */
24 for q = ι down to 1 do
25 if Γ[ST [q]] ⩽ 2 then
26 Construct a set Υ of tasks:

Υ = {τi | τi ∈ V 0, AT [q] ⩽ AST [τi] ⩽ AST [ST [q]]};
27 Elevate Γ[τj ] values ∀ τj ∈ Υ (equation 5.10);
28 Goto line 30; /* Deadline overshoot: Cancel current partial schedule,

Retry from start */

29 if q = 0 then exitFlag = true; Goto line 30; /* No feasible schedule can be
generated*/

30 if τj = τexit and AFT [τexit] ⩽ D0 then safeFlag = true;

31 if safeFlag = true and exitFlag = false then
32 Output: Feasible schedule, compute E(G0) (equation 5.5);

33 else
34 Output: No feasible schedule can be generated;

114



5.3 The Proposed Schedulers

of generating a feasible schedule by proceeding further (exitFlag becomes true).

It may be observed that, in a scenario where feasible schedule for an application in-

stance ι actually exists, ι can miss its deadline due to the following reason: ⟨processor,
frequency⟩-choices for tasks in application instance ι and other co-running instances have

been unduly aggressive towards energy minimization (MEE[]; refer equation 5.7) or too op-

timistic towards remaining workload estimation. This aggressiveness/optimism of DPMRS

is controlled through the parameter EDO (refer equation 5.9). EDO[τj, py, fy,α] is a throt-

tled estimate of the duration by which deadline (RD[ι] of the application instance say, ι to

which τj belongs) may be overshoot if the remaining schedule is generated with τj being

allocated on processor py at frequency fy,α. EDO[τj, py, fy,α] is defined as:

EDO[τj, py, fy,α] = (EFT [τj, py, fy,α] + ERR[τj, py] − ERR[ST [ι], py]) × Γ[τj] − RD[ι]
(5.9)

where EFT [τj, py, fy,α] denotes Effective Finish Time (refer equation 5.12) and the term:

ERR[τj, py] − ERR[ST [ι], py], denotes the expected residual remaining workload after the

completion of τj on py and before the relative deadline RD[ι] is reached. At any given

iteration of the while loop, the term: (EFT [τj, py, fy,α] + ERR[τj, py] − ERR[ST [ι], py]) ×
Γ[τj], provides an inflated estimation of the total workload to be completed before RD[ι].

Here, Γ[τj] (1 ⩽ Γ[τj] ⩽ 2; refer equation 5.10) has been used as the workload inflation

factor. This inflated estimation is considered to have underestimated the actual workload,

if there is a deadline miss (line 23) in a given iteration. In such a case, the inflation factor

for a certain subset of tasks is elevated proportionately with respect to the actual amount

of deadline overshoot.

On a deadline miss, we try to generate a fresh schedule which meets RD[ι] in an iterative

fashion (lines 24-28), elevating the Γ-values of a certain subset of tasks in each iteration.

First, we try by elevating the Γ-values of the following subset Υ of tasks: Υ = {τi | τi ∈
V 0, AT [ι] ⩽ AST [τi] ⩽ AST [ST [ι]]}. If DPMRS fails to generate a partial schedule which

meets RD[ι] even by maximally throttling EDO values of the tasks in Υ (refer line 25

and equation 5.9), a fresh attempt (a new iteration of the for loop; lines 24-28) is made

after elevating the Γ-values of a new subset of tasks Υ = {τi | τi ∈ V 0, AT [ι − 1] ⩽

AST [τi] ⩽ AST [ST [ι − 1]]}. This iterative attempt is continued either until a partial

schedule which meets RD[ι] is obtained or the loop (lines 24-28) exits with failure in which

case the Algorithm terminates (line 29). Line 27 elevates workload inflation factors (Γ-
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values) of each task τj ∈ Υ in a step-wise fashion:

Γ[τj ] =

Γ[τj ] + ϵ, if ⌈ DO
RD[ι] × 100⌉ = 1

Γ[τj ] + ϵ× ⌈log2⌈ DO
RD[ι] × 100⌉⌉, otherwise

(5.10)

where ϵ is a small constant. We have used ϵ = 0.02, in our experiments. It may be noted

that, as the number of iterations of the for loop (lines 24-28) grows, within the overall

schedule generation process, the Γ-values of tasks continue to increase and their EDO

values get increasingly throttled as a consequence. Thus, the schedule generation process

becomes increasingly aggressive towards deadline satisfaction and less aggressive towards

energy minimization as time progresses.

EST [τj, py]: The Effective Start Time (EST [τj, py]) of a task τj on processor py is

calculated using the following four pieces of information: (i) ρ[τi]: the processor mapped to

each predecessor task τi of τj, (ii) AFT [τi]: the actual finish time of each predecessor τi on

its mapped processor ρ[τi], (iii) AT [ι]: arrival time of the application instance (say, ι) of

which task τj is a node (τj ∈ ι), and (iv) avl[y]: the earliest time at which py becomes free

for task execution. The values of ρ[τi] and AFT [τi] are known during the allocation of τj as

processor assignment happen in rank order. Therefore, EST [τj, py] is determined as:

EST [τj , py] =

max{avl[y], AT [ι]}, if (∃ι | τj = ET [ι])

max{avl[y], max
τi∈pred(τj)

(AFT [τi] + cx,yi,j )}, otherwise
(5.11)

where cx,yi,j is the communication time required to transmit the output message from τi

(executes on px) to τj (on py). Given EST [τj, py], Effective Finish Time of task τj on py at

frequency fy,α (EFT [τj, py, fy,α]), is calculated as:

EFT [τj, py, fy,α] = EST [τj, py] + ωj,y ×
fy,αy

fy,α
(5.12)

After τj is actually mapped on py, EST and EFT are referred as AST and AFT . Actual

start time of task τj on the mapped processor ρ[j] is: AST [τj] = EST [τj, ρ[j]]. Simi-

larly, Actual finish time of a task τj on processor ρ[j] at frequency ϱ[j] is: AFT [τj] =

EFT [τj, ρ[j], ϱ[j]].

Example Continued: For the example system detailed in Section 5.2, Fig. 5.1 and

Fig. 5.2, the priority order of tasks in G0 is obtained as: taskList = ⟨τ0, τ8, τ23, τ10, τ9,
τ11, τ12, τ25, τ24, τ27, τ26, τ28, τ13, τ15, τ14, τ16, τ17, τ1, τ29, τ31, τ3, τ2, τ30, τ4, τ18, τ5, τ6,
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Figure 5.3: Gantt chart of the schedule generated by DPMRS for the merged DAG in Fig. 5.2:
SL = 178, E(G0) = 209.52 W .

τ33, τ32, τ20, τ19, τ21, τ7, τ22, τ34, τ35⟩. The DPMRS algorithm continues for 5 iterations

and finally generates a feasible schedule (refer Fig. 5.3) with makespan 178 and energy

E(G0) = 209.52 W .

5.3.2 Complexity Analysis

We determine the complexity of DPMRS by analysing the overhead of the steps in Algo-

rithm 10. The function periodicMerge() in line 1, which merges independent application

DAGs into a single DAG G0, incurs a computational overhead of O(|V 0| × |V 0|). In lines 2

and 5, the computation of ERR and MEE considers each edge of the merged DAG G0

exactly once. ERR iterates over |P | processors and MEE iterates over F frequencies

(where F =
∑|P |

y=1 |Fy|). Thus, the complexity associated with the construction of ERR is

O(|P | × (|V 0| + |E0|)) and MEE is O(F × (|V 0| + |E0|)). As the overhead of obtaining

the value of rank for a single task is O(|P |) (refer equation 5.6), the total complexity of

calculating the list R for all tasks is O(|V 0| × |P |). The sorting operation in line 3 requires

O(|V 0| log |V 0|) time. Line 4 requires O(I log I) time to sort the lists ST , ET and RD of

size I (where I =
∑|G|

r=1 I
r).

Task to processor-and-frequency mapping (lines 8-29) happens in a repetitive fashion

within the while loop (lines 7-30). Observing equations 5.9, 5.10 and the mapping process,

it may be inferred that the mapping process (lines 8-29) can return false for both safeFlag

and exitFlag, at most 50×I times. Thus, the number of iterations of the while loop (in lines 7-

30) is upper bounded by 50×I. The complexity of task to processor-and-frequency mapping

process is dominated by the computational overhead of computing EDO[τj, py, fy,α] (refer

equation 5.9; in line 12) for all tasks on all ⟨processor, frequency⟩-pairs within the nested for

loops. The overhead of computing EDO[τj, py, fy,α] is further dependent on the overhead of

EFT [τj, py, fy,α]/EST [τj, py]. It may be noted that computation of EST for any given task-

processor pair requires constant time calculations over all predecessors of a task and hence,
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incurs an overhead of O(#predecessors). However, the total number of predecessors in the

task graph is equal to the total number of edges. Therefore, the amortized overhead for

determining EST [τj, py] (and also EFT [τj, py, fy,α], EDO[τj, py, fy,α]) becomes O(|E0|/|V 0|)
Given this overhead, the total complexity incurred in computing EDO[τj, py, fy,α] for all

tasks on all ⟨processor, frequency⟩-pairs become O(F × |V 0| × |E0|/|V 0|) = O(F × |E0|).
Complexity of the remaining lines of DPMRS are smaller then the overhead of computing

EDO. Therefore, the overall complexity of the DPMRS Algorithm is: O(|V 0|×|V 0|+ |P |×
(|V 0|+ |E0|) +F × (|V 0|+ |E0|) + |V 0| × |P |+ |V 0| log |V 0|+ I log I +50× I ×F × |E0|) =
O(I×F ×|E0|). It may be noted that the value of I in the above expression is governed by

individual period values and size of the hyperperiod H. For a given set of arbitrary period

values, it is possible that H (and consequently I) becomes very large (say, when the period

values are relatively prime). A large value of I in turn, will have the effect of making the

complexity of DPMRS vary high. However in general, application periods are adjustable

with in certain bounds [17, 21]. By choosing appropriate period values, reasonably small

values of H as well as I can be obtained [14,66], so that the complexity of DPMRS can be

contained within acceptable limits.

5.4 Experiments and Results

The performance of the proposed real-time schedulers DPMRS and NDPMRS have been

experimentally assessed through an extensive set of simulation-based experiments. We first

describe the experimental setup, the performance metrics and the comparison with related

works in the following subsections, followed by detailed experimental results. Similar to

Chapter 4, a simple real-platform implementation of the proposed work has been carried

out, in addition to the simulation-based experiments discussed above.

5.4.1 Experimental Setup

The experiments have been conducted using four real-world benchmark task graphs: Cy-

berShake [39], Gaussian Elimination [85], Stencil [68] and Epigenomics [67]. Fig. 5.4 depicts

the task graph structures of these four benchmarks. The benchmarks used include of CPU-

intensive (Epigenomics), I/O-intensive (Gaussian Elimination, Stencil) applications, as well

as applications that have considerable memory requirements (CyberShake). Such diverse
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applications help performance evaluation of the proposed strategy under various applications

and system scenarios.
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Figure 5.4: Benchmark DAGs.

CyberShake (Fig. 5.4a) is an earthquake hazard characterization workflow used by

the Southern California Earthquake Center. This workflow has five types of tasks: Ex-

tractSGT (τ1-τ2), SeismogramSynthesis (τ3-τ10), ZipSies (τ11), PeakValCalcOkaya (τ12-τ19)

and ZipPSA (τ20). The size of the CyberShake graph is influenced by the number of Ex-

tractSGT and SeismogramSynthesis tasks. For simplicity, we fix the number of ExtractSGT

tasks to 2 and divide SeismogramSynthesis tasks near-equally among the ExtractSGT tasks.

If the number of SeismogramSynthesis tasks is υ, then the total number of task nodes and

edges is equal to (2× υ + 4) and 4× υ, respectively.

Gaussian elimination (Fig. 5.4b) also known as row reduction, is an algorithm used to

solve linear equations in linear algebra. The structure of Gaussian Elimination is governed

by the size of its input parameter called matrix-size (ν). Given ν, the total number of tasks

is equal to ((ν2 + ν − 2)/2) and edges equal to (ν2 − ν − 1).

Stencil (Fig. 5.4c) task graph is based on the one-dimensional stencil computation

method used to solve partial differential equations in one spatial dimension. Stencil equation

solvers can be influenced by the number of levels (λ) and the number of tasks per level (η).

The number of task nodes and edges in a Stencil task graph is (λ× η) and [(λ− 1)×{3(η−
2) + 4}], respectively. In our experiments, we have considered λ = η.

Epigenomics (Fig. 5.4d) is used to automate various genome sequence processing op-

erations. The structure of Epigenomics is characterized by the input parameter parallel

branches ϑ. Given ϑ of a task graph, the total number of tasks and edges is given by

(4ϑ+ 4) and (5ϑ+ 2), respectively.
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Multiple source (sink) nodes exist in the CyberShake and Stencil task graphs. We add a

dummy source (sink) node, and all the actual source (sink) nodes are set as the immediate

successor (predecessor) nodes of the dummy source (sink) node.

Data Generation Framework: Our experimental analysis has been carried out using

randomly generated data sets obtained by carefully varying an exhaustive set of input

parameters.

1. Number of DAGs: |G| = {2, 4, 6, 8, 10}.
2. Number of tasks in each DAG: For CyberShake, SeismogramSynthesis υ =

{8, 9, 10}. With these values of υ, three types of CyberShake DAGs (|V |, |E|): (⟨20, 32⟩,
⟨22, 36⟩, ⟨24, 40⟩) are generated. Similarly for Gaussian Elimination, matrix-size ν =

{5, 6, 7}. With these values ν, three types of Gaussian Elimination DAGs (|V |, |E|):
(⟨14, 19⟩, ⟨20, 29⟩, ⟨27, 41⟩) are generated. For Stencil, we have generated three types

of task graphs having ⟨|V |, |E|, λ⟩ as ⟨16, 30, 4⟩, ⟨25, 52, 5⟩ and ⟨36, 80, 6⟩. Similarly for

Epigenomics, task graphs having ⟨|V |, |E|, ϑ⟩ as ⟨20, 22, 4⟩, ⟨24, 27, 5⟩ and ⟨28, 32, 6⟩ are
generated.

3. Number of processors: |P | = {4, 8, 16, 32}.
4. Task execution times: The execution times of all tasks (of any DAG) on each

heterogeneous processor, are generated using three phases: (i) the average execution time

overall tasks of the DAG is denoted as ωDAG. In this work, we used the values of ωDAG =

{25, 50, 75, 100}. (ii) Given ωDAG, the average execution time (ωj) of a task (say, τj), over all

processors is determined. Values of ωj of the tasks are generated from normal distributions

having mean µ = ωDAG and distinct values of standard deviation σ (= {5, 10}). (iii)

Finally, the WCET of τj on each processor (ωj,y) is determined. Values of ωj,y of a task

τj are obtained from a normal distribution having mean µ = ωj and standard deviation

σ = (ωj × β); where β denotes the heterogeneity factor that defines the degree of skewness

among the task’s execution times on various heterogeneous processors. Here, we used the

values of β = {0.1, 0.25, 0.5, 0.75, 1}. The obtained ωj,y values are then appropriately scaled

so that
∑|V |

j=1

∑|P |
y=1 ωj,y = |V | × |P | × ωDAG.

5. Data communication workload: The ratio of the time overhead related to data

transmission and task execution is referred to as Communication-to-Computation Ratio

(CCR). Values of CCR used in this work: CCR = {0.1, 0.25, 0.5, 0.75, 1}. Given CCR, the

average communication workload cDAG is determined as cDAG = CCR×ωDAG. The average

inter-task message size (dataDAG; in bytes) for a DAG is computed as: dataDAG = cDAG×B,

120



5.4 Experiments and Results

where B (= 1
|P |×(|P |−1)/2

∑|P |
x=1

∑x−1
y=1 bx,y) is the average communication bandwidth of the

considered computing platform. Experiments have been conducted for two different values

of B (= {3 Mbps, 5 Mbps}). The actual bandwidth of the communication link between

processors px and py is referred as bx,y. The values of bx,y are generated from a normal

distribution having mean µ = B and different standard deviation values σ (= 0.2 × B).

The bx,y values are then scaled so that
∑|P |

x=1

∑x−1
y=1 bx,y = |P | × (|P | − 1)/2× B. Similarly,

the size of the output message (datai,j) for each edge (τi, τj) in the DAG is generated from

a normal distribution having mean µ = dataDAG and various values of standard deviation

σ (= 0.2 × dataDAG). These datai,j values are then appropriately scaled in order to make∑|V |
i=1

∑|V |
j=1 datai,j = |E| × dataDAG.

6. Power parameters: Similar to [99], the power values of the processors are generated

randomly with the ranges as follows: pows
y = 0.01, 0.03 ⩽ powind

y ⩽ 0.07, 0.08 ⩽ Cef
y ⩽ 1.2,

2.5 ⩽ my ⩽ 3.0, and ∀py∈Pfy,αy = 1 GHz. The processors’ frequencies are discrete, and

the precision is 0.2 GHz. The values of these parameters reflect the characteristics of some

high-performance embedded processors, such as ARM Cortex-A9 and Intel Mobile Pentium

III.

7. Relative deadline of a DAG: Determination of the relative deadline of a DAG

consists of two phases. For each DAG say Gr, first PEFT [5] is used to determine the

makespan SLr considering all processors to be assigned to Gr ∈ G0 (i.e., Gr runs stand-

alone) and assuming all processors to be always executing at their maximum frequencies.

After obtaining SLr of all the DAGs, the relative deadline of Gr is computed as: Dr =

roundOff(TSL × {t1 + SLr−minSLr

maxSLr−minSLr
× t2}), where TSL =

∑|G|
r=1 SLr, minSLr and maxSLr

are the minimum and maximum among all SLr values, respectively. In the above equation,

t1 and t2 are two design constraints, whose values are set to 0.4 and 0.2. The roundOff is

used to round-off its argument (say, Y ) to the lowest multiple of 500 which is greater than

or equal to Y .

Simulation Framework: The simulation framework is written in C and is executed

on a system having the following configuration: (i) Intel® Core™ i7-8550U CPU @ 1.80GHz

×8, (ii) 8 GiB Memory, and (iii) Ubuntu 18.04.4 LTS OS (64-bit).

5.4.2 Performance Metrics

The performance of the proposed schedulers has been analysed using two different metrics:
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1. Normalized Energy-dissipation (NE): Given a set of DAGs, Normalized Energy-

dissipation (NE; in percentage) is defined as:

NE =
EACT

EMAX

× 100

where EACT and EMAX represent the actual and maximum energy consumed in the

execution of all instances of all DAGs over the length of the hyperperiod. In fact,

EACT is the amount of energy consumed by the processors to execute tasks as per

the schedule generated by a scheduling algorithm. EMAX denotes the total amount

of energy that may be dissipated by continuously operating on all processors at their

maximum frequencies (i.e., highest level) over the entire duration of the hyperperiod.

2. Normalized Running Time (NRT ): This metric measures the ratio of the total

run-time to the total number of task nodes in G0. NRT is defined as:

NRT =
total run-time∑|G|

r=1 I
r × |V r|

3. Deadline Miss Rate (DMR): This parameter measures the percentages of input

test cases for which at least one application instance within the hyperperiod misses

its deadline.

5.4.3 Comparison with Related Works

To the best of our knowledge, there does not exist any work in literature that target com-

putation communication co-scheduling of a set of (more than one) real-time periodic DAGs

in a distributed heterogeneous environment. However, as discussed in the related work

section 2.5.3 of Chapter 2, there are a few works which deal with communication-aware

scheduling of single real-time DAG over a heterogeneous platform. Two such works namely

GDES [99] and NDES [99], which attempt to minimize system-level energy dissipation in

DVFS and non-DVFS enabled systems respectively, have been found to relate most closely

to the system model considered in this chapter. Hence, we have chosen these two works as

candidate state-of-the-art techniques against whom DPMRS can be compared. In order to

match the system model used in the current work, GDES and NDES have been adapted

as follows. As GDES and NDES work for single DAG applications, the available set U of

processors has been partitioned into |G| disjoint subsets of size |U |/|G| each. Each such
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processor subset has then been randomly allocated to a distinct DAG application. Then,

GDES and NDES have been separately applied to derive a schedule for each partitioned

subsystem obtained in the previous step. Finally, energy consumption for the GDES/NDES

schedulers has been determined by calculating the total energy consumed by all application

schedules over the interval D0. Since the applications are allowed to run concurrently, our

strategy gives all of them approximately equal opportunities to execute at the same time

on the given platform. Obviously, with this fully partitioned approach, results for GDES

and NDES cannot be obtained when |G| > |U |. Note that GDES is not an independent

scheduler, it requires a schedule as an input. In our experiments, we have considered a

version of GDES which takes NDES as its input. We have referred to this algorithm as

“NDES&GDES”. Additionally, we have analyzed the performance of DPMRS against a

baseline DVFS-oblivious version of DPMRS, which we call NDPMRS.

The NDPMRS Algorithm: On systems which are not DVFS-enabled, each processor

can run only at a single frequency. DPMRS can be easily adapted and applied on such

systems. We refer to this Non-DVFS version of DPMRS as NDPMRS. We use the same

example system (refer Section 5.2 and Fig. 5.2; with the restriction that each processor can

run only at its maximum frequency) and apply it as input to NDPMRS. The NDPMRS

algorithm continues for 9 iterations and finally generates a feasible schedule (refer Fig. 5.5)

with makespan 179 and energy E(G0) = 224.62 W . It can be noted that, DPMRS is able

to fetch higher dynamic energy savings of 15.1 W as it is able to opportunistically use slack

processor capacities in order to reduce processor operating frequencies.
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Figure 5.5: Gantt chart of the schedule generated by NDPMRS for the merged DAG in Fig. 5.2:
SL = 179, E(G0) = 224.62 W .
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5.4.4 Performance Results

Three classes of experiments have been conducted to evaluate the performance of DPMRS.

Experiment-1 compares the energy efficiencies and deadline miss rates of DPMRS, with

the state-of-art works GDES and NDES as well as the baseline strategy NDPMRS. In

experiment-2, the proposed algorithms are evaluated against variation in two separate pa-

rameters heterogeneity and CCR. Experiment-3 measures the energy efficiency and run-time

related performance, as the number of DAGs is varied from 2 to 10. Each data point in

experiments 2 and 3 is obtained as the average over 250 runs of a specific scheduler on

different DAG instances produced by assigning specific values to a carefully chosen set of

parameters. Given a set of values for task execution times and average data communication

times, Figs. 5.7 and 5.8 generate results for two different values of workloads. Here, workload

has been measured as: WL =
∑|V 0|

j=1

∑|P |
y=1 ωj,y +

∑|V 0|
i=1

∑|V 0|
j=1 datai,j/B̄. For one set of plots

(DPMRS-WL1 and NDPMRS-WL1 ) the parameter values are used as it is, to generate the

input workloads. For the other set of plots (DPMRS-WL2 and NDPMRS-WL2 ) each pa-

rameter value has been reduced by 25%, to generate the input workload. These two distinct

values of workloads have been used to show the efficiency of the algorithms in terms of their

ability to achieve additional energy savings when the input workload reduces by 25% for a

given set of parameter values.

5.4.4.1 Experiment-1: Effect of variation in #processors

This experiment measures the Normalized Energy-dissipation (NE) and Deadline Miss

Rates (DMR) of DPMRS, NDPMRS, NDES&GDES and NDES, as the number of proces-

sors |P | varies from 4 to 32. The parameters β and CCR are set to 0.75 and 0.5, respectively.

All plots have been generated using four application instances (a CyberShake with 20 tasks,

a Gaussian Elimination with 14 tasks, a Stencil with 25 tasks, an Epigenomics with 25

tasks). Values of the hyperperiod are obtained from the range [500, 3000]. Obtained results

are presented in Fig. 5.6 considering 1000 input test cases for each scenario (which consists

of a distinct number of processors).

Given the 4 benchmark applications in a scenario consisting of |U | processors, a separate

NDES&GDES (NDES ) scheduler is used for each disjoint partition consisting of a DAG

application to be executed over |U |/4 processors. In comparison, DPMRS (NDPMRS ) is

a global algorithm which take as input a merged task graph consisting of all DAG appli-
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Figure 5.6: (a) Deadline Miss Rates (DMR; in %) and (b) Normalized Energy-dissipation (NE;
in %) w.r.t. varying processors.

cations to be executed in a hyperperiod, and produces as output an execution schedule of

the applications on the consolidated platform of |U | heterogeneous processors. Although,

it works with a single merged task graph, a feasible DPMRS (NDPMRS ) schedule is able

to guarantee that no application instance within the hyperperiod ever misses its deadline.

Compared to NDES&GDES (NDES ), the global nature of DPMRS (NDPMRS ) allows it to

harness significantly improved processor/communication resource sharing among different

DAGs, in addition to better exploitation of task-processor affinities in the heterogeneous

environment. Due to such efficient sharing and affinity awareness, DPMRS (NDPMRS ) is

able to achieve considerably lower deadline miss rates and energy dissipation, compared to

NDES&GDES (NDES ). This is reflected in the results presented in Fig. 5.6a and Fig. 5.6b.

For example, in the scenario consisting of 4 (8) processors in Fig. 5.6a, while deadline miss

rate suffered by DPMRS and NDPMRS is only 27.3% (2.3%), NDES&GDES and NDES

suffers 100% (75.1%) miss rates. Similarly, for the scenario with |U | = 16 processors in

Fig. 5.6b, it may be observed that the Normalized Energy-dissipation suffered by DPMRS

and NDPMRS are 3.69 W (8.2 W ). In comparison, NDES&GDES and NDES suffer sig-

nificantly higher dissipation − 70.45 W and 116.68 W , respectively. It may be noted that

for |U | = 4, as NDES&GDES and NDES suffer 100% deadline misses, their average NE

values have been shown as blank, in Fig. 5.6b. In the next two experiments, we discuss

results for the average NE values of DPMRS and NDPMRS on 8 processor systems, with

respect to variations in heterogeneity, CCR and #DAGs. Results of NDES&GDES and
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NDES have not been included further because they are seen to exhibit very heavy deadline

misses (deadline misses in 75.1% of the 1000 test cases considered on 8 processor systems)

as a result of their partitioned nature.

5.4.4.2 Experiment-2: Effect of variation in CCR and heterogeneity

Using the same experimental setup as employed for experiment-1, here we measure the

Normalized Energy-dissipation (NE) of DPMRS and NDPMRS for varying heterogeneity

(β) and Communication-to-Computation Ratios (CCR). Obtained results are presented in

Fig. 5.7a and Fig. 5.7b. We have not presented the results of NDES&GDES and NDES

because, similar to the results trends in experiment-1, their performance is seen to be sig-

nificantly poorer in all cases.
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Figure 5.7: Normalized Energy-dissipation (NE) w.r.t. varying heterogeneity and CCR.

Fig. 5.7a shows average NE values as the degree of heterogeneity is increased from

0.1 to 1. Values of the parameters |P | and CCR have been fixed at 8 and 0.5. As the

average task-to-processor affinity decreases with increase in the degree of heterogeneity, the

performance of both the algorithms DPMRS-WL1 and NDPMRS-WL1 in terms of achieved

NE becomes lower when heterogeneity is higher. It may be observed that for any degree of

heterogeneity, DPMRS-WL2 (NDPMRS-WL2 ) performs better compared to DPMRS-WL1

(NDPMRS-WL1 ).

Fig. 5.7b shows the variation in average NE values as CCR varied between 0.1 and 1.

Parameters |P | and β are fixed at 8 and 0.75. A higher CCR value implies lower execu-
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tion demand for each task on any processor at maximum frequency. Such lower execution

demands, in turn, naturally enhance the possibility of processor frequency reduction. Con-

sequently, this leads to lowering in the obtained NE values. For example, the average

normalized energy values of DPMRS-WL1 are 26.36 W and 16.80 W for CCR = 0.1 and

CCR = 0.5.
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Figure 5.8: Normalized Energy-dissipation (NE; in percentage) w.r.t. varying #DAGs for
CyberShake, Gaussian Elimination, Stencil and Epigenomics.

5.4.4.3 Experiment-3: Effect of variation in #tasks

This experiment measures the Normalized Energy-dissipation (NE) and Normalized Run-

ning Time (NRT ) of DPMRS and NDPMRS as the number of DAGs |G| varies from 2
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to 10, for each benchmark task graph. In this, the parameters |P |, β and CCR have been

fixed at 8, 0.75 and 0.5 respectively, and the hyperperiods are limited within the range

[500, 3000]. Obtained NE and NRT results for the benchmarks CyberShake, Gaussian

Elimination, Stencil and Epigenomics, are presented in Fig. 5.8 and Table 5.4, respectively.

Fig. 5.8 depicts the obtained average NE values for different number of DAGs. It can

be observed that for any given number of DAGs, the average normalized energy-dissipation

value of DPMRS-WL1 is lower than NDPMRS-WL1. As an example for |G| = 6, DPMRS-

WL1 reduces energy consumption by 5%, 6%, 4% and 5%, compared with NDPMRS-WL1

for CyberShake (Fig. 5.8a), Gaussian Elimination (Fig. 5.8b), Stencil (Fig. 5.8c) and Epige-

nomics (Fig. 5.8d), respectively. As is obvious, NE values increase as workload becomes

higher with increase in the number of DAGs. For all the benchmarks, due to lower rel-

atives workloads DPMRS-WL2 (NDPMRS-WL2 ) performs better than to DPMRS-WL1

(NDPMRS-WL1 ) in terms of achieved energy consumption rates.

Table 5.4 lists the average NRT values for different number of DAGs. It is observed

that the normalized running times of both the algorithms DPMRS and NDPMRS strictly

increase with the number of DAGs. As is obvious, the NRT values of DPMRS is higher

than NDPMRS. For all the benchmarks, the NRT values of DPMRS is upper bounded by

≈ 0.2 ms.

Table 5.4: Normalized Running Time (NRT ; in ms) for varying #DAGs

CyberShake Gaussian Elimination

#DAGs 2 4 6 8 10 2 4 6 8 10

DPMRS 0.10 0.12 0.13 0.15 0.17 0.09 0.10 0.11 0.12 0.13
NDPMRS 0.006 0.008 0.009 0.011 0.014 0.007 0.008 0.009 0.010 0.011

Stencil Epigenomics

#DAGs 2 4 6 8 10 2 4 6 8 10

DPMRS 0.15 0.16 0.18 0.19 0.20 0.08 0.09 0.10 0.11 0.12
NDPMRS 0.009 0.010 0.012 0.014 0.016 0.006 0.007 0.008 0.010 0.012

5.5 Case Study: Automotive Control System

To examine the practical applicability of both the proposed schedulers NDPMRS and

DPMRS to real-world designs, we now conduct a case study using three automotive control

applications namely, Adaptive Cruise Control (ACC ), Traction Control (TC ) and Electric
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Power Steering (EPS ). The block structures of ACC, TC and EPS are detailed in Figs. 5.9a,

5.9c and 5.9e, respectively (adapted from [41]). Figs. 5.9b, 5.9d and 5.9f display their task

graph representations. The ACC application helps in maintaining a safe distance within two

cars automatically. On the other hand, EPS provides steering assistance to a driver with the

help of an electric motor. The TC application helps to improve a car’s stability when road

conditions are slippery. These automotive applications have stipulated end-to-end deadlines

to allow correct and timely interaction between components such as sensors, processors and

actuators. Let us assume the deadlines to be 2000 ms, 2000 ms and 1000 ms for ACC, TC

and EPS.

Table 5.5: ACS: Task’s execution times on three heterogeneous processors

ACC TC EPS
τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ1 τ2 τ3 τ4 τ5 τ6

p1 300 150 175 300 250 200 150 200 200 180 200 155 150 120 180 332 150 199 273 300 67 48 65 91
p2 120 160 90 157 124 347 160 180 215 200 150 98 88 300 95 400 146 225 149 120 240 150 289 78
p3 100 274 244 261 300 167 279 173 175 274 100 48 74 243 206 276 154 200 150 175 300 97 150 100

The automotive applications are merged using Algorithm 8. The merged task graph G0

which has an end-to-end deadline of 2000 consists of 4 instances: 1 from ACC ⟨τ2 − τ9⟩, 1
from TC ⟨τ12 − τ21⟩ and 2 from EPS ⟨τ24 − τ29, τ32 − τ37⟩ applications. Thus, G0 consists

of 40 task nodes (including dummy nodes ⟨0, 1, 10, 11, 22, 23, 30, 31, 38, 39⟩). We assumed a

distributed platform having three heterogeneous processors u1, u2 and u3. The bandwidths

of the communication links between each pair of processing devices are: b1,2 = b2,1 =

250 KB/s, b2,3 = b3,2 = 500 KB/s, b3,1 = b1,3 = 1 MB/s, and b1,1 = b2,2 = b3,3 =

∞. Tables 5.2 and 5.5 depict the power parameters and execution times associated with
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each task on the three heterogeneous processors. Each edge ei,j is labelled with a positive

datai,j (in bytes value; for example, in ACC data1,4 = 512 bytes). We have employed

DPMRS, NDPMRS, NDES&GDES and NDES to generate four separate schedules. Gantt

chart of the schedules DPMRS, NDPMRS, NDES&GDES and NDES, are presented in

Fig. 5.10. It may be observed that, DPMRS is able to deliver a lower energy dissipation

rate (E(G0) = 2391.42 W ) compared to NDPMRS (E(G0) = 2536.66 W ), NDES&GDES

(E(G0) = 3568.67 W ) and NDES (E(G0) = 3853.77 W ).
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Figure 5.10: Gantt charts depicting the schedules: (a) DPMRS (SL = 1967, E(G0) =
2391.42 W ), (b) NDPMRS (SL = 1921, E(G0) = 2536.66 W ), (c) NDES&GDES (SL = 2000,
E(G0) = 3568.67 W ), and (d) NDES (SL = 1944, E(G0) = 3853.77 W ), for the ACS task graphs
in Fig. 5.9.
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5.6 Summary

This chapter proposed a static list-based real-time scheduling algorithm called DPMRS for

multiple independent periodic applications on a distributed heterogeneous platform. The

overall objective of DPMRS is to minimize total dynamic energy dissipation associated

with the execution of multiple independent periodic DAGs using a DVFS approach. For the

same problem, this work also presented another scheduler named NDPMRS (an adaption to

DPMRS ), targeting the platforms which are not DVFS-enabled. Experimental analysis em-

ploying four benchmark task graphs acknowledges that DPMRS performs appreciably over

extensive sets of test scenarios, pointing to the practical effectiveness of the scheme. As is

obvious, DPMRS is able to fetch higher dynamic energy savings compared to NDPMRS.

From the experimental results, we can also conclude that compared to the state-of-the-art

energy-aware single DAG scheduler NDES&GDES (NDES ), the global nature of DPMRS

(NDPMRS ) allows it to harness significantly improved processor/communication resource

sharing among different DAGs, in addition to better exploitation of task-processor affinities

in the heterogeneous environment. Due to such efficient sharing and affinity awareness,

DPMRS (NDPMRS ) is able to achieve considerably lower deadline miss rates and en-

ergy dissipation, compared to NDES&GDES (NDES ). Finally, the practical adaptability

of DPMRS and NDPMRS is exhibited through a case study with an automotive control

system.

In the next chapter, we present a real-time policy called SHIELD, whose objective is

to maximize total security utility for a given DAG-structured application having known

minimum security strength specifications for its messages.

;;=8=<<
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Chapter 6
SHIELD: Security-aware Scheduling for
Real-time DAGs on Heterogeneous Systems

6.1 Introduction

The scheduling strategies proposed in the first three contributory chapters (refer Chapters 3,

4 and 5) do not focus towards ensuring the security needs of networked RT-CPS applica-

tions. However, data communication between dependent task nodes running on different

processing elements is often realized through message transmission over a public network

and hence such transmissions are susceptible to multiple security threats such as snooping,

alteration and spoofing. Snooping denotes the interception of information being transmitted

by unauthorized entities. Alteration refers to the change of information bits in transmitted

messages by unauthorized users so that a modified message is obtained at the receiving end.

The third type of security threat, spoofing, refers to an entity impersonating another entity.

This may lead to the receipt of malicious messages from the impersonated entity, who is mis-

interpreted as a valid sender. Several alternative security protocols having varying security

strengths and associated implementation overheads are available in the market for incorpo-

rating confidentiality [97] (protection against unauthorized access and misuse), integrity [11]

(recognizing message bit modification at receiver end) and authentication [23] (identifying

messages from unauthorized senders) on the transmitted messages. While message size and

conceptually its associated transmission overheads may be marginally increased due to the

assignment of security protocols, significant computation overheads must be incurred for

securing the message at the location of its source task node and for unlocking security/mes-
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sage extraction at the destination. Obtained security strengths and associated computation

overheads vary depending on the set of protocols chosen for a given message from an avail-

able pool of protocols. Given lower bounds on the security demands of an application’s

messages, selecting the appropriate protocols for each message such that a system’s overall

security is maximized while satisfying constraints related to the resource, task precedence

and deadline is a challenging and computationally hard problem.

The key contributions of this chapter are summarized as follows:

1. We propose an efficient heuristic strategy called SHIELD for security-aware real-time

scheduling of DAG-structured applications to be executed on distributed heteroge-

neous systems.

2. The efficacy of the proposed scheduler is exhibited through extensive simulation-based

experiments using two DAG-structured application benchmarks. Our performance

evaluation results demonstrate that SHIELD significantly outperforms two greedy

baseline strategies SHIELDb in terms of solution generation times (i.e., run-times)

and SHIELDf in terms of achieved security utility.

3. Additionally, a case study on the Traction Control application in automotive systems

has been included to exhibit the applicability of SHIELD in real-world settings.

The rest of the chapter is organized as follows. Section 6.2 discusses the system models

and in section 6.3, we present the proposed heuristic scheduling strategy. Section 6.4 ex-

perimentally evaluates the proposed scheduler. Section 6.5 exhibits a real-world case study

on a Traction Control application in automotive systems. Finally, section 6.6 provides the

concluding remarks.

6.2 System Models

In order to describe the proposed strategy SHIELD, a detailed discussion on the application,

platform and security models considered in this work is required. We present these models

below.
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6.2.1 Application and Platform Model

Directed Acyclic Graph (DAG) is a typical way to characterize a real-time application

G(V,E) (refer Fig. 6.1a), where the set of vertices V = {τ1, τ2..., τ|V |} symbolizes tasks

and the set of edges E1 conveys the precedence constraints among task pairs. An edge

ei,j = (τi, τj) ∈ E denotes the dependency between tasks τi and τj. We assume that our

application task graph has a single source τentry and a single sink τexit.

τ1

τ2 τ3 τ4

τ5 τ6 τ7

τ8

15
27 12

51

25
40

34

27
35

27

21
28

D
=

5
0
0

Tasks p1 p2 p3

τ1 64 56 78

τ2 46 36 58

τ3 42 63 49

τ4 36 54 42

τ5 91 45 55

τ6 58 72 84

τ7 54 81 63

τ8 75 42 61

(a) A DAG G(V,E) (b) WCET Table

Figure 6.1: (a) A DAG ‘G’; (b) WCETs of 8 tasks on 3 processors.

The platform P = {p1, p2, ..., p|P |} comprises of |P | heterogeneous processors. These |P |
processors are fully interconnected through a set of (|P |∗(|P |−1))/2 heterogeneous commu-

nication links having possibly distinct bandwidths. The bandwidths between different pairs

of processors are captured in a matrix B of size |P | × |P |. An element bm,n ∈ B represents

the data transfer rate between processors pm and pn. As the links between the processors

are bidirectional, bm,n = bn,m. The communication cost (cm,n
i,j ) for an edge ei,j with load

datai,j on link ⟨pm, pn⟩ is calculated as: cm,n
i,j = datai,j/bm,n. When τi and τj are mapped

to the same processor, the value of cm,n
i,j = 0. Further, the average communication time

cost ci,j between τi and τj is determined as: ci,j = datai,j/B, where B = 1
|P |×(|P |−1)/2

∑
bm,n

(1 ⩽ m ⩽ |P |; 1 ⩽ n < m). The worst case execution time (WCET ) of a task τj on pn is

denoted as ωj,n. Fig. 6.1b shows the WCETs of each task on three heterogeneous processors.

1The symbol ei,j has been alternatively referred to as message transferred between τi and τj , in rest of
the chapter.
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6.2.2 Security Model

Messages transmitted over untrusted networks must be secured using services such as confi-

dentiality, integrity and authentication in order to prevent tampering and leakage of sensitive

data. For each security service, a set of alternative security protocols are available, any one

of which may be employed in a given design. These protocols vary with respect to achiev-

able security strengths and overheads. Here, strength refers to a relative numeric estimate

(having a value in the range (0, 1]) across multiple protocols of the same or different security

services. This numeric estimate is directly proportional to the computational overhead that

is necessary to break security of the service protocol. When the yth security protocol of ser-

vice type x is applied on a message ei,j, we denote its security strength by sx,yi,j . Without loss

of generality, given any two available security protocols say, the yth and (y + k)th protocol

(k ⩾ 1), we assume that sx,yi,j ⩽ sx,y+k
i,j . Furthermore, for each service type x, a message ei,j

is marked by a minimum threshold security demand sx,min
i,j ; thus, sx,yi,j ⩾ sx,min

i,j .

Table 6.1: Strengths and overheads of security service protocols; sx,y: security strengths; χx,y
1

(χx,y
2 ): data independent (dependent) overheads

confidentiality
SEAL RC4 Blowfish

Knufu/
RC5 Rijndael DES IDEA

x = 1 Khafre
s1,y 0.08 0.14 0.36 0.40 0.46 0.64 0.90 1.00

χ1,y
2 (KB/ms) 168.75 96.43 37.50 33.75 29.35 21.09 15.00 13.50
integrity

MD4 MD5 RIPEMD
RIPE

SHA-1
RIPE

Tiger
x = 2 MD-128 MD-160
s2,y 0.18 0.26 0.36 0.45 0.63 0.77 1.00

χ2,y
2 (KB/ms) 23.90 17.09 12.00 9.73 6.88 5.69 4.36

authentication HMAC-MD5 HMAC-SHA-1 CBC-MAC-AES
x = 3 y = 1 y = 2 y = 3
s3,y 0.55 0.91 1

χ3,y
1 (ms) 90 148 163

In Table 6.1, we consider three security services, x ∈ {1, 2, 3}. Let x = 1 denotes the

confidentiality service. There are eight different types of available protocols namely SEAL,

RC4, Blowfish, Knufu, RC5, Rijndael, DES, and IDEA, for x = 1. Thus, when x = 1, the

value of y ranges from one to eight. If a message say, e1,2 of Fig. 6.1a is secured with the

cryptographic algorithm Blowfish (x = 1, y = 3), hash function Tiger (x = 2, y = 7) and

authentication protocol HMAC-MD5 (x = 3, y = 1), its security strength for the different
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services will be s1,31,2 = 0.36, s2,71,2 = 1.00 and s1,31,2 = 0.55. Let the symbol wx
i,j denote relative

importance of different service types x (say, confidentiality, integrity and authentication)

towards overall protection of a message ei,j against prevailing security threats (such that∑X
x=1 w

x
i,j = 1). Now the utility associated with the use of yth security protocol of service

type x on a message ei,j is obtained as: wx
i,j ∗ sx,yi,j . The overall security utility of ei,j is then

defined as:

SUi,j =
X∑

x=1

Yx∑
y=1

wx
i,j ∗ sx,yi,j (6.1)

where X denotes the number of security services being considered for a system and Yx

represents the number of security protocols available for the xth service type. The security

performance of a system may be measured as the sum of individual security utility values

over all messages in the system:

TSU =
∑

ei,j∈E
SUi,j (6.2)

The objective of this work is to maximize TSU , the system-level total security utility.

On the other hand, security overhead of a system may be defined as an estimate of

the overall computational effort associated with the securing of all messages in the system.

There are two security-related temporal overhead components associated with each message:

(i) the overhead of securing the message at its source node before transmission, and (ii) the

overhead of unlocking its security in order to transform it back to a readable form at its

destination node. Without loss of generality, we consider both these overhead components

to have the same value. Let us assume that a message ei,j is transmitted from processor pn

to pr. The generalised expression of the overhead for securing ei,j using the yth protocol of

service type x on pn is represented as:

ovx,yi,j = χx,y
1,n + datai,j/χ

x,y
2,n (6.3)

Here, χx,y
1,n denotes the data-independent component of the temporal overhead associated

with the execution of the yth protocol on pn. χ
x,y
2,n on the other hand, is the data-dependent

component and is defined as the rate at which a message’s data can be secured (unit:

KB/ms) using the yth protocol. Earlier, we have assumed sx,yi,j ⩽ sx,y+k
i,j (k ⩾ 1) and sx,yi,j ∝

ovx,yi,j . Hence, ov
x,y
i,j ⩽ ovx,y+k

i,j , which implies, χx,y
1 ⩽ χx,y+k

1 and χx,y
2 ⩾ χx,y+k

2 . Assuming that

ei,j is secured using X different security services, the total overhead becomes:
∑X

x=1 ov
x,y
i,j .

For a task τj executing on a processor pn, the total security overhead of unlocking its input
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messages (denoted by, ei,j ∈ E) and locking its outgoing messages (ej,k ∈ E) may be

obtained as:

sonj =
∑

ei,j∈E

X∑
x

ovx,yi,j +
∑

ej,k∈E

X∑
x

ovx,yj,k (6.4)

The right hand side (R.H.S.) of the above expression has two major components which

respectively represent the overheads related to the incoming and outgoing messages of τj.

For the three security services targeted in this work namely, confidentiality (x = 1), integrity

(x = 2), and authentication (x = 3), the following have been assumed: the data-independent

components are negligible for the confidentiality and integrity services [59,60] while the data-

dependent component has no effect on the overhead for the authentication service [109].

Hence, we have considered, χ1,y
1,n = χ2,y

1,n = 0 and χ3,y
2,n =∞. Using data in Table 1, the total

security overhead associated with the task τ5 in Fig. 6.1a, can be derived as discussed next. τ5

has one input message of size 14 KB and one output message of size 27 KB. Let the security

protocols Blowfish (confidentiality), Tiger (integrity) and HMAC-HD5 (authentication) be

used for both the input and output messages of τ5. The total overhead obtained using

equation (6.4) becomes [(0+14/37.5)+(0+14/4.36)+90]+[(0+27/37.5)+(0+27/4.36)+90] =

190.5 ms.

Next, we describe the proposed list-based heuristic algorithm called “Security-aware

Scheduling for Real-time DAGs on Heterogeneous Systems (SHIELD)”.

6.3 SHIELD: The Proposed Scheduler

SHIELD is a real-time scheduling strategy for heterogeneous platforms whose objective is

to maximize total security utility for a given task graph application having known minimum

security strength specifications for its messages. The scheduler works in three phases namely,

(i) task prioritization, (ii) processor allocation, and (iii) security enhancement. The first two

phases of SHIELD are encapsulated in a function called “Heterogeneous Security-aware

Makespan-minimizing Scheduler (HSMS)” (refer line 1 of Algorithm 15). The first phase

(task prioritization) which comprises lines 1 - 3 of Algorithm 11, computes the ranks of all

the tasks and creates a priority order among the tasks. The second phase of SHIELD (which

comprises lines 4 - 8 of function HSMS (refer Algorithm 11)) is used to generate a minimum

makespan schedule for the application such that the minimum security requirements are met

for all messages. SHIELD returns with failure if the makespan returns by HSMS violates

138



6.3 SHIELD: The Proposed Scheduler

deadline (refer line 2 of Algorithm 15). Otherwise, SHIELD enters its third phase where it

attempts to enhance the security strengths of all messages such that total security utility of

the system is maximized.

6.3.1 Task Prioritization

The priority of any task is defined by its rank and the rank R[τj] of a task τj is determined

as:
R[τj ] = ωj + max

τk∈succ(τj)
{cj,k +R[τk]}+ soj,min (6.5)

where ωj =
∑|P |

n=1 ωj,n/|P | and soj,min =
∑|P |

n=1 so
n
j,min/|P |, respectively denote the average

execution time and minimum average security overhead associated with task τj over all

processors. For a given processor pn, so
n
j,min is obtained via equation (6.4) by using those

minimum values of y (y refers to security protocol ids) for each value of x (x refers to

service type ids) for which the corresponding security strength sx,yi,j ⩾ sx,min
i,j . For each

successor τk of τj, the expression, cj,k + R[τk], delivers the aggregate value combining the

rank of τk (R[τk]), and the average communication time incurred for transmitting dataj,k

(cj,k). The max{. . . } block thus returns the maximum aggregate value overall successors

of τj. In line 2 (of Algorithm 11), the rank of each task is computed recursively from

τexit to τj. Basically, the rank R[τj] of each task τj is an estimate of the overall relative

remaining workload (combining task execution, message transmission as well as security

overhead) associated with the sub-graph rooted at τj (up to the sink task of the DAG).

The rank of each task is intended to serve two important objectives: (1) Ensuring that all

ancestors of a given task are always considered for processor allocation before the task itself

so that precedence constraints associated with the task graph are never violated. (ii) Tasks

with relatively higher total estimated workloads corresponding to the remaining (still to

be allocated) tasks in the task graph should be considered earlier for processor allocation.

After obtaining the rank values, a task priority list taskList is created in line 3 where tasks

are arranged according to the non-increasing order of R[τj].

6.3.2 Processor Allocation

The processor allocation phase (lines 4 - 8 of HSMS ) aims to produce a static schedule by

sequentially deciding for each task: (i) a processor allocation, (ii) an actual start time, and

(iii) an actual finish time, in the order defined by the list taskList, such that the overall
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schedule makespan is minimized while satisfying minimum security requirements of each

message of the given task graph. The task τj (in taskList) to be scheduled next may

be assigned to any heterogeneous processor in the platform. Each possible task-processor

assignment is determined using two attributes: (i) Effective Start Time (EST) and (ii)

Effective Finish Time (EFT).

Effective Start Time (EST ) of the entry task τentry on each processor pn is zero. For all

other tasks, EST [τj, pn] of τj on pn is computed as:

EST [τj , pn] =

0, if τj = τentry

max(avail[n], max
τi∈pred(τj)

{AFT [τi] + ⌈cm,n
i,j ⌉}, otherwise

(6.6)

where AFT [τi] is the actual finish time of task τi and avail[n] is the earliest time at which

processor pn becomes available for execution. Given EST [τj, pn], ωj,n, and sonj , the effective

finish time EFT [τj, pn] of task τj on pn is determined as:

EFT [τj , pn] = EST [τj , pn] + ωj,n + ⌈sonj ⌉ (6.7)

Line 7 allocates that task τj on pn for which the EFT [τj, pn] value is minimal. Finally,

the system level total security utility which is obtained by satisfying the minimum security

requirements by all messages, is determined in line 8. After τj is mapped on pn, the EST

and EFT of τj on pn become the Actual Start Time AST [τj] and the Actual Finish Time

AFT [τj] of τj.

Algorithm 11: HSMS (G,Sreq, P )

Input: G(V,E), security requirement Sreq, processor set P
Output: Security-aware makespan-minimizing schedule

1 Initialize sx,yi,j (⩾ sx,min
i,j ) to least security strength that satisfies the requirements of each

message ei,j for service type x;
2 Compute R[τj ] using equation (6.5) for each task τj by traversing the DAG G starting from
τexit to τj ;

3 Sort tasks τj in non-increasing order of R[τj ] and store in taskList;
4 for each task τj in taskList do
5 for each processor pn ∈ P do
6 Compute sonj , EST [τj , pn], and EFT [τj , pn] using equations (6.4), (6.6), and (6.7);

7 Allocate task τj on pn for which EFT [τj , pn] is minimal;

8 Determine TSU using equation (6.1);
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6.3.3 Security Enhancement

This phase attempts to upgrade the security strengths of the messages in the given appli-

cation. The objective is to utilize both the global slack (between AFT [τexit] and D) as well

as local slacks (between two consecutive tasks allocated on the same processor) to improve

message security strengths such that security utility (TSU) of the overall system is maxi-

mized. It progressively improves the system-level security utility in a step-by-step fashion

while keeping the task-to-processor assignments and task execution order as prescribed by

HSMS undisturbed. At each step, the strategy attempts to increase the assigned security

strength of a certain message ei,j along one of its service dimensions (x), by one level say,

from sx,yi,j to sx,y+1
i,j (if sx,yi,j < sx,Yx

i,j ). The selection of a ⟨message, service⟩-pair ⟨ei,j, x⟩ is
based on the highest value of a parameter called benefit-to-cost ratio BCRx

i,j. Given the

current protocol strength level y for a service of type x, BCRx
i,j is a ratio as depicted in

equation (6.8). Here, BCRx
i,j provides a measure of the gain in security utility that may be

obtained by enhancing the protocol strength level from y to y+1 to the additional resource

cost that is incurred in the process. Formally, BCRx
i,j can be determined as:

BCRx
i,j =

Bx
i,j

Cx
i,j

(6.8)

Symbolically, Bx
i,j is represented as:

Bx
i,j = wx

i,j ∗ (sx,y+1
i,j − sx,yi,j ) (6.9)

On the other hand, Cx
i,j denotes the corresponding additional computation time cost. When

τi executes on processor pm and τj on pn, the cost Cx
i,j reflects the total additional security

overhead incurred for securing ei,j during transmission (at τi) and for unlocking its security

during reception (at τj). Symbolically, Cx
i,j can be obtained as:

Cx
i,j = δi + δj (6.10)

where,

δi = ovx,y+1
i,j − ovx,yi,j (6.11)

δj = ovx,y+1
j,k − ovx,yj,k (6.12)
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6.3.3.1 SHIELDb: The Baseline List Scheduler

In this subsection, we discuss Algorithm 12 which represents the pseudocode of SHIELDb.

The heapInsert() (refer Algorithm 13) is used to initialize and maintain a max heap H, at

any intermediate stage of the SHIELD algorithm. Each element of the heap is a ⟨message,

service⟩-pair ⟨ei,j, x⟩ at its current protocol strength level y (< Yx), with the key value being

BCRx
i,j (refer equation (6.8)). At line 4, heapInsert() initializes H with each ⟨message,

service⟩-pair ⟨ei,j, x⟩ being assigned to an available protocol of lowest acceptable strength

(such that sx,yi,j ⩾ sx,min
i,j ). It may be noted that in the schedule generated by HSMS, all

messages have been assigned with these lowest acceptable protocol strengths values sx,yi,j .

The while loop (lines 5-12) repeats until the available slacks in the partial schedule become

Algorithm 12: SHIELDb(G,Sreq, D, P )

Input: G(V,E), security requirement Sreq, D, processor set P
Output: Maximizes the aggregate security strength of system

1 Call HSMS (G,Sreq, P ) to obtain the allocated processor pro, AST , AFT of each task, the
assigned security service protocols on the messages of G, security overhead of each
task-processor pair sonj , and priority list taskList;

2 if AFT [τexit] > D then Exit;
3 Initialize a Max-Heap H, and set curCost = 0, τλ = τexit;

4 Call heapInsert(i, j, x, sx,yi,j , s
x,y+1
i,j , H) for each service type x on every edge ei,j , if s

x,y
i,j is

smaller than sx,Yx

i,j ;

5 while H is non-empty do
6 {Bx

i,j , C
x
i,j , s

x,y
i,j , i, j} = Extract top element from H;

7 so
pro[τi]
i + = δi, so

pro[τj ]
j + = δj ;

8 updateSched(G,S, τi, taskList);
9 if AFT [τexit] > D then

10 Revert lines 7 - 8;

11 else if sx,y+1
i,j < sx,Yx

i,j then

12 heapInsert(i, j, x, sx,y+1
i,j , sx,y+2

i,j , H);

13 Output: Valid schedule having security utility TSU ;

insufficient to enhance the protocol strength of any ⟨message, service⟩-pair in H. At any

given iteration of the while loop, line 6 extracts the ⟨message, service⟩-pair say, ⟨ei,j, x⟩
which offers the highest benefit-to-cost ratio, from the max heap H. Line 7 updates so

pro[τi]
i

and so
pro[τj ]
j , the security overheads at the source and destination nodes of message ei,j, after
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enhancing its protocol strength for service type x, from y to y + 1.

Algorithm 13: heapInsert(i, j, x, sx,yi,j , s
x,y+1
i,j , H)

Input: i, j, x, sx,yi,j , s
x,y+1
i,j , H

Output: Update the heap H
1 Compute Bx

i,j , C
x
i,j and BCRx

i,j using equations (6.9),(6.10) and (6.8);

2 insert {Bx
i,j , C

x
i,j , s

x,y
i,j , i, j} in H with key BCRx

i,j ;

In line 8, updateSched() (refer Algorithm 14) updates the partial schedule after the se-

curity enhancement a message ei,j, while keeping undisturbed the task-to-processor assign-

ments and task execution order as prescribed by HSMS. The partial schedule is updated by

minimally increasing (if needed) the start times as well as the finish times of the following

tasks.

Algorithm 14: updateSched(G,S, τλ, taskList)

Input: G,S, τλ, taskList
Output: Update start and finish time of each task, from τλ to τexit

1 Update avail[n] for each processor pn ∈ P ;
2 for τk = τλ to τexit do
3 Compute EST [τk, pro[τk]] and EFT [τk, pro[τk]] using equations (6.6) and (6.7);
4 Set AST [τk] = EST [τk, pro[τk]];
5 Set AFT [τk] = EFT [τk, pro[τk]];
6 Update avail[pro[τk]];

1. The finish time of τi is increased by ⌈δi⌉ (refer equation 6.11) on processor pro[τi].

2. Due to increase in the finish time of τi, start time of τj may need to be enhanced by

atmost ⌈δi⌉ on processor pro[τj]. Finish time of τj must also be minimally increased

by at most ⌈δi + δj⌉ (refer equation 6.12).

3. Due to enhancement in the finish times of τi and τj, the start times of all descendent

tasks of τi and τj in DAG G, may need to be delayed.

4. These adjustments in the execution intervals of τi, τj and their descendent tasks, may

induce overlapped execution intervals in the partial schedule. Such overlaps must be

removed by minimally shifting/delaying the execution of tasks in the partial schedule.
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The adjustment procedure in step 4 above may potentially lead to a scenario where the

completion time of the exit task τexit overshoots the stipulated deadline D of the application

(line 9). In such a scenario, the modifications carried out in steps 1 to 4 above are reverted

back (line 10). This case implies that the protocol strength enhancement of ⟨ei,j, x⟩ was
not successful due to insufficient resources. Further, as the protocol strength enhancement

attempt failed, ⟨ei,j, x⟩ is not re-inserted back into the heap H. On the other hand, if the

protocol strength enhancement is successfully conducted and service type x has not already

been assigned to the highest protocol level, SHIELDb calls heapInsert() to update BCRx
i,j

and insert ⟨ei,j, x⟩ into the heap using BCRx
i,j as key (lines 11-12). This procedure continues

until heap H becomes empty.

Table 6.2: Messages security requirements Sreq for the DAG in Fig. 6.1a

Messages s1,min
i,j s2,min

i,j s3,min
i,j w1

i,j w2
i,j w3

i,j

data1,2 0.3 0.2 0.4 0.2 0.3 0.5
data1,3 0.1 0.2 0.2 0.5 0.3 0.2
data1,4 0.1 0.4 0.3 0.3 0.6 0.1
data2,5 0.2 0.2 0.4 0.3 0.5 0.2
data2,6 0.4 0.2 0.3 0.7 0.1 0.2
data3,6 0.3 0.1 0.1 0.2 0.4 0.4
data3,7 0.3 0.2 0.1 0.1 0.3 0.6
data4,6 0.2 0.5 0.3 0.2 0.6 0.2
data4,7 0.3 0.4 0.2 0.2 0.2 0.6
data5,8 0.3 0.1 0.4 0.2 0.4 0.4
data6,8 0.3 0.2 0.3 0.3 0.6 0.1
data7,8 0.4 0.3 0.4 0.2 0.3 0.5

Example - 1: Fig. 6.1a depicts an example task graph application having 8 task nodes

and 12 edges. Here, the deadline for the application is 500. Fig. 6.1b lists the worst-case

execution times of all tasks on three available processors. Table 6.2 depicts the minimum

security requirements and relative priority for three security service types, associated with

each message of the DAG application in Fig. 6.1a. Table 6.3 lists the performance values

of alternative protocols available for each service type on the three processors. Bandwidths

bm,n of the communication channel between different processor pairs are: b1,2 = b2,1 = 1,

b2,3 = b3,2 = 3 and b3,1 = b1,3 = 2. The priority order of tasks is obtained as: taskList =
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{τ1, τ3, τ4, τ2, τ6, τ7, τ5, τ8}. Fig. 6.2a shows the schedule Gantt chart obtained using HSMS.

It can be observed from Fig. 6.2a that the HSMS schedule whose makespan is 417, has

global slack 83 (D − AFT [τexit] = 500 − 417), along with various local slack intervals on

different processors: ⟨p1: 87-102, 317-344 ⟩, ⟨p2: 181-216, 330-344 ⟩, ⟨p3: 87-91, 174-190,

294-344 ⟩.
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Figure 6.2: Gantt charts of schedules: (a) HSMS (makespan = 417, TSU = 4.828); (b) Par-
tialSched1 (makespan = 418), for the DAG in Fig. 6.1a.

Fig. 6.2b shows the partial schedule of SHIELDb after the first security strength enhance-

ment, which happens in line 8. This enhancement corresponds to the increment of the con-

fidentiality service (x = 1) of message e2,6 from protocol Knufu/Khafre (y = 4; s1,42,6 = 0.4)

to RC5 (y = 5; s1,52,6 = 0.46). Due to this change in protocol strength, the execution time

of task τ2 (on p1) and τ6 (on p2) increases by 1 ms each. Hence, the completion time of τ2

is changed from 195 to 196. Increase in τ2’s completion time induces a delay of 1 ms in the

start time of τ6. Thus, the finish time of τ6 gets increased by 2 ms from 330 to 332. Further,

finish times of τ5 (successor of τ2 in the DAG (Fig. 1a) and scheduled after τ2 on processor

p1 (Fig. 2b)) and τ8 (successor of τ5 and τ6 in the DAG and scheduled after τ6 on processor

p2) get enhanced by 1 ms. It may be noted that, due to available local slack in processor

p2, the execution interval of τ8 gets shifted by one time unit, although τ6 is shifted by two

time units in the schedule.

6.3.3.2 SHIELD: An Enhancement over SHIELDb

In each iteration, SHIELDb extracts a ⟨message, service⟩-pair from the heap H and mini-

mally updates the partial schedule using steps 1 to 4 discussed above. This partial schedule
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Table 6.3: Performance of alternative protocols of different security services on three processors

Confidentiality s1,y 0.08 0.14 0.36 0.40 0.46 0.64 0.90 1.00
p1 1012.5 578.58 225.0 202.50 176.10 126.54 90.0 81.0

χ1,y
n (KB/ms) p2 1518.7 867.87 337.5 303.75 264.15 189.81 135.0 121.5

p3 1181.2 675.01 262.5 236.25 205.45 147.63 105.0 94.5
Integrity s2,y 0.18 0.26 0.36 0.45 0.63 0.77 1.00

p1 143.40 102.54 72.0 58.38 41.28 34.14 26.16
χ2,y
n (KB/ms) p2 215.10 153.81 108.0 87.57 61.92 51.21 39.24

p3 167.30 119.63 84.0 68.11 48.16 39.83 30.52
Authentication s3,y 0.55 0.91 1.00

p1 15 24.67 27.17
χ3,y
n (ms) p2 10 16.44 18.11

p3 12.86 21.14 23.29

adjustment procedure repeats
∑X

x=1 |E| × Yx times, in the worst case. Given a message ei,j

whose security is being enhanced, the execution intervals of O(|V |) tasks ranked at most

R[τi] may need to be adjusted in the schedule. However, this expensive overhead can be

reduced if we have a mechanism which can minimize the number of times such schedule

adjustments are conducted. We now discuss SHIELD which delivers significantly lower

overheads compared to SHIELDb, while producing an identical schedule as output. The

pseudocode of SHIELD is presented in Algorithm 15. Lines 1-6, 17-23 and 25 are very

similar to that of SHIELDb (refer Algorithm 12). The idea of SHIELD can be summarised

through the following steps.

1. Determine a collection say, ξ of ⟨message, service⟩-pairs (which can be obtained as

a sequence, through a set of consecutive extractions from heap H), all of whom can

be used to effect message security enhancements, while ensuring that the resulting

combined overhead will not lead to deadline violation. It may be noted from equa-

tion (6.10) that for a given ⟨message, service⟩-pair ⟨ei,j, x⟩ whose security has to be

enhanced, the schedule makespan may get extended by at most Cx
i,j for a single pro-

tocol enhancement step.

2. This sequence of ⟨message, service⟩-pairs is obtained by repeatedly extracting the root

(say, ⟨ei,j, x⟩) of H (line 6), accumulating the corresponding maximum overhead Cx
i,j

in a variable curCost (line 9), determining the new key value BCRx
i,j, and finally re-

inserting ⟨ei,j, x⟩ back into the heap with the new key value (line 12). Such repeated

extractions from the heap are conducted until the total overhead in curCost is less
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Algorithm 15: SHIELD(G,Sreq, D, P )

Input: G(V,E), security requirement Sreq, D, processor set P
Output: Maximizes the aggregate security strength of system

1 Call HSMS (G,Sreq, P ) to obtain the allocated processor pro, AST , AFT of each task, the
assigned security service protocols on the messages of G, security overhead of each
task-processor pair sonj , and priority list taskList;

2 if AFT [τexit] > D then Exit;
3 Initialize a Max-Heap H, and set curCost = 0, τλ = τexit;

4 Call heapInsert(i, j, x, sx,yi,j , s
x,y+1
i,j , H) for each service type x on every edge ei,j , if s

x,y
i,j is

smaller than sx,Yx

i,j ;

5 while H is non-empty do
6 {Bx

i,j , C
x
i,j , s

x,y
i,j , i, j} = Extract top element from H;

7 if curCost+ Cx
i,j ≤ D −AFT [τexit] then

8 so
pro[τi]
i + = δi, so

pro[τj ]
j + = δj ;

9 Set curCost = curCost+ Cx
i,j ;

10 if R[τi] > R[τλ] then Set τλ = τi;

11 if sx,y+1
i,j < sx,Yx

i,j then

12 heapInsert(i, j, x, sx,y+1
i,j , sx,y+2

i,j , H);

13 else if curCost > 0 then
14 updateSched(G,S, τλ, taskList);
15 Set curCost← 0, τλ = τexit;

16 heapInsert(i, j, x, sx,yi,j , s
x,y+1
i,j , H);

17 else

18 so
pro[τi]
i + = δi, so

pro[τj ]
j + = deltaj ;

19 updateSched(G,S, τi, taskList);
20 if AFT [τexit] > D then
21 Revert lines 18 - 19;

22 else if sx,y+1
i,j < sx,Yx

i,j then

23 heapInsert(i, j, x, sx,y+1
i,j , sx,y+2

i,j , H);

24 if curCost > 0 then textitupdateSched(G,S, τλ, taskList);
25 Output: Valid schedule having security utility TSU ;
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than the available global slack (D − AFT [τexit]) (line 7).

3. For a given ⟨message, service⟩-pair ⟨ei,j, x⟩, the additional security overhead compo-

nents δi and δj at the source and destination tasks τi and τj of ei,j (refer equation 9),

are added to the execution times of τi and τj (line 8).

4. Next, we find out the highest ranked task (say, τλ) among all the source tasks (τi) of

messages in collection ξ (line 10).

5. Finally, the partial schedule is updated (by minimally enhancing the start times

of all tasks whose ranks are at most τλ) such that there are no overlaps between

the execution durations of: (i) inter-dependent tasks in the task graph, and (ii)

tasks allocated on the same processor. This operation is performed by function up-

dateSched(G,S, τλ, taskList) in line 14 of SHIELD. It may be noted that updateSched()

does not perform any schedule adjustments for tasks whose ranks are higher than τλ.

6. As mentioned in step 3, the cxi,j values (which are accumulated in a variable curCost)

provide upper bounds on the possible increase in makespans due to security protocol

enhancements. Thus, subsequent to partial schedule adjustment (in line 15 or 20), the

enhanced schedule makespan value may be less than the final value of curCost. Hence,

it is possible that the if -condition in line 7 of Algorithm 15, gets satisfied more than

once. However, when the if -condition in line 7 fails just after a schedule adjustment

step (global slack is insufficient; curCost = 0), then SHIELD executes lines 19-27,

similar to lines 7-14 of SHIELDb (Algorithm 12).

Example - 2: We employ the same scenario as used in Example - 1. Fig. 6.3a shows the

partial schedule as obtained after the first five message security strength enhancements,

all of whom correspond to protocols of the confidentiality service (x = 1). The first four

of these enhancements are associated with the message e2,6, which is initially designated to

use the confidentiality protocol Knufu/Khafre (y = 4; s1,42,6 = 0.4) in the HSMS schedule.

The four confidentiality protocol enhancements to carried out by SHIELD to message e2,6

are: RC5 (y = 5; s1,52,6 = 0.46) → Rijndael(y = 6; s1,62,6 = 0.64) → DES (y = 7; s1,72,6 = 0.9)

→ IDEA (y = 8; s1,82,6 = 1.0). The fifth confidentiality protocol enhancement is for the

message e1,4: RC4 (y = 2; s1,21,4 = 0.14) → Blowfish (y = 3; s1,31,4 = 1). Due to these changes

in protocol strengths, the execution times of task τ2 (on p1), τ6 (on p2), τ1 (on p2) and τ4
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Figure 6.3: Gantt charts depicting the schedules: (a) PartialSched2 (makespan = 419); (b)
SHIELD (makespan = 499, TSU = 11.856); (c) SHIELDf (makespan = 500, TSU = 8.663), for
the DAG in Fig. 6.1a.

(on p3) increase by 1 ms each. It may be noted that τ1 has the highest rank among the

above-mentioned tasks. Now, the execution intervals of all the tasks ranked lower than τ1

in the partial schedule are adjusted minimally so that there are no overlaps in the updated

schedule. Thus, the completion time of τ1 (which is changed from 87 to 88) induces a delay

of 1 ms in the start times of τ2, τ3 and τ4. So, the finish times of τ2, τ3 and τ4 get increased

by 2, 1, and 2 time units: ⟨195 to 197⟩, ⟨181 to 182⟩ and ⟨174 to 176⟩. Further, finish times

of all the descendent/lower-ranked tasks τ5, τ6, τ7 and the exit node τ8 (of τ1 to τ4) get

increased by 2, 3, 1 and 2 time units. Thus, the new makespan of the updated schedule

becomes 419 (finish time of τ8).

Gantt charts in Figs. 6.2a and 6.3b depict the schedules generated by HSMS (makespan:

417, TSU : 4.828) and SHIELD (makespan: 499, TSU : 11.856), respectively. Table 6.4 lists

the messages’ security strengths archived by the algorithms for the available service types.

6.3.4 Complexity Analysis

The complexity of the SHIELD algorithm is comprised of the complexities of its three

integral phases, namely (i) task prioritization, (ii) processor allocation and (iii) security

enhancement. In the task prioritization phase, overhead of computing ranks (refer equa-

tion (6.5)) of all tasks is obtained as the summation of the complexities for determining,

(a) ωj: takes O(|V | × |P |) time; (b) ci,j: takes O(|E| + |P |2) time; and (c) soj,min: takes

O(|E| × |P |) time (assuming the total number of available security services to be constant).
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Table 6.4: Schedulers assigned security strengths of each message

Messages HSMS SHIELD SHIELDf
s1i,j s2i,j s3i,j s1i,j s2i,j s3i,j s1i,j s2i,j s3i,j

data1,2 0.36 0.26 0.55 1.00 1.00 1.00 0.40 0.26 0.91
data1,3 0.14 0.26 0.55 1.00 1.00 1.00 0.40 0.26 1.00
data1,4 0.14 0.46 0.55 1.00 1.00 0.91 0.40 1.00 0.55
data2,5 0.36 0.26 0.55 1.00 1.00 0.55 0.36 1.00 0.91
data2,6 0.40 0.26 0.55 1.00 1.00 1.00 1.00 0.26 0.91
data3,6 0.36 0.18 0.55 1.00 1.00 1.00 0.40 0.26 1.00
data3,7 0.36 0.26 0.55 1.00 1.00 1.00 0.40 0.36 1.00
data4,6 0.36 0.63 0.55 1.00 1.00 1.00 0.40 1.00 1.00
data4,7 0.36 0.46 0.55 1.00 1.00 1.00 0.40 0.63 1.00
data5,8 0.36 0.18 0.55 1.00 1.00 1.00 0.36 0.26 1.00
data6,8 0.36 0.26 0.55 1.00 1.00 0.55 0.40 1.00 0.55
data7,8 0.40 0.36 0.55 1.00 1.00 1.00 0.46 0.46 1.00

Thus, the overall complexity of computing the ranks of all tasks is O(|E|× |P |) (refer line 2
of Algorithm 11). The tasks are then sorted in non-decreasing order based on their ranks

which takes O(|V |× log|V |) time. Thus, the total time complexity of the task prioritisation

phase becomes O(|E| × |P |+ |V | log(|V |)) = O(|E| × |P |).

Complexity of the processor allocation phase is dominated by the overhead of computing

EST [τj, pn] (refer equation 6.6; in line 6 of Algorithm 11) for each task-processor pair

within the nested for loops (outer loop: lines 4-7; inner loop: lines 5-6). Determining

EST [τj, pn] requires O(1) computations over all predecessors of task τj and has an overhead

of O(#predecessors). The total number of predecessors of all tasks is equal to the aggregate

count of edges in the task graph. Thus, the amortized overhead of determining EST [τj, pn]

is O(|P |(|V |+|E|)/(|P |×|V |)) = O((|V |+|E|)/|V |) = O(|E|/|V |). So, the total overhead of

computing EST [τj, pn] on all task-to-processor pairs is O(|P |×|V |×|E|/|V |) = O(|E|×|P |).

In the worst case, the security enhancement phase (refer Algorithm 15) may need to

conduct level-by-level increments of the security strengths of all ⟨message, service⟩-pairs,
starting from the least available security strength to the highest available strength. If X

denotes the number of security service types and Yx the number of available protocols (at

distinct security strength levels) for service type x, the total number of security strength

level increments of ⟨message, service⟩-pairs, in the worst case, is given by:
∑X

x=1 Yx × |E|.
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Each such increment is mainly associated with (a) a heap extraction/re-insertion (which

consumes O(log(|E| ×X)) time), and (b) partial schedule adjustment (takes O(|V |) time).

For SHIELDb, the complexity of this phase becomes: O((
∑X

x=1 Yx × |E|)(log(|E| × X) +

|V |)) ≈ O(|E| log(|E|) + |E| × |V |), assuming the values of X and Yx to be constant. For

SHIELD, the expensive O(|V |) partial schedule adjustment step is conducted only a small

constant number (say, κ) of times on average. Hence, the complexity of this phase gets

reduced and can be represented as: O(|E| log(|E|) + κ |V |) ≈ O(|E| log(|E|)).
Hence, the overall complexity of SHIELDb, including overheads for all three phases, can

be expressed as: O(|E|×|P |+ |E|×|P |+ |E| log(|E|)+ |E|×|V |) ≈ O(|E|×|V |). Similarly,

the overall complexity of SHIELD is: O(2 |E| × |P |+ |E| log(|E|)) ≈ O(|E| × |P |).

6.4 Experiments and Results

In this section, we experimentally evaluate the performance of SHIELD against a greedy

baseline strategy called SHIELDf, developed by us. We now present a brief overview of

SHIELDf before discussing the experimental setup, the performance metrics, and the ex-

perimental results.

SHIELDf : Given a HSMS schedule that satisfies the minimum security strength re-

quirements of each inter-task message of an application, both the algorithms SHIELD

and SHIELDf attempt to enhance the security strengths of each message, while keeping

the HSMS generated task-to-processor assignments and task scheduling order undisturbed.

However, the two algorithms differ in the definition of the key associated with the max heap

H of ⟨message, service⟩-pairs. Whereas SHIELD performs security strength updates for

⟨message, service⟩-pairs ⟨ei,j, x⟩ using benefit-to-cost ratios (BCRx
i,j) as keys, SHIELDf uses

only the benefit values (Bx
i,j) as keys. Hence unlike SHIELD, at each security enhancement

step, SHIELDf picks the ⟨message, service⟩-pair that provides the highest gain in security

strengths while ignoring the additional execution time resource that is incurred to achieve

this gain.

Example - 3: Continuing with the same example scenario as used Examples 1 and 2,

the schedule obtained using SHIELDf is shown in Fig. 6.3c. It can be observed that the

aggregate security strength achieved using SHIELD (TSU = 11.856; refer Fig. 6.3b) is higher

than SHIELDf (TSU = 8.663).
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6.4.1 Experimental Setup

The SHIELD strategy has been evaluated and compared against SHIELDb and SHIELDf

using extensive simulation-based experiments conducted by employing two real-world task

graph application benchmarks: Gaussian Elimination [85] and Cybershake [39].

Gaussian Elimination: Gaussian Elimination is a function for solving systems of linear

equations. The linear equations are denoted as a square matrix of size ν × ν, where ν is

provided as input. The number of tasks and edges in a Gaussian Elimination task graph

is calculated as ((ν2 + ν − 2)/2) and (ν2 − ν − 1), respectively. For example, a Gaussian

Elimination graph with matrix size, ν = 5 (refer Fig. 5.4b) has 14 task nodes and 19 edges.

Cybershake: Cybershake is an earthquake hazard characterization graph used by the

Southern California Earthquake Center. This task graph has five types of nodes: Ex-

tractSGT, SeismogramSynthesis, PeakValCalcOkaya, ZipSies, and ZipPSA, of which the

SeismogramSynthesis nodes are the most computationally intensive. Cybershake task graph

size is influenced by the number of ExtractSGT and SeismogramSynthesis nodes. For sim-

plicity, we fix the number of ExtractSGT nodes to 2 and divide SeismogramSynthesis nodes

near-equally among the ExtractSGT nodes. If the number of SeismogramSynthesis nodes

is υ, then the total number of task nodes and edges in the task graph becomes (2υ+4) and

4υ. An example of the Cybershake graph with υ = 8 (refer Fig. 5.4a) has 20 task nodes

and 32 edges.

Data Generation Framework: We have generated an exhaustive set of random input

test cases by carefully varying the following set of parameters to conduct our experiments.

1. Task graph size: For Gaussian Elimination, matrix-sizes ν = {10, 14, 17, 20, 22} re-
sults in task graphs with number of tasks |V | = {54, 104, 152, 209, 252} and edges |E| = {89,
181, 271, 379, 461}. Similarly for Cybershake, SeismogramSynthesis υ = {23, 48, 73, 98, 123}
results in task graphs with |V | = {50, 100, 150, 200, 250} and |E| = {92, 192, 292, 392, 492}.

2. Number of processors: |P | = {4, 8, 16, 32}.
3. Task execution times: The worst case execution time of each task is gener-

ated by the following three steps. (i) Selection of an average execution time ωDAG =

{100, 200, 300, 400, 500} over all tasks in the DAG. (ii) Given ωDAG, we generate the aver-

age execution time (ωj) of each task τj over all processors using normal distribution with

mean µ = ωDAG and different standard deviation values σ = {10, 20, 30}. (iii) Finally, we

obtain the execution times as ωj,n using normal distribution with µ = ωj and σ = ωj × β,
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for each task τj on each processor pn. Here, β = {0.1, 0.25, 0.5, 0.75, 1} is the heterogeneity

factor that indicates the skewness among execution times of a task on different processors.

4. Communication-to-Computation Ratio (CCR): CCR is the ratio of the over-

head related to inter-task message transmission and task execution. A higher CCR indicates

that the system spends relatively more time in data transmission than task computation.

Values of CCR chosen in this work are: CCR = {0.1, 0.25.0.5, 0.75, 1}. The mean inter-task

message size (dataDAG; in bytes) for a task graph is given by:

dataDAG = CCR× ωDAG ×B

where B is the average communication bandwidth randomly sampled from B = {5 Gbps,

10 Gbps}. An element bm,n ∈ B denotes the actual bandwidth on a link ⟨pm, pn⟩. The values
of bm,n are obtain through sampling from a normal distribution with µ = B and σ = 0.2×
B. These bm,n values are further scaled appropriately such that

∑|P |
m=1

∑m−1
n=1 bm,n becomes

|P |× (|P |−1)/2×B. Similarly, the output message size datai,j for each edge ei,j in the task

graph is sampled from a normal distribution µ = dataDAG and σ = 0.2× dataDAG and then

scaled such that
∑

datai,j over all edges in the task graph become equal to |E| × dataDAG.

5. Security parameters: The minimum security demands of different service types for

each message in the application are determined by randomly selecting the demand values

from the range [0, 0.5]. The relative securing priority wx
i,j for each service type x associated

with every message ei,j is determined randomly, such that
∑X

x wx
i,j = 1. Execution time

overheads associated with the available security protocols of different service types on a

particular processor are obtained from the work in [101] and presented in Table 6.1. Table 6.1

lists the data-dependent overheads χx,y
2 of each protocol y for confidentiality (x=1) service,

and integrity (x=2) service as well as the data-independent overheads χx,y
1 for authentication

service (x=3) [100, 101]. Using the values of the overheads presented in Table 6.1 as the

mean values of normal distributions, the corresponding overheads associated with other

heterogeneous processors are obtained by scaling the standard deviation with the degree of

heterogeneity factor β. As an example, for the authentication service (x=3), the values of

execution time overheads on different processors are obtained using a normal distribution

with µ = χ3,y
1 and σ = χ3,y

1 × β.

6. Deadline extension rate: It may be noted that HSMS delivers the shortest

makespan schedule while satisfying the minimum security demands of each message in the

application. SHIELD returns with failure, if HSMS delivers a makespan which overshoots
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the given deadline. Thus, SHIELD is expected to generate a security-aware schedule if the

given application deadline is greater than HSMS ’s makespan. Further, for any given ap-

plication, feasible schedules with progressively higher security strengths should be achieved

by SHIELD, as the deadline is relaxed more and more with respect to the makespan of

HSMS. We define deadline extension rate (∂) as the ratio of the specified deadline of a

DAG-structured application ‘G’ with respect to the HSMS delivered makespan. The per-

formance of SHIELD in terms of maximizing application security protection has also been

evaluated by deciding the average normalized security utility for different values of deadline

extension rate. Different values of ∂ used in our experiments are: ∂ = {1, 1.2, 1.4, 1.6, 1.8, 2}.
Simulation Framework: The simulation framework is written in C and is executed

on a system having the following configuration: (i) Intel® Core™ i7-8550U CPU @ 1.80GHz

×8, (ii) 8 GiB Memory, and (iii) Ubuntu 20.04 LTS OS.

6.4.2 Performance Metrics

Performance of SHIELD has been evaluated using the following two metrics, namely (1)

Normalised Security Utility (NSU) and (2) Run-time.

1. Normalised Security Utility (NSU): For a given task graph, the Normalised Se-

curity Utility of an application is the ratio of the security utility achieved by the

algorithm to the maximum achievable security utility obtained by assigning all service

types of all messages at the highest available security strength levels.

NSU =
TSU∑

ei,j∈E
∑X

x=1w
x
i,j ∗ s

x,Yx

i,j

× 100 (6.13)

where sx,Yx

i,j represents the maximum available security strength of service type x on

an edge ei,j. It may be noted that higher the value of achieved NSU, better is the

performance of a scheduling algorithm.

2. Run-time: This metric determines the average run-time (inms) taken by a scheduling

algorithm for data sets generated employing a fixed set of input parameters.

6.4.3 Performance Results

In this subsection, we conduct five experiments to analyze the performance of SHIELD,

SHIELDb, SHIELDf and HSMS using two benchmarks: Gaussian Elimination [85] and
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Cybershake [39]. Each data point in these experiments is obtained as the average over

solutions generated with 250 different task graph data corresponding to a fixed set of input

parameter values.

6.4.3.1 Experiment-1: Effect of variation in deadline extension rates

In this experiment, we analysed the Normalised Security Utility (NSU) achieved by the

schedulers HSMS, SHIELD, SHIELDf for different deadline extension rates (∂). The pa-

rameters |P |, CCR and β are set to 32, 0.5 and 0.75, respectively. Number of tasks |V | for
Gaussian Elimination (Fig. 6.4a) is set to 152 and for Cybershake (Fig. 6.4b) is set to 150.

It can be observed from Fig. 6.4 that the average NSU achieved by the schedulers SHIELD

and SHIELDf monotonically increase as the deadline increases. This signifies that SHIELD

and SHIELDf are able to efficiently harness higher available slacks to achieve higher security

utilities. In the Figs. 6.4a and 6.4b, the plots of HSMS depict baseline NSUs obtained by

assigning for all messages with the minimum allowable security strengths.
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Figure 6.4: Average NSU for varying Deadline.

6.4.3.2 Experiment-2: Effect of variation in #processors

Through this experiment, we measure average NSUs against variation #processors, while

fixing the values for ∂, CCR, β and |V | to 1.2, 0.5, 0.75 and 150. Obtained results for

both Gaussian Elimination and Cybershake are presented in Fig. 6.5. It can be observed

that SHIELD produces consistently better results in comparison to SHIELDf and HSMS,
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for all the data points. As an example of SHIELD’s performance, for |P | = 16, the average

NSU of SHIELD is higher than SHIELDf and HSMS by ∼15% and ∼52% for Gaussian

Elimination. Similarly for Cybershake, SHIELD performs better by ∼26% and ∼47% w.r.t.

SHIELDf and HSMS.
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Figure 6.5: Average NSU for varying number of processors.

6.4.3.3 Experiment-3: Effect of variation in varying tasks

This experiment measures the Normalised Security Utility (NSU) (Fig. 6.6) and run-times

(Table 6.5) of different algorithms, as the number of tasks is varied from 50 to 252. In this,

the parameters ∂, |P |, CCR and β are fixed at 1.2, 32, 0.5 and 0.75. Fig. 6.6 shows the

variation in average NSU for different number of tasks. For any fixed value of #tasks, it can

be observed from the figure that for both the benchmarks SHIELD consistently achieves a

higher NSUs compared to SHIELDf and HSMS.

Table 6.5: Run-times (ms) for varying #tasks using Gaussian Elimination

|V | 54 104 152 209 252
SHIELD 1.14 8.03 22.04 50.54 86.42
SHIELDb 4.61 21.18 53.76 124.56 206.21
SHIELDf 1.97 8.69 22.20 52.54 91.45
HSMS 1.24 3.93 7.92 14.84 21.47
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Figure 6.6: Average NSU for varying number of tasks.

Table 6.5 depicts average run-time as #task is varied from 50 to 252. It can be observed

that, run-time increases with increase in the number of tasks, for all the algorithms; SHIELD

runs faster compared to SHIELDb and SHIELDf. As an example, we see from Table 6.5

that for 252 tasks, SHIELD runs ∼58% faster than SHIELDb. For all the benchmarks, the

run-times of HSMS are upper bounded by ∼22 ms. The results for Cybershake have not

been presented as they exhibit trends very similar to Gaussian Elimination.
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Figure 6.7: Average NSU for varying CCR.
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6.4.3.4 Experiment-4: Effect of variation in CCR

This experiment measures NSUs achieved by the schedulers HSMS, SHIELD and SHIELDf

as communication-to-computation ratios is varied from .1 to 1. The values for ∂, |P |, β,
|V | are set to 1.2, 32, 0.75, 150 respectively. For both the benchmarks, it may be seen from

Fig. 6.7 that the average NSUs achieved by the algorithms decrease with increasing CCR.

As relative communication data sizes increase with higher CCR values, any enhancement

in the security strength will incur relatively higher security overheads at the source and

destination processor of the messages.

6.4.3.5 Experiment-5: Effect of variation in heterogeneity

Through this experiment, we have analysed the average NSUs achieved by HSMS, SHIELD

and SHIELDf for varying the degrees of processor heterogeneity. Parameters ∂, |P |, CCR

and |V | are fixed at 1.2, 32, 0.5 and 150. As an example of SHIELD’s performance, it

may be observed in Fig. 6.8a (Gaussian Elimination) that for |β| = 0.75, the average nor-

malized security utility of SHIELD is higher than SHIELDf by about ∼18%. Similarly for

Cybershake (Fig. 6.8b), SHIELD outperforms SHIELDf by ∼27%.
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Figure 6.8: Average NSU for varying Heterogeneity.
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6.5 Case Study: Traction Control System

To exhibit the practical adaptability of SHIELD to real-world settings, we present a case

study on the Traction Control (TC) application in automotive systems. TC aims to improve

a car’s stability when road conditions are slippery [69]. Fig. 4.7a depicts the layout diagram

of TC as adapted from [41] and Fig. 6.9a displays its corresponding DAG model. This

DAG consists of 10 nodes that need to be scheduled on a distributed platform having two

processors {p1, p2}. The communication bandwidths between the processors are considered

to be 500 KB/s. The end-to-end application deadline is assumed to be 1600 ms. Table 6.6

depicts the minimum security demands and relative priority for three security service types,

associated with each message of the TC DAG in Fig. 6.9a. Table 6.3 lists the performance of

alternative security service protocols on the available processors {p1, p2}. Fig 6.9b depicts

the worst case execution times of each task associated with TC on the two processors.
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Figure 6.9: Traction Control (TC): (a) TC DAG; (b) Execution times (in ms) of tasks in TC
DAG on two processors; Gantt charts depicting the schedules: (c) HSMS (makespan = 1556,
TSU = 3.84); (d) SHIELD (makespan = 1600, TSU = 7.0); (e) SHIELDf (makespan = 1600,
TSU = 4.89), for the DAG in Fig. 6.9a.

Employing HSMS, SHIELD and SHIELDf, we generate three separate schedules for the

TC application, and the respective Gantt charts are presented in Figs. 6.9c, 6.9d and

6.9e. It may be observed that SHIELD is able to achieve higher security utility (TSU = 7.0)

compared to SHIELDf (TSU = 4.89) and HSMS (TSU = 3.84), while satisfying the stipulated

deadline for the traction control application.
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Table 6.6: Messages security requirements for the TC DAG in Fig. 6.9a

Messages s1,min
i,j s2,min

i,j s3,min
i,j w1

i,j w2
i,j w3

i,j

data1,6 0.2 0.1 0.4 0.3 0.3 0.4
data2,6 0.2 0.2 0.4 0.3 0.5 0.2
data3,6 0.2 0.5 0.3 0.2 0.6 0.2
data4,6 0.3 0.4 0.2 0.2 0.2 0.6
data5,8 0.4 0.3 0.1 0.2 0.3 0.5
data6,8 0.4 0.2 0.4 0.7 0.1 0.2
data7,8 0.4 0.1 0.3 0.7 0.1 0.2
data8,9 0.3 0.1 0.2 0.7 0.1 0.2
data8,10 0.3 0.2 0.1 0.7 0.1 0.2

6.6 Summary

In this chapter, we have presented a low-overhead security-aware real-time list scheduling

algorithm named SHIELD for DAG-structured applications on distributed heterogeneous

systems. SHIELD first calls HSMS to generate a makespan minimizing schedule while

satisfying the minimum security demands of each message in the application. SHIELD

returns with failure if the makespan generated by HSMS violates the given deadline. Oth-

erwise, SHIELD attempts to enhance the security strengths of all messages such that the

total security utility of the system is maximized. Experimental evaluation using two bench-

mark task graphs: Gaussian Elimination and Cybershake, reveal that SHIELD significantly

outperforms greedy baseline strategies SHIELDb in terms of solution generation times (run-

times) and SHIELDf in terms of achieved security utility, over various input test scenarios.

Finally, the practical applicability of SHIELD is exhibited through a case study on the

Traction Control application in automotive systems.

In the next chapter, we develop a mechanism to construct temperature-aware minimum

makespan schedules for applications modeled as DAGs with known thermal characteristics

on a heterogeneous processing platform.

;;=8=<<
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Chapter 7
TMDS: A Temperature-aware Makespan
Minimizing DAG Scheduler for Heterogeneous
Systems

7.1 Introduction

The introduction of sub-micron VLSI advancements has led to highly dense multi-million

gates per chip, where power dissipation rates and thermal management have become criti-

cal design issues [82]. Unconfined surges in temperature not only increase cooling costs but

may also reduce system performance and life expectancy. Authors in [107] have shown that

a chip’s life span could be decreased by up to 50% with a 10◦C − 15◦C temperature rise

beyond normal operating temperature. Therefore, modern multi-core embedded systems

generally come with a specified temperature threshold that must be adhered to for safe and

efficient system operation. Dynamic Thermal Management (DTM) techniques that enforce

performance throttling to alleviate temperature hotspots, are set off whenever the operating

temperature exceeds the predefined threshold temperature in the system [52]. The DTM

triggers lead to operations like powering-down processors [98], clock or fetch gating [81], dy-

namic voltage and frequency scaling (DVFS) [99], etc. Almost all modern processors manage

these methods at the hardware level having multiple power domains and operating at differ-

ent frequency/voltage settings. However, the DTM techniques typically focus solely on the

lowering of chip temperature, thus impacting application performance leading to the delivery

of degraded Quality of Service (QoS). Therefore, there is a need for platform resource man-
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agers which conduct task-to-processor assignments with suitably tuned configurations such

that system-level temperature requirements are met. Given a DAG-structured application

with known thermal characteristics on a heterogeneous processing platform, successfully sat-

isfying execution requirements of application tasks while ensuring that all processors operate

within a specified temperature threshold is ultimately a scheduling problem.

The contributions of this chapter are summarized as follows:

1. We proposed a generic temperature management strategy which can be easily em-

ployed to adapt existing state-of-the-art makespan minimizing DAG scheduling algo-

rithms so that schedules generated by them never violate the processors’ threshold

temperatures.

2. The temperature-aware DAG scheduling problem has been mathematically formulated

as a constrained optimization problem, whose solution is shown to be prohibitively

expensive in terms of computational overheads.

3. Based on insights observed through the constraint optimization formulation, we en-

deavor to design a low-overhead list-based heuristic algorithm called, “Temperature-

aware Makespan Minimizing DAG Scheduler for Heterogeneous Distributed Systems

(TMDS)”, for the problem at hand.

4. Experimental evaluation using real-world benchmarks shows that the TMDS delivers

lower schedule lengths compared to temperature-aware version of four makespan min-

imizing algorithms, HEFT [85], PEFT [5], PPTS [24] and PSLS [112], over various

test scenarios.

5. A case study on an adaptive cruise controller in automotive domains is used to exhibit

the relevance of TMDS in realistic environments.

The rest of the chapter is organized as follows. Section 7.2 presents system models and

Section 7.3 describes the problem formulation. Section 7.4 discusses the proposed scheduling

policy. Section 7.5 presents the detailed experimental results. Section 7.6 exhibits a real-

world case study on an automotive control system. Finally, the conclusion of this chapter

is presented in Section 7.7.
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7.2 System Models

In this section, we present the application and platform model, followed by temperature

model.

7.2.1 Application and Platform Model

Directed Acyclic Graph (DAG) G(V,E) is a common way to represent an application where

the set of vertices V = {τ1, τ2..., τ|V |} denotes tasks and the set of directed edges E represents

the precedence-constraints between task pairs. Each edge ei,j is marked with a positive

weight datai,j indicating the size of the message to be transmitted.
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τ7 τ8 τ9

τ10

5 4
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9
10

38
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5
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5 6

Tasks p1 p2 p3

τ1 16 15 14
τ2 16 17 18
τ3 18 16 13
τ4 19 10 17
τ5 19 18 20
τ6 15 16 13
τ7 20 18 12
τ8 16 12 14
τ9 20 19 17
τ10 15 12 7

(a) A DAG G(V,E) (b) WCET Table

Figure 7.1: (a) A DAG with 10 tasks; (b) WCETs of 10 tasks on 3 processors.

The platform P = {p1, p2, ..., p|P |} consists of |P | fully interconnected heterogeneous

processors. On these heterogeneous processors, each task possibly has a different worst case

execution time (WCET ) on different processors. For example, the WCET of each task of

the DAG in Fig. 7.1a on three heterogeneous processors are shown in Fig. 7.1b. An element

ωj,n stores the WCET of task τj on pn. A matrix B of size |P | × |P | is defined to store

heterogeneous bandwidths of links between all pairs of processors. An element bm,n ∈ B

represents the data transfer rate between processors pm and pn. As the communication

links are bidirectional, i.e., bm,n equals to bn,m. The communication time between tasks τi

(executing on processor pm) and τj (executing on pn; τj ∈ succ(τi)) can be determined as:

cm,n
i,j =

{
0, if m = n

datai,j/bm,n, otherwise
(7.1)

The above equation reveals that the communication time is considered to be negligible when

both the tasks τi and τj are allocated to the same processor.
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7.2.2 Temperature Model

The rate of change in temperature (in ◦C) of a processor is modeled similar to [34,57]:

d Γt

dt
=

powt

C
− Γt − Γa

C R
(7.2)

where (i) Γt is the processor’s temperature at time instant t, (ii) Γa is the ambient temper-

ature, (iii) powt represents the power dissipation (in W ) at time t, (iv) C and R indicate

the thermal capacitance (in J/◦C) and resistance (in ◦C/W ) of a processor, respectively.

Scaling Γt such that Γa is zero, equation 7.2 gets reduced to equation 7.3.

d Γt

dt
= a powt − b Γt (7.3)

where a = 1/C and b = 1/CR. Here, powt comprises of two factors: dynamic power

dissipation (powd) which is independent of temperature and the leakage power dissipation

(powl) which is dependent on the processor’s temperature [34, 57,96].

powt = powd + powl = C0f
3 + (C1f + C2f Γt) (7.4)

where C0, C1, and C2 are constants that are dependent on processor’s frequency f (propor-

tional to the voltage [55]). Here, we assume that each processor can run only at a single

frequency say, f . Plugging equation 7.4 into equation 7.3, the rate of change in processor

temperature can be formulated as:

d Γt

dt
= a[C0f

3 + C1f + C2f Γt]− b Γt = A−BΓt (7.5)

where A = a(C0f
3 + C1f) and B = (b− aC2f). For a time interval [t0, te] in which task τj

is executing on processor pn, if the processor temperature at the start of the interval is Γ0

and Γe at the end of the interval, then equation 7.5 can be rewritten as:

Γe = A/B+
(
Γ0 −A/B

)
e−B(te−t0) (7.6)

We now define a function Theat() to determine the temperature Γe of a processor pn at time

te when a task τj continually executes on it starting from time t0 with temperature Γ0.

Theat(Γ
ss
j,n,Γ

0, te − t0) = Γss
j,n + (Γ0 − Γss

j,n)e
−Bn(te−t0) (7.7)

where Bn = (1−RC2f)/CR, represents the thermal characteristics of processor pn and Γss
j,n

is the steady state temperature of a task τj on pn. Γss
j,n denotes the temperature that a
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processor may reach when τj executes continuously on pn for a sufficiently long time. Thus,

Γss
j,n = Γa +An/Bn. A very similar function can be defined to obtain the temperature of pn

when it remains idle for a time interval [t0, te], starting from its initial temperature Γ0 at

time t0.

Tcool(Γ
a,Γ0, te − t0) = Γa + (Γ0 − Γa)e−Bn(te−t0) (7.8)

Some of the important notations and their meanings have been listed in Table 7.1.

Table 7.1: List of important notations used and their meanings

Symbols Descriptions Acronyms Full Forms

τj jth task DTM
Dynamic Thermal Manage-
ment

pn nth processor WCET Worst Case Execution Time
ωj,n WCET of task τj on processor pn EST Effective Start Time
t Current time EFT Effective Finish Time
Γa Ambient room temperature AST Actual Start Time
Γ0 Initial temperature AFT Actual Finish Time
Γq Final temperature OFT Optimistic Finish Time

Γss
j,n

Steady state temperature of task τj on
processor pn TETT

Task Execution Time and

Γst
j,n

Starting temperature of task τj on pro-
cessor pn

final Temperature

Bn Thermal characteristics of processor pn MDE
Maximum Duration of

Γlim
n

Upper bound on temperature associated
with pn

continuous Execution

Γc
j,n Cutoff temperature of τj on pn SCT Schedule Completion Time

Γt
n

Temperature of a processor pn at any
time step t

OV Overhead

Γt
j,n

pn’s temperature at time t when τj is
mapped on it

SLR Schedule Length Ratio

T
Upper bound on possible schedule
length CCR

Communication-to-

ξj,n
Duration in which task τj remains allo-
cated on pn

Computation Ratio

Sj Start time of task τj ACC Adaptive Cruise Controller

Problem Statement: The objective of this work is to design a DAG scheduling al-

gorithm which attempts to minimize makespan, while ensuring that processor temperatures

never overshoot their respective threshold cutoff values. In systems where the steady state

temperatures of one or more tasks (on some or all processors) are higher than their threshold
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cutoffs, the above objective is achieved by opportunistically inserting idle intervals (to allow

processor cooling) within the schedule.

7.3 Constraint Satisfaction Problem Formulation

In this section, we formally model the above-discussed problem as a Constraint Optimiza-

tion Problem. The formulation uses two sets of decision variables: (i) X = {xt
j,n : j =

1, 2, . . . , |V |;n = 1, 2, . . . , |P |; t = 0, 1, . . . , T}. Here, T =
∑|V |

j=0max
pn∈P

ωj,n denotes the upper

bound on possible schedule length. The term ωj,n denotes the WCET of a task τj on a

processor pn and is defined as the maximum time taken when the task runs standalone in

a control setup when the processor temperature can never exceed its stipulated threshold

upper bound. xt
j,n = 1, indicates that task τj is mapped to processor pn and starts execu-

tion from the tth time step; otherwise, xt
j,n = 0, and (ii) Z = {zαj,n : j = 1, 2, . . . , |V |;n =

1, 2, . . . , |P |;α = 0, 1, . . . , T}. zαj,n = 1 indicates that task τj should be executing on pro-

cessor pn at time step α subsequent to the start of τj; z
α
j,n = 0 means one of two possible

cases: (i) Processor pn is idling with task τj is allocated on pn. This case happens when

α < ξj,n. Here, ξj,n =
T

max
α=1

α zαj,n. The value of ξj,n represents the duration during which

task τj remains allocated on processor pn. (ii) Task τj is not allocated on pn. This happens

when α > ξj,n. Next, we present the objective function and the necessary constraints on

the binary decision variables to model the scheduling problem.

Objective Function: Our objective is to minimize the overall schedule length while

satisfying all scheduling constraints. The objective function can be defined as:

Minimize

|P |∑
n=1

T∑
t=0

xtexit,n × (t+ ξexit,n) (7.9)

Subject to satisfaction of the constraints in equations 7.10 - 7.14.

Unique Start Time Constraints: The start time of each task on a specific processor

should be unique; that is,

∀j ∈ [1, |V |],
|P |∑
n=1

T∑
t=0

xtj,n = 1 (7.10)

The above equation ensures that each task τj must start its execution at a unique time step

t exactly in one processor pn. The start time of τj may be obtained as Sj =
∑T

t=0 t× xt
j,n.

Dependency Constraints: This enforces the satisfaction of precedence relationships

among tasks within a DAG. That is, the execution start time of a task τj must be greater or
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equal to the arrival time of output messages among all the predecessors of τj. For any given

predecessor τi, its arrival time is determined as the summation of τi’s execution completion

time (that includes cooling time) and the data transmission time from τi to τj.

∀(τi, τj) ∈ E,

|P |∑
n=1

T∑
t=0

t× xtj,n ⩾
|P |∑
n=1

T∑
t=0

|P |∑
m=1

T∑
t′=0

xt
′
i,m × xtj,n(t

′ + ξi,m + cm,n
i,j ) (7.11)

Resource Constraints: Resource constraints enforce that a processor pn can be al-

located to at most one task at any given time. This constraint may be represented as:

∀n ∈ [1, |P |], ∀t ∈ [0, T ], λt
n ⩽ 1 (7.12)

It may be noted that a task τj can only be mapped on pn for execution at time instant t, if it

has started at most ‘t−ξj,n+1’ time steps earlier. In the above equation, λt
n =

∑|V |
j=1 ρ

t
j,n and

ρtj,n =
∑t

l=t−ξj,n+1 x
l
j,n. The term ρtj,n assumes a value of ‘1’ when τj starts on pn between

time intervals [t− ξj,n + 1, t].

Execution Demand Constraints: Over the duration ξj,n, the total number of time

slots in which τj should be executing on processor pn must be exactly equal to ωj,n. That

is:

∀j ∈ [1, |V |],∀n ∈ [1, |P |],
ξj,n∑
α=1

zαj,n = ωj,n (7.13)

Processor Temperature Constraints: The operating temperature (Γt
n) of a processor

pn at any time step t should never exceed a stipulated upper bound on temperature (Γlim
n )

associated with pn. That is,

∀t ∈ [0, T ], ∀n ∈ [1, |P |], Γt
n ⩽ Γlim

n (7.14)

Here, Γt
n is determined as follows:

Γt
n =


Γa , if t = 0

Γa + (Γt−1
n − Γa)e−Bn , if t > 0 & λt

n = 0
|V |∑
j=1

Γt
j,n , otherwise

(7.15)

In the above equation, Γa represents the ambient room temperature. If no task is executing

(indicated by λt
n = 0) on processor pn at any time t (> 0), Γt

n is represented by the second

line of equation 7.15. Given Γt−1
n (< Γss

j,n), the temperature of processor pn at time t−1, the

expression in the right-hand side (RHS) produces the temperature Γt
n of pn when it idles
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(thus cools-off) at the tth time slot (refer equation 7.8). In the scenario when some task τj

is allocated on pn, two possible cases may arise: (i) pn is executing τj, or (ii) pn remains

idle (for cool-off). In the third line of equation 7.15, Γt
j,n indicates the temperature of pn at

time t when task τj is mapped on it. equation 7.16 below determines Γt
j,n as:

Γt
j,n =

{
0, if ρtj,n = 0

{Γa + (Γt−1
n − Γa)e−Bn} × (1− zαj,n) + {Γss

j,n + (Γt−1
n − Γss

j,n)e
−Bn} × zαj,n, otherwise

(7.16)

The first line in the above equation says that Γt
j,n assumes the value zero, when τj is not

mapped on pn (in this case, ρtj,n = 0). When τj is mapped on pn (2nd line of equation 7.16),

the first expression in the RHS depicts the temperature of processor pn when τj is mapped

on it but not executing at time t. The next expression in the RHS denotes the temperature

of pn when τj executes on it at time step t. Here, α = t− Sj.

Complexity Analysis: The overhead of the above formulation can be analysed in

terms of the total number of variables employed considering all constraints of the problem:

• Unique start time constraints use O(|V |) constraints and O(|P | × T ) variables per

constraint.

• Dependency constraints employ O(|E|) constraints and O(|P | × T ) variables per con-

straint.

• Resource constraints use O(|P | × T ) constraints and O(|V |) variables per constraint.

• Execution Demand Constraints employ O(|P | × |V |) constraints and O(T ) variables

per constraint.

• Processor temperature constraints utilize O(|P | ×T ) constraints. The number of vari-

ables per constraint can be determined (refer equation 7.15; when t ̸= 0 & λt
n ̸= 0)

as: For t = 1, the number of variables required to compute Γt
n is O(|V |). Simi-

larly, for t = 2, the number of variables is O(|V |2), and so on. For t = T , the

number of variables is O(|V |T ). Thus, the total variables per constraint becomes

O(|V |+ |V |2 + · · ·+ |V |T ) = O( |V |T+1−|V |
|V |−1

) = O(|V |T ).

Finally, the total number of variables in all constraints of the proposed formulation becomes:

O(3× |V | × |P | × T + |E| × |P | × T + |V |T × |P | × T ) = O(|V |T × |P | × T ).
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An estimate of the size of the state space associated with the problem may also be

derived as follows. To determine an optimal solution there may be a need to explore: (i)

all possible orders in which the set of tasks may be considered for possible allocation which

is O(|V |!), (ii) given any such order for task allocation, each task may be allocated to any

processor; the number of possibility becomes O(|P ||V |), (iii) for each mapping of a task on

a certain processor an upper bound on the number of processor temperature management

schedules are obtained as O(2T ). Hence, an upper bound estimate on the size of the state

space may be obtained as O(|V !| × |P ||V | × 2T ).

It can be observed from the above analysis that the problem is highly exponential with

respect to the number of tasks, processors, and temporal bounds in the system. Therefore,

an attempt to optimally solve this scheduling problem through standard off-the-shelf solvers

or exhaustive state space search, is prohibitively expensive because of the inherent enormity

of the state space. Hence, we have designed a list-based heuristic solution strategy for the

problem at hand. This heuristic strategy attempts to deliver good and acceptable solutions

while intelligently restricting the solution search space in the following ways:

• The heuristic strategy attempts to solve the overall optimization problem by partition-

ing it into three separate phases, namely (i) task prioritization, (ii) processor allocation

and (iii) temperature-aware scheduler.

• A fast mechanism to obtain a fixed task priority order that may allow the generation

of low makespan schedules, has been designed as the first phase. This phase is a pre-

processing step which is called prior to the commencement of processor allocation and

schedule generation for the given set of tasks.

• The second phase determines a suitable processor for the highest priority unallocated

task, at a given intermediate point during partial schedule generation. In order to

obtain this processor, a temperature-aware evaluation on the allocation-goodness of

the selected task on all available processors, is conducted.

• For each processor on which the highest priority task may possibly be assigned, the

second phase must construct a temperature-aware schedule corresponding to evaluate

the goodness of this tentative task-to-processor allocation. This temperature-aware

schedule generation strategy for any given task processor pair, comprises the third

phase of the algorithm.
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In the next section, we describe in detail this list-based heuristic algorithm called “Temperature-

aware Makespan minimizing DAG Scheduler for Heterogeneous Distributed Systems (TMDS )”.

7.4 TMDS: The Proposed Scheduler

The proposed list scheduling algorithm called Temperature-aware Makespan minimizing

DAG Scheduler (TMDS ) takes a precedence-constrained task graph G(V,E) with known

thermal characteristics and a platform P , as inputs. TMDS consists of three phases, namely

(i) task prioritization, (ii) processor allocation and (iii) temperature-aware scheduler. Algo-

rithm 16 presents the pseudocode of TMDS. Steps 1-3 of function TMDS() comprises the

task prioritization phase, while the processor allocation phase consists of steps 5-14. Step 10

of the Algorithm 16 calls function TETT (τj, pn, curT , Γcur
n ) (Task Execution time and

final Temperature; refer Algorithm 17) to generate a tentative temperature management

schedule associated with the possible allocation of task τj on pn. In the processor selection

phase, the temperature-aware schedule returned by TETT() plays a significant role in the

determination of the actual processor on which τj is allocated. We now discuss these three

phases in detail.

7.4.1 Task Prioritization

Step 2 of TMDS (refer Algorithm 16) calculates two different parameters (adapted from [73])

namely, (1) Optimistic Finish Time (OFT) for each task-processor pair, and (2) A Rank

value for each task.

OFT[τj , pn ]: The value of OFT [τj, pn] is a lower bound estimate of the total additional

time required to complete the schedule when task τj is assigned on processor pn. This

duration includes the execution time of task τj on pn along with the maximum time required

to schedule all remaining unallocated tasks on the given platform. The sink node (τexit) has

an OFT equal to its execution time since it has no successors. The OFT for all other tasks

is calculated recursively from τexit to τj as detailed below:

OFT [τj , pn] =

ωj,n, if τj = τexit

max
τk∈succ(τj)

[
min
pr∈P
{OFT [τk, pr] + ωj,n + cn,rj,k }

]
, otherwise

(7.17)

During the processor allocation phase, this estimated time (OFT [τj , pn ]) value is employed

to obtain a more informed decision on which processor if allocated to a given task, may
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possibly lead to the least makespan (refer function SCT [τj , pn ]; equation 7.20).

Rank[τj]: The rank of a task τj (Rank[τj]) is obtained as the average of its OFT s over all

processors. Due to this ranking strategy, given a set of ready tasks, their rank values provide

comparative estimates of the amounts of workload that must be completed subsequent to

their execution start times. In the endeavor to achieve low makespans, a set of ready tasks

is considered for processor allocation in the order of their ranks, so that tasks that need to

execute comparatively larger workloads subsequent to their starts may be prioritized.

Rank[τj ] =

∑|P |
n=1OFT [τj , pn]

|P | (7.18)

Step 3 initializes ready list taskList with the entry task τentry in it.

7.4.2 Processor Allocation

The while loop (steps 5-14) generates a schedule obtained by sequentially scheduling the

task with the highest Ranked unscheduled ready task in taskList. A task becomes ready

when all its predecessors have already been scheduled. After selecting the task τj in step 6,

TMDS determines Effective Start Time (EST [τj, pn]; refer equation 7.19), Task Execution

Time and final Temperature (TETT (τj, pn, curT,Γ
cur
n ): refer temperature-aware scheduler

below) and Schedule Completion Time (SCT [τj, pn]; refer equation 7.20) with respect to the

execution of τj on each processor pn (steps 7-11). Effective Start Time (EST[τj, pn]):

The EST of the entry task τentry on each processor pn is zero. For all other tasks, the

effective start time EST [τj, pn] of τj on pn is determined as:

EST [τj , pn] = max{avail[n], max
τi∈pred(τj)

(AFT [τi] + cm,n
i,j )} (7.19)

where avail[n] stores the earliest time at which processor pn is available to execute a task and

AFT [τi] records the actual finish time of τj’s predecessor task τi. The inner max
τi∈pred(τj)

{. . . }
block determines the time at which all outputs from the predecessors of τj have arrived at

processor pn.

Step 9 updates Γcur
n to obtain the temperature of pn at time EST [τj, pn] (refer equa-

tion 7.8), when the processor remains idle for a time interval [avail[n], EST [τj, pn]], starting

from its initial temperature Γcur
n at time avail[n]. Step 10 calls TETT() to determine Effec-

tive Finish Time EFT [τj, pn], a scheduling event queue Schj,n and the temperature (Γfin
n )

of pn at time EFT [τj, pn].

171



7. TMDS: A TEMPERATURE-AWARE MAKESPAN MINIMIZING DAG
SCHEDULER FOR HETEROGENEOUS SYSTEMS

Algorithm 16: TMDS (G,P )

Input: Application DAG G(V,E), processor set P
Output: A temperature-aware schedule that minimizes makespan

1 ∀pn∈P , Set avail[n] = 0;
2 Determine OFT s, Ranks of all tasks using equations 7.17, 7.18;
3 Initialize ready list taskList = {τentry};
4 // Let Γcur

n be a temporary variable which holds the temperature of processor pn at any time
during partial schedule generation

5 while taskList ̸= ϕ do
6 τj = Extract the task with highest Rank from ready list taskList;
7 for each processor pn in P do
8 Compute EST [τj , pn] using equation 7.19; // Start time of τj if selected for

execution on pn
9 Γest

j,n = Tcool(Γ
a,Γcur

n , EST [τj , pn]− avail[n]); // Tentatively determine temperature
of pn at the instant EST [τj , pn] (Γ

est
j,n), given: (i) its temperature at avail[n] (Γcur

n ),
and (ii) that pn idles in the interval [avail[n], EST [τj , pn]]

10 ⟨EFT [τj , pn], Schj,n,Γ
fin
n ⟩ =TETT (τj , pn, EST [τj , pn], Γ

est
j,n); // The TETT()

function returns: (i) effective finish time (EFT [τj , pn]) of τj on pn, (ii) Schedule
(Schj,n) of execution and cooling intervals w.r.t. task τj on pn and (iii) temperature
of pn at EFT [τj , pn]

11 SCT [τj , pn] = EFT [τj , pn] +OFT [τj , pn]− ωj,n; // Estimate schedule completion
time of τj on pn

12 Determine: pn′ = min
pr∈P

SCT [τj , pr]; // Find the processor pn′ for which SCT [τj , pn′ ] is

minimum
13 Assign τj on processor pn′ ;

14 Set AFT [τj ] = avail[n′] = EFT [τj , pn′ ], Γcur
n′ = Γfin

n′ ; // Update: (i) actual finish time
of τj (AFT [τj ]), (ii) avail[n′] and (iii) temperature Γcur

n′ of p′n at avail[n′] Insert all
ready to execute successor tasks of τj in taskList;
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Effective Finish Time (EFT[τj, pn]): EFT [τj, pn] is the effective execution finish

time of task τj on pn. The effective time at which τj can start execution on pn is given by

EST [τj, pn] (refer equation 7.19). This time instant (EST [τj, pn]) is marked by a distinct

temperature value of pn, which may be the ambient temperature (if pn has been idle for a

long time) or a higher temperature (due to earlier task executions on pn). Starting from

this initial temperature at EST [τj, pn], τj may be able to complete its execution demand

ωj,n in one continuous interval or may need one or more intervening cooling intervals (in

order to prevent pn from breaching the threshold temperature Γlim
n ). Thus in general, the

total duration over which τj executes on pn is characterized by alternating sub-phases of

execution and cooling, such that the aggregate length of these execution sub-phases is equal

to ωj,n. Thus, the value of EFT [τj, pn] is obtained by adding EST [τj, pn] with this total

duration over which τj executes on pn.

Scheduling event queue (Schj,n): Schj,n is an ordered event queue marking all the

time instances corresponding to the start of execution and cool-off sub-phases within the

total duration over which τj remains allocated on pn for completing its execution demand

(ωj,n). Corresponding to our running example (refer to the paragraph “Example contin-

ued” below), Let Sch7,3 = ⟨47.00, 55.64, 56.09, 56.70, 57.15, 57.76, 58.21, 58.82, 59.27, 59.88,
60.33, 60.94, 61.29, 61.60⟩ represents the event queue related to the execution of task τ7

on processor p3. The schedule Gantt chart produced by this event queue may be seen

in Fig. 7.4 and reproduced here in Fig. 7.2, for convenience. It may be observed that

this Gantt chart has seven alternating phases of execution and cooling. Among these,

ω1
7,3(= 55.64 − 47) = 8.64, ω2

7,3 = ω3
7,3 = ω4

7,3 = ω5
7,3 = ω6

7,3 = 0.61 and ω7
7,3 = 0.31, de-

note the execution sub-phases. The first phase starts at EST [τ7, p3] = 47.00. The WCET

of task τ7 on p3 is obtained as ω7,3 =
∑7

k=1 ω
k
7,3 = 12. The total duration over which τ7

remains allocated on p3 for completing its execution demand (ω7,3 = 12) is: 14.60. Hence,

EFT [τ7, p3] = 47.00 + 14.60 = 61.60.
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Figure 7.2: Sch7,3 - schedule of task τ7 on processor p3

Step 11 computes the Schedule Completion Time (SCT [τj, pn]) of task τj on pn.
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Schedule Completion Time (SCT[τj, pn]): Given that τj is allocated on pn, SCT [τj, pn]

is computed as:

SCT [τj , pn] = OFT [τj , pn] + EFT [τj , pn]− ωj,n (7.20)

The R.H.S. of the above expression can be viewed as a combination of two terms: (i) The first

term EFT [τj, pn] is the effective execution finish time of task τj on pn. (ii) The second term

OFT [τj, pn] − ωj,n essentially provides an estimate of the total time required to complete

the execution of all dependant tasks of τj, assuming τj to be allocated for execution on

processor pn.

Finally in steps 12-13, each selected task τj is assigned to that processor pn for which

SCT [τj, pn] is minimal. After τj is scheduled on pn, EST and EFT of τj on pn become the

Actual Start Time AST [τj] and Actual Finish Time AFT [τj] of task τj. Step 14 updates

the finish time of each task and captures the current temperature of pn as well as updates

the avail time of processor pn. Makespan of the generated schedule is equal to the finish

time AFT [τexit] of the sink task τexit.

7.4.3 Temperature-aware Scheduler

The processor allocation phase calls function TETT () for each possible processor on which

the currently highest priority task τj can be assigned. TETT()’s objective is to generate a

minimal length non-preemptive execution schedule for τj while ensuring that the tempera-

ture of pn is always maintained below its stipulated threshold value. To achieve this, the

temperature-aware scheduler determines the intervals within the execution schedule during

which τj actually executes on pn. The processor is kept idle in order to enable cool-off, in the

remaining intervals. However, each transition from the active to idle state of a processor

(or vice versa), has an overhead (OV ) associated with the saving (or restoration) of the

executing task’s intermediate state. Over diverse embedded processing platforms having

varying capabilities, this overhead may differ from about ≈ 10µs up to ≈ 150µs [43,46,110].

Throughout the remaining chapter, we have considered the value of OV to be = 80µs [43].

TETT() adheres to two design principles for minimizing the total execution length of

τj on pn in the presence of OV , the active-to-idle transition overhead. (i) An interval in

which task τj actually executes on processor pn is never interrupted/terminated until the

threshold temperature of pn is reached, (ii) Whenever the temperature of pn reaches its

threshold value, it is switched to idle mode. Thereafter, pn continuously cools-off in this
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idle state for a minimum duration which either allows: (a) continuous execution of τj up to

completion (while not violating pn’s threshold) in the execution interval which follows this

cool-off interval, or (b) cool down to the ambient room temperature. If τj’s execution time

is relatively high, or if pn’s threshold temperature is low, multiple idle cool-off intervals may

be required before τj is able to complete its execution. In all these intermediate cool-off

intervals (except the final interval), pn is forced to idle until ambient room temperature is

reached. We now show that this obvious cool down strategy may have a very adverse effect

on TETT()’s objective towards achieving a minimum length schedule for τj.

Table 7.2: Thermal parameters of processors [57,71]

f C0 C1 C2 R C Γlim Γcur Γa

p1 2.6 2.332 13.1568 0.1754 0.68 380 80◦C 30◦C 25◦C
p2 3.4 2.138 5.0187 0.1942 0.487 295 70◦C 50◦C 25◦C
p3 3.0 4.556 15.6262 0.1942 0.238 320 60◦C 40◦C 25◦C

Fig. 7.3a shows the cooling characteristic curves plotted using equation 7.8, for three

heterogeneous processors with different thermal properties, as detailed in Table 7.2. It can

be observed from Fig. 7.3a that a processor pn must suffer an exponentially long duration

of idleness if it is forced to cool down from the threshold temperature (Γlim
n ) to a cutoff

temperature which is close to the ambient room temperature (Γa). On the other hand, if

the cutoff temperature is too close to the threshold Γlim
n , pn can not cool down sufficiently

so that adequate execution progress can be made before temperature reaches Γlim
n again

(when pn must transit back to idle mode). Thus, we see that the total duration of execution

of a task τj on pn gets elongated (beyond an optimal value) both when the cutoff (Γc
j,n)

temperature is very close to either Γlim
n or Γa. This indicates the existence of one or more

optimal values of Γc
j,n (which we refer to as Γoc

j,n; Γlim
n > Γoc

j,n > Γa) for which the total

execution duration of τj on pn gets minimized.

As discussed above, the temperature of a processor pn (on which task τj is considered

for assignment) at the beginning of τj’s execution (at the instant EST [τj, pn]) is obtained

as Γest
n in step 9 of Algorithm 16. Now, the total execution length of τj on pn (TE(τj, pn))

can be expressed as:

TE(τj, pn) = MDE(τj, pn,Γ
est
j,n) + ⌊I⌋ × [coolT (Γc

j,n,Γ
lim
n )

+MDE(τj , pn,Γ
c
j,n)] + remET + coolT (Γcur

j,n ,Γ
lim
n ) + 2 ⌈I⌉ ×OV (7.21)
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Figure 7.3: (a) Cooling characteristic curves of processors w.r.t. time; (b) Task execution lengths
w.r.t. cutoff temperatures.

The above equation can be explained by describing the important terms in its R.H.S. Start-

ing with the initial temperature Γest
j,n, MDE(τj, pn,Γ

est
j,n) (MDE: Maximum Duration of con-

tinuous Execution) represents the execution progress that τj makes by continuously running

on pn until the temperature reaches pn’s threshold value Γlim
n . The function MDE() can be

derived from equation 7.7 above, as:

MDE(τj , pn,Γ
ini) =

∞, if Γss
j,n ⩽ Γlim

n

−1
Bn
× log(

Γlim
n −Γss

j,n

Γini−Γss
j,n

), otherwise
(7.22)

Next, coolT (Γc
j,n,Γ

lim
n ) denotes the idle interval that is necessary for pn to cool-off from Γlim

n

to Γc
j,n. By replacing Γfin and Γini by Γc

j,n and Γlim
n , a generalised definition of coolT () may

also be obtained from equation 7.7, as:

coolT (Γfin,Γini) =
−1
Bn
× log

(Γfin − Γa

Γini − Γa

)
(7.23)

The term I denotes the number of cooling intervals needed for τj to complete execution on

pn.

I =
ωj,n −MDE(τj , pn,Γ

est
j,n)

MDE(τj , pn,Γc
j,n)

(7.24)

remET represents the last remaining execution chunk of τj on pn before completion, and is

obtained as:

remET = ωj,n −MDE(τj , pn,Γ
est
j,n)− ⌊I⌋ ×MDE(τj , pn,Γ

c
j,n) (7.25)
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The maximum temperature (Γcur
j,n ) necessary to continuously execute τj for its last remaining

remET time units, while not violating the threshold temperature Γlim
n , is defined as:

Γcur
j,n = Γss

j,n +
Γlim
n − Γss

j,n

e−Bn×remET
(7.26)

Finally, OV denotes the active to idle (or idle to active) transition overhead associated with

the saving (or restoration) of task τj intermediate state. As discussed above, the value of

OV has been assumed to be 80µs.

Example - 1: Let us consider the 10 task DAG in Fig. 7.1a. The DAG is to be executed

on three heterogeneous processors. The WCETs of each task on the three processors are

given in Fig. 6.1b. The processors’ thermal parameters have been adopted from [57,71] and

listed in Table 7.2. Let the steady state temperatures corresponding to these tasks for the

given processors be as listed in Fig 7.1b. Given OV , the optimal cutoff temperature of τj on

pn (Γoc
j,n) corresponds to that value of Γc

j,n for which the lowest minima (having the longest

cutoff interval) of function TE(τj, pn) (refer equation 7.21) is obtained, as Γc
j,n is varied in

the range [Γa,Γlim
n ]. By putting Γoc

j,n as the first argument of coolT () (refer equation 7.23),

we get the optimal cool-off interval size (Iocj,n).

Table 7.3: Γss
j,n (in ◦C), Γoc

j,n (in ◦C) and Iocj,n (in s) of three processors

Tasks
Γss
j,n Γoc

j,n Iocj,n
p1 p2 p3 p1 p2 p3 p1 p2 p3

τ1 107 94 84 79.71 69.84 59.49 1.98 0.75 1.30
τ2 105 98 83 79.63 69.60 59.72 2.53 1.89 0.71
τ3 100 93 82 79.73 69.89 59.62 1.84 0.52 0.97
τ4 101 95 82 79.88 69.76 59.69 0.82 1.13 0.79
τ5 104 94 81 79.78 69.87 59.65 1.50 0.61 0.89
τ6 103 94 85 79.69 69.81 59.62 2.12 0.90 0.97
τ7 104 93 86 79.78 69.75 59.59 1.50 1.18 1.04
τ8 102 92 83 79.52 69.77 59.69 3.28 1.09 0.79
τ9 99 85 84 79.77 69.77 59.60 1.57 1.09 1.02
τ10 107 98 83 79.71 69.60 59.34 1.98 1.89 1.68

Fig. 7.3b depicts τ7’s execution lengths on processors p3, as the Γc
j,n is progressively

lowered from Γlim
3 = 60◦C. The plots in Fig. 7.3b validate the existence of an optimal cutoff

temperature (for each distinct task-processor pair) for which the total execution duration

TE, is minimal. For example, Γoc
7,3, Ioc7,3, and corresponding TE’s for τ7 are obtained as

(⟨Γoc
7,3, I

oc
7,3, TE⟩); ⟨59.82◦C, 0.45s, 14.60s⟩ (indicated by black dot in the figure).
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TETT (): The pseudocode of function TETT() is presented in Algorithm 17. The objec-

tive of TETT() is to generate an execution/idling schedule for a task τj on pn, while ensuring

that the temperature of pn remains below the specified threshold value. TETT() returns

this schedule along with the effective finish time EFT [τj, pn] and the processor temperature

at EFT [τj, pn]. Given the initial temperature Γcur
n of pn, step 1 of Algorithm 17 determines

the Maximum Duration of continuous Execution (MDE(); using equation 7.22) of τj before

pn’s temperature reaches Γlim
n (and stores it in allowET ). When ωj,n ⩽ allowET is true

(step 2), function TETT() can directly return (step 3) with the schedule Schj,n being a

single continuous execution interval (with no idling), EFT [τj, pn] being EST [τj, pn] + ωj,n

and the temperature of pn at time EFT [τj, pn] calculated using Theat(Γ
ss
j,n,Γ

0, ωj,n). Other-

wise (steps 4-6), temperature of pn reaches Γlim
n after allowET units of continuous execution.

Steps 5 and 6 respectively update the current values of τj’s remaining execution requirement

(remET ) as well as the time up to which it must remain assigned on pn.

Table 7.4: Schedule produced by TMDS in each iteration for DAG in Fig. 7.1

τj R
OFT EST EFT SCT Allocation

p1 p2 p3 p1 p2 p3 p1 p2 p3 p1 p2 p3 AFT [τj ] pn Γcur
n

τ1 44.8 46.5 44.0 44.0 0.0 0.0 0.0 16.0 15.0 14.0 62.50 59.0 58.0 14.0 p3 46.4◦C
τ5 28.4 32.0 29.33 24.0 17.0 16.0 14.0 36.0 34.0 34.0 68.0 63.33 58.0 34.0 p3 53.4◦C
τ2 28.2 31.5 29.0 24.0 16.50 15.67 34.0 32.50 32.67 52.0 64.0 61.67 76.0 32.67 p2 52.1◦C
τ4 26.5 28.5 27.0 24.0 17.50 32.67 34.0 36.50 42.67 51.0 65.0 69.67 75.0 36.50 p1 33.3◦C
τ3 25.1 29.5 26.67 19.0 36.50 32.67 34.0 54.50 48.67 47.0 84.0 75.33 66.0 47.0 p3 57.3◦C
τ6 23.5 27.5 22.0 21.0 36.50 32.67 47.0 51.50 48.67 63.62 79.0 70.67 84.62 48.67 p2 55.1◦C
τ9 11.3 15.0 12.0 7.0 41.67 48.67 47.0 61.67 67.67 69.78 76.67 79.67 76.78 61.67 p1 36.6◦C
τ7 11.3 15.0 12.0 7.0 61.67 48.67 47.0 81.67 66.67 61.84 96.67 78.67 68.84 61.84 p3 60.0◦C
τ8 11.3 15.0 12.0 7.0 61.67 48.67 61.84 77.67 60.67 85.16 92.67 72.67 92.16 60.67 p2 57.1◦C
τ10 0.0 0.0 0.0 0.0 65.67 67.67 64.67 80.67 79.67 74.01 80.67 79.67 74.01 74.01 p3 60.0◦C

Now, in order to complete remET units of execution TETT(), must enter into a repet-

itive loop (steps 9-18). At each iteration of the loop, depending on the value of remET

(step 10), pn must cool down either up to the optimal cutoff temperature Γoc
j,n (step 12) or

to a specific temperature from which τj can be continuously executed to completion while

not breaching the threshold temperature Γlim
n (step 15). Step 7 calculates the interval that

is necessary for pn to cool-off from Γlim
n to Γc

j,n, while step 8 determines the continuous

execution duration that will result in pn’s temperature to increase from Γc
j,n to Γlim

n . The

remaining steps of the algorithm are self-explanatory. In step 19, TETT() finally returns
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with a schedule Schj,n (that includes all the idle and execution intervals of τj), effective

finish time EFT [τj, pn] and the temperature (Γlim
n ) of pn at time EFT [τj, pn].

Algorithm 17: TETT (τj, pn, curT,Γ
cur
n )

Input: Task τj , processor pn, time curT , temperature Γcur
n

Output: Schedule Sch and effective finish time EFT of a task τj on pn and temperature of
pn at EFT

1 allowET = MDE(τj , pn,Γ
cur
n ) refer equation 7.22;

2 if ωj,n ⩽ allowET then
3 return ⟨Schj,n, curT + ωj,n, Theat(Γ

ss
j,n,Γ

0, ωj,n)⟩;
4 else
5 remET = ωj,n − allowET ;
6 curT = curT + allowET ;

7 idleT = coolT (Γc
j,n,Γ

lim
n ) refer equation 7.23;

8 allowET = MDE(τj , pn,Γ
c
j,n) refer equation 7.22;

9 while remET > 0 do
10 if remET ⩾ allowET then
11 // pn should idle for an interval [curT , curT + idleT + 2×OV ]
12 curT = curT + idleT + allowET + 2×OV ;
13 // τj should execute for an interval [curT − allowET ,curT ]

14 else
15 Calculate Γcur

j,n (using equation 7.26), the max temperature necessary to continuously

execute τj for its last remaining remET time units, while not breaching Γlim
n ;

16 idleT = coolT (Γcur
j,n ,Γ

lim
n ) refer equation 7.23;

17 curT = curT + idelT + remET + 2×OV ;

18 remET = remET − allowET ;

19 return ⟨Schj,n, curT,Γlim
n ⟩;

Example Continued: Using the same example system (refer Example - 1), let us

assume that the communication links between each pair of processors have the following

bandwidths: b1,2 = b2,1 = 1, b2,3 = b3,2 = 3, b3,1 = b1,3 = 2, and b1,1 = b2,2 = b3,3 = ∞.

The rows in Table 7.4 show the values of important terms, at each iteration during partial

schedule generation by TMDS() (while loop steps 5-14, Algorithm 16). The Gantt chart in

Fig. 7.4 depicts the schedule generated by TMDS() (makespan 73.62s).

In the Gantt chart, the light yellow coloured intervals denote phases when a task actually

executes on a processor. On the other hand, the gray-coloured intervals denote phases when

a processor idles with a certain task assigned on it. For example, when the task τ7 is allocated
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Figure 7.4: Gantt chart of the schedule generated by TMDS (makespan = 74.01s) for the DAG
in Fig. 7.1a.

on processor p3 at time EST [τ7,3] = 47s (refer Table 7.4), the operating temperature of p3

is Γest
7,3 = 57.3◦C. At this time, p3 is allowed a continuous execution interval of 8.64s

before reaching p3’s threshold (Γlim
3 = 60◦C). To complete τ7’s remaining execute of 3.36s

(= 12−8.64s), p3 must cool down either up to the optimal cutoff temperature Γoc
7,3 = 59.70◦C

(with interval size Ioc7,3 = .45s) or to a specific temperature from which τ7 can be continuously

executed to completion, while not breaching the threshold temperature. To do so, processor

p3 remains idle in the following six intervals ⟨(start time, start temperature), (end time,

end temperature)⟩: ⟨(55.64s, 60◦C), (56.09s, 59.70◦C)⟩, ⟨(56.7s, 60◦C), (57.15s, 59.70◦C)⟩,
⟨(57.76s, 60◦C), (58.21s, 59.70◦C)⟩, ⟨(58.82s, 60◦C), (59.27s, 59.70◦C)⟩, ⟨(59.88s, 60◦C),

(60.33s, 59.70◦C)⟩ and ⟨(60.94s, 60◦C), (61.29s, 59.89◦C)⟩. Therefore, the total allocation

duration of task τ7 on p3 is 14.6s. This primarily includes τ7’s execution duration (12s) and

p3’s idle intervals (5× .45s + 0.35s = 2.6s). It may be noted from Table 7.4 that the start

time of τ7 on p3 is 47s and its finish time is 61.6s.

7.4.4 Complexity Analysis

Step 2 of TMDS computes two parameters: OFT and Rank. OFT (refer equation 7.17)

considers each edge exactly once and iterates over |P | processors. Hence, the overhead

of creating the OFT table is O(|P |(|V | + |E|)). The overhead of determining Rank (refer

equation 7.18) of a task is O(|P |) and for all tasks it becomes O(|P |×|V |). The complexity of

the while loop (steps 5-14) is primarily governed by the overhead of calculating EST [τj, pn]

(refer equation 7.19; step 8) for all task-processor pairs. Computation of EST [τj, pn] for a

task τj on pn requires O(1) time over all predecessors of τj and hence has a complexity of

O(#predecessors). As the sum of the predecessors of all tasks is equal to the total number of

edges in the task graph, the amortized complexity of determining EST [τj, pn] for τj on pn is
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O(|P |(|V |+ |E|)/(|P |×|V |)) = O((|V |+ |E|)/|V |) = O(|E|/|V |). Hence, the complexity for

computing EST [τj, pn] on all task-processor pairs is O(|E|/|V | × |V | × |P |) = O(|E| × |P |).
Thus, the overall complexity of TMDS can be expressed as: O(|P |(|V |+ |E|) + |P | × |V |+
|E|×|P |) ≈ O(|E|×|P |). It may be noted that the time complexity of the TETT() function

is O(1).

7.5 Experiments and Results

In this section, we experimentally assess the performance of TMDS against four existing

strategies as discussed in Section 7.5.3. We first describe the experimental setup, the perfor-

mance metrics and the comparison with related works in the following subsections, followed

by detailed experimental results.

7.5.1 Experimental Setup

The experimental evaluation has been conducted using two real-world benchmark DAGs:

Gaussian Elimination [74] and Laplace [69]. The structural representations of these task

graphs are depicted in Fig. 7.5.

Gaussian Elimination is a method used to solve a system of linear equations. The

DAG structure of this graph is characterized by matrix-size (ν). A Gaussian Elimination

DAG has (ν2 + ν − 2)/2 tasks and (ν2 − ν − 1) edges. For example, Fig. 7.5a depicts the

DAG structure of Gaussian Elimination for matrix-size ν = 5. The DAG has 14 tasks and

19 edges.
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Figure 7.5: Benchmark Task Graphs.
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The Laplace graph is derived from the Laplace equation solver algorithm. The size of

this task graph is influenced by the size of the input parameter φ. The total number of

tasks and edges in a Laplace DAG is equal to φ2 and 2φ(φ − 1). For example, Fig. 7.5b

shows a Laplace task graph for φ = 4. The task graph consists of 16 tasks and 24 edges.

Data Generation Framework: We have generated an exhaustive set of random input

test cases by carefully varying the following set of parameters to conduct our experiments.

1. Task graph size: For Gaussian Elimination, the matrix-sizes ν = {8, 12, 15, 18, 20},
respectively produces task graphs having |V | = {35, 77, 119, 170, 209} tasks and |E| =
{55, 131, 209, 305, 379} edges. Similarly for Laplace, φ = {6, 9, 11, 13, 14} results in task

graphs having |V | = {36, 81, 121, 169, 196} and |E| = {60, 144, 220, 312, 364}.
2. Number of processors: |P | = {4, 8, 16, 32}.
3. Task execution times: Our experiments used a three-step approach to produce

the execution time of each task on different heterogeneous processors. First, we fixed the

average execution time (ωDAG) of all tasks in the graph. ωDAG = {10, 15, 20, 25} has been
considered in our experiment. Given ωDAG, the average execution time (ωj) of task τj

over all processors is generated. Values of ωj for different tasks are generated from normal

distributions (N(µ, σ)) with mean µ = ωDAG and various standard deviation values σ =

{1, 2, 3}. Finally, we obtain the execution times of task τj on each processor pn at ωj,n ∼
N(ωj, ωj × β). Here, β = {0.1, 0.25, 0.5, 0.75, 1} is the heterogeneity factor that indicates

the skewness among execution times of a task on different processors.

4. Communication-to-Computation Ratio (CCR): This parameter determines

the ratio of relative overhead between message transmission and task execution. A higher

CCR indicates that the system spends relatively more time in transmission of data be-

tween processors than task execution. Values of CCR chosen in this work are: CCR =

{0.1, 0.25.0.5, 0.75, 1}. The mean inter-task message size (dataDAG; in bytes) for a task

graph is given by: dataDAG = CCR × ωDAG × B. Here, B (= 1
|P |×(|P |−1)/2

∑
bm,n (1 ⩽

m ⩽ |P |; 1 ⩽ n < m)) is the average communication bandwidth randomly sampled from

B = {1 Gbps, 5 Gbps}. An element bm,n ∈ B denotes the actual bandwidth of each link

between pm, pn and is sampled from a normal distribution such that bm,n ∼ N(B, 0.2×B).

These bm,n values are further scaled appropriately such that
∑|P |

m=1

∑m−1
n=1 bm,n becomes

|P | × (|P | − 1)/2 × B. The output message size (datai,j) for each edge (τi, τj) in the

task graph is sampled from a normal distribution datai,j ∼ N(dataDAG, 0.2× dataDAG) and

then scaled such that
∑

datai,j over all edges in the task graph equals |E| × dataDAG.
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5. Temperature parameters: Similar to [57], the steady state temperature (Γss
j,n)

of a task τj on pn is proportional to its intensity. A more intensive task will cause the

processor to heat up to higher temperatures. The value of Γss
j,n for each task-processor pair

is generated by sampling uniformly from the range [40◦C, 120◦C]. Similarly, the temperature

threshold (Γlim
n ) for each processor pn is picked uniformly from the range [60◦C, 100◦C]. The

thermal constant (Bn) determines the thermal characteristics of the processor. A processor

with higher Bn tends to quickly heat (cool) up (down). Values of Bn are sampled from a

normal distribution with µ = 0.008 and σ = 0.004. The ambient temperature (Γa) is the

temperature of the environment where the system operates and is fixed to 25◦C for all our

experiments.

Simulation Framework: The simulation framework is written in C and is executed

on a system having the following configuration: (i) Intel® Core™ i7-8550U CPU @ 1.8GHz

×8, (ii) 8 GiB Memory, and (iii) Ubuntu 20.04 LTS OS.

7.5.2 Performance Metrics

Performance of TMDS has been evaluated using the following three metrics:

1. Schedule Length Ratio (SLR): The makespan/schedule length is the most com-

monly used performance measure of a DAG scheduling algorithm. Since, a large set of

DAGs with various input parameters are used, we used a normalized schedule length

measure named Schedule Length Ratio (SLR). This metric compares the performance

of the proposed temperature-aware makespan minimizing scheduler TMDS, against

THEFT, TPEFT, TPPTS and TPSLS. Formally, SLR is determined as:

SLR =
Xms∑

τj∈CPAV G
ωj

(7.27)

where Xms symbolizes the makespan delivered by a scheduler like TMDS, THEFT,

TPEFT, TPPTS and TPSLS. Considering execution time of each task to be its average

value over all processors, the denominator depicts sum of the execution times of all

tasks in the critical path (CPAV G) of the DAG. It may be observed that lower the

achieved SLR, better is the performance of the scheduling algorithm.

2. Number of Improved Makespans: We used this metric to pair-wise compare the

makespan of two scheduling algorithms in a tabular format. In the table, we show
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the percentages of cases in which one strategy has performed better, similar, or worse

compared to the other.

3. Run-time: This metric determines the average run-time taken by a scheduling algo-

rithm for data sets generated using a fixed set of input parameter values

.

7.5.3 Comparison with Related Works

To the best of our knowledge, the work proposed herein (TMDS ) is the first one to deal with

the temperature-aware scheduling of precedence-constrained DAG-structured applications

on distributed heterogeneous processing platforms. That is, none of the well-known DAG

scheduling strategies for heterogeneous platforms such as HEFT [85], PEFT [5], PPTS [24]

and PSLS [112] are temperature-aware. Temperature-aware counterparts for any of these

strategies are also not available in the literature. In this regard, it may be highlighted that

the temperature-awareness mechanism presented in this chapter is generic and adaptable.

Hence, the proposed mechanism can be easily employed to extend the DAG scheduling

strategies mentioned above and obtain their temperature versions as follows. In general,

all these strategies have a two-level design. The first level among them is concerned with

task priority generation, while the second level deals with the allocation of processors-to-

tasks in the order prescribed by the first level. While considering a processor for a task

the temperature-awareness mechanism (refer TETT()) determines and takes into account

the time required in complete the task on the given processor while never breaching the

temperature cap associated with the processor. Following this approach, we have imple-

mented temperature-aware versions (namely, THEFT, TPEFT, TPPTS and TPSLS ) of

the prominent existing algorithms HEFT, PEFT, PPTS, PSLS.

7.5.4 Performance Results

In this subsection, we present detailed experimental results using two benchmarks: Gaussian

Elimination [74] and Laplace [69].
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7.5.4.1 Experiment-1: Pair-wise makespan comparison of algorithms

Table 7.5 shows pair-wise makespan comparisons of TMDS with the algorithms THEFT,

TPEFT, TPPTS and TPSLS. Specifically, the result corresponding to the (row i, column j)th-

entry in the table depicts the percentages of test cases for which the algorithm corresponding

to the ith row performs better, equal or worse than the algorithm in column j. A total of

100000 test cases using Gaussian Elimination task graphs have been considered by varying

values of #tasks (|V |) and #processors (|P |), heterogeneity (β) and Communication-to-

Computation Ratios (CCR) for each pair of algorithms. For example, the (1, 1)th- entry in

Table 7.5 shows that TMDS performs better, equal and worse in 66.7%, 6.5% and 26.8%

test cases respectively, compared to TPSLS. The results for Laplace have not been presented

as they exhibit trends very similar to Gaussian Elimination.

Table 7.5: Pair-wise comparison of algorithms using Gaussian Elimination

TPSLS TPPTS TPEFT THEFT

better 66.7% 62.2% 54.0% 65.6%
TMDS equal 6.5% 1.3% 14.2% 1.3%

worse 26.8% 36.5% 31.8% 33.1%
better 43.7% 40.5% 39.3%

THEFT equal 1.1% 1.7% 1.6%
worse 55.2% 57.8% 59.1%
better 56.3% 54.9%

TPEFT equal 12.5% 1.8%
worse 31.2% 43.3%
better 52.1%

TPPTS equal 1.4%
worse 46.5%

7.5.4.2 Experiment-2: Comparison of schedule length ratios

This experiment measures the schedule length ratios (SLR) of TMDS, THEFT, TPEFT,

TPPTS and TPSLS for varying values of #tasks (|V |). We have also conducted the experi-

ments for varying #processors (|P |), heterogeneity (β), and Communication-to-Computation

Ratios (CCR). However, the results for varying |P |, β and CCR have not been presented

here as the result trends are very similar. Each data point in the experiments below is

obtained as the average over solutions generated with 200 different task graph data corre-

sponding to a fixed set of parameter values. Obtained results for both Gaussian Elimination
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and Laplace are presented in Fig. 7.6.
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Figure 7.6: Schedule Length Ratios for varying number of tasks.

Fig. 7.6 shows average SLR values for the Gaussian Elimination and Laplace task graphs,

as the number of tasks vary between ≈ 30 and ≈ 200. Values of the parameters CCR, |P |
and β have been fixed at 0.5, 8 and 0.75, respectively. For Gaussian Elimination, TMDS

is seen to deliver better results than THEFT, TPEFT, TPPTS and TPSLS, in all cases.

As an example of TMDS’s performance, in Fig. 7.6a (Gaussian Elimination) for |V | = 119,

the average schedule lengths of TMDS is lower than THEFT, TPEFT, TPPTS and TPSLS

by approximately 3.9%, 1.1%, 3.4% and 1.1%. For Laplace (7.6b), performs of TMDS may

be seen to be slightly better or comparable to the other algorithms. As is obvious, the

makespans (SLR values) increase as workloads become higher with increase in the number

of tasks.

7.5.4.3 Experiment-3: Comparison of run-times

This experiment measures the run-times of TMDS, THEFT, TPEFT, TPPTS and TPSLS

for varying values of #tasks (|V |). Obtained results for Laplace are detailed in Table 7.6.

The parameters |P |, CCR and β are set to 8, 0.5 and 0.75, respectively. It is observed that

the run-times of all the schedulers strictly increase with the number of tasks. The run-times

of TMDS is upper bounded by ≈ 0.98ms for the considered test cases.
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Table 7.6: Average run-times (in ms) of different Algorithms using Laplace

τj TMDS THEFT TPEFT TPPTS TPSLS
36 0.11 0.06 0.12 0.12 0.18
81 0.29 0.15 0.29 0.30 0.52
121 0.52 0.29 0.52 0.54 1.04
169 0.74 0.45 0.75 0.77 1.60
196 0.98 0.59 0.98 0.99 2.13

7.6 Case Study: Adaptive Cruise Controller

To demonstrate the practical applicability of TMDS in real-world settings, we present a case

study using an Adaptive Cruise Controller (ACC) in automotive systems. ACC automati-

cally preserves a safe distance between two cars [41]. Fig. 3.11a illustrates the ACC block

diagram adapted from [41] and Fig. 7.7a displays its related DAG structure. This ACC

application consists of 20 executable tasks that need to be scheduled on a platform with two

processors p1 and p2 having the thermal properties ⟨Bn,Γ
lim
n ,Γcur

n ⟩: ⟨0.02267, 70, 45⟩ and
⟨0.0313, 60, 55⟩, respectively.
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Figure 7.7: Adaptive Cruise Controller (ACC): (a) ACC DAG, (b) Gantt chart of the ACC
schedule generated by TMDS (makespan = 9.5s) for the DAG in Fig. 7.7a.

Table 7.7 lists the WCETs and the steady state temperature of the ACC task graph on

the three heterogeneous processors. The communication bandwidths between the processors

are considered to be 500 KB/s. Employing TMDS, we generate a schedule for the ACC

application and the respective Gantt chart is presented in Fig. 7.7b. It may be observed
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Table 7.7: ACC: ωj,n (in s) and Γss
j,n (◦C) of τj on two processors

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 τ13 τ14 τ15 τ16 τ17 τ18 τ19 τ20

ω
p1 .9 .6 .6 1 .8 .9 1 .9 .9 1 1 .8 .9 .6 1 1 1 1 .9 .9
p2 .8 .9 .8 .8 .7 1 .9 .8 .8 .8 .9 .9 .7 .5 1 .9 .9 .9 .6 .8

Γss p1 98 97 99 96 98 99 91 95 93 97 94 99 97 93 94 92 95 96 94 97
p2 84 84 88 74 86 86 83 82 86 81 75 78 77 86 81 83 84 81 89 93

that, TMDS is able to deliver a schedule with makespan (9.5s) while satisfying the given

thermal constraints.

7.7 Summary

This chapter presented TMDS, a low-overhead temperature aware list scheduling algorithm

for DAG-structured applications on distributed heterogeneous systems. The objective of

TMDS is to generate a makespan minimizing schedule while satisfying, (i) execution and

communication demands of application tasks, (ii) processor capacity and communication

bandwidth constraints of the platform, and (iii) temperature threshold bound associated

with all processors, over the entire schedule. The proposed temperature management strat-

egy is a generic approach that can be easily used to adapt existing makespan minimizing

DAG schedulers (for example, THEFT, TPEFT, etc.), so that the delivered schedules never

violate threshold temperature bounds of processors. This generic approach is important

because as shown in Table 7.5, although TMDS is better or comparable in performance

to the other state-of-the-art algorithms in a majority of considered test cases, there still

are a significant number of test case scenarios in which one or more existing algorithms

deliver slightly better results than TMDS. Our generic temperature management scheme

can be used to employ TMDS or temperature-aware versions of any of the other algorithms

as needed, in a given system scenario. Finally, the practical applicability of the proposed

scheme has been additionally exhibited using a real-world case study with an adaptive cruise

controller from the automotive system’s domain.

The next chapter summarizes the contributions of this dissertation and discusses a few

possible extensions to this research.

;;=8=<<

188



Chapter 8
Conclusions and Future Perspectives

8.1 Summary of Contributions

This dissertation presents a few novel ideas towards the design of low-overhead scheduling

techniques for both single DAG or multiple independent DAG applications on distributed

heterogeneous RT-CPSs. RT-CPSs integrate sensing, computation, control and network-

ing into physical entities and infrastructure, enabling a revolution of smart gadgets and

systems from smart agriculture to smart cars. The thesis which unfolds through the disser-

tation is as follows: Given precedence-constrained applications to be executed on distributed

platforms, the list-based design philosophy is effective towards obtaining low-overhead but

efficient offline real-time scheduling policies for satisfying diverse objectives/constraints re-

lated to resource usage efficiency, energy, security, temperature, etc. The entire thesis work

comprises multiple contributions categorized into five contributory chapters. Our first con-

tribution has been the development of an efficient real-time DAG-scheduling framework

that attempts to minimize a generic penalty function. The designed penalty function can

be amicably adapted towards its deployment in various application domains such as real-

time cyber-physical systems like automotive and avionic systems, cloud computing, smart

grids, etc. In the second contribution, we developed a state-space search guided heuristic

scheduling algorithm called HMDS, whose objective is to minimize schedule length. The

design of HMDS is generic enough and can be easily adapted to various distributed sys-

tems such as industrial assembly line balancing, cloud/fog computing, grid computing, etc.,

where the applications to be executed are often structured as task graphs. Contributions

one and two cover the first three objectives of the thesis. In order to achieve the fourth
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objective of the thesis, a mechanism for co-scheduling multiple independent periodic DAG

applications has been devised within the third contributory chapter. The objective of the

scheduling algorithm is to minimize dissipated energy. Subsequently, in the fourth contri-

bution, a security-aware real-time DAG scheduling strategy has been designed. The scheme

maximizes total security utility for a given application having known minimum security

strength specifications for its messages. Finally, in the last contribution of the dissertation,

we have developed a mechanism to construct minimum makespan schedules for precedence-

constrained task graph applications with known thermal characteristics on a heterogeneous

processing platform. The last two contributions are oriented towards fulfilling the thesis’s

fifth objective. We now present brief synopses of the contributory chapters in more detail.

An important insight obtained through our literature survey (refer Section 2.5 of Chap-

ter 2) was that effective task-message co-scheduling schemes for real-time DAG applica-

tions can be designed through an efficient iterative scheme which employs state-of-the-art

makespan minimization strategies as their core. Based on this insight, in our first con-

tributory chapter (i.e., Chapter 3), we have proposed a general model and a corresponding

heuristic algorithm to schedule real-time DAG applications on heterogeneous platforms.

The model’s objective is to minimize a generic penalty function, which allows the model to

be adapted to different domains such as automotive and avionic systems, cloud computing,

smart grids, industrial automation, etc. The proposed heuristic algorithm PRESTO com-

prises two phases: initialization and allocation. The primary objective of the initialization

phase is to determine a task priority list, as well as to estimate for each task-processor pair

the total time and corresponding penalty associated with the execution of all tasks starting

from the execution of itself, up to the sink task node. The allocation phase aims to generate

a real-time static schedule obtained by sequentially determining a processor allocation and

an actual start time for each task, in the order prescribed by the priority list obtained in

the previous step, such that the overall penalty is minimized. The allocation phase is a

bounded iterative process that continues until a valid schedule is successfully generated in

a specific iteration or finally exits with a makespan minimizing schedule, which we refer to

as MMSH. Here, the MMSH algorithm acts as the core of the proposed real-time scheduler

PRESTO. Experimental analysis using two benchmark task graphs reveals that MMSH is

able to outperform state-of-the-art makespan minimization policies including HEFT, PEFT,

PPTS, PSLS and PALG, in most cases. To illustrate the generic applicability of PRESTO

in real-world designs, we presented two case studies. In the first case study, PRESTO has
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been used to schedule and map an (automotive) adaptive cruise control application such

that energy consumption is minimized. In the second case study, PRESTO has been used

to minimize the total monetary cost involved in the execution of an intelligent surveillance

application running in a fog environment. It may be noted that the generic penalty function

has been adapted through minimize energy in the first case study, while it has been used

for monetary cost minimization in the second case study. this shows the designed penalty

function is quite flexible and can be amicably molded as different objective functions as

needed in particular application scenarios. We have also shown that PRESTO requires less

than 25 ms to generate a valid schedule for benchmark task graphs with up to 250 tasks on

platforms consisting of 32 heterogeneous processors.

While designing MMSH, we realized that there is ample scope for improving MMSH as

well as other state-of-the-art makespan minimizing DAG scheduling strategies mentioned

above, by systematically applying principles of any time heuristic search. Based on this

insight, in Chapter 4, we have designed two makespan minimizing algorithms for DAG-

structured applications. The first algorithm HMDS-Bl is a list-based scheduler whose task

prioritization and processor selection phases depend on a matrix called Predicted Finish

Time (PFT), which provides a lower bound on the remaining execution time of the succes-

sors of a given task, provided the task is scheduled on a particular processor. The second

algorithm, HMDS is a branch-and-bound extension of HMDS-Bl whose run-time is kept in

check by restricting the branching factor and terminating the search once the search time

exceeds the baseline by a given factor. HMDS allows the designer to obtain a judicious

balance between performance (makespan) and solution generation times. The results ob-

tained in Table 4.3 (refer Experiment-6 of Chapter 4) show that HMDS achieves a steady

improvement in performance as more time is allowed in its search for better solutions.

The proposed heuristics were evaluated through extensive simulations using two real-world

task graphs. The results show that HMDS comprehensively outperforms HEFT, PEFT,

MMSH and other state-of-the-art schemes under various conditions with different parame-

ters. Finally, the practical adaptability of HMDS is shown using a prototype real-platform

implementation and a real-world case study on traction control application.

The works are done in Chapters 3 and 4 dealt with single DAG-structured applica-

tions on heterogeneous distributed platforms. As discussed in the motivation section (re-

fer Section 1.2 of Chapter 1), large systems which constitute multiple control subsystems

typically follow a federated resource allocation policy as it allows simpler design, albeit,
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at the cost of significantly lower resource utilizations, in many cases. In order to im-

prove the usage efficiency of available processing and network resources, in Chapter 5, we

thought to extend PRESTO for the co-scheduling of multiple independent task graphs.

As PRESTO takes a single real-time task graph as input, the set of independent peri-

odic task graphs to be co-scheduled must first be merged into a single task graph which

can be applied as input to PRESTO. Let a set of independent persistently executing peri-

odic real-time DAG applications G = {G1, G2, . . . , Gr, . . . , G|G|} having respective deadlines

D = {D1, D2, . . . , Dr, . . . , D|G|} (refer Fig. 5.1). The applications being periodic, the time

interval, say D0 (referred to as hyperperiod), after which arrival times of all application

instances synchronize, is given by D0 = LCM(D). In each hyperperiod, any application Gr

sequentially invokes Ir (= D0/Dr) instances. It may be appreciated that sequential execu-

tion of the Ir instances of any application DAG Gr can be modeled as the execution of a

single composite DAG, where (i) end-to-end deadline of the composite DAG is D0, (ii) the Ir

DAG instances are arranged such that the sink node of any instance say Gr
n−1 is connected

to the source node of Gr
n, through a dummy edge to enforce precedence relationship between

them, (iii) the execution start time of the source node of any instance say Gr
n happens on

or after AT [Gr
n] = (n − 1) ×Dr, (iv) the completion time of any instance say Gr

n happens

on or before n×Dr. All these composite DAGs can further be modeled as a single merged

DAG G0 by connecting their individual source and sink nodes to a single dummy source (τ0)

and sink node (τexit). It may be noted that G0 has an end-to-end deadline of D0. PRESTO

delivers faulty schedules for almost all test cases when a single merged DAG G0 is used as

input. This is because PRESTO is not equipped with the necessary critical features that

are required to handle multi-application merged DAGs. These features include:

• An enhanced task prioritization mechanism, where ranks of the source nodes of all

application instances (within the merged DAG) are designed to be aware of the rel-

ative arrival times (within the hyperperiod) of the respective application instances.

Similarly, ranks of the sink nodes of all application instances must be made aware

of application instance deadlines. Finally, the ranks of all other intermediate nodes

within each application instance (within the merged DAG) must be sensitive to the

instance’s relative deadline.

• In addition to such an enhanced task prioritization mechanism which is necessary for

improved task ranking, the allocation phase during partial schedule generation must
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be able to recognize and take corrective actions in situations when:

– the scheduler attempts to assign to a source task node a start time that is earlier

than the stipulated relative arrival time.

– the scheduler attempts to assign to a sink task node a start time which causes

the application instance’s relative deadline to be missed.

The extended version of PRESTO (we refer to as DPMRS ) includes all the necessary critical

features discussed above for scheduling multiple independent periodic real-time applications.

The overall objective of DPMRS is to minimize total dynamic energy dissipation associated

with the execution of multiple independent periodic DAGs using a DVFS approach. For the

same problem, this chapter also presented another scheduler named NDPMRS (an adaption

to DPMRS ), targeting the platforms which are not DVFS-enabled. Experimental analysis

employing four benchmark task graphs, namely CyberShake, Stencil, Gaussian Elimination

and Epigenomics acknowledges that DPMRS performs appreciably over extensive sets of test

scenarios, pointing to the practical effectiveness of the scheme. Compared to state-of-the-art

energy-aware single DAG scheduler NDES&GDES, the global nature of DPMRS allows it

to harness significantly improved processor/communication resource sharing among differ-

ent benchmark DAGs, in addition to better exploitation of task-processor affinities in the

heterogeneous environment. Due to such efficient sharing and affinity awareness, DPMRS is

able to achieve considerably lower energy dissipation, compared to NDES&GDES. For ex-

ample, in the scenario consisting of 16 processors the Normalized Energy-dissipation suffered

by DPMRS is 3.69 W . In comparison, NDES&GDES suffer significantly higher dissipa-

tion − 70.45 W . Finally, the practical adaptability of DPMRS and NDPMRS is exhibited

through a case study with an automotive control system.

The scheduling strategies proposed in the first three contributory chapters (refer Chap-

ters 3, 4, 5) do not focus towards ensuring the security needs of networked RT-CPS appli-

cations. However, data communication between dependent task nodes running on different

processing elements is often realized through message transmission over a public network and

is hence susceptible to multiple security threats such as snooping, alteration and spoofing.

Several alternative security protocols having varying security strengths and associated imple-

mentation overheads are available in the market, for incorporating confidentiality, integrity

and authentication on the transmitted messages. Hence, given a resource-constrained com-

putation platform, a security-aware RT-CPS scheduler should be able to judiciously choose
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appropriate schemes for the three types of security services, so that overall security of the

system is maximized while adhering to stipulated timeliness constraints. In Chapter 6,

we have presented a low-overhead security-aware real-time list scheduling algorithm named

SHIELD for DAG-structured applications on distributed heterogeneous systems. SHIELD

first calls HSMS to generate a makespan minimizing schedule while satisfying the mini-

mum security demands of each message in the application. SHIELD returns with failure

if the makespan generated by HSMS violates the given deadline. Otherwise, it attempts

to enhance the security strengths of all messages such that the total security utility of the

system is maximized. Experimental evaluation using two benchmark task graphs reveal that

SHIELD significantly outperforms greedy baseline strategies SHIELDb in terms of solution

generation times (run-times) and SHIELDf in terms of achieved security utility, over various

input test scenarios. Finally, the practical applicability of SHIELD is exhibited through a

case study on the Traction Control application in automotive systems.

Recent RT-CPSs often involve the use of intricate micro-architectural designs and very

small feature sizes leading to complex chips with multi-million gates. Such ultra-high gate

densities often make these chips susceptible to inappropriate surges in core temperatures.

Temperature surges above a specific threshold may throttle processor performance, enhance

cooling costs and reduce processor life expectancy. In Chapter 7, we have presented a low-

overhead temperature aware list scheduling algorithm called TMDS, for DAG-structured

applications. The objective of TMDS is to generate a makespan minimizing schedule while

satisfying, (i) execution and communication demands of application tasks, (ii) processor

capacity and communication bandwidth constraints of the platform, and (iii) temperature

threshold bound associated with all processors, over the entire schedule. The proposed

temperature management strategy is a generic approach that can be easily used to adapt

existing makespan minimizing DAG schedulers (for example, THEFT, TPEFT, etc.), so

that the delivered schedules never violate threshold temperature bounds of processors. This

generic approach is important because as shown in Table 7.5, although TMDS is better or

comparable in performance to the other state-of-the-art algorithms in a majority of consid-

ered test cases, there still are a significant number of test case scenarios in which one or

more existing algorithms deliver slightly better results than TMDS. Our generic tempera-

ture management scheme can be used to employ TMDS or temperature-aware versions of

any of the other algorithms as needed, in a given system scenario. Finally, the practical

applicability of the proposed scheme has been additionally exhibited using a real-world case
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study with an adaptive cruise controller from the automotive system’s domain.

DAG application models are considerably general and appear in a variety of safety-

critical cyber-physical systems like spacecraft, industry 4.0-enabled factories, healthcare,

etc. We purview that our proposed design strategies and the developed design framework

will go a long way towards solving important problems related to the efficient design and

optimization of RT-CPSs in various domains and also provide future research directions to

academia, researchers and scientists.

8.2 Scope for Future Research

The works presented in this thesis leave several open directions, and there is ample scope

for future research in this area. In this section, we present a few such future perspectives.

• Deployment of PRESTO on real communication frameworks

The work named PRESTO proposed in Chapter 3, is a generic penalty-aware real-

time scheduling strategy targeted to a distributed platform consisting of a set of fully

connected heterogeneous processors. Although the ‘fully connected processors model ’

is widely being used in many practical scenarios such as ZigBee-based wireless sensor

networks, WiFi networks, etc., there exists a large class of cyber-physical control sys-

tems in diverse domains such as avionics, manufacturing systems, automotive, etc.,

where the set of processing elements are inter-connected through broadcast shared

buses. In these systems, there exists contention for the shared buses, in addition to

the contention for processors. Although, PRESTO can not be directly applied on

these platforms, we purview that the strategy can be extended by enabling concurrent

processor bus co-allocations in a real-time setting. In this regard, we first want to

conduct research related to the extension of PRESTO for CAN-based distributed pro-

cessing platforms. Further, we also plan to design a processor-bus co-scheduling strat-

egy for applications with futuristic communication frameworks such as Time Sensitive

Networking (TSN; IEEE 802.1Qbv; [19, 63, 86]). TSN is a switched Ethernet-based

protocol that can support precise real-time communication. TSN is envisioned to be

widely used in several application domains ranging from automotive to industrial au-

tomation systems. TSN allows each message to be split into multiple Ethernet frames

with each frame being possibly transmitted through distinct paths. Each such path
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may pass through multiple intermediate switches. As an example (refer Figure 8.1),

messages from processor p1 can either be passed through switch SW1 or switch SW2

to reach processor p3. For effective real-time data transmission, the necessary output

ports of each such switch must be appropriately scheduled so that all frames of all

messages reach their destinations before the end of their respective periods. Thus

here, although the processor schedule can still be similar to PRESTO, the corre-

sponding message communication schedule may be considerably more involved. The

task-message co-scheduling strategy must concurrently address processor and bus al-

location as a single step to achieve potentially disruptive performance gains compared

to more ad hoc strategies which are currently being employed.

SW1

SW2

p1 p2

B1

B2

B3

B4

B5

B6

p4p3

(a) Detail View

SW1 SW2

p1 p2

p3 p4

B1

B2

B3

B4

B5

B6

(b) Abstract View

Figure 8.1: Example of a switched network; Here, p1, p2, p3, p4 are processors, B1, B2, B3, B4 are
buses and SW1, SW2 are switches.

• Scheduling dynamic applications in the presence of persistent applications

Chapter 5 addresses the problem of co-scheduling a set of independent periodic DAG

applications executing on heterogeneous platforms. As the solution approach, we

have devised a heuristic static real-time scheduling strategy whose objective is to

minimize dissipated energy. However, CPSs like automotive systems may consist of

both periodic and aperiodic applications and these applications are represented as real-

time independent DAGs. Periodic applications are triggered at the start of the system

and continue running periodically till the system stops. Hence, these applications

have a persistent nature. Examples of periodic applications include anti-lock braking

systems, fuel injection, chassis control, traction control, etc., in an automotive system.
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On the other hand, aperiodic applications are triggered by the occupant of an event

dynamically at run time, and terminate after, the execution of one or more instances.

Hence, these applications can be considered to be non-persistent. Examples of such

aperiodic automotive applications include central locking systems, break lights, power

windows, etc. These applications may have multiple Quality of service (QoS) levels and

may be executed on homogeneous or heterogeneous platforms which are centralized or

distributed. Here, we plan to address the following problem: Given a set of persistent

and dynamic DAG applications (which may arrive at any time when the system is

under operation) executing on heterogeneous platforms, the objective is to generate

a real-time schedule that allows guaranteed execution of all persistent DAGs while

maximizing the number and performance (QoS) of dynamic applications that can be

incorporated.

• Design of hybrid offline-online scheduling strategies for enhancing resource

usage efficiency

The static resource allocation strategies developed as part of this thesis are based

on worst-case resource usage estimates of applications. Although these strategies are

more predictable as well as provide better performance and timelines for the safety-

critical hard real-time cyber-physical systems, they are prone to significant perfor-

mance degradation when actual resource usage of the applications is significantly less

than their worst-case estimates. Research in the last few years has revealed that the

mapping and scheduling mechanisms in these scenarios may need to be both static

and dynamic. The static part first provides cost-optimal constraint-driven scheduling,

allocation and assignment of various functional components of all the available re-

sources; this step should not be intended to generate a single solution but to generate

an execution plan consisting of a set of optional solutions which the dynamic part can

use to take decisions according to different run-time conditions. The dynamic part

should be fast and must efficiently do a combined architecture load and power-aware

run-time scheduling according to the execution plan provided by the static part, such

that real-time constraints are met. However, the determination of the exact offline-

online strategies to be employed for specific system scenarios at hand is non-trivial

and demands considerable research.
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communication in ieee 802.1 qbv time sensitive networks. In Proceedings of the 24th

International Conference on Real-Time Networks and Systems, pages 183–192, 2016.

[Pg.195]

[20] M. I. Daoud and N. Kharma. A high performance algorithm for static task scheduling

in heterogeneous distributed computing systems. Journal of Parallel and Distributed

Computing, 68(4):399–409, 2008. [Pg.5], [Pg.28], [Pg.29]

[21] A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and A. Sangiovanni-

Vincentelli. Period optimization for hard real-time distributed automotive systems. In

Proceedings of the 44th annual Design Automation Conference, pages 278–283, 2007.

[Pg.118]

[22] R. I. Davis and A. Burns. A survey of hard real-time scheduling for multiprocessor

systems. ACM Computing Surveys (CSUR), 43(4):35, 2011. [Pg.19]

[23] J. Deepakumara, H. M. Heys, and R. Venkatesan. Performance comparison of message

authentication code (mac) algorithms for internet protocol security (ipsec). In Proc.

Newfoundland Electrical and Computer Engineering Conf, 2003. [Pg.133]

[24] H. Djigal, J. Feng, and J. Lu. Task scheduling for heterogeneous computing using a

predict cost matrix. In Proceedings of the 48th International Conference on Parallel

Processing: Workshops, pages 1–10, NY, USA, 2019. ACM. [Pg.5], [Pg.29], [Pg.36],

[Pg.50], [Pg.54], [Pg.87], [Pg.89], [Pg.162], [Pg.184]

[25] H. Djigal, J. Feng, and J. Lu. Performance evaluation of security-aware list scheduling

algorithms in iaas cloud. In 2020 20th IEEE/ACM Intl. Symposium on Cluster, Cloud

and Internet Computing (CCGRID), pages 330–339. IEEE, 2020. [Pg.2], [Pg.29]

[26] H. El-Rewini and T. G. Lewis. Scheduling parallel program tasks onto arbitrary target

machines. Journal of Parallel and Distributed Computing, 9(2):138–153, 1990. [Pg.2]

[27] C. Fidge. Real-time scheduling theory. 2002. [Pg.26]

203



BIBLIOGRAPHY

[28] M. R. Garey and D. S. Johnson. Computers and intractability, volume 174. freeman

San Francisco, 1979. [Pg.27]

[29] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya. ifogsim: A toolkit for

modeling and simulation of resource management techniques in the internet of things,

edge and fog computing environments. Software: Practice and Experience, 47(9):1275–

1296, 2017. [Pg.65], [Pg.67]

[30] B. Hamidzadeh, L. Y. Kit, and D. J. Lilja. Dynamic task scheduling using online

optimization. IEEE Transactions on Parallel and Distributed Systems, 11(11):1151–

1163, 2000. [Pg.28]

[31] M. H. Hilman, M. A. Rodriguez, and R. Buyya. Multiple workflows scheduling in

multi-tenant distributed systems: A taxonomy and future directions. ACM Computing

Surveys (CSUR), 53(1):1–39, 2020. [Pg.7], [Pg.31]

[32] C.-C. Hsu, K.-C. Huang, and F.-J. Wang. Online scheduling of workflow applications

in grid environments. Future Generation Computer Systems, 27(6):860–870, 2011.

[Pg.7], [Pg.31]

[33] M. Hu, J. Luo, Y. Wang, and B. Veeravalli. Scheduling periodic task graphs for

safety-critical time-triggered avionic systems. IEEE Transactions on Aerospace and

Electronic Systems, 51(3):2294–2304, 2015. [Pg.4], [Pg.7], [Pg.31]

[34] H. Huang, V. Chaturvedi, G. Quan, J. Fan, and M. Qiu. Throughput maximiza-

tion for periodic real-time systems under the maximal temperature constraint. ACM

Transactions on Embedded Computing Systems (TECS), 13(2s):1–22, 2014. [Pg.33],

[Pg.164]

[35] Q. Huang, S. Su, J. Li, P. Xu, K. Shuang, and X. Huang. Enhanced energy-efficient

scheduling for parallel applications in cloud. In CCGRID 2012, pages 781–786. IEEE,

2012. [Pg.6], [Pg.30], [Pg.31]

[36] E. Ilavarasan and P. Thambidurai. Low complexity performance effective task schedul-

ing algorithm for heterogeneous computing environments. Journal of Computer sci-

ences, 3(2):94–103, 2007. [Pg.5], [Pg.28], [Pg.29]

204



BIBLIOGRAPHY

[37] E. Ilavarasan, P. Thambidurai, and R. Mahilmannan. High performance task schedul-

ing algorithm for heterogeneous computing system. In International conference on

algorithms and architectures for parallel processing, pages 193–203. Springer, 2005.

[Pg.5], [Pg.29]

[38] M. A. Iverson, F. Ozguner, and G. Follen. Parallelizing existing applications in a

distributed heterogeneous environment. In 4th Heterogeneous Computing Workshop

(HCW’95), pages 93–100, 1995. [Pg.5], [Pg.27], [Pg.28]

[39] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi. Char-

acterizing and profiling scientific workflows. Future Generation Computer Systems,

29(3):682–692, 2013. [Pg.51], [Pg.87], [Pg.102], [Pg.118], [Pg.152], [Pg.155]

[40] N. Kandasamy, J. P. Hayes, and B. T. Murray. Transparent recovery from intermit-

tent faults in time-triggered distributed systems. IEEE Transactions on Computers,

52(2):113–125, 2003. [Pg.2]

[41] N. Kandasamy, J. P. Hayes, and B. T. Murray. Dependable communication synthesis

for distributed embedded systems. Reliability Engineering & System Safety, 89(1):81–

92, 2005. [Pg.66], [Pg.97], [Pg.129], [Pg.159], [Pg.187]

[42] H. Kanemitsu, M. Hanada, and H. Nakazato. Prior node selection for scheduling

workflows in a heterogeneous system. Journal of Parallel and Distributed Computing,

109:155–177, 2017. [Pg.29]

[43] S. Kanev, K. Hazelwood, G.-Y. Wei, and D. Brooks. Tradeoffs between power man-

agement and tail latency in warehouse-scale applications. In 2014 IEEE Interna-

tional Symposium on Workload Characterization (IISWC), pages 31–40. IEEE, 2014.

[Pg.174]

[44] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task

graphs to multiprocessors. ACM Computing Surveys (CSUR), 31(4):406–471, 1999.

[Pg.5]

[45] J. Lee, B. Yun, and K. G. Shin. Reducing peak power consumption inmulti-core

systems without violatingreal-time constraints. IEEE Transactions on Parallel and

Distributed Systems, 25(4):1024–1033, 2013. [Pg.26]

205



BIBLIOGRAPHY

[46] Y. C. Lee and A. Y. Zomaya. Energy conscious scheduling for distributed computing

systems under different operating conditions. IEEE TPDS, 22(8):1374–1381, 2010.

[Pg.174]

[47] K. Li. Scheduling precedence constrained tasks with reduced processor energy on

multiprocessor computers. IEEE Transactions on Computers, 61(12):1668–1681, 2012.

[Pg.5], [Pg.6], [Pg.30]

[48] K. Li. Energy and time constrained task scheduling on multiprocessor computers

with discrete speed levels. J. of Parallel and Distrib. comput., 95:15–28, 2016. [Pg.5],

[Pg.6], [Pg.30]

[49] M. Li, B. J. Liu, and F. F. Yao. Min-energy voltage allocation for tree-structured

tasks. Journal of Combinatorial Optimization, 11(3):305–319, 2006. [Pg.30]

[50] Z. Li, J. Ge, H. Hu, W. Song, H. Hu, and B. Luo. Cost and energy aware scheduling

algorithm for scientific workflows with deadline constraint in clouds. IEEE TSC,

11(4):713–726, 2015. [Pg.29], [Pg.30]

[51] J. Liu, K. Li, D. Zhu, J. Han, and K. Li. Minimizing cost of scheduling tasks on het-

erogeneous multicore embedded systems. ACM Transactions on Embedded Computing

Systems (TECS), 16(2):1–25, 2016. [Pg.1]

[52] S. Maity, A. Ghose, S. Dey, and S. Biswas. Thermal-aware adaptive platform manage-

ment for heterogeneous embedded systems. ACM Transactions on Embedded Com-

puting Systems (TECS), 20(5s):1–28, 2021. [Pg.8], [Pg.26], [Pg.34], [Pg.161]

[53] G. M. Mancuso, E. Bini, and G. Pannocchia. Optimal priority assignment to control

tasks. ACM Transactions on Embedded Computing Systems (TECS), 13(5s):1–17,

2014. [Pg.71]

[54] A. K. Maurya and A. K. Tripathi. On benchmarking task scheduling algorithms for

heterogeneous computing systems. The Journal of Supercomputing, 74(7):3039–3070,

2018. [Pg.29]

[55] S. Moulik, R. Chaudhary, and Z. Das. Hears: A heterogeneous energy-aware real-time

scheduler. Microprocessors and Microsystems, 72:102939, 2020. [Pg.164]

206



BIBLIOGRAPHY

[56] S. Moulik, R. Devaraj, and A. Sarkar. Healers: a heterogeneous energy-aware low-

overhead real-time scheduler. IET Computers & Digital Techniques, 13(6):470–480,

2019. [Pg.105]

[57] S. Moulik, A. Sarkar, and H. K. Kapoor. Tarts: A temperature-aware real-time

deadline-partitioned fair scheduler. Journal of Systems Architecture, 112:101847, 2021.

[Pg.xxvi], [Pg.8], [Pg.28], [Pg.34], [Pg.164], [Pg.175], [Pg.177], [Pg.183]

[58] W. Munawar, H. Khdr, S. Pagani, M. Shafique, J.-J. Chen, and J. Henkel. Peak

power management for scheduling real-time tasks on heterogeneous many-core sys-

tems. In 2014 20th IEEE international conference on parallel and distributed systems

(ICPADS), pages 200–209. IEEE, 2014. [Pg.26]

[59] A. Nadeem and M. Javed. A performance comparison of data encryption algorithms.

In 2005 International Conference on Information and Communication Technologies,

pages 84–89, 2005. [Pg.138]

[60] E. Nahum, S. O’Malley, H. Orman, and R. Schroeppel. Towards high performance

cryptographic software. In Third IEEE Workshop on the Architecture and Implemen-

tation of High Performance Communication Subsystems, pages 69–72, 1995. [Pg.138]

[61] G. Nelissen. Efficient optimal multiprocessor scheduling algorithms for real-time sys-
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