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People are often unreasonable, illogical, and self-centered.
Forgive them anyway.

If you are kind,
people may accuse you of selfish ulterior motives.

Be kind anyway.

If you are successful,
you will win some false friends and some true enemies.

Succeed anyway.

If you are honest and frank,
people may cheat you.

Be honest and frank anyway.

What you spend years building,
someone could destroy overnight.

Build anyway.

If you find serenity and happiness,
they may be jealous.
Be happy anyway.

The good you do today,
people will often forget tomorrow.

Do good anyway.

Give the world the best you have,
and it may never be enough.

Give the best you’ve got anyway.

You see, in the final analysis it is between you and God;
It was never between you and them anyway.

- Mother Teresa
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Abstract

The constant proliferation of Internet of Things (IoT) technology is evidenced by its
significant integration into various sectors like the automotive industry, manufacturing,
agriculture/agrotech, healthcare, transportation, and smart homes. Despite its usefulness
in streamlining and automating processes, IoT technology also exposes numerous security
vulnerabilities. To deal with these threats, the literature has proposed intrusion detection
systems (IDSs). However, implementing these IDS solutions in IoT ecosystems is not
ideal due to the distinct limitations of IoT devices, such as their restricted processing
power, memory, and energy resources. Consequently, conventional IDS solutions cause high
energy consumption, latency, and network congestion, reducing their effectiveness in IoT
environments. The contributions of the thesis revolve around designing IDS solutions that
are adaptive, scalable, and lightweight.

In this thesis, we first present the details (IoT network, architecture, applications,
operating system, IoT simulators, IoT real testbed, IoT attack, IoT datasets, machine
learning, and deep learning methods) of an IoT domain and highlight the significant
challenges. The first contribution is an edge-based machine learning (ML) method that
makes it easier for IDS to find distributed denial-of-service (DDoS) attacks in IoT networks,
such as BashLite and Mirai botnets. The first contribution involves the combination of
edge computing techniques with a naïve Bayes (NB) classifier to detect DDoS attacks along
with botnet attacks. The proposed IDS model is evaluated using metrics such as accuracy,
precision, recall, and F-measure. It demonstrates scalability and achieves comparable
memory utilisation in terms of ROM/RAM, energy usage, and response time.

The second contribution of the thesis presents a distributed, lightweight, and energy-
efficient Packet Inspection Agent (PIA) designed for the IoT ecosystem. By leveraging
the Total Variation Metric (TVM) and Packet Flow Count (PFC), the PIA effectively
detects and mitigates low-rate DDoS (LRDDoS) attacks within IoT networks. Moreover,
the proposed PIA employs lightweight technology to minimize both the false negative rate
(FNR) and false positive rate (FPR), while significantly reducing the time required for
LRDDoS attack detection in IoT networks.

In the third contribution of this thesis, we present an IDS specifically designed for
detecting mixed-rate DDoS (MRDDoS) attacks in IoT networks. This contribution focuses
on a lightweight and transparent IDS with an optimal placement strategy. The placement
problem is formulated as a weighted minimum vertex cover problem of a K -uniform
hypergraph and solved using an approximation algorithm. The IDS module is based on a
Long Short-Term Memory (LSTM) model, where a novel offline training method for LSTM
is proposed using WGAN-generated artificial flows. Extensive experiments conducted on



the Contiki and FIT IoT-LAB testbeds provided a comprehensive performance analysis
of the proposed schemes. The results demonstrate that our method outperforms the
current state-of-the-art approaches by effectively detecting attacks while minimising energy
consumption.

Finally, in this thesis, we introduce roaming IDSs that are capable of detecting and
mitigating multiple mixed attacks in IoT networks. These attacks include DDoS, rank, and
sinkhole attacks. In our approach, a lightweight shadow honeypot is deployed and easily
moved to a different node or device within the IoT network, where it is placed in a strategic
location that is most likely to be targeted by potential attackers. Markov chain analysis
(MCA) is employed to determine the most probable node or device to be attacked based
on the current IoT network profile. This analytical model strengthens the validity of the
RENO model and enhances its effectiveness in identifying potential attacks. The potential
benefits of the RENO solution can be observed when its performance is compared to similar
approaches in terms of throughput, energy use, memory use, FPR, FNR, accuracy, and time
to detect an attack. In summary, this thesis provides valuable insights into the creation of
adaptive, scalable, and lightweight security solutions for various attacks on IoT ecosystems.

Keywords: Internet of Things (IoT), Intrusion Detection Systems (IDS), Edge Computing,
Machine Learning (ML), Naive Bayes Classifier, Nested One-Class Support Vector Machine
(NOC-SVM), Distributed Denial-of-Service (DDoS) Attack, Packet Inspection Agent (PIA),
Low-Rate DDoS (LRDDoS) Attacks, Mixed-Rate DDoS (MRDDoS) Attacks, LSTM-based
IDS, Wasserstein Generative Adversarial Network (WGAN), Rank attacks, Sinkhole attacks,
Buffer overflow (BOF) attack, Roaming IDS, Markov Chain Analysis (MCA).
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“The Internet of Things is not just a concept; it is a paradigm

shift that requires a fundamental rethinking of security.”

- Steve Grobman

1
C h a p t e r

Introduction

The Internet of Things (IoT) is a system made up of interconnected physical devices,

vehicles, buildings, and other objects embedded with sensors, software, actuators, and

network connectivity, which enables them to collect and exchange data over the Internet

[6, 7]. IoT devices, such as smart wearable devices, smart home appliances, smart fire

alarms, smart vehicles, smart bicycles, and smart camera systems frequently collect personal

data and provide a range of features to automate and assist our day-to-day lives. Hence,

these devices have grown in popularity in recent years. This is due to advancements

in sensor technology, cost-effective implementation of IoT solutions, improved efficiency

and productivity in industries, new business models, increased connectivity, and greater

awareness and understanding of IoT benefits [8, 9].

The proliferation of IoT devices is not restricted to the domestic environment; it also

enables smart operations in Critical Information Infrastructure (CII)1 sectors, as depicted

in Figure 1.1. These sectors are essential systems and services that underpin a country’s

economy, security, and social wellbeing. These sectors include energy, transportation, water

and sewage, health, emergency and financial services, and digital communication networks

[11]. In the last few years, the market has seen a number of noteworthy IoT projects that

have gained a lot of attention. Figure 1.2 depicts a few examples of notable IoT projects

that have attained significant market penetration. This figure depicts the global distribution

1Critical Information Infrastructure is the country’s most important system, network, and asset. These
include the energy, transportation, water supply, and communications [10]



Figure 1.1: Critical Information Infrastructure

of these IoT projects throughout the Americas, Europe, and Asia/Pacific regions. The

illustration shows that the Americas leads in health care and smart supply chain projects. On

the other hand, Europe has demonstrated greater engagement in moving forward initiatives

related to smart cities [12, 13]. Figure 1.3 shows a visual picture of how the market share

of different IoT projects is spread worldwide [13]. According to the statistics, there is a

noteworthy trend in which IoT projects that are centred around industries, smart cities,

smart energy, and smart vehicles have acquired huge market shares, greatly outperforming

other project categories.

In the near future, sixth-generation (6G) wireless communication technology will make it

easier to use new IoT applications like the Internet of Healthcare Things (IoHT), Vehicular

IoT (VIoT) and autonomous driving, Unmanned Aerial Vehicles (UAV), Satellite IoT

(SIoT), and Industrial IoT (IIoT) [14, 15, 16]. However, IoT ecosystems 2 are vulnerable

to cyberattacks due to their reliance on Information Communication Technology (ICT),

growing interconnectivity, and IoT devices. The majority of IoT devices in use today were

made without much or any thought to cyber security [17]. Meanwhile, security breaches

in IoT pose severe consequences, including network congestion, system disruptions, data

corruption, application downtime, financial loss, system blackouts, and even loss of life in

2IoT ecosystems refer to interconnected networks of devices, sensors, and software that collaborate and
communicate seamlessly to collect, exchange, and analyze data for various applications and services.
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1. Introduction

Figure 1.2: IoT Project Landscape: America, Europe, and Asia/Pacific Distribution

critical use cases [18, 19, 20]. Figure 1.4 illustrates that there are more than 112 million

cyberattacks on IoT systems by 2022 [21]. This represents a significant increase compared

to the approximately 32 million incidents recorded in 2018. IoT malware incidents increased

by 87 percent year over year in the most recent year on record. In order to reduce attacks

on the IoT ecosystem, IoT-enabled security solutions are needed.

Figure 1.3: Worldwide Distribution of IoT Projects: Global Share

The main factors that make IoT ecosystems susceptible to cyber attacks are their

inherent characteristics like limited computational power and their heterogeneity. Specifically,

IoT devices with restricted computational power, memory, radio bandwidth, and battery

3
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Figure 1.4: Rising Tide of IoT Cyber Attacks: Annual Statistics 2016-2022

resources cannot feasibly perform computationally demanding and latency-sensitive security

tasks that produce heavy computation and communication loads. As a result, it is not

possible to implement complex and robust security measures. Furthermore, the heterogeneity

of IoT devices in terms of hardware, software, and protocols poses a significant challenge in

developing and deploying security mechanisms that can cope with the scale and variety of

devices. Therefore, it is clear that there is a significant gap between the security requirements

and the security capabilities of currently available IoT ecosystems 3.

1.1 Motivation for the Research Work

The IoT is seen as the next significant technological revolution, reshaping our interaction with

the physical world [22, 23]. However, these technologies are also associated with significant

security flaws [24, 25, 26, 27]. Many reputable companies and research organizations have

shown that the IoT ecosystem can have various security issues. These include Denial of

Service (DoS) attacks, Man-in-the-Middle (MITM) attacks, Rank attacks, Sinkhole attacks,

Wormhole attacks, Buffer Reservation attacks, Fragment Duplication, node capture, and

IP Address Spoofing. Recently, IoT devices have been used in botnets, such as Mirai, to

launch some of the biggest Distributed Denial of Service (DDoS) and spam attacks.

3In this thesis, the terms IoT network and IoT ecosystem are used interchangeably.
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1. Introduction

This thesis is motivated by the critical need to enhance security for IoT ecosystems,

which are often seen as vulnerable targets for cyberattacks. The primary goal is to provide

security measures to protect, detect, and mitigate cyber threats impacting IoT ecosystems.

As part of enhancing IoT ecosystem security, many studies have focused on specific

security goals like confidentiality, integrity, availability, authentication, authorization, non-

repudiation, privacy, resilience, auditing, and accountability [28, 29, 30]. However, applying

these security measures uniformly across different IoT devices is challenging due to their

diverse nature. Intrusion Detection Systems (IDS) design is a popular method for detecting

various attacks in IoT ecosystems [31, 32, 33], and many studies have suggested using these

IDS to address various attacks [34, 35]. However, the primary emphasis of these studies is on

attack detection, with less attention paid to managing vast amounts of data from intelligent

devices, where to execute IDS solutions, improving computational capacity, energy usage,

scalability, and overall security.

1.2 Research Questions

This thesis critically examines the existing security approach employed in the IoT ecosystem

and identifies several key issues. Our research is primarily based on the following questions.

RQ1: What are the state-of-the-art (SoTA) IDS security solutions proposed

for detecting DDoS attacks, Rank attacks, Buffer Reservation attacks, sinkhole

attacks, buffer overflow attacks, and botnet attacks in IoT networks? What are

the current research gaps in the existing SoTA security solutions?

SoTA IDS security solutions are intended to detect and mitigate various threats within

the IoT ecosystem. To address these security issues, researchers have developed novel

strategies. For DDoS attacks, machine learning-based methods utilising network traffic

analysis, anomaly detection algorithms, and behaviour modelling have shown promising

results. Rank attacks, which involve manipulating network metrics, can be detected using

statistical analysis and anomaly detection techniques. Buffer reservation attacks can be

prevented by improving buffer management algorithms and monitoring buffer use in real time.

Anomaly detection and traffic analysis can discover sinkhole attack redirection patterns.

Secure coding and runtime monitoring of programme execution can prevent buffer overflow
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attacks. Machine learning techniques, network traffic monitoring, and behaviour modelling

identify infected devices and coordinated harmful behaviours in botnet attacks.

However, there are still research gaps that need attention. A potential obstacle is the

resource-constrained nature of IoT devices, which requires the development of lightweight

IDS solutions that consume minimal power and computational resources. Another barrier to

the implementation of unified IDS systems is the lack of standardisation and interoperability

among various IoT devices and platforms. In addition, the varied and dynamic nature of IoT

networks creates obstacles for the accurate and prompt identification of attacks. As threats

get more sophisticated, IDS algorithms and approaches must be constantly researched

and updated. Our research should focus on these gaps, exploring novel approaches to

overcome resource limitations, improving interoperability, enhancing real-time detection

capabilities, and developing adaptive IDS systems capable of addressing emerging threats in

the constantly evolving IoT landscape.

RQ2: What type of security solution can be implemented into an IoT ecosystem

that can be implemented on resource-constrained and heterogeneous IoT devices?

In an IoT ecosystem characterised by heterogeneous and resource-constrained devices,

the implementation of security solutions requires careful consideration. One way to do this

is to use lightweight security solutions made for IoT devices with limited resources. Effective

encryption and authentication may be achieved with lightweight cryptography methods

while using a small amount of processing power and storage space. Secure communication

protocols, such as Transport Layer Security (TLS) or Datagram Transport Security (DTLS),

provide encrypted and authenticated data transfer while taking into consideration the

resource constraints of IoT devices. Access control methods like role-based access control

(RBAC) and lightweight identity protocols make it possible to control device access and

authentication without adding too much work. In addition, behaviour-based anomaly

detection algorithms can detect deviations from normal device behaviour, enabling the

identification of potential security vulnerabilities without relying solely on resource-intensive

signature-based methods. Furthermore, over-the-air (OTA) update systems and patch

management solutions may guarantee that IoT ecosystem receive frequent updates and

security fixes without putting too much load on their resources. By combining these security

measures, the IoT ecosystem can balance resource limitations and security. This approach
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allows for effective defence against various threats while considering the heterogeneous

nature of IoT devices.

RQ3: How can we design an IDS that is effective at detecting attacks, while

also considering the management of large amounts of data from smart devices,

enhancing computational power, scalability, and overall security?

Designing an effective IDS for IoT systems requires careful consideration of data

management, computing power, scalability, and security. Data management strategies

are required to manage large amounts of data. These approaches must include systems

for optimal storage, processing, and retrieval. Utilising lightweight algorithms, parallel

processing, distributed computing, and hardware acceleration can maximise computational

capacity. Scalability is improved through scalable architectures such as microservices and

containerization, use of cloud resources, and elastic scaling. Artificial intelligence (AI)

and machine learning (ML) techniques improve attack detection efficiency by training IDS

models on large data sets and using anomaly detection, deep learning, and ensemble methods.

Advanced network traffic analysis methods, such as packet inspection and flow-based analysis,

enable detection of suspicious activity and attack patterns. Real-time monitoring and threat

intelligence feeds enhance detection. Security aspects include encryption, access control,

secure communication protocols, and privacy techniques. IDS Designs that address these

aspects can successfully detect threats, manage massive amounts of data, and improve

compute performance, scalability, and overall security in IoT ecosystems to protect smart

devices and overall infrastructure.

RQ4: How to choose a suitable device of IoT ecosystem for IDS execution?

Considerations for selecting an appropriate device for IDS execution in an IoT en-

vironment include its processing capabilities, power requirements, network connectivity,

scalability, security features, compatibility, cost-effectiveness, longevity, and manufacturer

support. Evaluating the device’s computational capabilities ensures that it can effectively

manage IDS algorithms and data analytics. Energy efficiency is critical, especially for

battery-powered devices, to ensure long operation without frequent recharging. Network

connectivity options should be aligned with the IoT ecosystem and allow seamless integration
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and communication with other devices. Scalability is very important to accommodate the

growing size of the network. Secure boot techniques and hardware security modules improve

device security. Modular architecture and compatibility with IDS software enable easy

integration into the IDS infrastructure. Cost effectiveness balances device capabilities with

the cost of efficient resource allocation. Longevity and vendor support ensure ongoing

updates and protection against new threats. Consideration of these factors enables the

selection of an appropriate device that has the necessary characteristics for efficient IDS

execution, contributing to the overall security of the IoT ecosystem.

RQ5: How do distributed, edge-enabled, and roaming IDS contribute to improving

overall security in the IoT ecosystem?

Distributed IDS, edge-enabled IDS, and roaming IDS are all important components

for enhancing IoT ecosystem security. Distributed IDS distributes IDS functionality across

multiple nodes, which can improve scalability, reduce single points of failure, and enhance

performance. This distribution of IDS capabilities ensures efficient detection and response

to security threats, effectively accommodating the increasing number of devices present in

IoT environments.

Edge-enabled IDS brings intrusion detection capabilities closer to the edge devices or

gateways in the IoT network. By performing IDS tasks at the edge, closer to where data

is generated, edge-enabled IDS reduces reliance on centralised processing, minimises data

transmission to a central server, and enhances real-time threat detection and response. This

approach is particularly useful in resource-constrained IoT environments, where limited

resources or intermittent connectivity may pose challenges for centralised IDS deployment.

Roaming IDS addresses the dynamic nature of IoT devices moving across different

networks or locations. In the IoT ecosystem, devices frequently change their network

connections, making it difficult for traditional IDS systems to effectively track their activities.

Roaming IDS adapts to these changes, ensuring continuous monitoring and detection of

device behaviour as they move across networks. By allowing IDS capabilities to roam with

the devices, it provides consistent security coverage and maintains threat detection regardless

of the devices’ location or network connectivity. Overall, distributed IDS, edge-enabled IDS,

and roaming IDS all contribute to enhancing security in the IoT ecosystem. They provide
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scalability, real-time threat detection, and continuous monitoring capabilities, enabling

effective intrusion detection and response while considering the distributed and dynamic

nature of IoT devices.

RQ6: Can machine learning-based IDS approaches support the automatic

detection of a range of cyber attacks based on network packet features collected

from a range of IoT devices?

Machine learning (ML) based IDS systems can automatically detect various cyberattacks

by analyzing network packet features collected from a diverse range of IoT devices. These

systems use ML algorithms to detect patterns and anomalies in the data that can be used

to identify different types of attacks. By training on labeled datasets that include both

normal and malicious network traffic, the algorithms can learn the characteristics of different

attacks and make accurate predictions in real time.

ML-based IDS approaches offer several advantages in the context of IoT environments.

They can adapt to evolving attack techniques and detect previously unknown attacks. This

flexibility allows them to detect sophisticated and emerging threats that are difficult to

detect using traditional rule-based or signature-based detection methods. In addition, these

approaches can handle the large-scale and dynamic nature of IoT device networks. Regular

updates and continuous training are crucial to ensure the effectiveness of ML based IDS

systems in detecting evolving attack vectors and protecting IoT ecosystems.

RQ7: Can AML techniques be used to evaluate the robustness of a ML based

IDS for the IoT?

Adversarial Machine Learning (AML) can help strengthen ML-based IDS in the IoT

ecosystem. In AML, adversarial attacks are studied, and defensive measures are designed to

determine how vulnerable ML models are to such attacks. ML-based IDS can be tested for

adversarial attempts to evade detection or manipulate its behaviour using AML techniques.

Security researchers can use AML assessments to understand the vulnerabilities of the

ML-based IDS system and develop mitigation measures. By testing and refining the ML

models against adversarial attacks, the IDS can detect a wide range of cyber threats in

the IoT ecosystem. With this methodology, ML-based IDS systems remain effective and

trustworthy against new attack methods and protect IoT networks and devices.
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RQ8: Can adversarial training enhance the robustness of a ML based IDS for

the IoT?

Adversarial training is a method that can be used to make an ML-based IDS more

reliable for the IoT. Adversarial instances during training make the ML model more robust

against real-world attacks.

An adversarial example is a carefully crafted input designed to trick the ML model into

making a mistake. Small, undetectable alterations to benign inputs produce adversarial

instances. The ML model learns to detect and respond to these small manipulations by

being exposed to adversarial samples during training. This improves the generalization of

the IDS model and its resistance to adversarial manipulations.

1.3 Thesis Contributions

In this section, we present a brief overview of the contributions of the thesis.

1.3.1 DDoS attacks including Botnet attacks detection and mitigation in

IoT ecosystem (Contribution 1)

As a response to RQ1, RQ2, RQ3, RQ4, and RQ5, this contribution proposes an adaptive and

energy-efficient solution for detecting DDoS attacks in IoT networks. The main objectives

of Contribution 1 are:

• The proposed security solution is to protect against DDoS attacks, including BashLite

and Mirai botnets. These attacks are some of the most common and well-known

threats to IoT ecosystems.

• Our research involves exploring a technique to identify and choose optimal features

from network traffic data.

• The suggested strategy leverages ML techniques to achieve the best performance

in identifying attacks. This strategy improves the accuracy of attack detection.

Appropriate hyperparameters are selected for training effective models like the Naive

Bayes Classifier and the Nested One-Class Support Vector Machine (NOC-SVM) to

identify botnet attacks.
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• The proposed work is being evaluated using CICIDS2017, Kitsuni, BoT-IoT, IScX,

KDD99 cup, N-BaIoT, and an in-house generated dataset.

1.3.2 Low rate DDoS (LRDDoS) attack detection and mitigation in IoT

ecosystem (Contribution 2)

To address RQ1, RQ2, RQ3, and RQ4, this contribution includes an investigation of low-rate

DDoS (LRDDoS) attack detection and mitigation in IoT ecosystems. The main objectives

of Contribution 2 are:

• The proposed method introduces a distributed, lightweight, and energy-efficient Packet

Inspection Agent (PIA). Multiple PIAs cooperate with each other in a distributed

environment. They analyze network packets based on Total Variation Metric (TVM)

and Packet Flow Count (PFC) within the IoT network.

• The method generates simulated attack and non-attack traffic using the Contiki Cooja

simulator. It detects LRDDoS attacks by analysing network traffic from real and

compromised nodes. The technique can also be adapted to internal and external

network traffic in the IoT ecosystem to detect and mitigate LRDDoS attacks in the

future.

• The method, proposed and implemented by the PIA, is capable of monitoring the

traffic characteristics within the IoT ecosystem. Through detailed analysis, it precisely

detects and mitigates LRDDoS attacks while minimizing the False Negative Rate

(FNR) and False Positive Rate (FPR).

1.3.3 Mixed Rate DDoS attacks (HrDDoS and LrDDoS) detection in

IoT ecosystem (Contribution 3)

To address the research questions RQ1, RQ2, RQ3, RQ4, RQ5, RQ6, RQ7 and RQ8,

this chapter introduces two contributions. The first contribution focuses on detecting

mixed-rate DDoS (MRDDoS) attacks using an edge-enabled Power Spectral Density (PSD)

approach. The second contribution involves detecting and mitigating MRDDoS attacks

using a lightweight and transparent IDS with an optimum placement strategy (OPTIMIST).
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It also incorporates Wasserstein Generative Adversarial Network (WGAN) techniques to

enhance the robustness of the IDS. The main objectives of Contribution 3 are as follows:

• Unlike existing works which focus either on high-rate or low-rate DDoS, this work

provides a solution for MrDDoS attack detection, which can detect and mitigate both

high and low-rate DDoS attacks.

• The first contribution of this chapter incorporates distributed, lightweight, and energy-

efficient edge devices. It also uses Power Spectral Density (PSD) to detect MRDDoS

attacks.

• The second contribution of this chapter proposes a novel training method to build the

IDS solution. WGAN is used to generate artificial flows from public data sets as well

as in-house-generated data sets to reduce the distribution bias of the data sets. The

WGAN-generated flows are mixed with the public and in-house generated training

data sets and used for LSTM model training.

• A novel hybrid IDS placement algorithm is proposed, which runs transparently without

incurring any network overhead. The IDS node selection is optimized, which balances

energy overhead and IDS coverage. The problem is formulated as the weighted

minimum vertex cover problem of a K-uniform hypergraph, and an approximation

solution is provided.

• Extensive experiments on Contiki and FIT IoT-LAB testbed are done for competitive

performance analysis of the proposed scheme. The results show that our proposed

scheme is most effective in detecting the attacks while consuming minimum energy

compared with the existing benchmark protocols.

1.3.4 Multiple Mix attacks detection and mitigation in IoT ecosystem

(Contribution 4)

In this contribution, several research questions, namely RQ1, RQ2, RQ3, RQ4, RQ5, and

RQ8, are addressed by presenting comprehensive strategies to detect and mitigate multiple

mixed attacks. These attacks include DDoS attacks, rank attacks, and sinkhole attacks.

The contribution is further divided into two sub-contributions. The first sub-contribution
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focuses on detecting sinkhole attacks by placing detection modules at the edge devices. In

the second sub-contribution, detecting multiple mixed attacks, incorporating roaming attack

detection modules. The primary objectives of Contribution 4 are as follows:

• In the first sub-contribution, we proposed an edge-assisted hybrid intrusion detection

system (EaHIDS) that uses the Expectation-Maximization approach for the Gaussian

Mixture HMM to detect and mitigate Sinkhole Attacks (SHAs) within the IoT

landscape.

• We employed the SHAP (SHapley Additive exPlanations) methodology for feature

selection. We chose this method because of its excellent feature selection capabilities

coupled with a minimal computational burden.

• To ensure comprehensive result analysis, we utilized a combination of publicly available

dataset and in house generated dataset. The in house generated data was produced

with the assistance of our Distributed Data Collection module.

• In the second sub-contribution, we proposed a roaming IDS that can identify rank

attacks, sinkhole attacks, and DDoS attacks and proposed an IDS named as RENO.

• A roaming IDS installation based on an attack score (AS) and a Markov chain analysis

of IoT networks is demonstrated.

• Extensive experiments are conducted on the Contiki-Cooja and the FIT IoT-LAB

testbeds to evaluate the competitive performance of the proposed RENO security

solution. In comparison to current state-of-the-art techniques, the findings demonstrate

that our suggested security solution is scalable and best at identifying attacks while

consuming the least amount of power and memory
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1.4 Thesis Organisation

The remaining part of the thesis is organised into the following chapters:

• Chapter 2 - Background and Literature Survey: This chapter provides all

the basic details about IoT networks, architecture, applications, operating systems,

simulators, and IoT attacks. It also explains the IoT datasets, background, and related

works necessary to propose the contributions in the following chapters.

• Chapter 3 - DDoS attack detection and mitigation in the IoT ecosystem:

This chapter presents novel edge-enabled ML-based approaches to detect DDoS attacks,

including Botnet attacks in IoT environments. This Chapter presents contribution 1.

• Chapter 4 - Low-rate DDoS (LRDDoS) attack detection and mitigation in

IoT ecosystem: In this chapter, we present a solution for detecting and mitigating

Low-rate DDoS (LRDDoS) attacks within the IoT ecosystem. Our approach introduces

a lightweight distributed packet inspection agent designed to identify LRDDoS attacks

in IoT networks. By implementing this agent, we aim to enhance the security of

IoT systems by effectively detecting and combating LRDDoS attacks. This Chapter

presents contribution 2.

• Chapter 5 - Mixed Rate DDoS attacks (HRDDoS and LRDDoS) detec-

tion and mitigation in the IoT ecosystem: This chapter introduces two sub-

contributions to detect mixed-rate DDoS attacks in the IoT ecosystem. The first

sub-contribution uses edge-based PSD analysis. The second sub-contribution, on

the other hand, combines WGAN with LSTM-based IDS. The first sub-contribution

emphasises an edge-based approach, while the second emphasises distributed IDS

deployment utilising a K-uniform hypergraph for attack detection. These two sub-

contributions substantially identify and mitigate mixed-rate DDoS attacks in the IoT

environment. This Chapter presents contribution 3.

• Chapter 6 - Multiple Mix attacks detection and mitigation in IoT ecosystem:

In this chapter, we describe a complete security strategy for dealing with a variety of

attacks, such as DDoS attacks, buffer reservation attacks, rank attacks, and sinkhole

attacks. Our solution is based on the implementation of a roaming strategy using
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Shadow Honeypots. This strategy aims to strengthen IoT ecosystem security against

a variety of attacks. This Chapter presents contribution 4.

• Chapter 7 - Conclusions and Future Work: In the concluding chapter, significant

conclusions are drawn based on the findings of the thesis work. Additionally, the

chapter explores prospective directions for future research, highlighting areas that

that demand more investigation.

<<=8=;;
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“Connecting everything brings everyone together, including

the hackers. Security is not an option; it is a requirement.”

- Stu Sjouwerman

2
C h a p t e r

Background and Literature Survey

In this thesis, we contribute to several aspects of the IoT ecosystem security. Each chapter

is dedicated to a specific research problem and includes a targeted literature survey relevant

to that problem, rather than providing a broad, overarching survey. This chapter outlines

the background and fundamental concepts of IoT networks utilised throughout the thesis.

First, the IoT reference model and the available operating systems for smart devices are

described. Next, simulators and real test-bed used for IoT research are explained along with

potential attacks. Finally, brief descriptions of some of the existing works are presented.

2.1 Internet of Things (IoT)

The concept of the IoT was first introduced by Kevin Ashton, who proposed the integration

of RFID technology in supply chains with the Internet [6]. As technology has advanced,

the definition of IoT has expanded to encompass a broader range of applications across

various domains, such as smart cities, agriculture, manufacturing, energy management,

transportation, home automation, environmental monitoring, and healthcare [36, 37, 38].

Currently, IoT refers to a framework of interconnected electronic devices equipped with

software, actuators, sensors, and networking capabilities. This configuration enables these

devices to independently gather and transmit data from their environment, eliminating the

need for human intervention [39, 40].

The growth of IoT technology can be attributed to many interconnected factors syner-
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gistically contributing to its widespread adoption across various industries and applications

[41, 42]. The seamless connection between devices and systems is made possible by en-

hanced wireless networks like 5G and Low-Power Wide-Area Networks (LPWANs). The

miniaturisation and cost reduction of hardware components, including sensors, actuators,

microcontrollers, gateways, and user interface devices, make IoT solutions more accessible

and affordable. The availability of cloud computing infrastructure supports large-scale

IoT implementations since it offers processing, analytics, and storage capabilities. Data

analytics and artificial intelligence (AI) advances make it possible for businesses to get useful

information from the data that IoT devices generate. This helps businesses make better

decisions and work more efficiently. Standardization and interoperability, coupled with an

emphasis on security and privacy, further facilitating IoT adoption. Finally, the increasing

consumer demand for smart, connected devices contributes to the rapid expansion of IoT

technologies across various sectors.

2.2 IoT Architecture

IoT architecture refers to the overall structure and design of an IoT system, which includes

its hardware, software, communication protocols, data management and analysis, and

security features. There are different types of IoT architecture, but most of them follow a

similar framework that consists of the following layers, as shown in Figure 2.1.

1. Perception Layer: It is the lowest layer in the IoT architecture. It comprises small

devices such as RFID tags, sensors, and actuators. These devices have limited resources

such as power, processing, storage, and communication interfaces. In order to reduce

power consumption, they use microcontrollers with less RAM and ROM and low-power

radios. The majority of IoT devices use batteries, although they can also be powered

by the mains or by energy-harvesting components. The perception layer devices can

be stationary or mobile, however stationary devices are more common.

2. IoT Access Network Layer: This is the second layer of the IoT architecture, which

include several communication technologies, such as 6LoWPAN, Bluetooth Low Energy,

LoRa, LoRaWAN, WiFi, ZigBee, RF, and Thread. Each technology has different

properties in terms of range, data rate, power consumption, and scalability. Some
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Figure 2.1: Generic IoT architecture

are designed for specific applications like Thread for smart homes. Most of these

technologies require a gateway or border router to connect the IoT network nodes to

the internet.

3. IoT-Internet Connection Layer: It is the third layer in the IoT architecture and

it facilitates the connection between the inner IoT network and the internet using

Ethernet, cellular networks, or satellite communication. Typically, a border router

or gateway is required to establish the connection between the IoT network and the

internet.

4. Processing Layer: This layer is responsible for processing, analyzing, and storing the

data collected from the Perception Layer. Designers can choose between centralized

or distributed storage and processing systems, such as cloud or fog computing envi-

ronments. The processed and analyzed data is used to provide middleware services in

this layer. This layer is critical in IoT design because it pulls useful information from

gathered data, which might be huge in volume, variety, and validity.
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5. Application Layer: This is the fifth layer of the IoT architectural design. The purpose

of this layer is to provide end users with features and services. This layer facilitates

communication and data exchange between IoT devices and user applications. At this

layer, the IoT system can provide various services such as monitoring, control, and

automation of devices, data analytics, and decision-making. The applications can be

web-based, mobile-based, or stand-alone, and they are accessible from a variety of

devices, including smartphones, tablets, and desktops.

6. Business Layer: This is a critical component of the Internet of Things (IoT) architecture

that focuses on the business aspects of IoT deployment. It provides the necessary

infrastructure for managing and monetizing IoT services and applications. The primary

goal of the business layer is to create value for businesses by optimizing the use of IoT

technologies.

2.3 IoT Applications

IoT applications enable various devices, objects, or machines to connect and exchange data

through the Internet, streamlining processes and enhancing functionality. These multiple

sectors shown in Figure 2.2 demonstrate the diverse ways IoT can be utilized across various

industries:

• Smart Homes: IoT simplifies the control and automation of appliances, energy systems,

security, and lighting. Examples of IoT applications in this domain include smart

thermostats, locks, and voice-controlled assistants.

• Healthcare: IoT enables remote patient monitoring, tracks medical equipment, and

aids with senior care. IoT plays a significant role in improving patient care and

streamlining medical operations through wearables, telemedicine, and modern hospital

equipment.

• Agriculture: IoT applications streamline farming by tracking soil conditions, weather

patterns, and animal health. Examples include precision farming, intelligent irrigation,

and livestock management.
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• Manufacturing: IoT is revolutionising manufacturing by automating processes, predict-

ing maintenance needs, and managing supply chains. Smart factories use IoT devices

and sensors to boost efficiency, minimise downtime, and improve product quality.

• Transportation: IoT applications streamline traffic management, fleet monitoring, and

proactive vehicle maintenance. Solutions such as connected vehicles, smart traffic

signals, and real-time public transit updates contribute to this improved transportation

experience.

• Energy Management: IoT helps save energy in homes, offices, and factories. Examples

include smart grids, systems that adjust energy use based on demand, and tools that

monitor energy usage. By using IoT, we can reduce energy waste and lower costs.

• Retail: IoT enhances the retail industry by improving customer experiences, streamlin-

ing inventory management, and increasing supply chain efficiency. Modernising retail

environments and procedures is made possible by technologies like beacons, smart

shelves, and intelligent shopping carts.

• Environmental Monitoring: IoT is essential for monitoring and analysing environmental

aspects including pollution levels, air and water quality, and climate. IoT supports

educated decision-making to save the environment and lessen the consequences of

climate change by supplying real-time data.

• Smart city: IoT is a game-changer for metropolitan areas since it improves infras-

tructure, safety, and transportation. Smart energy-saving lighting, effective waste

management systems, and cutting-edge emergency response strategies are essential

elements. Real-time data and connections provided by the IoT will allow for smarter,

more sustainable, and more habitable cities in the future.

• Wearable: IoT-enabled wearables, such as fitness trackers, smartwatches, and aug-

mented reality glasses, have become integral to modern life. To assist users in making

wise decisions about their well-being, these gadgets measure physical activity, check

health, and offer personalised information. In addition to facilitating communication,

wearables enable users to receive notifications, make payments, and even access digital
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assistants. As new technologies emerge, wearables will improve user experiences and

seamlessly integrate into daily activities.

Figure 2.2: Landscape of IoT Applications Across the Ecosystem

2.4 Operating System in IoT

An operating system (OS) is an important part of an IoT device because it helps the device

run applications and manage resources. The OS helps the device use energy efficiently,

follow instructions, and communicate with other devices. IoT networks usually use devices

that have limited storage, low processing power, and operate on batteries [43, 44, 45]. To
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make sure that programs can run on these devices, special IoT-based operating systems have

been created. There are two types of IoT OS: Linux-based and non-Linux-based. Examples

of non-Linux operating systems include ContikiOS/NG, TinyOS, RIOT, and Openthread,

whereas Linux-based operating systems include LiteOS, Pyrix, and ARM Mbed. This

research mostly examines non-Linux OS since it focuses on devices with little resources.

In 2003, the world was first introduced to ContikiOS, a well-known operating system

that is known for being particularly created for Wireless Sensor Networks (WSNs) [46, 47].

Its modular architecture allows for the dynamic loading and unloading of programmes

while an application is running. ContikiOS is a multi-threaded, event-driven operating

system that was developed using the C programming language. This was made possible by

the Protothread foundation. A notable feature of ContikiOS is its adaptability, providing

dynamic memory allocation, a comprehensive TCP/IP stack via uIP, and compatibility

with a wide range of hardware platforms. In 2017, a derivative of the original ContikiOS,

known as Contiki-NG, emerged with the objective of augmenting low-power communication,

implementing standard protocols such as IPv6/6LoWPAN, CoAP, and RPL, and enhancing

documentation quality. Contiki-NG receives frequent updates and enhancements as a result

of its vibrant community [48]. Contiki-NG uses RPL-Lite, a more condensed version of

the RPL protocol, whereas Contiki-OS uses ContikiRPL, an implementation of the RPL

protocol. RPL-Lite outperforms ContikiRPL in terms of performance and dramatically

decreases ROM footprint by prioritising non-storing mode over storing mode and simplifies

the administration of many instances. Consequently, Contiki-NG presents a compelling

alternative for researchers and developers in the realm of WSNs [49].

TinyOS is another popular operating system for devices with limited resources. It is

different from other systems by its monolithic architecture and fixed memory allocation

[50, 51]. Notably, this architecture situates all processes within the kernel space, rendering

the entire operating system susceptible to failure in the event of an application bug. Memory,

on the other hand, is statically allocated, further distinguishing TinyOS from alternative

OS designs. The NesC programming language is used by applications running on TinyOS,

and they follow an event-driven execution architecture. These components consist of

three fundamental elements, namely Commands, Events, and Tasks, all implemented in

C. Commands serve as requests for component execution, while Events function as signals
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indicating the completion of a Command. Unlike Commands and Events, Tasks are not

executed instantaneously. Instead, newly generated Tasks join a queue, awaiting execution

by the scheduler once the current program concludes.

RIOT is a versatile, real-time, open-source operating system tailored for embedded smart

devices [52]. It has a microkernel architecture and multi-threading reduce context switches,

kernel size, and memory requirements for hardware devices. With its developer-friendly API

and support for multiple programming languages, RIOT facilitates the rapid development

and deployment of IoT solutions. RIOT allows for dynamic memory allocation and ensures

low memory and power consumption as only necessary modules are compiled into the system.

The operating system supports a range of stacks, including RPL, 6LoWPAN, IPv6, and

common IP protocols. C serves as the primary programming language for RIOT-based

applications.

FreeRTOS is a popular Real-Time Operating System (RTOS) designed for embedded

systems, including IoT networks [53, 54]. It is ideal for resource-constrained devices, offering

low power consumption, a small memory footprint, and real-time capabilities. Principal

characteristics include preemptive multitasking, portability across microcontroller platforms,

efficient memory management, modularity, and extendibility via libraries and auxiliary

components. Similar to the RIOT operating system, FreeRTOS is built upon a microkernel

architecture and embraces a multi-threading programming model. Although it requires

third-party libraries for Internet connectivity, it also supports dynamic memory allocation.

Typically, applications for FreeRTOS are developed using the C programming language;

however, C++ is also a viable option, granting developers flexibility in their choice of

programming tools. This versatility, combined with its ease of use and adaptability, renders

FreeRTOS a popular choice for a wide range of IoT applications.

Mbed OS is an open-source, real-time operating system designed for ARM Cortex-

M microcontrollers, targeted at IoT devices [55]. It offers a platform for developing

connected, energy-efficient applications, with built-in security features and support for

various communication protocols. The modular architecture allows developers to optimise

resource usage and power consumption, while advanced power management prolongs battery

life. Mbed OS provides comprehensive APIs, libraries, and development tools compatible

with C and C++ languages, as well as an online IDE and command-line interface. An active
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community and extensive documentation further strengthen the Mbed OS ecosystem, which

facilitates the development of IoT applications.

The Zephyr Project is an open-source, real-time operating system (RTOS) tailored for

IoT networks and embedded systems [56, 57]. It supports multiple architectures, including

ARM, x86, ARC, and RISC-V, ensuring broad compatibility across hardware platforms.

Zephyr offers a small memory footprint, low-power operation, and preemptive multithreading

for efficient task execution. It was created in C and C++ and offers a modular, adaptable

framework that enables developers to produce customised IoT applications. The Zephyr

Project offers a comprehensive platform for developing and deploying IoT applications across

diverse use cases and environments.

In the course of our study, we make use of an OS to assist us in the process of designing,

developing, and demonstrating the suggested solution inside a real setting. Table 2.1 shows

how the different IoT OSs compare to each other. It has been demonstrated that ContikiOS-

NG is preferable for IoT research since it supports both multithreading and event-driven

methodologies and enables the creation of modular applications due to its modular design. It

also has the benefit of being easily replicable in simulation tools like Cooja [46, 47]. Because

of all of these factors, the implementation of the suggested solution in our thesis will be

done using ContikiOS-NG.

Table 2.1: IoT Operating Systems Explored: Features and Differences

Operating
System

Architecture
Programming
Language(s)

Memory
Allocation

Programming
Model

Contiki
Multiple (MSP430, AVR,

ARM Cortex-M, etc.)
C Static

Event-driven,
protothreads

TinyOS
Multiple (ARM, MSP430,

AVR, etc.)
nesC

(based on C)
Static

Event-driven,
task-based

RIOT OS
Multiple (ARM, MSP430,
AVR, x86, RISC-V, etc.)

C, C++ Static and Dynamic
Event-driven,
multithreading

FreeRTOS
Multiple (ARM, AVR, x86,

RISC-V, etc.)
C

Static and Dynamic
(with Heap)

Preemptive
multithreading

Mbed OS
ARM Cortex-M
microcontrollers

C, C++
Static and Dynamic

(with Heap)
Event-driven,
multithreading

Zephyr
Project

Multiple (ARM, x86,
ARC, RISC-V, etc.)

C, C++ Static and Dynamic
Preemptive

multithreading
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2.5 Simulators for IoT Research

In the development and evaluation of novel security solutions for WSN and IoT research, a

considerable number of researchers depend on simulation tools and real testbeds. In recent

years, an array of open-source simulators and real testbeds has emerged to cater to the

diverse needs of the research community [58]. A robust simulator and real testbed should

possess the following characteristics:

• Producing Real Network Traffic: It is crucial to create and make use of authentic

network traffic that closely mimics what would be seen in a real-world implementation

to assess the impact of prospective attacks correctly. If a simulator does not support

actual software, it may not create authentic traffic. As a result, it would construct

traffic patterns based on distributions, which may not reflect network circumstances.

• Scalability: The simulator and testbed should be capable of handling many IoT devices.

It allows researchers to examine the performance of IoT solutions in various network

sizes and situations.

• Heterogeneity support: IoT networks may include a wide range of devices, communi-

cation protocols, and applications. The simulator and testbed should support various

hardware platforms, operating systems, and communication standards, enabling re-

searchers to model and test complex, heterogeneous IoT networks.

• Extensibility and modularity: The simulator and testbed should allow researchers

to easily modify and add new models, algorithms, and protocols. A extensible and

modular architecture enables the research community to perpetually adapt simulation

tools to evolving requirements and technological advances in IoT.

• Support for experimentation and performance evaluation: The simulator and testbed

should include automated testing, performance measurements, and analysing experi-

ments. This allows researchers to evaluate and compare the efficacy of IoT security

solutions under different conditions and scenarios.

• Open-source and community-driven: An open-source simulator and testbed encourage

community contributions, ensuring the continuous improvement and adaptation of the
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tools to the latest advancements in IoT research. A vibrant community also fosters

collaboration, knowledge sharing, and support among researchers.

A variety of simulators, including NS-3 [59], OMNeT++ [60], and Cooja simulators

[46, 47] allow researchers to build and test IoT systems while taking into consideration

network traffic, device diversity, and energy usage. These tools include NS-3 and OMNeT++,

which offer comprehensive support for a wide range of IoT devices and protocols, and Cooja,

which is made especially for wireless sensor networks running the Contiki OS. These

simulators allow researchers to fine-tune and optimise their ideas for real-world application

by analysing IoT network behaviour and performance under varying conditions.

On the other hand, real testbeds are IoT-LAB [61], FIT IoT-LAB [62], WISEBED

[63], and Fed4FIRE+ [64]. These testbeds give researchers access to actual devices and

infrastructure, which enables the testing and assessment of IoT applications in real-world

settings. These testbeds offer diverse hardware platforms and networking technologies,

facilitating the examination of IoT solutions’ interoperability, scalability, and robustness.

Testbeds are crucial for verifying IoT solution performance in a real-world setting prior to

deployment.

F-Interop is an online platform that focuses on providing remote testing and inter-

operability for IoT devices and applications [65]. It acts as a bridge between simulation

tools and actual testbeds. It supports various IoT standards and protocols, providing tools

for automated testing, performance evaluation, and debugging. F-Interop is essential in

ensuring that IoT solutions are interoperable and can seamlessly interact with other devices

and applications.

A comparative analysis of the aforementioned simulators and real testbeds is presented

in Table 2.2. It can be observed that most simulators, such as NS-3, OMNeT++, and

Cooja, do not generate real traffic by running actual applications; instead, they create

dynamic traffic or use patterns like exponential distributions. In contrast, genuine network

traffic is produced by real testbeds like IoT-LAB, FIT IoT-LAB, F-Interop, WISEBED,

and Fed4FIRE+. Furthermore, half of the simulators lack support for real-world operating

systems and IoT devices. Simulating with a genuine OS enables the generation of realistic

and accurate results concerning the impact of attacks on various IoT networks. The suggested

approach should also work with an OS that is simple to install on a physical hardware
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Table 2.2: Comparison of IoT Simulators and Real Testbeds: Features and Capabilities

Tool
Primary
Purpose

Traffic
Type

Supported
Devices/OS

Energy
Modeling

Limitations

NS-3
Network

simulation
Realistic Wide range Yes

Steep learning curve, may have
performance issues

OMNeT++
Network

simulation
Realistic Wide range Yes

Limited support for some IoT
protocols, complex to set up

Cooja
Wireless sensor

networks
Realistic Contiki OS Yes

Limited to Contiki OS, scalability
issues

IoT-LAB
IoT application

testing
Real-world

Various
platforms

Yes
Limited availability, requires

reservation

FIT IoT-LAB
IoT application

testing
Real-world

Various
platforms

Yes
Limited availability, requires

reservation

F-Interop
Interoperability

testing
Real-world

Various
standards

N/A
Online platform, may have limited

support for some protocols

WISEBED
Wireless sensor

networks
Real-world

Various
platforms

Yes
Limited hardware platforms, access

restrictions

Fed4FIRE+
IoT, cloud,
networking

Real-world
Various

platforms
Yes

Complex setup, requires access to
multiple testbeds

device.

In conclusion, a wide array of simulation tools and real testbeds are available to

support IoT research and development. Each tool offers its own unique characteristics and

capabilities, catering to different aspects of IoT experimentation. We have chosen Cooja

and FIT IoT-LAB to implement our proposed security solutions in the IoT ecosystem.

Contiki Cooja, a simulator integrated with the Contiki OS, enables realistic simulation and

testing of IoT applications and wireless sensor networks. Concurrently, FIT IoT-LAB, a

large-scale testbed, offers real-world testing and evaluation on diverse hardware platforms.

By combining these tools, we can perform comprehensive assessments of our proposed

security solutions, addressing both simulated environments and real-world performance,

ensuring robust, reliable, and high-performing applications and protocols.

2.6 IoT Attack

In traditional cyberspace, various forms of attacks have persisted for a long time, targeting

interconnected computer networks, systems, services, embedded processors, and data storage

or sharing. However, the IoT domain poses a new challenge due to the vast number of

connected devices and the relative ease of launching attacks. As a result, cyberattacks
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affect millions of interconnected devices. This section offers a concise overview of the most

prevalent attacks witnessed in an IoT ecosystem. In reference to the technical perspective,

an array of attacks, depicted in Figure 2.3, can be observed across the different layers of the

IoT ecosystem architecture.

2.6.1 IoT Perception Layer Vulnerabilities

1. Node Capture/Replication Attack:

In wireless sensor networks (WSNs), the number of nodes can expand rapidly. Due

to their low price, these nodes often have inadequate physical protection for their

sensitive components including processor, memory, and communication. Thus, when

unsecured sensor nodes are deployed in adversarial environments, attackers may

easily compromise the sensor’s internal state and capture, duplicate, or introduce a

cloned node into a targeted network. The consequences of such incursions might be

devastating, including complete network damage or the deactivation of a significant

portion of the WSNs functionality [66].

2. Device tampering attacks:

It is a cyberattack that incorporates intentionally manipulating the firmware /hardware

of an IoT device. Device tampering attacks commonly aim to circumvent security

protections, harvest private information, introduce malicious code, or interfere with

the device’s regular operation [67].

3. Jamming Attack:

Jamming attacks are active attacks in the Denial-of-Service (DoS) attack category.

These attacks involve creating false data streams. In a jamming attack, malicious

nodes are used to disrupt communication within an IoT network through interference.

These attacks have a negative impact on resource-constrained networks as they deplete

the limited resources of devices, causing harm to the network. In general, jamming

attacks are classified as constant, deceptive, random, and reactive. Constant jamming

generates continuous noise at the same frequency as the network operates. Deceptive

jamming replaces valid signals or fabricates fake signals. Random jamming disrupts

the network for a specific duration, after which the jammer node remains inactive.
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Reactive jamming, on the other hand, remains silent during idle channel periods but

starts emitting radio signals upon sensing channel activity [68].

4. Malicious Nodes Injection Attack:

In this attack, the attacker deploys malicious nodes with significant processing, storage,

and transmission capabilities to collaborate and implement a coordinated attack. The

attack unfolds in two phases. First, the attacker penetrates a genuine node, replicates

it, and takes complete control, accessing its data. The duplicated powerful node then

isolates the vulnerable node by relocating it or decreasing its energy. In the second

phase, the hacked node’s data is cloned onto a new malicious node. This new node,

although not an exact replica, shares similar properties. Thus, two inserted malicious

nodes work together to launch attacks [69].

2.6.2 6LoWPAN Layer Vulnerabilities

1. Fragment Duplication Attack:

In a fragment duplication attack, an attacker duplicates a packet fragment, causing

the receiving node to disregard the fragments. This attack exploits the way that

the 6LoWPAN standard handles redundant fragments. The standard recommends

dropping duplicate fragments to avoid the overhead and conserve resources. However,

malevolent nodes may readily take advantage of this basic technique and turn it into

a DoS attack [70].

2. Buffer Reservation Attack:

In a buffer reservation attack, the attacker reserves the buffer space of the victim node

by sending it incomplete packets. Nodes are unable to allocate additional buffer space

for incomplete packets from other nodes due to their restricted resources. As a result,

while the attacker occupies the buffer space, fragments from regular nodes cannot be

accepted. It is crucial to note that this behaviour happens in 6LoWPAN when it is

set to forward fragments using the route-over strategy, in which the receiving node

reassembles all pieces of a packet before forwarding [70, 71].

3. Malicious Worm-Virus Attack:

In this attack, adversaries propagate malicious code through downloads, emails, or
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Figure 2.3: IoT Ecosystem Attack Vectors

attachments. The worm rapidly replicates within the system or network, aiming to

disrupt the targeted system by consuming storage space and network bandwidth.

Conversely, viruses typically aim to corrupt or modify files [72].

2.6.3 Application Layer Vulnerabilities

1. Flooding Attack: This kind of attack involves flooding the network with an unusually

huge quantity of traffic, causing network saturation. As a consequence, the connections

between nodes cease to function, disrupting normal communication. The HELLO

flood attack is an example of this kind of network overload [72].
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2. Buffer Overflow Attack: An attacker commits a buffer overflow attack when they

place an excessive amount of data into a buffer, which causes the buffer to overflow

and overwrite the memory locations that are contiguous to it. This vulnerability might

result in unauthorised access, the execution of malicious code, and the compromise

of the system. Attackers introduce harmful code into software that fails to verify or

limit user input [70, 71].

3. Desynchronization Attack: Desynchronization attacks disrupt the coordination of

communication between network entities. Attackers miscoordinate nodes by changing

timing, sequencing, or synchronisation. These attacks may result in compromised

data integrity, degraded performance, or a total shutdown of network services. Strong

security mechanisms and durable synchronisation protocols are needed to defend

against desynchronization threats [73].

4. SYN Flood Attack: In a SYN flood attack, the attacker sends several SYN packets

to every port, frequently using a fake IP address. The server receives these ostensibly

legitimate queries to establish communication, unaware of the attack. In reaction, the

server sends SYN-ACK messages from each open port and waits for the final ACK

packet to finish the handshake. When an attacker uses a spoofed IP address or fails

to reply, the server is left waiting indefinitely for the final ACK while its resources are

depleted. This kind of attack reduces the reliability of the server, which might affect

the quality of service [72].

5. DDoS Attack: It is a malicious assault characterized by the coordinated use of

multiple compromised IoT devices, forming a botnet, to inundate a targeted IoT

network, device, or service with an overwhelming volume of network traffic or requests.

The primary intent of an IoT DDoS attack is to exhaust the target’s computational

resources, network bandwidth, or memory capacity, thereby disrupting or incapacitat-

ing the IoT network’s normal operations and rendering it inaccessible to legitimate

users. These attacks can result in service outages, data breaches, and operational

disruptions, posing a critical security threat to IoT ecosystems [72].
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2.6.4 Network and Transport Layer Vulnerabilities

1. Rank Attack:

A rank attack is a type of attack in routing protocols for low power and lossy networks

(RPL) that aims to manipulate the internal ranking mechanism within a network. It

involves an adversary intentionally altering the rankings assigned to nodes, typically in

an IoT network. By exploiting vulnerabilities in the ranking algorithm, the attacker can

disrupt the network’s optimized topology and compromise its overall performance and

efficiency. A rank attack aims to undermine the network’s reliability and functionality

by tampering with the hierarchical organization of nodes based on their ranks [74].

2. Traffic Analysis Attack:

Traffic analysis resembles eavesdropping. However, in this kind of attack, the attacker

just examines the traffic rather than gaining access to the real contents. The objective

is to infer the traffic pattern, locate critical nodes, comprehend the routing topology, or

discover the application’s behaviour. By using this attack, you can glean information

about the network without actually changing any data. There is more information

about this type of attack in [72] and [75].

3. Version Number Attack:

This attack targets the version number field in IPv6 Routing Protocol for Lossy

Networks (RPL) routing control messages. Using the version number field, an attacker

can cause routers to rebuild their routing tables by sending falsified version numbers.

This allows them to track network topology changes. This can lead to increased

overhead, decreased performance, and even network outages [74].

4. Flooding Attack:

This attack causes network saturation by generating a massive volume of traffic,

overwhelming the network. Consequently, the links between nodes become unavailable,

disrupting communication. An example of such an attack is the HELLO flood attack,

which illustrates this type of network saturation [72].

5. Sinkhole/Blackhole Attack:

In a sinkhole attack, an intruder compromises a node in such a way as to attract all
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traffic from neighboring nodes. The compromised node broadcasts falsified information

to lure a significant amount of traffic. WSNs that utilize a base station, where all

nodes send data, are particularly vulnerable to sinkhole attacks. This type of attack

is often launched in networks using the AODV routing protocol. The malicious node

waits for neighboring nodes to request a route (RREQ). Upon receiving the RREQ,

the malicious node swiftly responds with a false route reply (RREP) message featuring

a higher sequence number, deceiving the requesting node into believing that the route

to the destination is fresh. Consequently, the requesting node ignores RREPs from

other neighboring nodes and unknowingly sends packets through the malicious node.

Whenever a nearby RREQ occurs, the malicious node replays a fake RREQ and diverts

all routes toward it, creating what is known as a black hole [76].

6. Wormhole Attack:

Wormhole attacks arise when two adversaries in different geographical networks build

a communication tunnel. This tunnel can be made with a wired or wireless connection

with ample range and bandwidth, working at different frequency bands. After the

adversary establishes a connection through the wormhole, they may launch an attack

such as man-in-the-middle to intercept and modify legitimate communications. This

assault compromises communication integrity, secrecy, and authenticity, threatening

network security [76].

7. Information Routing Attack:

In this attack, an adversary intentionally alters the routing information to divert

or intercept data packets. By tampering with routing tables, injecting false routing

updates, the attacker can control the paths taken by data within the network. This

allows the attacker to eavesdrop on sensitive information, modify or drop data packets,

or redirect them to unauthorized destinations. Information routing attacks pose a

significant threat to data confidentiality, integrity, and availability within a network

[76].

8. DDoS Attack: The nature of this attack varies depending on its objectives, which

can range from interrupting network traffic to exhausting network resources and

disrupting the topology. This thesis is focused on DDoS attacks, which can be broadly
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classified into three categories: High-Rate DDoS Attacks, Low-Rate DDoS Attacks,

and Mixed-Rate DDoS Attacks. Low-Rate DDoS attacks are difficult to identify due

to their low-rate and intermittent traffic behavior, which is similar to legitimate traffic

[3]. These attacks aim to increase latency and decrease the network’s throughput for

genuine users rather than disrupting IoT services entirely.

2.7 Datasets for IoT Attack

In recent years, multiple datasets have emerged in the IoT security arena, each with its

own set of pros and downsides. With the pervasive adoption of IoT devices, researchers are

increasingly turning to IoT-related datasets to address the expanding number of unknown

vulnerabilities and threats. These datasets collect information from both simulated and

real-world environments in order to test the efficacy, security, and applicability of IoT

devices against normal and abnormal behaviour. In order to create IDS that can be used in

real-world settings, these datasets’ quality is essential.

Figure 2.4: Dataset Distributation

This section provides an overview of publicly available datasets proposed for IDS in

IoT environments. Figure 2.4 shows the number of IoT datasets that have been suggested

over time, with a sharp rise in 2020. Moreover, Table 2.3 provides technical details and

properties of different datasets, which provide general information about them. In this

thesis, we used one, two, and three datasets to develop effective IDS solutions.
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Table 2.3: Technical Details and Properties of Different IoT Datasets

Dataset Year Availability Format Size No. of Features
Statistics Extracted Raw

BoT-IoT 2020 Yes - Free
Download csv, pcap 69.3GB 0 46 29

BoTIoT 2021 Yes - Free
Download csv, pcap 1.49GB 90

TON-IoT 2020 Yes - Free
Download

csv, pcap,
log, txt 67GB 36

Kitsune
Network 2019 Yes - Free

Download csv, pcap 68.9GB 115 23

N-BaIoT
Dataset 2018 Yes - Free

Download csv, pcap 2.1GB 115 0

BoTNeTIoT 2020 Yes - Free
Download csv, pcap 2.31GB 23

Aposemat
IoT-23 2020 Yes - Free

Download pcap 21GB 23

DAD
Dataset 2020 Yes - Free

Download
csv, pcap,

xml 18MB 6

IOTID20 2020 Yes - Free
Download pcap 294.2MB 83

IoTID 2019 Yes - Free
Download pcap 823.69MB 42

X-IIOTID
Dataset 2021 Yes - Free

Download csv, pcap 351.6MB 59

Edge-
IIoTset 2022 Yes - Free

Download csv, pcap 1.5GB 0 61 1176

IoT and DDOS
dataset 2020 Yes - Available

on Request pcap 487 MB 60

WUSTL-IIOT-
2018 2018 Yes - Free

Download csv 1.27GB 7

KNX
Datasets 2022 Yes - Free

Download csv, pcap 289MB 21

CIC IoT
Dataset 2022 Yes - Free

Download pcap 1GB + 48 48

IoTEnvironment
Dataset 2021 Yes - Free

Download pcap 287 MB N/A Pcap

IoTKeeper 2020 Yes - Free
Download pcap 15GB 38

IoTSentinel 2016 Yes - Available
on Request csv, pcap 27.4MB 276 0 23

WUSTL-IIOT-
2021 2021 Yes - Free

Download csv 390.82MB 7

IEEE TMC
2018 UNSW 2018 Yes - Free

Download csv, pcap 7.8GB 10

UNSW-IoT 2019 Yes - Free
Download pcap Unknown N/A Pcap

• IoT-23 [77]: IoT-23 is a dataset that includes network traffic from 23 IoT devices,

such as routers, smart home appliances, and cameras, over the course of four weeks in
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a lab setting. It consists of both regular traffic and a variety of assaults, including

Brickerbot and Mirai. The dataset is divided into training and test sets and includes

both encrypted and unencrypted traffic in pcap format. The dataset also contains

metadata files that list the devices and different kinds of attacks. The dataset is

publicly accessible for academic and research usage and can be utilised for studies on

intrusion detection and prevention for IoT networks.

• CICIDS2017 [78]: CICIDS2017 is a comprehensive dataset that contains both

normal traffic and various types of attacks, such as DoS, port scans, and brute-force

attacks. It consists of several scenarios and network topologies with various traffic

characteristics, including IoT traffic. The CSV-formatted dataset comprises over 80

attributes, such as packet header and payload information. Due to the size of the

dataset, which is approximately 32 GB, it is one of the largest datasets that may

be used for research on network security. The dataset gives researchers an option to

assess the performance of different methods for attack detection and prevention. The

dataset can be accessed and used without cost for scholarly and research purposes.

• BoT-IoT [79]: This dataset includes traffic from several IoT device-targeting botnets,

such as Mirai and Gafgyt. The dataset contains both normal traffic and a variety

of attack categories, including DoS and brute-force attacks. It is available in CSV

format and contains more than 50 features, including packet header and payload data.

Despite being modest in comparison to other datasets, the BoT-IoT dataset can be

useful for research into IDS and IPS for IoT networks. The dataset can be accessed

and used without cost for scholarly and research purposes.

• Kitsune [80]: This dataset is a public set of data that includes network activity from

smart home devices, cameras, and smart plugs that were collected in a lab scenario.

It includes Mirai and Satori botnet assaults and regular traffic. The dataset consists

of over 12,000 pcap files, each of which contains one minute of traffic. Metadata also

describes devices and attacks. The dataset, which has been divided into training

and test sets, may be utilised for studies on IoT network IDS and IPS. It enables

researchers to evaluate the efficacy of various algorithms and methods for detecting and

mitigating intrusions on IoT devices. The Kitsune IoT Dataset is open for academic
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study in pcap and CSV formats.

• TON_IoT [81]: This dataset is a publicly available dataset that contains network

traffic gathered from IoT devices in an experimental environment. This dataset, which

includes DDoS and DNS tunnelling attacks, is useful for IoT security researchers.

The dataset contains more than 9,000 pcap files, each of which contains 30 minutes

of traffic, and is accessible in both pcap and CSV formats. In addition, it contains

metadata files containing information about the devices and types of attacks. The

TON_IOT dataset may be used to assess the effectiveness of security solutions. The

dataset is available at no cost for academic and research purposes.

• KDD CUP 99 [82]: This dataset is a collection of network traffic data captured

during the DARPA Intrusion Detection Evaluation Programme. Although it is not an

explicitly IoT-related dataset, it may include some traffic generated by IoT devices

since these devices are part of the larger network environment. The dataset contains

more than 4 million records with 42 parameters, including source and destination IP

addresses, protocol type, and duration, that indicate different network connection

characteristics. It is available in CSV format and is partitioned into training and

test sets. Researchers can use the KDD Cup 99 dataset to evaluate the effectiveness

of distinct IDS for detecting various types of attacks, such as DoS, probe, and R2L

attacks. The dataset is publicly accessible for academic and research use and can aid

in the development of efficient IDS systems to combat network attacks.

• ISCX [83]: The ISCX dataset comprises regular traffic and numerous assaults from

diverse situations and network topologies. The dataset consists of training and test

sets, and it has more than 16 million individual entries. Researchers may evaluate

IDS and IPS for diverse networks using the ISCX dataset. The dataset is available for

free download from the ISCX website for academic and research purposes.

2.8 Machine Learning /Deep Learning for IoT

Machine learning encompasses three main types: supervised, unsupervised, and hybrid

/reinforcement learning. Supervised learning is based on labelled data, which provides

significant information for tasks like as classification, which is often used in IDS. However,
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manual data labeling is time-consuming and expensive, hindering supervised learning due

to limited labeled data availability. In contrast, unsupervised learning leverages unlabeled

data to extract valuable features, simplifying the acquisition of training data. Nevertheless,

unsupervised learning methods generally exhibit inferior detection performance compared

to supervised learning methods. Reinforcement learning involves learning from interactions

with the external environment based on specific actions. Hybrid learning models combine

multiple deep learning models, typically discriminative or generative, to form a comprehensive

approach [84, 85]. Figure 2.5 illustrates the common ML algorithms employed in IDSs.

2.8.1 Shallow ML Models

Traditional models for machine learning, also known as shallow models. These models

encompass various techniques such as support vector machines (SVM), Naïve Bayes (NB),

K-nearest neighbour (KNN), random forest (RF), decision trees, artificial neural networks

(ANN), ensembles learning (EL), and hybrid approaches. These methods have undergone

extensive research over several decades, resulting in well-established methodologies. In

addition to prioritising detection efficacy, they also address practical concerns, such as data

management and detection efficiency within IDS.

• Support Vector Machine (SVM): SVMs strategically find an n-dimensional feature

space hyperplane with greatest margin. SVMs are sensitive to hyperplane noise, even

with tiny training sets. SVMs solve linear issues, whereas kernel functions handle

nonlinear data. Nonlinear data can be separated using these functions. Kernel tricks

are widely utilized in both SVMs and other ML algorithms.

• K-Nearest Neighbor (KNN): The fundamental concept behind KNN is rooted

in the manifold hypothesis. According to this hypothesis, if most of a sample’s

neighbours belong to a class, the sample likely does too. As a result, the outcome

of the categorization is extremely dependent on the top k closest neighbours. The

parameter k plays a crucial role in the performance of KNN models. Smaller values of

k result in more complicated models that are more prone to overfitting. In contrast,

greater values of k result in simplified models with diminished fitting capabilities.

• Naïve Bayes: The Naive Bayes method relies on the assumptions of attribute
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Figure 2.5: Classification of Machine Learning Techniques

independence and conditional probability to function. It determines class conditional

probabilities based on sample properties. The sample is then assigned to the most

likely category. However, achieving the optimal result relies on satisfying the attribute

independence assumption, which is often challenging in real-world scenarios.

• Logistic Regression (LR): LR is a parametric logistic distribution-based logarithmic

linear model that predicts class probabilities. This classifies sample x into the highest

probability class of k = 1,2, ...,K − 1. LR model construction and training are

simple. However, LR is not well-suited for handling nonlinear data, which restricts its

applicability.

• Decision tree: The decision tree algorithm is employed for data classification through
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a series of rules. Its tree-like structure aids interpretation. This algorithm possesses the

capability to automatically eliminate irrelevant and redundant features. The learning

process involves selecting features, creating a tree, and then pruning it. During

training, the algorithm identifies the most relevant attributes and creates child nodes

from the parent node. Advanced classifiers like random forests and extreme gradient

boosting (XGBoost) use numerous decision trees.

• Artificial Neural Network (ANN): The concept behind ANNs is to emulate the

functioning of the human brain. An ANN is made up of an input layer, many hidden

layers, and an output layer. ANNs are capable of performing a wide variety of functions,

particularly nonlinear ones. However, ANNs are complex, thus training them takes

some time. The backpropagation algorithm used to train ANNs is inefficient for deep

networks. ANNs are shallow models, unlike deep learning models detailed in Section

2.8.2

• Ensembles Learning (EL): Every classifier has its own advantages and disadvantages.

Combining numerous under performing classifiers into a single robust one is a typical

strategy for taking use of each one’s strengths. Ensemble methods are employed for

this purpose, involving the training of multiple classifiers. Through a voting process,

these classifiers ultimately contribute to the final outcomes.

2.8.2 Deep Learning Models

Deep learning models include various supervised learning models, such as deep neural

networks (DNNs), convolutional neural networks (CNNs), deep brief networks (DBNs),

and recurrent neural networks (RNNs). On the other hand, unsupervised learning models

include generative adversarial networks (GANs), restricted boltzmann machines (RBMs),

and autoencoders. Since 2015, there has been a meteoric rise in the use of IDS based on

DL. They can process big datasets and outperform shallow models. Deep learning research

focuses on network construction, hyperparameter selection, and optimisation.

• Restricted Boltzmann Machine (RBM): An RBM is a stochastic neural network

that follows the Boltzmann distribution. It consists of two layers, one visible and one

hidden, as illustrated in Figure 2.6 (a), which are not connected within each other
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but are fully connected between layers. The visible layer is vi, and the hidden layer

is hi. RBMs share weights between layers bidirectionally. RBMs are trained using

the contrastive divergence algorithm, a type of unsupervised learning, and they are

commonly utilised for tasks such as feature extraction and denoising.
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Figure 2.6: The structure of RBM and DBN

• Deep Brief Network (DBN): As shown in Figure 2.6 (b), a DBN is made up of

several RBM layers followed by a softmax classification layer. The DBN training is

broken up into two parts: supervised fine-tuning and unsupervised pretraining [86].

Each RBM is greedy-layer-wise pretrained. Labelled data is used to learn softmax layer

weights. In the context of attack detection, DBNs serve the dual purpose of feature

extraction and classification, making them valuable for identifying and classifying

attacks [87].

• Deep Neural Network (DNN): DNNs with multiple layers can be created using a

layer-wise pretraining and fine-tuning method, shown in Figure 2.7 (a). This technique

uses unlabeled data to train the network’s parameters. Following that, the network is

fine-tuned using labelled data, which is a stage of supervised learning. DNNs’ success

is mostly due to unsupervised feature learning.

• Convolutional Neural Network (CNN): CNNs are meant to mimic the human

visual system (HVS), advancing computer vision [88, 89, 90]. Figure 2.7 (b) shows

how CNNs alternate convolutional and pooling layers. Convolutional layers extract

features, while pooling layers make them more generalizable. For attack detection,
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CNNs must transform input data into matrices since they operate on 2-dimensional

(2D) data.
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Figure 2.8: The structure of RNN and Autoencoder

• Recurrent Neural Network (RNN): RNNs are specifically designed for processing

sequential data, with widespread applications in natural language processing (NLP).

Sequential data requires contextual analysis. To capture the contextual information,

each unit in an RNN receives the current state and previous states, as depicted in Figure

2.8 (a). However, a common issue with RNNs is the vanishing or exploding gradients

due to the repetitive nature of the network structure. Many RNN variants have been

proposed to resolve this issue, including bidirectional RNNs [91], gated recurrent

units (GRUs) [92], and long short-term memory (LSTM) [93]. LSTM introduced by

Hochreiter and Schmidhuber in 1997, incorporates three gates to manage memory

flow: forget gate, input gate, and output gate. GRU, developed by Chung et al. in

2014, simplifies the architecture by combining the forget and input gates into one

update gate.

• Autoencoder: An autoencoder is a neural network architecture composed of two
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symmetric components: an encoder and a decoder, as depicted in Figure 2.8 (b).

The encoder extracts important characteristics from raw data, while the decoder

reconstructs it. Training reduces the encoder input-decoder output divergence. The

encoder has caught the important data properties if the decoder can rebuild the data

from the extracted features. This approach uses unsupervised data. Denoising and

sparse autoencoders are used for noise reduction and sparsity regularisation.

2.9 Intrusion Detection Systems for IoT

IDSs are important safety measures for network security, whether they are made of hardware

or software. The major purpose of these defences is to protect individual devices, nodes,

and entire networks against malicious attacks and violations of predetermined policies. IDSs

are designed to proactively detect attempts at unauthorised access to a system and alert

the system administrator immediately so that they can take appropriate action [94]. The

attacks identified by IDSs can be broadly categorised into two classes: internal and external.

Internal attacks originate from inside the network or system with the intention of elevating

privileges to gain unauthorised access to data or services. In contrast, external attacks

originate from external entities attempting unauthorised network access. Figure 2.9 provides

a comprehensive overview of various types of IDS. In the following discussion, we examine

IDSs’ complex components, methodologies, deployment strategies, placement methods, and

cutting-edge innovations in IoT environments.

2.9.1 Anatomy of IDS: Components and Deployment Tactics

IDS typically consists of three basic components, which are as follows:

1. Sensing and Monitoring: The first component is responsible for identifying any

deviations from established network traffic norms that are not typical. Its purpose is

to promptly identify network anomalies.

2. Analysis and Detection: The analysis and detection module is the core of the IDS.

This core component detects and assesses harmful attacks quickly.

3. Notification and Reporting: The third component, which is critical for intrusion
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detection, sends timely notifications to the system administrator. This fast notifica-

tion enables administrators to take the necessary actions. In addition to this, this

component is used as a source for in-depth reports that explain the nature of the

attacks.

2.9.2 IDS Deployment Tactics

IDS Deployment Tactics: IDS deployment typically uses two different approaches.

1. Host-Based (HIDS): In this approach, the IDS is housed inside the target device.

2. Network-based (NIDS): In this approach, the IDS is dispersed throughout the

network. Here, the IDS assumes responsibility for keeping track of and examining all

network traffic, system calls, and running activities.
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Figure 2.9: Various Intrusion Detection System Types
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2.9.3 IDS Methodologies

• Signature-based NIDS [95]: This IDS uses predetermined patterns or signatures to

identify network traffic threats. It compares incoming data to a library of signatures

and sends out alerts when a match is found. This makes it easier to find known

threats quickly. Signature-based IDSs are quick and effective, but only against known

threats. This approach has a very low false positive rate (FPR) for known attacks, but

it is ineffective against new attacks and even new variants of known attacks. This is

because the database does not yet contain the signatures of newly developed attacks.

As a result, in an era where attackers are growing smarter and constantly devising

new attacks and versions of existing attacks, this technique becomes less effective.

The approach also has the drawback of requiring a very large database to hold a very

large number of signatures.

• Anomaly-Based NIDS [96]: This methodology identifies intrusions based on system

behavior. By establishing a normal activity baseline, any deviations are flagged as

potentially malicious and alerts are generated. This method is effective at detecting

new attacks; however, it produces an excessive number of false positives, as deviations

from normal behaviour do not always indicate an attack.

• Hybrid NIDS [97]: This strategy combines multiple approaches to enhance attack

detection accuracy. It utilises the benefits of both signature-based and anomaly-based

techniques by combining them. While anomaly-based evaluation finds anomalous

behaviours, signature-based analysis detects known threats. As a result of this

integration, the system can successfully defend against both known attacks and newly

developed, innovative attacks. The hybrid approach provides a comprehensive defence

strategy by overcoming the limitations of individual methods. It adapts to changing

attack strategies, optimises detection, and identifies both known and unknown attacks.

2.9.4 IDS Placement Strategies

The placement of IDSs is typically guided by one of the following strategies [98]:

• Centralised Strategy: In this strategy, the IDS is located in a centralised component

of the system, either at the node borders or within specific nodes. It has the ability to
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examine all incoming and outgoing Internet traffic when installed at the border router.

This strategy, however, may ignore attacks that occur outside the border router or

nodes.

• Distributed Strategy: In this approach, each node in the system hosts an IDS,

which enables cooperative intrusion detection via inter-node communication.

• Hybrid Strategy: The hybrid strategy combines the centralised and spread methods

to find a good mix between detecting accuracy, algorithm complexity, energy use,

memory use, and communication costs [99]. A hybrid technique is attractive but

requires resolving data availability issues. Successful IDSs are dependent not only

on anomaly detection models but also on access to meaningful data [100] for robust

analysis and decision-making.

2.10 Related Work

In this subsection, we offer a high-level overview of why we selected the IoT security domain

as the focus of our research. Each chapter delves into detailed discussions of related works

pertinent to the specific contribution.

In the IoT ecosystem, there are presently several security solutions that rely on hybrid,

anomaly, and signature implementations. However, the range of potential attacks has grown

due to the constantly changing technological environment and the exponential increase

in data created by these technologies. This development has made current IoT security

methods less effective [101]. Makhdoom et al. [102] have made significant efforts to identify

general and layerwise IoT threats. Within the context of the survey paper, the primary focus

of the researcher is to concretely define the structure of malicious activity made against the

IoT environment. They also talked about effective attack techniques and the use of IoT

botnets for DDoS attacks. Despite substantial research on IoT security and solutions, there

is still a need to enhance security solutions that use minimal energy and memory while

providing excellent accuracy.

Mosenia et al. [76] utilized the Cisco seven-level reference model [103] in order to

illustrate a variety of various attack scenarios. They evaluated IoT targeted attacks and

mitigating techniques. The authors stressed the importance of taking a proactive approach
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to IoT security.

The field of network data analysis has seen the emergence of a multitude of security

frameworks and tools, each of which has its own unique set of constraints that leave critical

parts unaddressed [80]. On the other hand, security solutions [104] favour an alternative

methodology, frequently reliant on predetermined attributes and utilising proprietary ex-

traction methods that are distinguished by their inflexibility. While this methodology

could potentially be appropriate for specific applications, its absence of flexibility and

customizability presents difficulties in situations that demand flexibility. Because network

data is so varied, it is important to be able to adapt feature extraction methods to different

data patterns in order to get accurate and useful results.

A large number of researchers have studied the IoT in order to provide insights into its

complex ecosystems. Some have described IoT problems. Scholarly articles [105, 106, 107]

extensively explore security concerns, delving into a multitude of attack types. Additionally,

security holes in IoT systems are highlighted in a paper [108], with a focus on Zigbee

technology flaws. Further challenges in the IoT have been highlighted by other researchers,

as demonstrated by the research mentioned in [109, 110] along with others.

The methodology proposed by M. Bhuyan et al. in [111] for evaluating DDoS attack

information metrics employs various information entropy measures such as Renyi’s entropy,

Shannon entropy, and Hartley entropy. Additionally, they utilize Kullback-Leibler divergence

information distance measures to identify DDoS attacks effectively. This comprehensive

approach enables a thorough examination of both legitimate and malicious attack traffic.

However, its drawback lies in its demand for considerable computing power and resources,

rendering it unsuitable for IoT networks.

This limitation underscores the need to develop lightweight security solutions tailored

specifically for IoT networks. Given the resource constraints inherent in IoT devices, imple-

menting heavy-duty security mechanisms like those proposed by Bhuyan et al. may prove

impractical. Therefore, there’s a compelling motivation to innovate security solutions that

are efficient, resource-friendly, and optimized for the unique demands of IoT environments.

By addressing these challenges, we can ensure robust protection against DDoS attacks while

preserving the operational integrity of IoT networks.

Network traffic monitoring can be transparent or non-transparent. In non-transparent
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mode [112], IDS nodes query or probe, alerting malicious nodes and increasing network

congestion. In transparent mode [113], IDS nodes observe without adding overhead but face

a trade-off between coverage and energy. Hence, we motivate the development of an IDS

placement strategy for transparent monitoring to optimize coverage and energy use.

Numerous research studies [114, 115] have adopted a hybrid placement strategy that

harnesses the advantages of both centralized and distributed approaches. However, these

studies often focus solely on detecting single attacks [116, 117, 118]. Given the possibility

of multiple concurrent attacks in a network, this scenario motivates us to develop solutions

capable of detecting and mitigating multiple attacks simultaneously.

2.11 Summary

In this chapter, we first present a brief background on the IoT ecosystems and IoT architec-

ture, followed by IoT applications. An exhaustive investigation into the various operating

systems that are commonly used in the IoT domain is also carried out. We also analyse

various simulators used in the literature. Subsequently, we have presented a brief discussion

of the various IoT attacks in a layerwise manner. Following that, we explored a wide variety

of datasets that are open to the public in order to evaluate the overall accuracy of offered

security solutions in terms of attack detection, energy consumption, memory utilisation,

and scalability. Additionally, we have investigated a variety of ML and DL models that

are used in the IoT ecosystem. We have also reviewed the important literature on IDS for

the IoT ecosystem. Finally, we discussed significant related works, such as attack detection

and mitigation strategies used to enhance IoT network security. In the next chapter, we

introduce an edge-based machine learning (ML) method that makes it easier for IDS to find

DDoS attacks in IoT networks.

<<=8=;;
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“As IoT devices proliferate, machine learning becomes the

sentinel, tirelessly analyzing patterns to protect against

emerging cyber threats.”

- Andrew Ng 3
C h a p t e r

Machine Learning for IEEE 802.15.4e/TSCH:
An Energy-Efficient Approach to Detect

DDoS Attacks

3.1 Introduction

Internet of Things (IoT) is a booming area of research in the current technological world with

smart devices and applications like smart cities, smart health care, smart transportation,

smart agriculture, etc. A complete IoT ecosystem has different layers as shown in Figure 3.1.

The physical layer, MAC layer, adaption layer or 6LoWPAN layer, network layer, transport

layer and application layer.

It coordinates millions of smart devices to support various intelligent applications

to provide comfort to life. All the IoT devices communicate with each other and the

environment intelligently without much human intervention. It is estimated to reach 50

billion devices by 2020 [119] and hence is one of the fastest-growing fields of computing.

Even though it plays a vital role in raising the standards of life, it suffers from limitations

like limited computation capabilities and security threats due to many components in setting

up the IoT environment. It becomes challenging to implement encryption, authentication,

etc., due to weaker computation capability and unattended automated environments. IoT

environments are more vulnerable to security breaches at different layers. Therefore, to

improve IoT environment security, various machine learning and deep learning algorithms

are adopted.

Due to the resource constraint nature of the devices, new protocols are designed for
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the IoT environment at different layers. Figure 3.1 illustrates the protocol stack comparison

between IoT and traditional networks, while Figure 3.2 displays the IETF Suite of Protocols

tailored for Industrial IoT environments.

Figure 3.1: The comparison of protocol stacks of IETF IoT and TCP/IP [1]

These devices are connected as Low Power Wireless Personal Area Network over IPv6

(6LoWPAN). 6LoWPAN networks are connected to internet using a 6LoWPAN Border

Router (6BR). 6BR acts as an gateway router for 6LoWPAN to connect with internet. The

link layer and physical layer uses IEEE 802.15.4 for the IoT network. Resource constraint

devices are connected directly to internet which make them more vulnerable to the security

threats from outside as well from inside the 6LoWPAN networks. Although message

encryption and authentication is provided with IPsec [120] and a lightweight DTLS [121]

and at link layer using IEEE 802.15.4 [122], IoT environment are prone to many attacks.

It is challenging to deal with security threats in IoT due to several reasons such as direct

access to internet, resource scarcity, newly designed IoT protocol stack, etc.

IoT applications are vulnerable to attacks at multiple surfaces [123] in a system,

Physical attacks, Protocol-based attacks, Data and Storage based attacks, and Application

and Software-based attacks. Our focus is on protocol-based attacks, and these are further

classified as: Connectivity protocol-based attacks include connecting technologies such as

RFID, Zigbee, NFC, WiFi. Network protocol-based attacks consider the network layer

RPL and 6LoWPAN protocols. A communication-based protocol such as TCP/UDP at

Transport layer and CoAP, MQTT at the application layer.
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Over the last decade, ML-based security solutions have been implemented in a wireless

network to reduce the attack surface [124] [85]. Network traffic investigates with the help

of an artificial neural network (ANN). They give a good result with complex non-linear

learning. The prevalent ANN-based IDS install in all node and train to identify either an

attack class traffic or benign traffic. They use a strong CPU or GPU in the training process.

In general, ANN-based IDS installed distributed manner is only feasible if the count of

IDS is minimum. One strategy to achieve the purpose is to fix in devices and routers. As per

our argument, it is useless to practice ANN-based IDS with this strategy. All devices were

performing offline processing, learning, and high computational complexity. This activity is

unmanageable to run in a resource-constrained network.

This chapter introduces an edge-based ML strategy that is efficient, trained to mimic

IoT network traffic patterns, and whose performance incrementally improves overtime.

The architecture of Edge-based IDS is illustrated in Figure 3.3. First, the features of the

IDS is external and internal traffic analyzed dedicatedly. We note that while training

the Edge-based ML approach, no more than one instance is stored in memory at a time.

This parameter is used to enhance the response time with a fair trade-off in detection

performance.

The goal of using an edge-based ML approach is because of all types of traffic analysis,

and feature selection is achieved dedicatedly. From our analyses, we observed that edge-based

ML strategy enhance the packet processing rate by a factor of five, and perform adequately

than closely related works. The significant features of this security method as follows:

• The proposed approach generates both types of traffics (i.e., benign and spiteful traffic)

utilizing the Contiki cooja simulator [125] [126]. It also examines a well-known dataset

[79] [127] for the DDoS attack identification.

• A novel edge-based ML solution for the resource-constrained network, which is

lightweight and energy-efficient.

• A feature selection is dynamically preparing and deriving certain contextual features

from network traffic.

• The proposed approach incorporates distributed edge-based ML strategies. In a

distributed environment, Edge devices communicate with each other.
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• The proposed method can adapt hybrid traffic (i.e., internal traffic and external traffic)

in the IoT ecosystem. Hence DDoS attacks can be identified and depreciate the future

event of DDoS attacks.

• The intended approach achieves the IEEE 802.15. 4e/TSCH traffic characteristics of

DDoS attack. It classifies the attack applying edge-based ML with High Accuracy

and minimum response time.

3.2 Background and Related Work

This section provides an overview of the relevant background work to be specifically addressed

in this chapter. Section 3.2.1 describes the 6LoWPAN and TSCH models in a comprehensive

manner, while Section 3.2.2 provides an overview of the IoT attacks that will be discussed

in this chapter. Further, Section 3.2.3 elaborates on the related works that are especially

relevant to this chapter.

3.2.1 6LoWPAN and TSCH

6LoWPAN provides an efficient way to forward IP packets in low power lossy network (LLN).

It makes IP header compression. 6LoWPAN incorporates routing specifications, causing

it to enlarge the network range by connecting the devices in a mesh. The IEEE 802.15.

4e/TSCH protocol specially designed for Low power wireless networks. It is a MAC protocol

and does Time Division Multiple Access (TDMA). It is compatible with IEEE 802.15.4

physical layer [128] and 6LoWPAN network layers. This protocol very much recognized

when it gives wire-like reliability in LLN. The IETF 6TiSCH Working Group involved in

the 6LoWPAN standard and IEEE 802.15.4-2015 TSCH integration process. Based on the

integration process, many RFC and Internet drafts are composed [129].

3.2.2 Attacks on IoT

IoT networks are prone to various attacks due to the end-node accessibility through the

Internet, the lossy nature of networks, and resource constraints of the nodes. The nature

of these attacks varies vastly with the varying objectives of the attacks, like interrupting

network traffic, exhausting network resources, disrupting the topology, etc. This chapter is
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Figure 3.2: 6TiSCH-Stack: IETF Suite of Protocols for Industrial IoTs

focused on DDoS attacks, BashLite and Mirai botnet, as given below.

DDoS attack

It is a malicious attempt to interrupt the normal operation of a certain server, service, or

network by flooding it with internet traffic. In Section 2.6 of Chapter 2, we explored a

multitude of DDoS attacks and other forms of attacks within the IoT ecosystem.

Botnet attack

Originally, the word botnet referred to a robot network. It is composed of IoT nodes that

host along with the affected nodes. By exploiting IoT vulnerabilities, many attacks are

launched using IoT nodes to inject botnet malware into them. Botnets are able to control

internet-connected devices remotely via remote access [130], [131]. This way, IoT nodes can

be used for hosting robots that can execute attacks while the attacker remains anonymous.

The botnet attacks are correlated with various attacks (i.e., ransomware, remote command

execution, brute force attacks, backdoor installation, and DDoS attack). The most common

botnet attacks among IoT botnets are:

• Mirai: It is a very popular IoT botnet for DDoS attacks that can infect 4,000 to 6000

IoT devices in just a few minutes [130].

• Bashlite: It is also known as Torlus and Gafgyt, which target IoT nodes that have

firmware based on Linux [131].
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3.2.3 Related Work

Related work is divided into two-part 1) ML-based security solution. 2) Generalised DDoS

attack detection method. The machine learning-based security approach is implemented in

wireless networks widely, as shown in Table 3.1. However, these approaches normally design

for resource-rich devices, not for resource-constrained devices. ML training and executing

phase is expensive in terms of computing and storage. Executing phase runs on router and

gateways. The significant limitations of this approach are required a massive amount of

resources and computational power.

Table 3.1: ML-based related works.

Solution\Year Detail

E. Hodo et al. [124]
2016

It used an artificial neural network (ANN) as an in-
trusion detection system (IDS) to identify DoS/DDoS
attacks.

M. K. Putchla et al. [132]
2017

It used Deep Learning and Gated Recurrent Neural Net-
works (GRNN). It is the first paper that implemented
GRNN in the WSN.

C. Li et al. [133]
2018

It uses a deep learning model. It comprises three layers:
1) Input layer, 2) recursive forward and reverse layer 3)
output layer. It also used are RNN, LSTM, CNN.

A. Guerra et al. [134]
2019

This paper used the sandwich feature selection method:
this method combines Fisher’s score, Pearson’s correla-
tion coefficient ρ, and wrapper step. Its boosts up the
detection accuracy.

M. Shafiq et al. [135]
2020

This paper gives the objective is an efficient solution
with a modified feature selection mechanism. A novel
CorrAUC is applied for feature selection. It also inte-
grates Shannon entropy and soft bijective function.

D. Yin et al. [136] this approach, DDoS attack originated device identified quickly.

This approach also mitigates the DDoS attack in the IoT ecosystem. However, the drawback

of this approach is the additional overhead expected for the cosine similarity module. Hence

this approach not suitable for resource constraint networks.

As per H. Chen et al. [137] identify and alleviate DDoS attacks using Hilbert-Huang

transformation and trust evaluation. However, the drawback of this solution is that it

requires added resources (i.e., memory, battery, etc.). Therefore, this approach is not fit for

the 6LoWPAN network.
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Table 3.2: Non ML based related works.

Solution\Year Detail

D. Yin et al. [136]
2018

SD-IoT incorporates a controller pool, hybrid switch, and
IoT devices. The approach is based on cosine similarity of
the IoT packet rate.

H. Chen et al. [137]
2019

identify and alleviate DDoS attacks using Hilbert-Huang
transformation and trust evaluation. It requires added
resources (i.e., memory, battery, etc.).

Y. Jia et al. [138]
2020

In this approach, two major components are incorporated
(i.e., flow filter, flow handler). The flow filter is also subdivided
into two parts 1) flow filtration and 2) DDoS discovery.

As per Y. Jia et al. [138], DDoS attacks identified using the FlowGuard model. this

model contains a flow filter and flow handler. This solution executes on an edge-centric

device and gives valid results. However, this solution also has disadvantages, like its outcomes

show more FNR and FPR.

3.3 Proposed Works

This section performs the edge-based IDS: it contains three steps: 1) packet preprocessing,

2) feature extractor, and the last 3) intrusion detection. Additionally, we analyze the

complexity of the IDS and give runtime performance.

3.3.1 Overview

Edge-based IDS, based on Naive Bayes, and designed for the DDoS attack identification.

This IDS execution is based on the Bayes theorem [139]. Each edge-based IDS module is

capable of detecting DDoS attacks. Edge-based IDS is designed to operate on a scalable IoT

network and edge device (i.e., 6BR router). Edge-based ML enable IDS has been composed

with low computing complexity and small memory storage.

The edge-based ML approach is comprised of the following components:

• Packet capture: During experiments 3.4.1 and 3.4.2, we gather packets in Contiki

cooja using Wireshark.

• Feature Extractor (FE): In this component, Feature Extracted using Principle Com-
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ponent Analysis (PCA) [140].

• Fitting Naive Bayes to the Training data Set: In this component, we use generated

data and available data set [79]. We utilized the GaussianNB classifier to fit the

training dataset.

• Classification and Result: This component is adopted to predict the test set result.

And classify DDoS attack traffic and benign traffic.

3.3.2 Naive-bayes classifier

The proposed model is an intelligent IDS based UDP flood attack detection system which

uses a naive-bayes classifier. It is a Edge-based ML enable IDS that analyses all type of

traffic received from internal and external device. UDP flood affects the transport layer of

the protocol stack, leads to denial of service to legitimate users, and consumes resources in

a resource-constrained environment.

The algorithm is implemented at edge node of the IoT environment. Since the features

are independent of each other, naive-bayes is considered suitable for detecting the anomaly.

Figure 3.3 shows the experimental setup and placement of the IDS in the IEEE 802.15.4e

(6TiSCH) network.

The naive bayes classifier is a supervised learning technique that uses bayes theorem

for the classification and prediction of data. It is generally used in situations where the

features are not dependent on each other. It gives equal weightage to all the features. It

is simple, robust, easy to implement, and applied for two-class and multi-class problems.

The basic flow chart of the proposed model is displayed in Figure 3.4. The model is trained

with features of the captured UDP packets like the source IP address, port number, packet

size, and correct labels, namely, normal and abnormal (anomalous) data. After the model is

built, it can detect a new sample as normal or an anomaly. We can apply the naive bayes

to our model by using the equation below.

P (b/A) = P (A/b)P (b)
P (A)

(3.1)

where b indicates the class labels, normal and abnormal and A is the feature vector.

It can be written as where the ai s are the features. We can ignore the denominator as it
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Figure 3.3: Experimental setup and IDS module architecture

is constant for a given input. Here, b is the proof, and A is the ground. The hypothesis

presented is that the predictors/features (b/A) are independent. The behavior of one distinct

feature does not influence the other. Therefore it is named naive.

The features like a1, a2, a3, ....an substitute for A and expanding the chain rule. The

equation (3.2) can be written as follows:

P (b/a1, . . . , an)αP (b)
n

∏
i=1
P (ai/b) (3.2)

P (ai/bj) is evaluated for each ai in A and bj in b, and also P (b) where b is either

normal or abnormal data is calculated. Once these are evaluated, the model becomes ready.

When a new UDP packet arrives, the target label is found out using maximum a

posteriori (MAP), i.e., it is assigned the label for the class that has a maximum probability.

The class variable (b) has two results, like (yes and no). Different cases have multivariate
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Figure 3.4: Flow chart of IEEE 802.15. 4e/TSCH DDoS attack detection system

classification. Therefore, the highest probability of class b is calculated as:

b = argmax
b
P (b)

n

∏
i=1
P (ai/b) (3.3)

Where, b represents the parameter or value that maximizes the expression, P (b) denotes
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the probability of observing parameter b, ∏n
i=1 signifies the product operation over n terms,

P (ai/b) represents the conditional probability of observing data ai given the parameter b,

and argmax refers to the argument that maximizes the function or expression.

In essence, the equation seeks to find the parameter b that maximizes the joint probabil-

ity of observing all data points a1, a2, ..., an given b, thereby capturing the optimal parameter

value that best explains the observed data.

3.4 Experiments and results analysis

In order to illustrate the proposed approach, some assumptions are built for the IoT

network. Our approach assumes that the network consists of Tmotes Sky CC2420 IEEE

802.15.4-compatible radio chip [141], and it can be achieved in Contiki cooja [125] [126]

emulator environments. The edge device has more computing power and an extra hardware

component. To corroborate the intended approach of identifying DDoS attacks. Figure 3.3.

exhibited IEEE 802.15.4e (6TiSCH) network.

In experiment part we conduct three type of experiments as follows:

3.4.1 Non-attack circumstance:

In non-attack circumstances, the legitimate devices (DL) practice skywebsence web server

for gaining their services. During the experiment, we consider 8, 16, 32, and 64 IoT devices.

IoT network traffic is screened at 6BR, and traffic is forwarded toward the edge device (ED)

to implement ML solution. In ED, we employ the Naive Bayes ML approach for accurately

detecting DDoS attacks in IEEE 802.15.4e (6TiSCH) network.

3.4.2 DoS/ DDoS attack circumstance:

In attack circumstances, legitimate and malicious devices (DM) practice skywebsence web-

server for aveling IoT services. Different tools are used for injecting DDoS attacks (i.e.,

libcoap, hping, etc.). These tools generated traffic hinder the skywebsence web-server

activity by composing recurring CoAP connections. It exploits the default timeout scheme

of the skywebsence web-server. The assailant can be modified the default timeout scheme

by impelling the attack. DDoS attack injected using 2, 4, 6, and 8 malicious nodes are
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shown in Figure 3.5.

(A) (B) (C)

(D) (E) (F)

Figure 3.5: Snapshot of DDoS attack scenario in IEEE 802.15.4e (6TiSCH)

3.4.3 Execute experiment with proposed solution:

The intended approach autonomously operates on an edge device. It does not demand extra

computing storage capacity from resource-constrained devices in IEEE 802.15.4e (6TiSCH)

network. Hence, our approach is lightweight. The performance evaluation is based on

accuracy, precision, recall, and F-measure are given below:

The performance analysis evaluation is realized using a stratified percentage split

evaluation scheme, where 80% of total data is used for training and 20% for testing in ran-

domly selected. The classification performances are expressed by the following performance

parameters which describe the performance of binary classification over generated data set

and Kitsuni data set [127].

Accuracy : It is the ratio of the number of correct predictions to the total number of
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input samples.

Accuracy = TP + TN
TP + TN + FP + FN

(3.4)

Precision (PRC): Precision is about when it predicts yes, how often is it correct.

Precision = TP

TP + FP
(3.5)

Recall (RCL): It is referred to as the TPR or sensitivity

Recall = TP

TP + FN
(3.6)

F-measure (FM): It is the balance between the PRC and the RCL

F − measure = 2 ∗ RCL ∗ PRC
RCL + PRC

(3.7)

Where TP, TN, FP, FN are the number of true positives, true negatives, false positives,

and false negatives, respectively.

From experiments 3.4.1 and 3.4.2, we generate a massive amount of normal and attacked

IoT traffic. We conduct experiments 3.4.1 and 3.4.2 recursively. In experiment 3.4.3, we

implement the Naive Bayes method in IEEE 802.15. 4e/TSCH network. This ML approach

is efficiently identifying DDoS attacks using generated data and the kitsuni dataset [127].

Table 3.3: Evaluation Metrics for generated data and Kitsuni Mirai dataset

Dataset Used Generated Dataset Kitsuni Mirai Dataset
No. of IoT Node 16N 32N 64N 128N 16N 32N 64N 128N
Energy Usage of

IoT network (mJ)
48260 83040 87540 135000 46108 84520 85916 134080

Training Time
(Sec.)

23 29 35 40 39 50 84 102

Accuracy (%) 96.4% 97.6% 98% 98.2% 98% 98% 98.5% 99.3%

Table 3.3 presents the comparative study of the proposed edge-based ML approach

with generated data from Contiki cooja [125] and Kitsuni dataset [127]. This table clearly

shows energy usage of network, training time, and accuracy for generated data and kitsuni

dataset comparatively stable than other closely related work.
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Table 3.4 shows a comparative analysis with the recent (2016–2020) approaches. The

shortcomings of the current methods, which are perceived from Table 3.4, are as follows:

• Solutions are not based on resource constrain IEEE 802.15.4e (6TiSCH) network.

• Solutions planted extra overhead on IEEE 802.15.4e (6TiSCH) node.

Figure 3.6: Evaluation Metrics with various ML models

Based on the experimental outcomes, it is clear that the proposed approach is scalable

and gives comparable memory utilization ROM/RAM, Energy Usage, Response Time, and

Accuracy. The average memory utilization and energy usage measured by the intended

solution are 35834B/5378B and 85916 mJ . Table 3.4 also exhibits average accuracy and

response time are 98.7% and (24.2 − 68.9) Sec. respectively.

We use four distinct ML approach in the IEEE 802.15.4e (6TiSCH) shown in Figure

3.6. In each ML approach in our experimental setup, we run experiments recursively. Figure

3.6 shows our EBNB approach outperformed compared to other ML models.

The different DDoS attack datasets are compared with the proposed approach, as shown

in Figure 3.7. It shows that the proposed solution performs better with the combination of

Generated data and Kitsuni Mirai dataset [127] than other DDoS data set.
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Figure 3.7: Evaluation Metrics with different dataset

Table 3.4: Comparison of the proposed strategy with the closely related works

Refrences
Simulated

Environment

MEMU (in byte)

ROM/RAM

Energy Usage

(mJ)
Scalability

Accuracy

(%)

Response Time

(Sec.)

E. Hodo et al. (2016)[124] N/A 42317/8738 76290 N 97.4 % (33.8-98.5) Sec.

M. K. Putchala et al. (2017)[132] NA 54914/12587 96413 N 97% (54.8- 113.2) Sec.

C. Li et al. (2018)[133] Open Flow SDN N/A 116857 Y 98.60% (94.7-198) Sec.

A. Guerra et al. (2019)[134] N/A N/A 98082 N 98.80% (N/A)

M. Shafiq et al. (2020) [135] N/A 45672/9832 120580 N 96% (28.1-169.8) Sec.

Proposed Solution Contaki, EBNB 35834/5378 85916 Y 98.7% (24.2-68.9) Sec.

MEMU =MEMory Utilization, N/A = Not Applicable, EBNB= Edge Based Naive Bayes

3.5 Summary

In this chapter, we developed an edge-based ML enable approach that observes the IEEE

802.15.4e (6TiSCH) network traffic and shield against the DDoS attack. The naive bayes

method is analyzed generated DDoS attack traffic and well known DDoS attack dataset.

The performance of the proposed approach is assessed on the Contiki cooja IEEE 802.15.4e

environment and kitsuni data set. We also compare the proposed method with different

DDoS datasets. The comparative analysis with current solutions with closely related work is

also offered. Experimental outcomes show that the intended solution can identify the DDoS
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attacks. Hence, DDoS attacks are depreciated as the proposed solution identifies the DDoS

attack using the EBNB solution. Accuracy and response time outperformed compared to

other ML models. The results exhibit that the average accuracy and response time are

98.7% and (24.2 − 68.9) Sec. respectively, compared with the closely related work. In the

upcoming chapter, we present a strategy for identifying and mitigating LrDDoS attacks

within the IoT ecosystem. This methodology involves the utilization of a Packet Inspecting

Agent (PIA).

<<=8=;;
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“IoT security requires a proactive mindset; it is about antici-

pating threats before they materialize.”

- Philip Lieberman

4
C h a p t e r

LORD: LOw Rate DDoS Attack Detection
and Mitigation Using Lightweight Distributed

Packet Inspection Agent in IoT Ecosystem

4.1 Introduction

The IoT is a large ecosystem of devices and objects. Within this ecosystem, there are

various types of devices, including resource-constrained ones like sensors and actuators,

which utilise the IPv6 protocol [142]. These resource-constrained devices often function

within networks known as 6LoWPAN. These networks were developed explicitly to allow

low-power wireless communication and primarily make use of the IEEE 802.15.4 standard

in the 2.4-GHz frequency band [143]. However, 6LoWPAN networks connect directly to the

Internet, which means that assailants could get into these resource-constrained devices from

anywhere on the Internet.

IoT applications span numerous domains, including smart communities, residential

automation, and logistics, among others. These applications and services are extremely

valuable. As a result, ensuring the integrity, confidentiality, and availability of the data linked

with these services becomes the primary concern. The main threat to the 6LoWPAN network

is the DDoS attack. It is a type of Denial-of-service (DoS) attack [144] in which several

vulnerable devices with limited resources are simultaneously targeted. In the 6LoWPAN

network, the DDoS attacks are basically classified into two categories: low-rate DDoS and

high-rate DDoS (i.e.,LrDDoS and HrDDoS ) [145]. In [146], a detailed analysis of the various

security measures available to prevent DDoS assaults on wireless networks.
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The purpose of an HrDDoS attack is to deny the services in the 6LoWPAN network

to verified users. The assault is achieved by transferring plenty of traffic generated from a

large number of endangered nodes. It also utilises the network bandwidth of the 6LoWPAN

network. The main shortcoming of an HrDDoS attack is that it can be identified by

security solutions due to its traffic characteristics (i.e., high volume). As an outcome,

attackers are choosing the LrDDoS attack [147]. LrDDoS attacks are strenuous to recognise

because the assault traffic characteristics are similar to genuine traffic. Such assaults exploit

the 6LoWPAN protocol stack vulnerabilities rather than depleting resources and network

bandwidth. As the intruder sends malicious packets with a low rate, it does not get caught

by security solutions constructed based on network-level traffic characteristics. The goal of

the assault is to degrade the quality of service (QoS) encountered by an authorised end user

instead of desisting from the services given by the 6LoWPAN network to the verified users.

Several DDoS (mainly HrDDoS) attack detection approaches for the wireless network

have been proposed. Many of them are standard Anomaly Detection Systems (ADS). The

LrDDoS attacks are intelligent and have intermittent behavior. Detecting this type of attack

using ADS is strenuous. On the 6LoWAPAN network, a limited study is available on the

energy-efficient, lightweight solution to detect LrDDoS attacks. The LrDDoS attack starts

from endangered nodes in both internal and external networks of 6LoWPAN. Hence, the

supervision of both the internal and external network-level traffic of 6LoWPAN is crucial.

The endangered nodes are controlled by the intruder. The present security mechanisms

have a few gaps. These security solutions do not examine the real-time 6LoWPAN network

traffic for LrDDoS attack identification. The current security solutions are non-adaptive

and inadequate to identify internal LrDDoS. It also consumes more energy. To address

these shortcomings, a novel distributed intelligent agent-based defence method is designed

that identifies internal as well as external LrDDoS attacks in the 6LoWPAN network. The

significant features of this defence approach are:

1. Generation and analysis of attack and non-attack traffic: The proposed method

generates attack and non-attack traffic using Contiki cooja simulator. It also examines

network traffic from both authorized and compromised nodes for the LrDDoS attack

identification.

2. Distributed: The suggested method incorporates distributed lightweight energy efficient
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Packet Inspection Agent (PIA). In a distributed environment PIA interacts with each

other.

3. Adaptability: The proposed method is able to adapt to both external as well as internal

network traffic in the IoT ecosystem. Therefore LrDDoS attack can be detected, and

minimize the future occurrence of LrDDoS attack.

4. Low false alarm rate: The proposed method supervises the network level traffic

characteristics of LrDDoS attack. The solution identifies the attack using PIA. Hence,

both False Negative Rate (FNR) and False Positive Rate (FPR) are minimized.

The rest of the chapter is organized as follows. Section 4.2 contains background and

related work. Section 4.3 explains the proposed security approach. Section 4.4 presents

the experimental setup and implementation of LrDDoS attack in Contiki OS. Section 4.5

describes the analysis of the experimental results. Finally, in Section 4.6 we summarize the

chapter.

4.2 Background and Related Work

This section presents a systematic overview of attack in the IoT ecosystem. We also discuss

previous studies used for a secure IoT ecosystem.

4.2.1 IoT attack

LrDDoS attack:

LrDDoS attack aims to consume resources and bandwidth steadily [148]. This type of attack

creates adequately low rate traffic to the targeted device or application. The variations

among LrDDoS and LRDoS attack are shown in Figure 4.1.

In these attacks, spiteful network traffic differs in terms of time period (∆T ), Burst-

Rate (BR), and Burst-Width (BW ). It also reduces latency and throughput. LrDDoS and

LRDoS attacks can remarkably reduce the availability of devices or application due to packet

loss and disparity in RTT . The LrDDoS attack works differently from conventional DDoS

attacks. The LrDDoS primarily targets the vulnerabilities possible in the TCP congestion

control scheme. Due to this LrDDoS attack detection is a challenging and difficult task.
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Figure 4.1: The variations among LrDDoS and LRDoS attack [2]

Automatic repeat request (ARQ) typically occurs because of network congestion. The TCP

congestion control scheme comprises a couple of mechanisms as follows: 1) Duplicate ACK,

which shows that the earlier sent packet is not received at the end device. The sender resends

the missing packet using Additive-increase and Multiplicative-decrease (AIMD) mechanism.

A legitimate sender depreciates the congestion window and decreases the packet sending rate

that results in massive degradation of device and application availability. 2) Retransmission

timeout (RTO), targeting global minimum RTO limit. If the router bottleneck link is equal

to the minimum RTO limit then sender ceases sending packets due to the timeout limit.

When the sender resends the missing packet to the end receiver, the new burst appears at

sender side and the sender again enters into timeout state. Assailant recurs this activity to

reduce TCP throughput by LrDDoS attack traffic that is very much similar to legitimate

traffic.

4.2.2 Related Work

DDoS attacks are categorized into two classes on the basis of the protocol [149]. They

are application and network layer DDoS attacks. Application-layer DDoS attacks disrupts

authorized user’s services (i.e., memory, CPU, I/O bandwidth, database bandwidth, and

sockets) by consuming the enormous server resources. Network-level DDoS attacks occur

by utilizing various protocol packets (i.e., DNS, ICMP, UDP, and TCP). It consumes I/O

bandwidth of the network [149].

In [150], entropy metric-based approach was used to detect Low Rate DDoS attack.

Depending on the various applications, request, response, and acknowledgment packet size

are standardized. In the attack scenario, packet size varies for different attacks. This can
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be utilized to detect low rate DDoS attacks to some extent. However, the drawbacks of this

approach are totally depends on the packets analysis windows, restricted scalability, and

large attack detection time.

The empirically DDoS attack information metrics evaluation approach proposed by M.

Bhuyan et al. in [111] used different information entropy measures (i.e., Renyi’s entropy,

Shannon entropy, and Hartley entropy). They also apply Kullback–Leibler divergence

information distance measures to detect DDoS attack. Using stipulated metrics helps a

detailed analysis of legitimate and malicious attack traffic. However, the shortcoming of this

approach is that it requires extra computing power and resources. Therefore, this method

does not fit for IoT network.

H. Chen et al. [151] propose a hybrid solution that incorporates trust evaluation as well

as Hilbert-Huang Transformation to identify Low-Rate Denial of Service (LDoS) attack. This

hybrid approach executes an intrinsic mode function (IMF). If the Kolmogorov-Smirnov and

correlation coefficient value of the IMF component are higher than 0.4 and 0.3, respectively.

the values indicate a higher trust rate of IMF function that is utilized to detect LDoS

attack. However, the drawback of this hybrid solution is that it demands more resources

(i.e., memory, battery, etc.). So this type of approach not suitable for resource constraint

IoT ecosystem.

4.3 LrDDoS Detection and Mitigation Approach

In this section, we exhibit the proposed solution to detect and mitigate LrDDoS attack in

the IoT ecosystem. This ecosystem contains heterogeneous devices in case of computing and

storage capacity. Our Packet Inspecting Agent (PIA) module executes on the 6BR node and

intermediate nodes for packet analysis. It also performs a mitigation strategy to safeguard

LrDDoS attack.

4.3.1 Security Architecture

The architecture consists of four types of nodes (i.e., 6LoWPAN border-router node (N6BR),

Packet inspecting agent node (NPIA), Legitimate node (NL), and Spiteful node (NS)). Every

IoT enabled devices are connected and controlled by the 6BR node. The 6BR and PIA

nodes have extended computing as well as storage capacity that is used for the generating
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Total Variation Metric (TVM) and Packet Flow Count (PFC) of IoT network traffic. The

topology of the experimental setup under consideration in this research paper is presented

in Figure 4.3. The LrDDoS attack occurs in the IoT network (i.e., skywebsenceserver )

via 6BR. The distributed PIA node filters internal IoT network traffic. Hence, 6BR and

PIA are the best spots in the IoT network for the intended LrDDoS attack identification

approach. The illustrative layout of the proposed approach is exhibited in Figure 4.2.
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Figure 4.2: Illustrative layout of proposed approach.

4.3.2 Proposed Approach

The proposed approach incorporates three phases as follows: 1) LrDDoS attack detection

at N6BR, 2) LrDDoS attack detection at NPIA, and 3) Mitigation of DDoS attack. In the

first phase, input traffic is analyzed by packet arrival time. Our security approach identifies

the legitimate IoT ecosystem traffic from DDoS attack traffic by utilizing generalized total

variation metric (GTV). In the GTV metric calculation, two consecutive traffic samples,

and threshold ∆traff. are used. The ∆traff. is discovered by heuristics that depends on

LrDDoS attack variations as shown in Figure 4.1 and deployed circumstances.

72



4. Predicting QoE Using Parametric Multinomial Regression Model

Generalized total variation metric (MGTV )

Let ϕ1 and ϕ2 imply a couple of discrete distributions across k distinct random values. Then

the MGTVµ is represented with the following equation [152]:

MGTVµ(ϕ1,ϕ2)
= (

k

∑
i=1
(∣ϕ1i (Ax) − ϕ2i (Ay)∣)µ)

min(1, 1
µ
)

(4.1)

where µ > 0, Ax,Ay are the random unique samples and ϕ1, ϕ2 ∈ ∑ as explained previously.

When µ ≥ 1, the difference between the two distributions (ϕ1, ϕ2) is also called the Minkowski

distance [153].

MTVµ(ϕ1,ϕ2)
= (

k

∑
i=1
(∣(ϕ1)i (Ax) − (ϕ2)i (Ay)∣)µ)

1
µ

(4.2)

The total variation (TV) metric is a particular instance of GTV when µ = 1 and scaling

factor 1/2.

Total variation metric (MTV )

The total variation metric among P and Q is over k various random values. The following

equation illustrates the total variation metric [154].

MTV (ϕ1,ϕ2) =
1

2
(

k

∑
i=1
∣(ϕ1)i (Ax) − (ϕ2)i (Ay)∣) (4.3)

LrDDoS attack Detection algorithm at N6BR

In this mechanism, before utilizing MTV extracts packet properties (i.e., protocol, packet

arrival time, source and destination IP address) to obtain the variation metric between

distinct samples. We estimate the packet frequency and probability distribution by applying

the following equations:

Ii =
fi

∑K
i=1 fi

, and P (xi) =
xi

∑k
i=1 xi

(4.4)

Where fi and xi indicate the packet frequency and feature instances of the ith sample

within time period (k,K). The average packet inter-arrival time (APIAT ) is measured

from every incoming packet arrival time. With the help of those statistical information, we

improve the MGTV and achieve broad spacing within two distributions (i.e., Ax, and Ay),
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which is shown in Equations (4.5) and (4.6).

χ = ϕa ×APIAT

(ψ − PIi)
(4.5)

VM(ϕ1, ϕ2) = χ(
k

∑
i=1
(∣(ϕ1)i (Ax) − (ϕ2)i (Ay)∣)µ)

min(1, 1
µ
)

(4.6)

Here ϕa indicates the average probability distribution for packet characteristic and ψ is

the number of characteristics considered. The variation metric (VM) distinguishes LrDDoS

attack traffic and legitimate traffic. As per VM value of LrDDoS, attack traffic is larger

than legitimate IoT network traffic. The important steps of our LrDDoS attacks detection

approach is shown in Algorithm 4.1. We take ψ = 4, for four level packet characteristic

analysis during probability distributions.

Algorithm 4.1 LrDDoS Attack Detection at N6BR

Require: All external traffic (EXi) from (NEL), (NES)
Ensure: Detection of LrDDoS attack in IoT network.

Initialisation : External traffic probability P (EXi),
Sample time window for external traffic (ETS), where i = 1,2,3, ...n, (ETS) =
{ETs1,ETs2,ETs3, ...,ETsN}, and N is the total occurrences within sampling time
windows (ETS); average packet inter-arrival time (APIAT ); scaling SC,

1: External traffic (EX) received from (NEL) and (NES) within sampling time windows
(ETS).

2: Estimate packet intensity PIi, probability P (x) utilizing Equation (4.2) and further
calculate APIAT within sampling time windows (ETS).

3: Estimate the individual sample on distribution ϕ1 and ϕ2

ϕ1 (Ax) =
l

∑
m=0

MGTVµϕm (Ax) (4.7)

ϕ2 (Ay) =
l+1
∑
m=l

MGTVµϕk (Ay) (4.8)

4: if (A == 0) for sampling time windows (ETS) then
5: measure total variation (TV ): Using Equations (4.5) and (4.6).
6: else if (Ar == Av) then
7: Estimate vertical variation applying VMϕ1ϕ2 (Equations (4.5) and (4.6))
8: else if (Ar == Ah) then
9: Estimate horizontal variation applying VMϕ1ϕ2 (Equations (4.5) and (4.6))

10: end if
11: Compare against variation measure threshold, VMϕ1ϕ2 ≥ (∆traff.) then LrDDoS attack

alarm arise and initiate the algorithm 4.2
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In the second phase of LrDDoS attack detection, internal network traffics (IX) are

examined at the PIA. The DDoS attack traffic is obtained using network sniffer [155]. The

network traffic is collected upto sample time windows (TS) and produced the Packet Flow

Behavior Graph (GPFB). It also measures the packet count associated with the various IP

address flows.

Algorithm 4.2 LrDDoS attack detection using NPIA

Input: Internal Traffic (IX) from (NIL), (NIS); threshold (δtraff.) and (∆ipcount)
Output: Detection of LrDDoS attack in IoT network.

Initialisation : Packet flow behavior graph (GPFBi),
Sample time window (TS), where i = 1, 2, 3, ...n, (TS) = {Ts1, Ts2, Ts3, ..., TsN}, and N is
the total occurrences within sampling time windows (TS).

1: Internal traffic (IX) received from (NIL) and (NIS) within sampling time windows
(TS).

2: Generate 3-hop packet flow behavior graph (GPFBi).
3: Keep track on frequency flow (FFi) of IP address (IPi)
4: if (IX ≥ δtraff. && FFi ≥∆ipcount)

for 2 successive sampling time windows (TS) then
5: LrDDoS attack detected and initiate Algorithm 4.3
6: else
7: Normal internal traffic (IX).
8: end if

The internal network traffic (IX) analysis is based on the IP address with the corre-

sponding IP flow. The IP address and frequency flow are denoted as IP and FFi, respectively.

FFi measures differently for LrDDoS attack traffic compared to legitimate traffic. The

threshold (∆traff.) and (∆ipcount) values of the IP address with the corresponding IP flow

are estimated for each attack instance. The threshold values are determined by utilizing

heuristics because it is based on LrDDoS attack scaling and deployed network scenario. It

is observed that the (∆traff.) and (∆ipcount) values obtained at the separate sample time

(TS) intervals show minor variations. From experiments and observations, we can determine

the threshold values that covere all variations of LrDDoS attack traffic. The functioning of

the LrDDoS attack identification process is represented in Algorithm 4.2.

The last phase of the proposed approach is the mitigation phase. This phase takes the

output from phase one and two (i.e., IP address, protocol ) and acquaints this information

to other PIA and N6BR nodes. Using this information other IoT node blocks the IP address

with the corresponding protocol. The detailed steps of the mitigation phase are given in
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Algorithm 4.3.

Algorithm 4.3 Mitigation Algorithm for LrDDoS
Input: IPi Address of the attack node, and attacking node; Protocol.
Output: Block traffic flow of attacking node with corresponding protocol

Initialisation : 6BR is a 6LoWPAN Border Router,
INFOGET indicates LrDDoS attack detection alarm generate from PIA or 6BR.

1: Identify the attacking node IP address and protocol from algorithm 4.1 and algorithm
4.2

2: if (LrDDoS = TRUE && INFOGET ← 6BR) then
3: Generate traffic flow blocking rule

XBlock(Attacking node IP, Corresponding protocol, Block ).
4: else
5: IXBlock(Attacking node IP, Corresponding protocol,

Block ).
6: end if
7: Set this blocking rule to 6BR and other PIA.

4.4 Experimental setup and implementation

Figure 4.3. presents the experimental setup adopted for implementation, in which Contiki

OS, Cooja simulator, Wireshark, and NPIA are used. The experimental setup and design

incorporate two circumstances: A) non-attack circumstance and B) LrDDoS attack cir-

cumstance. The comprehensive explanation of individual experiments are explained as

follows.

Attacker

Clients

WWW

Interface

IoT DevicesCommunication Network

Packet Inspecting Agent

Figure 4.3: Experimental setup adopted for IoT implementation
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4.4.1 Non-attack circumstance

In non-attack circumstances, the end user requests for IoT service (i.e., temperature,

humidity) using the skywebsence web server. The experiment is carried out with 8, 16,

32, and 64 IoT nodes as shown in Figure 4.4. LrDDoS attack network traffic is filtered at

NPIA (i.e., N6BR and IDS capability node). In NPIA, we employ packet capturing tools

like wireshark and keep the records of Packet Flow Behavior Graph (GPFB). The average

GPFB at non-attack condition is shown in Table 4.1.

(A) (B) (C)

Figure 4.4: Snapshot of non-attack scenario using the skywebsence web server

Table 4.1: Packet Flow Behavior Graph (GPFB).

Scenario Tools/Simulator
GPFB (30 sec) Distinct No. of Nodes
8 N 16 N 32 N 64 N

Non-Attack Contiki Cooja 13320 15549 15553 15506

LrDDoS
Attack

TorsHammer 262 276 290 294
Longcat 292 308 320 326

Contiki Cooja 277 292 305 310

4.4.2 LrDDoS attack circumstance

In the LrDDoS attack circumstance, legitimate and spiteful nodes are considered. This

node demands IoT services through the skywebsence web-server. The spiteful nodes are

originating LrDDoS attacks. In our experiments, we consider 2, 4, 6, and 8 nodes as spiteful

nodes, as shown in Figure 4.5. This node descends the IoT services by forming recurring

Constrained Application Protocol (CoAP) connections with the skywebsence web-server.

The spiteful nodes also alter the timeout rate of the skywebsence web-server. As per our
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experiments, we determined 3000 Milliseconds as a time out value. The node requests for

IoT service every 3000 Milliseconds.

(A) (B) (C)

(D) (E) (F)

Figure 4.5: Snapshot of LrDDoS attack scenario using the skywebsence web server

4.5 Experimental Outcomes and Analysis

To examine the effectiveness of the intended security approach, we experiment and install

our security approach in simulated as well as real-world circumstances. We consider CAIDA

[156], MIT Laboratory [157] dataset for LrDDoS attack traffic and legitimate traffic is also

used for the evaluation. In this section, we also exhibit and explain the results. We conclude

by a comparative study of the proposed security method with the existing security solution

presented in Table 4.2.

The security solution analysis incorporates three measures as follows: 1) probability

distribution (PD), 2) variation metric (VM), and 3) frequency-rate variation of network

traffic. The probability distribution measure of spiteful and legitimate traffics [158] [157]

Illustrated in Figure 4.6. In Contiki cooja scenarios, traffic that arrives at N6BR and NPIA
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Table 4.2: The comparative study of the intended security solution with the existing security
methods.

Method Applied LW AD
Response time (RT) Average FNR (%) Average FPR (%)

CIADIA/
MIT

Generated
Data

CIADIA/
MIT

Generated
Data

CIADIA/
MIT

Generated
Data

Du et al. (2015) NA NA NA Medium NA 7.9 NA 9.25

H. Bhuyan et al. (2016) [111] NA NA Medium NA NA NA 4.89 NA

Wu et al. (2017) NA NA NA Fast NA 18.64 NA 7.45

Chen et al. (2018) Yes NA (26-118) Sec. NA 4.84 NA NA NA
Proposed Method Yes Yes (1-3.47) Sec. (1-3) Sec. 5.15 3.82 5.41 5.12

LW=Light weight, AD = Adaptability, RT = Response time, NA= Not Available

receive both spiteful and legitimate traffics. Hence, we have measured the PD of LrDDoS

traffic and legitimate traffics.

Figure 4.6: Probability distribution of LrDDoS attack and non-attack data

The variation metric is used to differentiate between LrDDoS attack traffic and legitimate

traffic. In variation metric, we adopted µ values within 1 and 4 including for TS . The VM

estimate for CAIDA [158], MIT Lincoln Laboratory [157] dataset are exhibited in Figures

4.7, 4.8, and 4.9 respectively. They show the spacing and VM threshold (∆traff.) among

spiteful and legitimate traffic. The spacing value and ∆traff. are recorded as 0.96 and 0.53,

respectively. Figure 4.9 shows that VM can clearly differentiate the LrDDoS attack traffic

from substantial traffic.

We also measure frequency-rate variation to distinguish LrDDoS traffic from legitimate

traffic. In the attack scenario, assailant practice arbitrary delays the packet flow. The traffic

flows are consistent during attack situation. However, packet flow consists of a constant delay
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Figure 4.7: Variation Metric: a) Benchmark data-set (CAIDA and MIT data traffic)

Figure 4.8: Generated data-set using Contiki cooja

Threshold

Figure 4.9: Threshold analysis
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within two periods. To obtain LrDDoS attack packet flow with IP address and the frequency

variation rate, we examined delays (0 to 0.36) Seconds towards a target. Like MIT, and

CAIDA datasets, we estimate frequency-rate variation with the generality component µ = 1

to 4 for the sampled traffic window TS . The Frequency-rate variation threshold (δtraff.)

and IP-Address count (∆ipcount) are recorded as 0.68 and 310, respectively. Figures 4.10,

4.11, and 4.12 show the (δtraff.) calculated spacing and (δtraff.) in LrDDoS and authentic

traffic. The threshold value 0.69 and spacing rate S = 0.25 are utilized to classify legitimate

traffic and LrDDoS traffic.

Figure 4.10: Frequency-rate variation: a) Benchmark data-set (CAIDA and MIT data
traffic)

Figure 4.11: Frequency-rate variation: b) Generated data-set using Contiki cooja

The comparative study of the intended security solution with the existing security
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Threshold

Figure 4.12: Frequency-rate variation: c)Threshold analysis

methods are presented in Table 4.2. An analysis is achieved concerning LrDDoS attack,

False Negative Rate (FNR), False Positive Rate (FPR), and Response Time (RT). The FNR

and FPR are measured using the following equations (4.9) and (4.10).

FNR = FN

FN + TP
(4.9)

and

FPR = FP

FP + TN
(4.10)

where ,

FP = Legitimate activity wrongly classified.

TN = Legitimate activity recognized accurately.

FN = Spiteful activity wrongly classified.

TP = Spiteful activity recognized accurately

The performance study, the experiment analysis is repeated several times with various

LrDDoS configuration. The comparative outline of the experimental outcomes are presented

in Table 4.2. The small variation in the GPFB is noted for a high number of nodes. Hence,

the experimental results for up to 64 IoT nodes are presented in this paper. To verify the

lightweight and adaptive feature (AF), we execute each experiment with expanding number

(8 to 256) of nodes. During each trial, we calculate FNR and FPR values. The overall

FNR and FPR obtained by the proposed defense method are 5.15%, and 5.41% respectively.

It also identifies the LrDDoS attack traffic in (1-3.47) seconds. It is concluded that the
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intended method identifies internal and external LrDDoS attack by improved FNR, FPR,

AF, and enhanced RT.

4.6 Summary

In this chapter, we develop a defense method which observes diverse types of LrDDoS traffic

of the IoT ecosystem and propose LrDDoS attack detection and mitigation method. The

approach is based on the total variation metric, packet flow behavior graph, and IP address

frequency. The performance of our approach has been assessed using various benchmark

dataset (CAIDA and MIT DDoS dataset) as well as attack traffic by using verticle and

horizontal scaling in Contiki cooja simulator environment. Our approach detects the LrDDoS

attack effectively with minimum FNR and FPR. It additionally supports lightweight and

adaptability property. The experimental outcomes exhibit that the average FNR and FPR

on the benchmark and generated data set are 5.15%, 3.82%, 5.41%, and 5.12% respectively,

which are comparable with the state of the art schemes. The next chapter of the thesis will

provide a comprehensive analysis of MrDDoS attacks in the IoT environment, including

both LrDDoS and HrDDoS attacks. In the course of our evaluation, we have conducted

exhaustive evaluations of the accuracy of attack detection, network and system parameters.

<<=8=;;
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“The marriage of machine learning and IoT security empow-

ers devices to not only follow rules but to learn and adapt,

staying ahead of cyber threats.”

- Jeff Dean 5
C h a p t e r

OPTIMIST: Lightweight and Transparent
IDS with Optimum Placement Strategy to
Mitigate Mixed-rate DDoS Attacks in IoT

Networks

5.1 Introduction

In the last few years, various sectors like smart health monitoring systems, smart vehicles,

smart home appliances, and smart cities have witnessed steady increases in the usages of IoT

[159]. IoT devices are battery-operated, energy-constrained nodes with limited computation

and storage capacities. IoT devices generate data by sensing the environment and send the

generated data to a remote server through the Internet for further analysis/processing. IoT

devices can be queried through the Internet for their generated data by external entities,

and the obtained data is used for various critical/non-critical applications. Therefore,

maintaining the authenticity, integrity, confidentiality, and availability of the generated data

is very crucial, and the violation of any of them may incur serious consequences. As the

IoT nodes are externally accessible through the Internet, any security vulnerability of the

IoT devices can be exploited. IoT devices are manufactured by various vendors, which can

purposefully insert some backdoor vulnerabilities to launch attacks. For example, an IoT

device can be compromised and turned into a bot by an external malicious entity. That

bot can be used to launch various kinds of attacks by generating malicious traffic flows.

Among these malicious flows, DoS and DDoS attacks are very harmful to IoT systems

as these attacks disrupt the availability of systems. Therefore, internal traffic flows also
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need to be monitored/analyzed by IDS systems [160]. DDoS attacks can be classified into

high-rate DDoS (HrDDoS), and low rate DDoS (LrDDoS) attacks. HrDDoS aims to disrupt

the IoT system completely, whereas LrDDoS aims to partially degrade the IoT system

performance, making LrDDoS detection more challenging compared to HrDDoS. Many

existing solutions are there to detect HrDDoS, whereas very few solutions are proposed for

LrDDoS. To the best of our efforts, we could not find out existing work which is designed to

detect mixed-rate DDoS (MrDDoS) attacks (HrDDoS and LrDDoS). Motivated by this fact,

this paper proposes the IDS solution OPTIMIST, which can detect and mitigate MrDDoS

attacks. The OPTIMIST IDS module is based on a LSTM model, which is trained using

publicly available as well as in-house generated datasets. However, the distribution of the

flows of these datasets exhibits some network-specific bias which is used to generate the

datasets. As a result, though the trained model shows high accuracy when tested with

the flows of the same dataset, the model’s performance fails to meet the expectation when

run in network scenarios whose flow distributions are different from the training datasets.

Motivated by the above facts, a novel training method is proposed for OPTIMIST where

WGAN-generated artificial flows from the datasets are mixed with the original flows to

reduce the biases of the datasets.

One crucial design challenge for any IoT solution is the IDS placement/deployment

problem, i.e., where to run an IDS solution. Few IDS solutions are centralized in nature

and run on the border router, through which all external Internet traffic flows are passed.

Few existing works have proposed to run IDS on all IoT devices, which is redundant and

reduces network lifetime. An alternative hybrid solution is to run IDS in border router

along with few selected nodes, where each node is responsible for monitoring a small

subset of the network. In this case, the design problem is to select an optimum number

of nodes that can balance network coverage and energy. Few cluster-based solutions have

been proposed where the network is divided into clusters, and cluster heads run IDS. The

monitored nodes are queried by cluster heads for various network statistics, and the collected

statistics are either analyzed locally in cluster heads or reported to sink. This query-response

scheme imposes network overhead resulting in energy depletion of the nodes. Moreover,

the presence of IDS nodes are exposed in the network and the malicious flows generated

by compromised IoT nodes can easily avoid the IDS nodes. In transparent IDS solutions,
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IDS nodes transparently sniff/eavesdrop on flows surrounding them without making their

presence visible to other nodes. Though there are very few existing works on transparent IDS

solutions, their placement strategies are non-optimal. Motivated by the above discussion,

this paper proposes an optimal IDS placement strategy for a transparent IDS solution that

can balance network coverage and energy overhead.

The above discussions are the motivations of the proposed work, namely, A lightweight

and transparent IDS with optimum placement strategy to mitigate mixed-rate DDoS attack

in IoT system (OPTIMIST). The contributions of our work are summarized as given below:

• Unlike existing works which focus either on high-rate or low-rate DDoS, this work

provides a solution for mixed-rate DDoS attack detection, which can detect and

mitigate both high and low-rate DDoS attacks.

• A novel training method is proposed to build the IDS solution. WGAN is used to

generate artificial flows from public datasets as well as in-house generated dataset to

reduce the distribution bias of the datasets. The WGAN-generated flows are mixed

with the public and in-house generated training datasets and used for LSTM model

training

• A novel hybrid IDS placement algorithm is proposed, which runs transparently without

incurring any network overhead. The IDS node selection is optimized, which balances

energy overhead and IDS coverage. The problem is formulated as the weighted

minimum vertex cover problem of a K -uniform hypergraph, and an approximation

solution is provided.

• Extensive experiments on Contiki and FIT IoT-LAB testbed are done for competitive

performance analysis of the proposed scheme. The results show that our proposed

scheme is most effective in detecting the attacks while consuming minimum energy

compared with existing benchmark protocols.

The rest of the chapter is organized as follows. Section 5.2 provides some basic

background knowledge about IoT, and attacks on IoT. Existing literature surveys on IDS

placement and IDS solutions are presented in Section 5.3. In Section 5.4, IDS placement

problem formulation and the proposed solution are described in details. Section 5.5 provides
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a detailed description on the proposed IDS solution. Performance evaluation of the proposed

work is given in Section 5.6 with detailed experimentation setup and competitive result

analysis. Finally, in Section 5.7 we summarize the chapter.

5.2 Background

This section discusses a few important aspects of IoT and IoT security. IoT as low power

lossy network (LLN) is introduced in Section 5.2.1. The Section 6.2.3 discusses about DDoS

attacks on IoT networks.

5.2.1 IoT as low power lossy network

IoT are networks of resource-constrained nodes which sense various environment parameters

and report generated data to sink(s). These nodes are connected to the Internet through a

border router (BR/6BR). The underlying network is of low power lossy network (LLN) type

comprising interconnected nodes of constrained energy (powered by battery), memory, and

computing capacity. Nodes are interconnected by lossy wireless links of short communication

ranges and low data rates. The IPv6 Routing Protocol for LLNs (RPL), is standardized

for LLN as a proactive distance-vector routing protocol. The routes are formed from 6BR

to each node as destination oriented directed acyclic graph (DODAG). Depending on the

resource constrain, a node may store (storing mode) or may not store (non-storing mode)

routing information locally. In non-storing mode, only 6BR has the entire DODAG topology

information, and all messages are forwarded to 6BR to get routed to destinations. As a

result, 6BR needs to do source routing to forward a message toward a destination.

5.2.2 Attacks on IoT

IoT networks are prone to various attacks due to the end-node accessibility through the

Internet, the lossy nature of networks, and resource constraints of the nodes. A few well-

known attacks are rank attacks, black-hole attacks, sink-hole attacks, version number attacks,

buffer reservation attacks, bot attacks, DoS attacks, and DDoS attacks. The nature of these

attacks varies vastly with the varying objectives of the attacks, like interrupting network

traffic, exhausting network resources, disrupting the topology, etc. This paper is focused on
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DDoS attacks, which can be broadly classified into two categories, as given below.

High Rate DDoS attack (HrDDoS)

In the HrDDoS, the assailants flood the network with malicious flows to interrupt the

availability of IoT services. The interruption is created by exhausting resources like channel

bandwidth, router buffer, CPU, etc. Attacks can be of transport or network layer flooding

[161, 162] such as user datagram protocol (UDP) flooding, transmission control protocol

(TCP) SYN flooding, Internet control message protocol (ICMP) flooding, etc.

Low-rate DDoS Attacks (LrDDoS)

A LrDDoS attack is difficult to identify because of its low-rate and intermittent traffic

behavior, which is quite similar to the legitimate traffic [3]. These attacks intend to increase

latency and decrease the network’s throughput to some extent for genuine users rather than

disrupting the IoT services entirely. A LrDDoS attack model can be described by three

parameters which are the off-time phase, on-time phase, and time interval. In an off-time

phase, no attack packet is sent. During an on-time phase, the assailant sends malignant

messages. The time interval ∆ phase maintains time among two successive attack packet

generations. Figure 5.1 shows the LrDDoS attack model with the three parameters.
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Figure 5.1: LrDDoS attack model adapted from [3]

89



5.3. Related Work

Mixed-rate DDoS Attacks (MrDDoS)

MrDDoS is the type of attacks which includes both the HrDDoS and LrDDoS type of

attacks.

5.3 Related Work

This section is organized into two parts. Section 5.3.1 reviews existing works on IDS

placement while in Section 5.3.2, various existing IDS solutions are discussed.

5.3.1 IDS placement

Thakkar et al. [163], and Bruno et al. [160] have surveyed various IDS placement strategies

and have categorized them into groups of centralized, distributed, and hybrid placement

strategies. In a centralized placement strategy, an IDS instance is run in one dedicated high-

resource node like a border router (6BR). The works [164, 165] are examples of centralized

placement strategy. Though centralized placement can monitor all external traffic, some

malicious internal flows generated by compromised LLN devices may remain undetected. In

distributed placement strategy, lightweight (like rule or signature-based) IDS instances are

run in all the LLN nodes. The work [113] is an example of distributed placement strategy.

Though this strategy enables host-based IDS (HIDS) [166, 167], running IDS all the time

on all nodes is redundant, draining energy from low-resourced nodes rapidly. The hybrid

placement strategy combines both the benefits of centralized and distributed strategies. In

this strategy, a centralized entity monitors external traffic, while a few of the LLN nodes

are selected as IDS nodes to perform the role of watchdogs by monitoring the behavior of a

subset of the nodes. The works [112, 168] are examples of hybrid placement strategies. As

a subset of LLN nodes run IDS, network-based IDS (NIDS) [166] is applicable.

The task of monitoring can be performed in transparent or non-transparent mode. In

non-transparent mode [164, 165, 112], the IDS nodes gather network status by querying

or probing monitored nodes making malicious nodes aware of the presence of IDS nodes

in a network. Additionally, these extra messages increase network congestion and energy

overhead. In transparent mode [113, 167, 168], IDS nodes can sniff/eavesdrop packets

to gather network information without adding any network overhead while keeping their
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presence in the network transparent to malicious nodes. In a transparent IDS placement

scheme, there is a trade-off between IDS coverage and energy overhead. On the one hand,

if energy overhead is reduced by selecting a small number of IDS nodes, the IDS system

is unable to eavesdrop on all traffic flows, resulting in poor IDS coverage. On the other

hand, if IDS coverage is improved by increasing IDS running nodes, it decreases network

lifetime. Consequently, optimization techniques are needed to balance IDS coverage and

energy overhead.

No existing work was found which provides an optimum IDS placement solution for

transparent monitoring mode. Accordingly, in this work, we propose a novel IDS placement

algorithm for transparent monitoring, which is able to provide an optimum balance between

IDS coverage and energy overhead based on system requirements.

5.3.2 IDS solutions

A number of IDS techniques are available in the literature which can be broadly classified

into two categories as signature-based and anomaly-based [160] [33].

Signature-based IDS [160]

In this strategy, IDS is trained to learn behavior patterns or signatures of previously known

attack flows. The trained model is then used to classify observed behaviors of network flows.

However, signature-based IDS cannot detect unknown (zero-day) attacks or modified/evolved

known attacks since their signatures are unknown to the IDS.

Few examples of signature-based IDS solutions for HrDDOS are given next. Li et al.

[169] proposed a collaborative blockchain-enabled IDS framework for the IoT ecosystem.

This approach incrementally builds and updates the signature database in the IoT network.

It is also verifiable without the requirement of a trusted third party. Yadav et al. [170]

proposed an automated machine learning (ML) model for IoT-enabled smart energy grids.

Results are presented using an IoT dataset, showing the potential of the proposed approach

in smart energy infrastructures.

Following are few examples of signature-based IDS solutions for LrDDoS. Perez-Diaz et

al. [171] proposed a modular architecture that can detect and mitigate LrDDoS attacks in

SDN-enabled networks. The IDS module is trained with six distinct types of ML models.
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Even though it is hard to find LrDDoS attacks, the study shows that the suggested approach

has a 95% detection rate. Liu et al. [172] proposed a LrDDoS attack detection method for

wireless networks. In this method, the authors built a multidimensional sketch structure

based on network traffic characteristics. This approach also preserves the baseline stability

of network traffics and correctly differentiates LrDDoS attack traffics from normal network

traffics.

Anomaly-based IDS [33]

In this strategy, an IDS solution first profiles the expected behavior of a given system

and then tries to detect any deviant behaviors from the learned behavior profile. Though

anomaly-based IDS can detect zero-day attacks, it usually suffers from a high false-positive

rate as it is difficult to learn all possible normal behaviors of a given system in a finite time.

Few works have proposed anomaly-based IDS solutions for HrDDoS attacks. For

example, Tabassum et al. [173] proposed a privacy-preserving IDS based on distributed

incremental learning. To reduce the computation costs, the work has used a pre-processing

method to eradicate redundant features. The work used non-negativity constraint-based

autoencoders supporting distributed IDS. This approach minimizes and allocates the loads

among IoT devices. Hussain et al. [174] proposed a two-fold approach to detect DDoS

attacks. First, the premature attack activities are scanned, and then the ML model is

trained for DDoS attack detection in the IoT ecosystem. The model is trained with distinct

datasets to identify HrDDoS assaults exclusively. Abdelmoumin et al. [175] proposed

a distributed IDS module that incorporates principle component analysis and 1-SVM

AML-IDS. They enhanced 1-SVM AML and PCA models using ensemble learning and

hyper-parameter tuning to identify HrDDoS attacks. The authors trained and tested these

improved models on malicious and benign IoT network flows. Saharkhizan et al. [176]

proposed an IDS comprising multiple LSTM models for attack detection on IoT systems.

The model reportedly reached 99.91% accuracy. Li et al. [177] proposed a solution using

LSTM and Bayes (LSTM-BA) models. DDoS attack detections by LSTM model can be of

high or low confidence. Low confidence data is further analyzed using the Bayes model to

further enhance the accuracy. However, the proposed LSTM-BA model is not suitable for

resource-constrained devices.
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Few works used anomaly-based IDS for LrDDoS attack mitigation. For example,

Garcia. et al. [178] proposed an AI-based method for detecting LrDDoS attacks. This

method continuously observes network traffic and organizes packets into conversation flows.

The LrDDoS security model integrates deep learning and clustering analysis to enhance

LrDDoS attack detection accuracy. Liu et al. [179] designed a LrDDoS attack detection

technique. This technique is a combination of the self-adjusting SVM algorithm and APSO

optimization. The self-adjusting SVM technique improves the generalization capabilities.

Similarly, the APSO algorithm was employed to enhance the attack’s adaptability. The

outcomes demonstrated outstanding detection performance and accuracy, varying between

92.36% and 96.65%.

None of the above-mentioned works has trained their models with GAN/WGAN

generated artificial traffic flows to reduce the bias of the trained models. In this work,

we have generated artificial flows from the training datasets with WGAN and trained the

LSTM model to make the OPTIMIST IDS more robust compared to existing solutions.

None of the existing work has proposed an IDS solution that can detect both HrDDoS and

LrDDoS types of attacks. Accordingly, the proposed OPTIMIST IDS is trained with both

HrDDoS and LrDDoS to detect and mitigate both types of attacks.

5.4 Proposed OPTIMIST IDS placement

This section is divided into two parts. The problem formulation for IoT IDS placement is

described in Section 5.4.1 and the solution for IoT IDS placement is proposed in Section

5.4.2.

5.4.1 IDS placement problem formulation

OPTIMIST proposes a transparent IDS placement strategy as it reduces network and

energy overheads compared to non-transparent placement strategies. If the presence and

locations of IDS nodes are unknown to the other IoT nodes, the IDS can be termed as

transparent. In transparent IDS system, the IDS running nodes monitor and process

surrounding traffic flows only by eavesdropping, and do not query the monitored nodes

about their traffic/system status. To quantify transparent IDS coverage, we define the term

K-hop IDS coverage scheme, which guarantees to monitor any flow of length K-hops or
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more. However, in a K-hop IDS coverage scheme, few of the flows of length less than K

may (not necessarily) remain unmonitored. There can be two solutions for an IDS system

to eavesdrop or transparently monitor (without querying monitored nodes) packets in an

IoT network.

1. IDS nodes can monitor any ongoing flow in promiscuous mode within its one-hop

neighborhood.

2. IDS nodes can eavesdrop a K -hop flow if it is an intermediate node in the flow path.

To reduce the total network energy consumption for a distributed IDS solution, number

of IDS running nodes need to be minimized without compromising the K-hop coverage

property of the IDS system where K is predetermined by the network administrator. The

value of K is a trade-off between energy and security. Larger values of K require less

number of IDS running nodes which saves overall network energy but come with a cost

of few unmonitored flows of lengths upto K − 1. However, periodical selection of different

sets of IDS nodes minimizes the unmonitored flow problem. To achieve K-hop coverage

property, an IDS node needs to placed in every possible paths of degree K. An optimum

number of IDS nodes can be selected by finding the K path vertex cover of the IoT network

topology graph. In case of promiscuous mode eavesdropping, in addition with the packets

for which an IDS node is an intermediate/destination node, the IDS node also needs to

capture and process all the on-going transmissions within its communication range. The

above reason cause fast energy depletion of overall energy of an IoT network [112, 180].

To reduce energy consumption, the second IDS solution is preferable where an IDS node

processes only the packets for which it is an intermediate/destination node. The flows of an

IoT network follow the routes established by RPL DODAG. If non-storing mode is used

for the DODAG RPL routing, a node can eavesdrop all the packets which are generated

from or destined for a node within its DODAG sub-tree. However, in non-storing mode,

packets of most flows take non-optimal paths via root to reach destinations, which incurs

delay and consumes network energy unnecessarily. If the storing mode of RPL routing is

used, though the flow paths are optimal, an IDS node can eavesdrop a flow only if it is an

intermediate node in the path between source and destination. An example with 3-hop

IDS placement for DODAG-based IDS placement scheme is illustrated in Figure 5.2. For
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non-storing mode, the flow from source S to destination D is passed through the IDS node,

whereas in storing mode, the same flow gets unmonitored. To guarantee that all flows of

length greater than or equal to K-hop are monitored by an optimum number of IDS nodes,

K path vertex cover solution on the DODAG can be used. As a fresh IDS selection happens

each time DODAG is re-created, the problem of undetected flows of K-hop IDS coverage is

minimized. However, while selecting IDS nodes, the residual energy of the nodes also needs

to be considered. Accordingly, the problem is formulated into a weighted minimum vertex

cover problem of a K-uniform hypergraph as given next.

Figure 5.2: An example with 3-hop IDS placement for DODAG based scheme with non-
storing and storing mode

An undirected hypergraph H consists of a vertex set V, and a collection of non-empty

subsets of V, namely hyperedges, forming the set E. In hypergraph, a hyperedge can connect

an arbitrary number of vertices. A hypergraph is called K-uniform, if ∣Em∣ =K, ∀Em ∈ E.

Consider the DODAG as an undirected tree. For each node/vertex of the undirected tree,

create a hyperedge for each of the K-hop length paths from that node. Consequently,

each created hyperedge is a set of K vertices. The set of all such hyperedges E, along

with the set of vertices V form the K-uniform hypergraph H. The algorithm for creating

K-uniform hypergraph from an undirected tree graph is given in Algorithm 5.1. If an IoT

node i has remaining energy Ei, a weight 1/Ei is assigned to that corresponding vertex

Vi of the hypergraph H. Let the function ω(Vi) gives the assigned weight of Vi. The

minimum weight vertex cover solution V C of H contains the minimum number of vertices

of H such that Em ∩ S ≠ ∅, ∀Em ∈ E. In other words, V C contains at least one vertex from

each of the K-hop paths from all vertices of the undirected tree, and the total remaining
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energy of the selected nodes are maximized. Finding vertex cover of a graph is known to be

NP-Hard. However, an approximation solution of a K-uniform hypergraph can be found

with K approximation ratio by solving the problem as a binary (integer) program, which is

described next.

Algorithm 5.1 K-uniform hypergraph creation from an undirected tree
Input: Undirected tree graph G = {V,E}, K
Output: K-uniform hypergraph H = {V,E}

1: V ← V,E ← ∅
2: for all Vi ∈ V do
3: declare QUEUE Q

{//Create initial 1 hop paths from Vi}
4: for all Vj adjacent to Vi sysmodel do
5: declare STACK S
6: S.PUSH(Vi)
7: S.PUSH(Vj)
8: Q.ENQUEUE(S)
9: end for

{//Extend the initial 1 hop paths from Vi}
10: while !Q.EMPTY() do
11: STACK TS = Q.DEQUEUE()

{//If a path is of K-hop, insert into the hyperedge set}
12: if TS.SIZE == K then
13: declare SET hE
14: while !TS.EMPTY() do
15: Vt = TS.POP()
16: hE.INSERT(Vt)
17: end while
18: E.INSERT(hE)
19: continue
20: end if

{//Keep growing the paths}
{//Get the last added node of a path}

21: Vl = TS.POP()
{//Get the predecessor node of the last added node}

22: Vl2 = TS.TOP()
23: for all Vm adjacent to Vl do
24: if Vm != Vl2 then
25: declare STACK SC
26: SC ← TS
27: SC.PUSH(Vl)
28: SC.PUSH(Vm)
29: Q.ENQUEUE(SC)
30: end if
31: end for
32: end while
33: end for

Let x(Vi) ∈ {0,1} denote the decision variable for vertex whether to include it in the

solution set V C of the vertex cover problem of the hypergraph H defined above. Then the

objective of the minimum weight vertex cover solution is given below.

96



Formulation 5.1:

Minimize ∑
Vi∈V
(ω(Vi) ⋅ x(Vi))

Subject to the constraints:

1. ∑
Vj∈Em

x(Vj) ≥ 1, ∀Em ∈ E

2. x(Vi) ∈ {0,1} ∀Vi ∈ V

As integer program is a NP-Hard problem, we apply linear programming relaxation to

remove the integer constraints of the decision variables to allow them to be real number in

the range [0,1]. The resulting formulation of the linear programming is given below.

Formulation 5.2:

Minimize ∑
Vi∈V
(ω(Vi) ⋅ x(Vi))

Subject to the constraints:

1. ∑
Vj∈Em

x(Vj) ≥ 1, ∀Em ∈ E

2. x(Vi) ≤ 1 ∀Vi ∈ V

3. x(Vi) ≥ 0 ∀Vi ∈ V

5.4.2 IDS placement solution

The problem of K-hop minimum IDS node selection with maximum residual energy is solved

in two stages as described below.

Solution:

1. Create a K-uniform hypergraph from the undirected version of given DODAG using

Algorithm 5.1.
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2. Formulate the problem of K-hop minimum IDS node selection with maximum residual

energy as shown in Formulation 5.2.

3. Solve the linear programming problem of Formulation 5.2.

4. For each Vi ∈ V, if x(Vi) ≥ 1/K, include Vi in the solution set V C.

It can be shown that the solution set V C is a K approximation solution for the minimum

weighted vertex cover of K-uniform hypergraph H. The proof for 2-uniform graph is given

in [181] which can be easily extended for K-uniform hypergraph. First it needs to be shown

that the given solution set V C is a vertex cover of K-uniform hypergraph H. The constraint

1 of the Formulation 5.2 ensures that the step 3 in Solution assigns values of x(Vi)

such that for each hyperedge Em ∈ E, ∑
Vj∈Em

x(Vj) ≥ 1. In a K-uniform hypergraph, all the

hyperedges contains exactly K vertices. The above two facts imply that for each hyperedge

Em, ∃Vj ∈ Em, such that x(Vj) ≥ 1/K. As the step 2 of the given solution includes all the

Vi with x(Vi) ≥ 1/K in the solution set V C, definitely V C contains atleast one element

from each of the hyperedges. Thus, V C is a vertex cover for hypergraph H.

Next, it needs to be shown that the solution set V C is a K approximation of the

optimal solution S∗ for minimum weighted vertex cover of K-uniform hypergraph H. Let

Z be the optimal value of the linear program of Formulation 5.2 obtained by step 3 in

Solution. As S∗ is a feasible solution of the linear program, clearly, Z ≤ ω(S∗) which gives a

lower bound of ω(S∗), where ω(S∗) is the total weight of the optimum solution S∗. We have,

Z = ∑
Vi∈V
(ω(Vi) ⋅ x(Vi))

Ô⇒ Z ≥ ∑
Vi∈V∶x(Vi)≥ 1

K

(ω(Vi) ⋅ x(Vi))

Ô⇒ Z ≥ ∑
Vi∈V∶x(Vi)≥ 1

K

(ω(Vi) ⋅ 1K )

Ô⇒ Z ≥ ∑
Vi∈S
(ω(Vi) ⋅ 1K )

Ô⇒ Z ≥ 1
K ∑Vi∈S

(ω(Vi))

Ô⇒ Z ≥ 1
Kω(S)

Ô⇒ ω(S) ≤K ⋅Z [rearranging the terms]

Ô⇒ ω(S) ≤K ⋅ ω(S∗) [because Z ≤ ω(S∗)]

As seen in the above inequality, the approximation solution is at most K times the
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optimal solution. Hence, the provided solution steps provides a K approximation solution

for the minimum weighted vertex cover of K-uniform hypergraph H.

The time complexities for each solution steps of the proposed solution are given next.

The first step of Solution uses Algorithm 5.1. The outer loop of line 2 runs in O(∣V ∣)

time. The number of iterations for the loop from line 10 to 32 is same as the total number

of ENQUEUE operations on the queue Q declared in line 3. From a starting vertex, one

ENQUEUE operation is done on Q for each new vertex explored along a path from that

starting vertex. As the input graph is an undirected tree represented in adjacency list

format, from a starting vertex at most ∣V ∣ vertices can be explored. Therefore, for a starting

vertex, the combined number of iterations for the loops of lines 4 and 23 can be at-most ∣V ∣.

Therefore, total ENQUEUE operations on Q for a starting vertex is at most O(∣V ∣) and

consequently, the loop of line 10 runs O(∣V ∣) iterations. The nested loop of line 14 runs

in O(1) as there are exactly K vertices in a fully explored path. The copy operation on

line 26 takes O(1) time as the maximum size of TS is K. All other operations used on all

statements of the algorithm take O(1) time. Therefore, the total running time of Algorithm

5.1 is O(∣V ∣2). The second step of the solution formulates the linear programming as

Formulation 5.2. To create the objective function, weight assignments for vertices are

done in O(∣V ∣) time. From the analysis of Algorithm 5.1 it is clear that the total number of

K-uniform hyperedges created by Algorithm 5.1 from an undirected graph is bounded by

O(∣V ∣2). Therefore, it takes O(∣V ∣2) time to create the constrain 1 of Formulation 5.2.

The creation of constraints 2 and 3 takes O(∣V ∣) time. As a result, the second step of the

solution takes O(∣V ∣2) time. In the third step of the solution, the simplex method is used

to solve the linear programming problem of Formulation 5.2, which takes polynomial time.

Finally, the step four of Solution takes O(∣V ∣) time. The above-mentioned solution steps

are run centrally in 6BR, which is not resource-constrained. The details of the proposed

IDS module are described in the next section.

5.5 Proposed OPTIMIST IDS solution

This section describes the proposed IDS solution OPTIMIST for detecting and mitigating

mixed-rate DDoS attacks in IoT networks. Section 5.5.1 gives the description of the proposed

model. Pre-processing steps for the proposed model are given in Section 5.5.2. The training
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5.5. Proposed OPTIMIST IDS solution

process of the IDS model is described in Section 5.5.3. The overall steps for the detection

and mitigation of MrDDoS attacks of the OPTIMIST is given in Section 5.5.4. Section 5.5.5

discusses about the computational complexity of the proposed model.

Figure 5.3: Flowchart of IDS creation process
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5.5.1 Model description

A recurrent neural network (RNN) has feedback connections to learn the temporal de-

pendencies of the features. Long short-term memory (LSTM) [182] is a special RNN to

overcome the exploding/vanishing gradient issues of RNN. LSTM models are extensively

used for speech/text recognition, cyber-security, etc. As IoT attack flows have temporal

relations among themselves, LSTM models provide high accuracy for intrusion detection in

IoT systems. Being lightweight, trained LSTM models are suitable for running in resource-

constrained IoT devices. Accordingly, this work uses offline LSTM model training, and

the trained model is deployed in a few of the selected IoT end devices for online attack

detection. This work assumes that the IoT nodes of the system have the required amount

of computational resources and storage to perform online detection with the trained LSTM

model without hampering its primary task of environment sensing. However, the offline

training using publicly available datasets induces some bias in the trained model towards

the distribution of the data points of the used datasets. As a result, the trained model

performs poorly when test inputs belong to some different distributions. To remove this

training bias, we propose a novel training method. We first train a WGAN model with

the datasets to generate artificial new data points and mix the new data points with the

original data points before training the LSTM model. The overview of the proposed scheme

is illustrated in Figure 5.3. Brief descriptions of the WGAN and LSTM models are given

below.

Wasserstein GAN (WGAN)

The concept of the Generative Adversarial Networks (GAN) model is put forward by

Goodfellow [183]. GAN consists of two neural networks known as the generator (ζ), and

the discriminator/ critic (ϑ). The generator generates new training data samples from the

distribution of the training data set, adding some random Gaussian noise. The discriminator

module classifies the data as real (from actual domain) or fake (generated by generator),

and the feedback is fed to the generator as in Figure 5.4

min
ζ

max
ϑ

ER ∼P (R) [ϑ (R)] −EF ∼P (F ) [ϑ (ζ (F ))] (5.1)

However, as mentioned by A. Aggarwal at el. [184], a traditional GAN model may
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Figure 5.4: WGAN Network

be unable to produce output because of vanishing gradient, mode collapse problems, etc.

Many authors [185] [186] have proposed enhancements over GAN. Wasserstein GAN [185]

model is one of such improvements. Wasserstein distance is calculated between fake and real

data distributions using Equation (5.1). It is also known as Critic loss. The Wasserstein

distance loss function is of two types like Discriminator loss (Dloss), and Generator loss

(Gloss) functions. These loss functions are mathematically represented below [185].

Dloss =min
ϑ

ER ∼P (R) [log ϑ (R)] (5.2)

Gloss =min
ζ

ER ∼P (F ) [log (1 − ϑ (ζ (F )))] (5.3)

The loss function score depends on real and adversarial data. Based on score, WGAN

generates high-quality adversarial data. WGAN discriminator (ϑ) provides a critic score.

This score decides the difference between real and fake data. A critic score < 0 indicates

real traffic data, and a score > 0 indicates that the given traffic is fake/adversarial.

LSTM model

Long short-term memory (LSTM) is a special kind of recurrent neural network (RNN) that

can overcome the exploding/vanishing gradient issues. A LSTM cell includes three types of

gates (i.e., forget gate, input gate, and output gate). The internal estimation procedure of

LSTM cell is shown in the Equations (5.4) - (5.6).

it = σ (Wi ⋅ [ht−1, xt] + bi) ft = σ (Wf ⋅ [ht−1, xt] + bf) (5.4)
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Table 5.1: Dataset Information

Dataset Name ToN_ IoT(2020) [81] IoT-23 (2020) [77] Kitsune (2019) [80] BoT-IoT (2018) [187] Generated Data (GD)
Simulation/Testbed Simulation Simulation Simulation Simulation Simulation and Testbed
Num of attack types 9 15 9 6 2
Data format Raw, Log & sensor Raw & Log Raw Sensor Pcap file
Num of features 46 22 23 10 10
Dataset size 64GB 23 GB 20GB 69.3GB 17295 packet flow

Table 5.2: Feature selection using SHAP from five datasets

Datasets Selected features

TON_IoT
src_pkts, src_ip_bytes, dst_pkts, dst_ip_bytes, ts, src_ip,
src_port, dst_ip, dst_port, service, duration, src_bytes,
dst_bytes, conn_state

IoT-23
ts, id_orig.h, id_orig.p, id_resp.h, id_resp.p, service,
duration, orig_bytes, resp_bytes, conn_state, local_orig,
local_resp, missed_bytes, history, orig_pkts, orig_ip_bytes.

Kitsune
Src_mac-ip_bw_obt, src_ip_bw_obt, channel_bw_obt,
sock_bw_obt, cl_ibt_obt, socket_ibt_obt, src_mac_pr_obt,
src_ip_pr_obt, cl_pr_obt, sock_pr_obt

BoT-IoT
Time, Bytes, src_mac, src_Ip, des_mac, des_Ip, src_Port,
dst_Port, conn_state

GD
src_ip, dst_ip, src_pkts, service, duration, src_bytes,
dst_bytes, id_resp.p, id_resp.h, conn_state

Ot = σ (Wo ⋅ [ht−1, xt] + bo) C̃ = tanh (Wc ⋅ [ht−1, xt] + bc) (5.5)

Ct = ft ∗ (Ct−1 + it ∗ C̃t) ht = ot ∗ tanh (Ct) (5.6)

Where f, i, O represent forget gate, input gate, and output gate, respectively. W and

b represent weighted matrices and biases respectively. The new state and candidate state

are C and C̃. Input, output, and input time are denoted as x, h, t. The sigmoid function is

denoted as σ (⋅).

5.5.2 Model pre-processing

The pre-processing steps for the proposed OPTIMIST IDS model comprise three phases

which are data acquisition, feature normalization, and feature selection. All of the phases

are described subsequently.
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Data acquisition

This work has used publicly available mixed-rate DDoS (LrDDoS and HrDDoS) attack

datasets [81], [77], [80], [187]. The descriptions of the data sets are given in TABLE 5.1.

It is observed that the procured datasets contain very few Low-rate DDoS data samples.

Accordingly, a number of flows with low rate DDoS attack and non-attack are generated

in-house using Contiki cooja and FIT IoT-LAB [62]. The flow packets are captured using

the Wireshark tool [188]. The attack and non-attack experiments are described in Section

6.5.1. An additional dataset is created by the data points generated by extracting features

(refer Section 5.5.2 and 5.5.2) from the captured flows. Further, additional data points for

each dataset are generated by the WGAN model to make the LSTM model training more

robust. WGAN model training description is given in Section 5.5.3.

Feature normalization

As the data sets are acquired from various sources, they have irregular central tendencies.

Therefore, we normalize all data attributes using the min-max normalization method given

below.

Xnorm =
Xreal −Xmin

Xmax −Xmin
(5.7)

Where Xreal is the real value, Xnorm is the normalized value, and the Xmin and Xmax are

the smallest and highest values from real values, respectively.

Feature selection (FS)

The features having significant contributions to the mixed-rate DDoS attacks are chosen,

while the redundant and insignificant features are discarded to reduce computation. This

work used the SHAP (SHapley Additive exPlanations) method [189] for feature selection

from mixed-rate DDoS attack datasets. The advantages of this method are as follows:

1. Local Interpretability (LI): Each feature gets a SHAP score. This score indicates the

impact of the feature across the complete dataset.

2. Global Interpretability (GI): It exhibits how much a particular feature contributes

towards the target (attacks).
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TABLE 5.2 shows the extracted features by SHAP method form five datasets.

5.5.3 Model training

The model training of OPTIMIST has two phases. In the first phase, a WGAN model is

trained on the datasets (refer to Section 5.5.2) to generate artificial data points. Table

5.4 shows the WGAN network setup, and Table 5.3 shows the training parameters. The

Gradient Penalty helps with training stability. Leaky ReLU increases the training process’s

resilience and prevents a vanishing gradient.

Table 5.3: WGAN parameters

HP Name Value
B_size 64
Critic_iters 3
Learning_rate 0.002
Optimizer RMSprop
Lambda 10
HL_AF LeakyReLU

HP: Hyper-parameter;
B: Batch; HL : Hidden layer;

AF: Activation Function

Table 5.4: WGAN Configuration

Layer (Type) CONFIG
IP_Noise () (N, 20)
IP_N_MrDDoS () (N, 41)
Concat_Input () (N, 61)
Dense (N, 32)
Leaky_ReLu (0.2) (N, 32)
Dense (N, 8)
Leaky_ReLu (0.2) (N, 8)
Dense (N, 2)
Leaky_ReLu (0.2) (N, 2)
IP_Noise () (N, 20)
IP_N_MrDDoS () (N, 41)

B: Batch; N: None;
CONFIG: Configuration

In the second phase of the training, the LSTM model is trained with the datasets

(real and artificial) to classify mixed-rate DDoS attacks. To mitigate the over-fitting issue,

dropout and batch normalization strategies are used. These strategies change the network

design in each training epoch to reduce the chance of overfitting and increase the training

speed. LSTM model comprises an input layer, three hidden layers, and an output layer.

The detailed structure and hyper-parameters of the proposed LSTM model are shown in

Table 5.6 and 5.5, respectively. The LSTM input layer contains 16 neurons. There are 3

LSTM layers composed of 32 memory blocks. The hidden layers of LSTM have the ReLu

activation function. The output layer uses a sigmoid activation function.
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Table 5.5: LSTM parameters

HP Name Value
A_F_Input ReLu
A_F_Output Sigmoid
Epoch 100
Learning Rate 0.002
Window size 5
Optimizer RMSprop
Dropout prob. 0.2
Train data 64% dataset
Validation data 16% dataset
Test data 20% dataset

HP: Hyper-parameter;
A_F: Activation Function

Table 5.6: LSTM Configuration

Layer (Type) Configuration
LSTM_1 (N, N, 32)
B_norm_1 (B (N, N, 32))
Dropout_1 (N, N, 32)
LSTM_2 (N, N, 32)
B_norm_2 (B (N, N,32))
Dropout_2 (N, N, 32)
LSTM_3 (N, N, 32)
B_norm_3 (B (N, N, 32))
Dropout_3 (N, 32)
Dense_1 (N, 1)
Activation_1 (N,1)

B: Batch; N: None

5.5.4 OPTIMIST IDS solution

The topological ordering of the OPTIMIST IDS solution for detection and mitigation is

given in Figure 5.5. The heavy task of IDS model training for OPTIMIST is done offline

with the novel method described in Section 5.5.3. The trained LSTM model is deployed

in all IoT nodes. However, the IDS modules in all IoT nodes are in an idle state initially.

Once a DODAG is created for the IoT network, the OPTIMIST IDS placement algorithm is

executed in the 6BR to select the IoT nodes to act as IDS nodes. 6BR unicasts a message

to each of the selected nodes to activate their respective OPTIMIST IDS modules. If a new

instance of DODAG is created, the 6BR instructs the current IDS nodes to put their IDS

module in an idle state and instructs the newly selected IDS nodes to activate their IDS

modules. For the duration when the IDS module is active, an IDS node eavesdrops flows,

extracts features, and classifies them with the trained LSTM model. If a DDoS (high-rate or

low-rate) attack is detected, the IDS node reports the attack information to the 6BR node.

The 6BR node broadcasts the malicious node information to all other nodes of the network

and instructs them to block all the traffic flows originating from the malicious sources.
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5.5.5 Time complexity of LSTM

The LSTM algorithm is local in space and time. Hence, activation values aren’t stored. They

only store and update derivatives based on Mozer’s recurrent back-propagation method [93].

As a result, the LSTM method is extremely efficient. The time complexity of the LSTM is

O((Nou ×Nhu) + (Nou ×Nmcb × Smcb) + (Nhu ×Nfc) + (Nmcb × Smcb ×Nfc) = O(W ), where

Nfc is the number of units connected in a forward direction to hidden units, gate units,

and memory cells. Nhu = number of hidden units, Smcb = memory cell block size, Nmcb =

number of memory cell blocks, and Nou = number of output units. As a result, the storage

complexity of the LSTM model is also O(W ) and independent of the length of the input

sequence.
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Figure 5.5: Topological order of OPTIMIST IDS
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5.6 Performance evaluation

This section is divided into three subsections. Section 6.5.1 describes the experiment

environments and setups. Section 6.5.2 defines the metrics to evaluate the performances

of OPTIMIST. In Section 6.5.3, the performance of OPTIMIST is evaluated, and the

competitive result analysis is done.

5.6.1 Experiment environments and setups

An IoT scenario is considered for performance evaluation of the OPTIMIST, as shown in

Figure 6.10. LLN nodes are randomly deployed for sensing purposes that have multi-hop

path connectivity among themselves. LLN nodes are connected to the Internet through

a 6BR node of ample storage and computation power. The internal LLN nodes of the

IoT system are accessible by external nodes through the 6BR node using the Internet. As

shown in the figure, both internal, as well as external nodes can be malicious in nature.

The scenario is created and run in Contiki cooja [46] simulation, and FIT IoT-LAB [62]

test-bed environment. The experimental parameters of Contiki cooja and FIT IoT-LAB are

presented in Table 6.4.

Figure 5.6: IoT network setup for experimentation

Simulation and test-bed are used to generate a in-house dataset which includes normal

and LrDDoS attack flows using 8, 16, 32, and 64 IoT nodes. In attack scenarios, 25% of the
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Table 5.7: Simulation and real-time test-bed parameters

Parameter name Simulation Real time testbed

Operating system
Contiki 3.0,
Contiki 4.5

Contiki-NG

Simulator/Testbed Cooja Cooja FIT IoT-LAB
Network size 8,16, 32, 64 nodes
Radio Environment UDGM
Node Type Tmot Sky IoT-Lab A8
Routing Protocol RPL RPL Lite

RPL Objective Function
MRHOF - ETX,

OF0
MRHOF - ETX

MAC/adaptation layer Contiki MAC/6LoWPAN
Transmitter output power (dBm) 0 to -25
Receiver sensitivity (dBm) -94
Radio frequency 2.4GHz
Attack Modeled Mixed Rate DDoS attack
Experiment Duration 60 minutes

nodes are deployed as malicious nodes.

Figure 5.7: Snapshot of 4, 6 malicious nodes during mixed rate DDoS attack

During the performance evaluation of the OPTIMIST, the malicious nodes are used to

launch MrDDoS attacks. Based on the proposed IDS placement algorithm, a few of the

IoT nodes are selected to activate the OPTIMIST IDS solution to detect mixed-rate DDoS

109



5.6. Performance evaluation

attacks. The IDS running nodes are changed over time with each newly created DODAG

versions by RPL.

5.6.2 Performance metrics

The following metrics are defined to evaluate the performance of OPTIMIST IDS solution.

• Accuracy (ACC): It denotes the percentage of correctly classified flows as true attack

or true legitimate flows with respect to total number of flows. Accuracy is given by:

ACC = TP + TN
TP + FN + FP + TN

× 100 (5.8)

where, FP=Legitimate flow wrongly classified; FN=Attack wrongly classified; TP=Attack

recognized accurately; TN=Legitimate flow recognized accurately.

• Precision (PREC): It is the percentage of correctly predicted MrDDoS attack flows

out of all predicted MrDDoS attack flows. It is calculated as below.

PREC = TP

TP + FP
× 100 (5.9)

• Recall (REC): It indicates the percentage of predicted MrDDoS attack flows by the

classifier out of all real MrDDoS attack flows of the system. Recall, also known as

sensitivity, and is estimated by

REC = TP

TP + FN
× 100 (5.10)

• F1-score: It indicates the overall efficiency of the proposed OPTIMIST combining

PREC and REC. It is the harmonic mean of the PREC and REC as given below.

F1 − score = 2 × PREC ×REC
PREC +REC

× 100 (5.11)

• Memory Consumption (MEMC): It shows the percentage of memory utilization of the

IoT devices to run OPTIMIST throughout the experimentation.
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• CPU energy (ENEC): The metric measures the energy consumed by CPU in IoT

devices throughout the experimentation.

• Throughput (THP): This metric measures the ratio of the network throughput in the

presence of MrDDoS attacks with respect to the observed network throughput in the

absence of MrDDoS attacks. The ratio is shown as percentage.

THP = throughput in MrDDoS sneraio

throughput in normal sneraio
× 100 (5.12)

5.6.3 Result Analysis

For the evaluation of the OPTIMIST IDS solution, experiments are run on simulation as

well as a testbed (refer to Section 6.5.1). The results are presented in two parts as follows.

Section 6.5.3 shows the performances of the offline training process of the IDS model,

and Section 5.6.3 presents the competitive analysis of online OPTIMIST performances on

placement strategy and attack detection with existing protocols.

Offline training performance evaluation

First, we assessed the performances of different ML models like Support Vector Machine

(SVM), Gated Recurrent Unit (GRU), Convolution Neural Network (CNN), and Transformer,

on the IoT-23 [77] and in-house generated datasets. Figure 5.8 shows the comparative

performances of different ML models with respect to the metrics ACC, PREC, REC, and

F1-score. As LSTM model outperforms other ML models, it is chosen for the OPTIMIST

IDS.

Consequently, the LSTM model is trained and tested with other publicly available

datasets [81], [77], [80], [187] and the test results for each datasets are depicted in Figure 5.9.

As shown in Figure 5.9, the ACC and PREC scores of the trained model are (94.12%-95.49%)

and (92.56%-94.93%) respectively. For REC and F1 scores, the scores are (89.64%-93.49%)

and (89.7%-93.34%), respectively. However, when the model is tested with artificial data

generated from the WGAN model (described in Section 5.5.1), the LSTM performance

degraded drastically, as shown in Figure 5.10. This is because the trained model is biased with

the distributions of the training datasets. However, the distribution of WGAN-generated

artificial data points (attack flows) is a little different from the distribution of the training
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Figure 5.8: Training performances of ML models on IoT-23 and generated dataset

datasets. Figure 5.11 shows the comparative accuracy trends when tested with and without

adversarial traffic samples.

Figure 5.9: Performance of LSTM model over public datasets

To increase the robustness of the OPTIMIST IDS for any distribution of attack flows,

WGAN-generated artificial traffic flows of MrDDoS attacks are mixed with the existing

training samples, and then the model is again trained and tested. It took less than 100

epochs for the model to converge. Figure 5.12 shows the trend of loss and accuracy with

increasing epochs. The model performance is quite satisfactory with ACC = 98.40%, PREC

= 95.40%, REC = 96.49%, and F-score = 96.30% as depicted in Figure 5.13.
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Figure 5.10: Effect of adversarial data on LSTM

Figure 5.11: Model performance evolution with Epochs

Figure 5.12: Training testing loss and Accuracy
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Figure 5.13: WGAN-LSTM based result

Table 5.8: Comparison of the proposed strategy with the closely related works

Ref IDS placement Target Attacks Mitigation ENEC (mJ) MEMU (Byte) THP(Kbps) ACC PREC REC F1 Score
[190] Centralised DoS No 9482 N/A N/A 98.20% N/A N/A N/A
[177] Centralised HrDDoS No 6745 55184 N/A 98.03% 98.21% 97.55% 97.87%
[171] Distributed LrDDoS Yes 10869 63940 N/A 95.01% 95.46% 94.51% 94.98%
[191] Distributed HrDDoS Yes 5128 N/A 52961 96.30% 93.24% 92.40% 96.20%
[176] Distributed HrDDoS No 12814 68315 56531 98.99% 96.51% N/A 95.67%
[179] Centralised LrDDoS No N/A N/A N/A 94.19% 95.85% 95.33% 95.56%
[174] Centralised HrDDoS No 16439 N/A N/A 98.89% 99.01% 98.74% 98.87%
[178] Distributed LrDDoS No N/A N/A N/A 97.00% 96.00% 96.65% 96.98%
[175] Distributed HrDDoS No N/A N/A N/A 96.70% 100% 77.80% 87.50%

OPTIMIST Distributed MrDDoS Yes 5407 45296 53824 98.40% 95.40% 96.49% 96.30%
ENEC: ENErgy Consumption, MEMU: MEMory Usage, ACC: ACCuracy, PREC:Precision, REC: RECall, THP: Throughput, N/A: Not Applicable

Online performance evaluation

In this section, the online performances of OPTIMIST regarding the placement strategy and

attack detection are evaluated. The experiments are conducted with 8, 16, 32, and 64 nodes

with a malicious node ratio of 25%. System and network level metrics are measured in

two scenarios when no IDS module is running on nodes and when optimally selected nodes

are running the IDS module. For both cases, the duration of these experiments is 5400

seconds. The size command and powertrac tool are used to extract memory usage and

energy consumption information respectively from the Contiki cooja simulation experiments.

Similarly, for the FIT IoT-LAB testbed experiments, the Sysstat [192] tool is used to

get the system level information like energy consumption and memory usage while iperf

[193] tool is used to get throughput information of the experiments. Figure 5.14 shows

the comparative performances of system and network level metrics for the two cases of

experiments. The results show that THP metric performance is improved at the cost of
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increased energy and memory overheads in the scenarios with IDS running nodes. This is

because OPTIMIST IDS detects and mitigates malicious flows, which helps normal flows

increase network bandwidth utilization.

Figure 5.14: Contiki and FIT IoT-LAB result

Figure 5.15: Average energy consumption comparison

Figure 5.15 and Figure 5.16 depict the comparative results of the IDS placement

strategies with the works [167, 112, 168]. The IDS modules of the compared works are

replaced by the OPTIMIST IDS model to assess the performances solely based on placement

strategies. In [167], all nodes run IDS. Though the IDS monitors flows transparently and

has a high detection rate, running IDS in all nodes results in high energy consumption.

The placement strategy of the work [112] is cluster-based, which relies on query-response

messages between IDS nodes and monitored nodes. Though only a few nodes (cluster heads)
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Figure 5.16: Attack detection rate in (%)

run IDS, energy consumption is still higher due to the query-response message overhead.

The non-transparent nature of the proposed IDS also causes a low detection rate as malicious

nodes create malicious flows avoiding the IDS nodes or can send false status reports. The

work [168] has an optimum 1-hop vertex cover placement strategy where the IDS nodes

monitor flows transparently. The optimum placement strategy has resulted in low energy

consumption and a high detection rate compared to the previous two works. OPTIMIST IDS

placement strategy has a K -hop vertex cover strategy, further reducing energy consumption.

The detection rate of OPTIMIST is compatible with [168] as the placement algorithm is

run using RPL DODAG structure rather than network topology, making most of the flows

pass through the IDS nodes. However, few flows of length less than K can evade IDS nodes

and remain undetected.

The online model performances of OPTIMIST on attack detection, along with system

parameters, are compared with existing IDS models and the results are given in tabular

format in the TABLE 5.8. The work of Mahdis et al. [176] has the best scores for attack

detection but at the cost of huge system overheads. The proposed IDS of the work [191]

consumes lesser energy as the flows of IoT devices are SDN managed where the IDS is

distributed among switches. The IoT devices are directly connected to SDN switches with

singe-hop links. As the flow packets are forwarded by switches, IoT devices are relieved from

the task of packet forwarding, which saves energy. However, the model performs poorly

in attack detection. It can be observed from the table that OPTIMIST can best balance
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detection performances and resource overheads. OPTIMIST is the only solution that can

detect MrDDoS attacks with competitive accuracy, whereas other protocols are focused only

on HrDDoS attacks.

5.7 Summary

In this chapter, we proposed a lightweight distributed IDS solution, OPTIMIST, for IoT

networks with an optimum placement strategy. OPTIMIST is trained to detect both high-

rate and low-rate DDoS attacks on IoT systems. The placement problem of OPTIMIST is

formulated as the weighted minimum vertex cover problem of a K -uniform hypergraph, and

an approximation algorithm is used as the solution. The placement strategy is transparent

in nature to reduce network overhead and to make other IoT nodes unaware of the presence

of IDS nodes. The K -coverage strategy is proposed to reduce the redundancy of IDS nodes

and energy consumption. To build the IDS model, WGAN-generated artificial training

samples are used along with the real training data to train a LSTM model. This novel

method of training is able to remove the model bias for dataset distributions. Extensive

evaluations are done both on simulation and testbed platforms. The results show that the

OPTIMIST IDS system can efficiently detect both high-rate and low-rate DDoS traffic

flows while having a comparatively low system overhead. In the next chapter, we develop a

multiple-mix attack detection and mitigation security solution using shadow honeypots with

roaming strategies. This strategy aims to strengthen the IoT ecosystem’s security against a

variety of attacks.

<<=8=;;
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"IoT security is not a one-time task; it is an ongoing com-

mitment to protect the digital fabric of our lives."

- Raj Samani

6
C h a p t e r

RENO: Roving Shadow Honeypot for
Multiple-Mix-Attack Detection in IoT

Networks

6.1 Introduction

Nowadays, the IoT is experiencing rapid growth in various sectors, including smart in-

dustries, transportation, building automation, environmental monitoring, and personal

healthcare. This is due to their ubiquitous connectivity, which enables them to interact and

share data, intelligence, and decision-making abilities with other technologies [194]. This

interconnectedness creates seamless user experiences that significantly enhance people’s daily

lives, as evidenced by the widespread use of IoT devices. However, with external internet

access, IoT devices become more susceptible to data privacy breaches and cybersecurity

attacks [195]. Among these threats, rank attacks, buffer overflow (BOF) attacks, and

DDoS attacks pose significant risks to IoT networks. These attacks can disrupt network

topology, cause packet loss, and affect network availability, making the IoT infrastructure

highly unstable when targeted simultaneously. In May 2021, a Synopsys survey revealed

a concerning lack of confidence in IoT devices and network security. Although 72% of

manufacturers expected attacks on IoT devices and networks within 12 months, only 18%

were implementing preventative measures [196].

The inadequate security measures and absence of dedicated security solutions for

IoT networks also expose them to multiple-mix attacks. As a result, a significant gap is

seen between security needs and the security capabilities of the currently available IoT
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devices. These devices are vulnerable for two main reasons: limited processing capacity

and heterogeneity in terms of protocols, software, and hardware [197]. More specifically,

it is usually not possible for IoT devices with limited radio bandwidth, computing power,

battery power, and memory to run security solutions that require a lot of computing and

communication power and are also sensitive to latency [198]. Due to this, it is impossible

to implement extensive and comprehensive security solutions. Furthermore, due to the

diversity of IoT devices, designing and executing a scalable security solution is extremely

challenging [199].

Traditional network security solutions include vendor software patches, widely-used

end-point defensive systems like antivirus, and fixed perimeter network defensive systems like

firewalls and IDS. However, due to the diversity of IoT devices and use cases, conventional

security systems are incapable of handling IoT network infrastructures [200, 201]. The

well-known intrusion detection systems (IDSs), namely Bro and SNORT, are fixed and

mainly use signature-based approaches on traditional IP-only networks [202]. Traditional

anomaly detection systems are also inefficient in IoT ecosystems due to the large number

of IoT devices and the dynamic nature of IoT networks. Therefore, there is a need for a

security solution to detect multiple-mix attacks on IoT networks.

Many existing security solutions detect only one type of attack, such as a DDoS attack,

a rank attack, or a BOF attack, whereas only a few solutions detect multiple-mix attacks.

To the best of our knowledge, no work detects multiple-mix attacks. Motivated by this

fact, this thesis integrates the IDS solution RENO, which can detect multiple-mix attacks.

The RENO IDS module is based on a shadow honeypot model, which is a combination of

honeypots and anomaly detection systems (ADSs). This creative security concept combines

the best elements of ADS and honeypots [4, 203]. Figure 6.1 shows that ADS and honeypots

have different tradeoffs in terms of scope and accuracy when finding multiple-mix attacks.

Due to the fixed location of shadow honeypots in the IoT ecosystem, any attacker may

identify a shadow honeypot. The attacker may also inform other attackers of the presence

of the shadow honeypot. Thus, an attacker may learn about the shadow honeypot and

find a way to circumvent it, rendering it useless. In this case, we used the idea of “roving

shadow honeypots” to make it harder for the attacker to find the shadow honeypot, which

boosts the shadow honeypot’s ability to detect multiple-mix attacks. The shadow honeypot
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is moved to a different IoT device that is most likely to be attacked in IoT networks. Based

on the present state of the IoT network, the notion of Markov chain analysis is utilised to

detect the most likely IoT device to be attacked. In addition, by utilising IP shuffles and

the concept of turning services on and off, shadow honeypots will move throughout the IoT

network to determine which device is the most likely to be attacked by using an attack

score.

Honeypot Shadow Honeypot

Anomaly Detection

Scope

Accuracy

All attacks (Random + Targeted)

Figure 6.1: Honeypots and ADS with respective scope and accuracy [4].

The above discussions are the motivations of the proposed work, namely “RENO”, which

includes lightweight shadow honeypot (LWSHP) modules to detect multiple-mix-attacks in

IoT networks. The contributions of our work are summarized as given below:

1. Unlike existing works that have focused on a single type of attack, this work offers a

solution for multiple mixed attacks that can identify rank attacks, BOF attacks, and

DDoS attacks.

2. A lightweight shadow honeypot installation based on an attack score (AS) and a

Markov chain analysis of IoT networks is demonstrated.

3. Extensive experiments are conducted on the Contiki-Cooja and the FIT IoT-LAB

testbeds to evaluate the competitive performance of the proposed RENO security

solution. In comparison to current state-of-the-art techniques, the findings demonstrate

that our suggested security solution is scalable and best at identifying attacks while

consuming the least amount of power and memory.

The remainder of this chapter is organized as follows: Section 6.2 presents a concise
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description of the shadow honeypots architecture, roving strategy, rank attack, BOF attack,

and DDoS attack. Existing literature surveys on ADS/honeypot/LWSHP placement and

security solutions are presented in Section 6.3. Section 6.4 presents a security solution

(RENO). Section 6.5 presents the experimental setup, implementation of the proposed

approach in Contiki OS, and real FIT IoT-LAB testbed. It also presents experimental

results and a comparison of the proposed approach with existing security approaches. Finally,

in Section 6.6, we summarize the chapter indicating future directions.

6.2 Background

This section discusses a few crucial concepts that are used in our proposed solutions. Section

6.2.1 introduces the Lightweight Shadow Honeypot (LWSHP) Architecture. Section 6.2.2

discusses about roving LWSHP strategy. The multiple-mix-attacks on IoT networks is

introduced in Section 6.2.3.

6.2.1 Lightweight shadow honeypot (LWSHP) architecture:

As shown in Figure 6.2, the architecture as a whole is made up of three functional modules,

such as filtering, anomaly detection, and shadow honeypot. The network traffic is routed

through the filtering module. It uses an authorised list, and by examining the traffic that

corresponds to this list, it discards a malicious packet. The second module, the anomaly

detection system, gets information from the traffic filtering module. This module contains a

number of ADS that begin shadow testing or attack detection. The ADS design module

prefers to set the detector sensitivity to the highest possible level in order to reduce the

number of false positives (FP). In order to protect against variant attacks, the normal

service code module and the shadow testing module exchange their internal states. The

level of instrumentation used in the LWSHP will be determined by how much delay the

network administrator imposes on suspicious traffic. The LWSHP recognises a genuine

attack and reports it to the other functional modules to prevent further attacks. Figure 6.3

is an illustration of the shadow honeypot process.
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Filtering

Anomaly Detection Sensors

Regular Service
Code

Shadow Honeypot
Code

State Rollback

Process State

Network Traffic

Filter Update
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Figure 6.2: Shadow honeyPot Architecture [5]
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Figure 6.3: Shadow honeypot workflow.
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6.2.2 Roving LWSHP:

With the help of a capture daemon, roving LWSHPs send information from one IoT node to

another. It is also dependent on many characteristics, such as the intensity of an attack, the

frequency of attacks, network traffic, etc. This strategy helps to record network activity and

also makes it more likely to get network information from the IoT network, which is likely

to be probed at a certain time. This method turns off the data capture daemons at all other

IoT nodes while enabling the data capture daemon of LWSHP on IoT devices that are most

likely to be attacked. In a low-interaction honeypot, the honeyd daemon is used, whereas

in a high-interaction honeypot, the Xebek daemon [203] uses the aid module’s ON/OFF

activity. The process of daemon switching is spontaneous. The script is performed on the

IoT node itself. In this scenario, IoT network data gathering is conducted in a distributed

manner.

6.2.3 Attacks on IoT

IoT networks are vulnerable to a variety of threats since end nodes may be accessed over the

Internet, networks are lossy by nature, and nodes have limited resources. There are several

well-known attacks, including rank attacks, black-hole attacks, sink-hole attacks, version

number attacks, buffer reservation attacks, bot attacks, DoS attacks, and DDoS attacks.

The nature of these attacks varies greatly depending on their aims, such as disrupting

network traffic, draining network resources, changing the topology, and so on. This chapter

is mostly about multiple-mix attacks (rank attacks, BOF attacks, and DDoS attacks,) which

are explained below.

RPL rank attack

RPL is a routing protocol in Low-Power and Lossy Network (LLN). It is a handy protocol that

enables various communication types (i.e., multipoint-to-point traffic, point-to-multipoint

traffic, and point-to-point traffic). The rank property is the crucial policy for preferring root

nodes in DODAG. IoT nodes have a rank that defines their proper position with respect to

the DODAG root and with respect to distinct nodes. Typically, rank increases from root

to node and decreases in the direction approaching the root. Therefore, there is a massive

burst in control packet traffic in the IoT ecosystem. The nodes being resource-constrained
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illicitly face exhaustion of their batteries and power. Figure 6.4 provides a notion regarding

the rank attack on the default RPL topology. The attacking node with ID 4 alters its rank

value R and impacts adjacent nodes and connected child nodes to construct a fraudulent

topology.

Figure 6.4: Rank attack on default RPL topology

BOF attack

IoT devices are manipulated by software-based attacks like buffer overflows. BOF attacks

are common and include the well-known stack smashing [204, 205]. A buffer overflow allows

the return address of a function on the stack to be modified while the attack initiation. In

unprotected implementation and operation, when a function returns, the control may be

moved to the place where malicious code is stored, as demonstrated in Figure 6.5. In order

to undertake this type of attack, an unprotected buffer variable is identified in the program

and fed with a particular input value, causing the stack frame to be overflowed. The return

address is to be altered in order to jump to a new place.

DoS/DDoS attack

DoS and DDoS attacks are responsible for resource exhaustion. DDoS attacks add numerous

packets with fabricated source addresses into the sky-websence web server. These source
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Figure 6.5: Buffer overflow attack

addresses not matched in bounded caches, which leads to congestion and interrupt services.

If the DDoS attack succeeds, the attacked sky-websence web server will likely be utilized as

a puppet to attack different IoT ecosystem, resulting in substantial losses. We discussed

various varieties of DDoS attacks in the IoT ecosystem in Section 2.6.

6.3 Related work

This section is organized into two parts. Section 6.3.1 reviews existing works on ADS

placement while in Section 6.3.2, various existing ADS/Honeypot solutions are discussed.

6.3.1 ADS/Honeypot/LWSHP placement

Chatterjee et al. [206] and Franco et al. [207] have surveyed various ADS placement strategies

and honeypot systems. They categorized them into groups of centralized, distributed, and

hybrid ADS placement strategies. In a centralized placement strategy, an ADS instance is

run on one dedicated high-resource node like a border router (6BR). The works [208], [209]

are examples of centralized ADS strategies. Though centralized ADS strategies can monitor

all external traffic, some malicious internal flows generated by compromised IoT devices

may remain undetected. The centralized honeypot framework (U-PoT) [210] automatically
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creates a honeypot from UPnP device description documents and is extendable to any device

type or vendor that uses UPnP for communication. S. Dowling et al. [211] also proposed

a centralised honeypot for Wireless Sensor Networks (WSN). The intended honeypot is

installed on the ZigBee gateway in the wireless network. It captures all suspicious traffic to

the gateway and can be later analyzed. Secure Shell (SSH) was chosen for the honeypot

because it is the entry point that is most often attacked.

In distributed ADS strategy [212], Gaussian Mixture-based Correntropy, and an ensem-

ble one-class statistical learning model, which is designed to monitor and recognize zero-day

attacks in real-time IoT networks effectively. The work [213] is an example of a distributed

ADS strategy based on Federated learning, Fourier mixing sublayer, Autoencoder, and

Transformer. This strategy evaluation is based on accuracy, memory use, and energy

consumption. Vishwakarma and Jain [214] suggested a self-adaptive honeypot to detect and

identify DDoS attacks. The suggested approach that has been presented involves collecting

logs of assaults made against ThingPot [215] honeypots and then using those logs to train

ML classifiers. The authors thought about putting virtual box images of ThingPot on IoT

devices in a network and putting the ML classifier on the router.

The hybrid placement strategy combines both the benefits of centralized and distributed

strategies. In this strategy, a centralized entity monitors external traffic while a few of the

IoT nodes are selected as ADS nodes to perform the role of watchdogs by monitoring the

behavior of a subset of the nodes. The works [114], [115] are examples of hybrid placement

strategies.

6.3.2 ADS/Honeypot/LWSHP solutions

A number of ADS/Honeypot/LWSHP techniques are available in the literature which can be

broadly classified into three categories as RPL Rank attack, BOF attack and DDoS attack.

RPL rank attack

Kandhoul et al. [116] suggested a safe routing strategy for IoT networks that is based on

Deep Q-learning and defends against sinkhole attacks and routing attacks. This strategy

incorporates the benefits of both the value-based and policy-based approaches. A Markov

decision process is used to simulate the learning process. Simulations with the actual
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data trace demonstrate an accuracy of 89.6%. The RFTrust concept was suggested by K.

Prathapchandran et al. [216] based on a trust-based, lightweight solution to securing IoT

networks. It mainly detects sinkhole attacks in IoT networks based on RPL. It improves

the IoT network’s trusted routing by identifying and eliminating sinkhole nodes. To detect

sinkhole attacks, this method additionally employs Subjective Logic (SL) and Random

Forest (RF). The performance of this strategy is evaluated using simulation. R. Sahay et al.

[217] came up with a good way to make the RPL protocol more secure against the Worst

Parent Attack. This method improved RPL, was based on RPL, and is henceforth known

as ERPL. In the process of topological building, the proposed ERPL achieves its purpose

by decreasing the candidate set of parent nodes to the ideal set. As a result, ERPL assures

that nodes select a parent from a set of optimum nodes, making IoT-LLNs resistant to

WPA. The suggested work was compared in terms of energy usage and packet delivery ratio.

Nandhini PS et al. [218] suggested a Rank Attack Detection (RAD) algorithm that keeps

the integrity of control packets by using a non-cryptographic hash algorithm. The rank

attack recognised warning is not a distinct control packet; rather, it is an attachment to

the control message. Using the Cooja Simulator, the performance of a suggested method

is assessed under multiple topologies. The studies of performance are based on packet

overhead, energy usage, and precision. Additionally, it achieves 96% accuracy, consumes

40% less energy on average, and reduces the number of unnecessary packets from 44,523 to

1060.

BOF attack

Saeed A et al. [117] presented an IDS method by using random neural networks (RNNs)

to build an intelligent security architecture. At the time of compilation, the application’s

source code is additionally instrumented in order to identify memory accesses that fall

beyond the application’s normal parameters. The idea relies on the generation of tags that

are connected with each memory allocation and the subsequent insertion of tag-checking

instructions for each memory access. To prove that the suggested security solution works, it is

installed on an existing IoT system. Suspicious sensor nodes within the system’s operational

range and unusual base station activity are found with 97.23% accuracy, showing that the

solution is useful. Xu B et al. [219] developed an architecturally better hardware security
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architecture for detecting buffer overflow threats. Instruction monitoring and verification

are one component of the design. This component is utilized to track the behavior of

programs as they are being executed. Secure tag validation is another method, which is

utilized to keep an eye on the characteristics of each and every bit of RAM. At the time

of compilation, the automated extraction tools get the monitoring model and secure tag

associated with each memory segment. The experimental study demonstrates that the

offered strategies are capable of detecting a variety of buffer overflow threats. It also has

low-performance penalties and low overheads. Fernando A et al. [220] proposed SIoT, a

tool for analyzing and protecting distributed IoT systems from BOF attacks. This method

includes a cutting-edge algorithm that effectively finds linkages between programs. Such

linkages allow us to construct an inter-program perspective, which we can then share with a

standard buffer overflow static analysis tool. Our approach has been constructed on top of

the LLVM compiler and is utilized to secure BOF attacks. Our approach generates code

that is just as secure as that achieved through more conventional analysis, yet programs

instrumented with our approach incur an average of less than 6% in additional runtime and

program size.

DoS/DDoS attack

Da. Yin et al. [118] proposed a Software Defined Network (SDN) based honeypot that

mainly recognized and mitigated DDoS attacks in the IoT ecosystem. This research

paper has a two-phase system, the first phase defends scan-based attacks and the second

phase incorporates DDoS attack mitigation approach adopting SDN-based honeypots which

enhance IoT ecosystem security. This approach effectively identifies and mitigates various

attacks like SYN flood, Telnet-based, SSH-based, and scan-based. However, the downside

of this method is the approach contains two phases, that consume added power and lower

network lifetime. M. Aniruddha et al. [221] presented a honeypot methodology for detecting

DoS attacks on IoT systems. Models like this are frequently deployed in online servers to

divert DoS attacks away from the primary server. This approach prevents a DoS attack

from shutting down the IoT. The model reportedly reached 94.04% efficiency. However, the

proposed honeypot solution deal with a single type of DoS attack. Chronos, a revolutionary

time-based ADS system, was proposed by Salahuddin et al. [222]. The ADS system utilizes
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an autoencoder and time-based characteristics across different time frames to identify DDoS

attacks anomalously and effectively. The author also created a threshold selection heuristic to

improve the accuracy of DDoS assaults. The Chronos technique outperforms the time-based

system by employing a less sophisticated anomaly detection pipeline, while outperforming

flow-based systems with higher precision, according to a comparative analysis. Mihoub A et

al. [223] suggested a security architecture with two components: DoS/DDoS detection and

mitigation. The detection component uses a "Looking-Back" multi-class classifier, while the

mitigation component applies countermeasures to particular packet types. The BoT-IoT

dataset is being used to test this architecture, and the tests so far have shown promising

results. The comparative analysis of the state-of-art work is summarised in Table 6.1.

Table 6.1: Comparative summary of related works

Thread Type Author & Year Major Feature(s) Inference(s)

RPL Rank Attack

K. Prathapchandran et al.
(2021) [216]

Trust based model

● Random forest and subjective logic
implemented to detect rank attack.
● Minimum false-positive, false negative rate,
and high detection accuracy
● Energy and memory usage issues are not addressed

R. Sahay et al. (2022) [217]
Packet eavesdropping and
negative behaviors of nodes

● Distributed lightweight weight intrusion detection approach for IoT network.
● High accuracy and precision.
● Scalability and energy efficciency are open challenges

Nandhini et al. (2022) [218]
Control packet’s integrity
and non-cryptographic
hash algorithm

● It reduces energy usage by random sampling.
● No new control messages for assault detection.
● They compare accuracy with three different topologies.

Kandhoul et al. (2022) [116] Deep Q-learning model
● The Q learning approach is used to cope with high-dimensional data.
●This article suggests a security measure against several rank assaults.
● Real data trace simulations exhibit great accuracy.

Buffer Overflow
Attack

S. Ahmed et al. (2016) [117]
Random neural networks
(RNNs) used

● RNN based intelligent security framework used for IoT system.
● Minimum false positive result, but communication management and
scalability are challenges.

B. Xu et al. (2018) [219]
Secure architectural
hardware used

● Hardware real-time behavior monitoring (HRTBM) and program
off-line behavior analysis (POLBA) executed to detect BFO attack.
● Energy efficciency and scalability issue are not examine.

F. Teixeira et al. (2019) [220]
Array-Bound Checks
inserted to guard buffer

● The proposed approach provides typical static analyses with distributed
system.
● It reduce overhead and runtime, but scalability, and energy efficiency
are open challenges

DDoS Attack

M. Anirudh et al. (2017) [221]
Honeytrap model
implimentation

● Statistical analysis based approach to detect and prevent DDoS attack.
● Energy efficciency and memory usage are open challenges

Da Yin et al. (2018) [118]
Software defined network
(SDN) based honeypot

● Two phase attack detection and mitigation approach to identify DDoS attacks.
● Achieve good accuracy.
● The drawbacks of this approach take huge amount of power and lower network
lifetime

Salahuddin et al. (2021) [222]
ADS system based on
autoencoder

● Autoencoder based ADS detect DDoS attacks effectively.
● Threshold selection is based on a heuristic to improve attack detection
accuracy.
● It gives low false positive, This approach take massive computing power
and response time.

A. Mihoub et al. (2022) [223]
Looking-Back
concept used

● ML based approach to detect and mitigate DDoS attack.
● Energy efficciency, adaptability, and scalability are open challenges.

130



6. RENO for IOT

6.4 Proposed solution

This section demonstrates the proposed security solution (RENO) to detect and mitigate

multiple-mix attacks (i.e., Rank attacks, BOF attacks, and DDoS attacks) in the IoT

ecosystem. Section 6.4.1 gives the network assumptions for IoT networks. Section 6.4.2

gives the description of the proposed model. Data collection using Contiki Cooja and FIT

IoT-LAB for the proposed model is given in Section 6.4.3. The proposed RENO solution,

analysed based on Markov chain analysis modeling, is described in Section 6.4.4.

6.4.1 Network model assumptions

RENO model has been designed with the following assumptions:

• The network model is completely based on the IoT ecosystem.

• IoT devices contain different capabilities in terms of their storage, processing, and

energy consumption.

• Every IoT network incorporates one highly resource-rich device which known as 6BR.

Assuming the 6BR device is genuine and cannot be compromised by an assailant.

• IoT devices are tiny in size and resource-constrained in nature. Their work is based

on sensing, monitoring, updating, and processing. These procedures take huge power

consumption. Hence device may get drained.

6.4.2 Security model description

Honeypots and honeynets can be necessary for understanding and defending against multiple-

mix-attacks on IoT networks by luring attackers and making them think they have gotten

into the real systems. Using honeypots and honeynets, in conjunction with other security

measures (such as firewalls and ADS ), can provide a formidable barrier against multiple-mix-

attacks. Shadow Honeypot [4] is a special honeypot to detect multiple-mix attacks with high

accuracy. Shadow Honeypot models are extensively used for enterprise networks and IoT

environments. As IoT attack flows have different characteristics among themselves, RENO

security models provide high accuracy for multiple-mix attack detection in IoT networks.

Being lightweight, shadow honeypot models are suitable for running in resource-constrained
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IoT devices. Accordingly, this work uses a roving shadow honeypot model run on selected

IoT devices for multiple mix attack detection. This work assumes that the IoT nodes of

the system have the required amount of computational resources and storage to perform

attack detection with the RENO security model without hampering its primary task of

environment sensing. The conceptual architectural view of the proposed RENO scheme

is illustrated in Figure 6.6. Brief descriptions of the RENOs sub-components (1: LWSHP

roving based on attack score (AS) and Markov chain analysis; 2: LWSHP that merges the

best characteristics of the honeypot and ADS) are given next.

Internet

6BR

N1

N3
N4

N6

N2

N8

N5

N7

Attack Score Module (ASM)

Honeypot with ADS
(RENO)

TCP/TLS UDP/DTLS

IPv6 RPL

6LoWPAN

IEEE 802.15.4

Attack Score Module (ASM)

Honeypot with ADS
(RENO)

TCP/TLS UDP/DTLS

IPv6 RPL

6LoWPAN

IEEE 802.15.4

Markov Chain Model
(MCM)

Mitigation Module (MM)

Figure 6.6: Conceptual architectural view of the proposed RENO in IoT ecosystem

RENO-first component

Considering Figure 6.6, ASM is executed on each IoT node based on attack score, and

Markov chain model (MCM) analysis is used for a roving process by activating the Xebek
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daemon [203] for the LWSHP. At this stage, the attack score variable AS varies from 0 to 1

on the IoT network. The AS value of a node is higher than that of other nodes in the

IoT ecosystem. Appropriate AS is switched back to 0 on every additional node after the

LWSHP is relocated. The functional pattern of the intended approach is demonstrated in

Figure 6.6.

The LWSHP module is executed continuously on a 6BR router to examine external and

internal network traffic. The MCM always runs on a 6BR router. Based on the LWSHP

result, updated vulnerability information at the mitigation module is used to minimize

further attacks. The IoT node executes ASM and detects the vulnerabilities and priorities

on a scale of (1 − 3) [224]. Scale 1 indicates high preference and frequency of attacks. We

estimate the AS, and then MCM is utilized to achieve roving on the basis of AS. The AS

estimation process is elaborated subsequently.

The attack score 0 ≤ ti (eβj ) ≤ 1 to the ith object upon the experience of the jth event

of an attack β, where AS provides the subsequent identifiers, which qualitatively represent

the attack score of an object:

Compromised ∶ ti (eβj ) = 1

Threatend ∶ 0 ≤ ti (eβj ) < 1

Unthreatened ∶ ti (eβj ) = 0

The above attack assessment scheme gives an attack score that precisely depicts the

series of attack incidents. In other words, the imperiled node should have the maximum

attack rating for the other endangered nodes. Based on this presentiment, we determine the

normalized attack score, for user i one step before being compromised by attack β. The

normalized attack score is estimated as follow.

t∗ (β) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ti (eβj )

maxk∈I (I∗ (eβj )) tk (e
β
j )
∣ ti (eβj+1) = 1, ti (e

β
j < 1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(6.1)

In this first component, IoT network traffic is analyzed with the help of ASM and

generate alert file. The alert file contains attribute like Node_ID, Node_rank, Timestamp,

Protocol, etc. Choosing proper attributes is a vital exercise in this research work. During
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every time interval t, ASM generates n alerts. The alert set is expressed as follow:

Attack_score =
3

∑
n=1
(alert_countn) × (23−n − 1) (6.2)

The Markov chain has to be applied to n+1 states for n IP addresses under consideration

where n states correspond to each of the n IP addresses being under attack and (n + 1)th

state corresponds to those IP address that are not under attack. The most attacked IP

address is found by observing the threat score on a particular IP address for 60 time intervals.

Then the transition probabilities are calculated using the following two formulae:

P t
ij = P [Qt+1 = j ∣ Qt = i] (6.3)

P [Qt+1 = j ∣ Qt = i] =
No.ofevent ((Qt+1 = i)⋂ (Qt = j))

Totalevent (Qt = i)
(6.4)

where P t
ij is termed as transition probability at timestamp t, Qt = i is a system in class

i, Qt+1 = j is a system in class j during the period t + 1. The event (Qt+1 = i)⋂ (Qt = j)

represents that the system is in class j after been in class i.

The transition probability is utilized to obtain Node_ID with high probability of

attack among all Node_ID. The LWSHP is moved on the high attack probability node

ID. Hence, the maximum attackers’ activities and attack patterns could be gathered and

analyzed with the help of LWSHP.

RENO-second component

For making the illusion of a real IoT ecosystem to the assailants, the approach adopted

many LWSHP as exhibited in Figure 6.7.

The LWSHP is an autonomous secure module that identifies multiple mix attacks in

the IoT ecosystem. The operational flow of LWSHP is shown in Figure 6.7. The associated

steps are as follows 1) Rank attack detection, 2) BOF attack detection, and 3) DDoS attack

detection. If the LWSHP module encounters rank inconsistencies, then the module classifies

it as a rank attack. The Algorithm 6.1 described the rank attack detection pseudocode.

To detect BOF attack more accurately with the minimum False Positive Rate (FPR)

the network traffic is rerouted towards the LWSHP module. It contains shadow enable ()

134



6. RENO for IOT

Traffic from IoT Network

Update_1

Attack Score Module (ASM) 

Based on Attack Score (AS) and Markov chain analysis 'n' IoT node
selected for roving 'n' LWSHP

Mitigation Module

LWSHP_1 LWSHP_2 LWSHP_3 LWSHP_n

Update_2 Update_3 Update_n

Figure 6.7: LWSHP and its operational flow (Second Component)

macro, and there task is to decide which code (i.e., shadow and regular) should run and

examine the status of the shared-memory variable. The shadow pseudocode for BOF attack

is describe in Algorithm 6.2.

In DDoS attacks, many zombie devices (devices controlled by the attacker) flood the

targeted devices. In this process, inter-packet spacing is shorter. Hence attack is easily

identifiable by ADS. There may be instances like the inter-packet spacing is shorter for

non-malicious network traffic and modified DDoS attack. Unlike the conventional flooding

attack, it is an intelligent attack and tough to recognize due to its enigmatic traffic behavior

[118]. To detect DDoS attacks accurately and reduce False-Positive (FP) alarms. As

LWSHP analyzes network traffic. The Algorithm 6.3 described the DDoS attack detection

pseudocode.

6.4.3 Data collection

In our experiments, we used Contiki Cooja and the FIT IoT-LAB setup. Multiple mix

attacks have been discovered for eight-node IDs, namely 1, 2, 3, 4, 5, 6, 7, and 8. The

findings are shown over 60 different time intervals (T). The length of a certain T is equal to
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Algorithm 6.1 Rank attack detection using LWSHP
Require: X: List of IoT nodes
Ensure: Rank attack detection
1: NR: Node rank, NPR: Node parent rank, NF : Node fault
2: for <IoT node in X> do
3: if NR +RankIncreasedMinHop < NPR then
4: NF = NF + 1
5: end if
6: end for
7: for <IoT node in X> do
8: if NF < TNF

then
9: Raise alarm

10: end if
11: end for

60 Sec. Table 6.2 displays the AS associated with a particular IoT node ID. According to

the analysis shown in Table 6.3, we find various IoT node IDs that have a higher attack

score for a given T. The first thing we assume is that no IP address in the starting period

should have the same attack score as T1, T2, T3, T4, T5, T6, T7, and T8. When each IoT

node ID records an AS of zero for any given time period, it is assumed that no IP addresses

are under attack; the attacked IoT node count is assumed to be 0.

When more than two IoT node IDs have an identical AS in a particular time period

(T), we presume that the most-attacked IoT node ID has been attacked the least over the

previous attack periods. Table 6.2 exhibits the AS for an individual IoT node ID using

the ASM. Based on Table 6.2, Table 6.3 provides the IoT node ID that was most exposed

throughout each time interval.

6.4.4 RENO security solution

The topological ordering of the RENO security solution for multiple-mix attack detection

and mitigation is given in Figure 6.8. Tasks involving ASM and MCM execution are

completed in an online fashion, as detailed in Section 6.4.2. The LWSHP description is given

in Section 6.4.2. The ASM gets the traffic from the IoT network. This module creates a list

of nnodeIDs, each with a different attack score. On a 6BR node, a Markov chain analysis is

performed using nnodeIDs and an attack score. The RENO security model is deployed in

all IoT nodes. However, the RENO modules in all IoT nodes are initially inactive. After

the IoT network traffic has been analysed by ASM, the MCM module is performed in the
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Algorithm 6.2 BOF attack detection using LWSHP
Require: IoT network traffic
Ensure: BOF attack detection
1: int BufferOverflowFunc()
2:
3: if shadow enable() then
4: char *Lbuffer = pmalloc(100)
5: char *Rbuffer = pmalloc(30)
6: else
7: char *Lbuffer = Lbuffer[100]
8: char *Rbuffer = Rbuffer[30]
9: ...

10: func1(Lbuffer, sizeof(Lbuffer))
11: func2(Rbuffer, sizeof(Rbuffer))
12: ...
13: if shadow enable() then
14: pfree(Lbuffer)
15: pfree(Rbuffer)
16: return 0
17: end if
18: end if

Algorithm 6.3 DDoS attack detection using LWSHP
Require: IoT network traffic
Ensure: DDoS attack detection
1: PFBG ∶ Packet flow behaviour graph, ADS ∶ Anomaly Detection System
2: LWSHM ∶ Lightweight shadow honeypot module
3:
4: if PFBG > Threshold && FF > IP_count Threshold then
5: inform an attack by ADS and reroute to LWSHM
6: if attack exposed then
7: signal responded to ADS and filtering element
8: else
9: signify false_positive (FP)

10: end if
11: else
12: utilize LWSHM
13: if attack exposed then
14: signify false_negative (FN)
15: else
16: signal responded to ADS and filtering element
17: end if
18: end if
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6BR to determine which IoT nodes will serve as RENO nodes. 6BR unicasts a message

to each of the selected nodes to activate their respective RENO security modules. MCM

forecasts the most targeted node after specified time intervals. The 6BR gives instructions

to the already active RENO nodes, telling them to put their RENO security modules into

an inactive state, and it gives instructions to the newly chosen RENO nodes, telling them to

turn on their RENO security modules. A RENO node is capable of detecting multiple-mix

attacks for as long as the RENO security module is active. The RENO node notifies the

6BR node of an assault if a multiple-mix attack is discovered. The 6BR node broadcasts

information about the malicious node to all other network nodes and advises them to stop

any traffic flows coming from malicious sources.

Start

IoT node traffic given to Attack Score Module
(ASM)

Attack Score estimated based on ASM

Generation of set of kIP, kMAC,and Attack
Score (AS)

Probability Transition Matrix measured by
observing number of vulnerability on

individual IP

Identify highest targeted IP address in every
time intervals

Lightweight Shadow Honeypot to Roving on
highest attack rating IP addresses

IoT traffic examined by Shadow Honeypot 

Shadow Honeypot decide  

Based on result ,update attack mitigation
module at 6BR

Periodic time period is over ?

All traffic got processed ?

End

Yes

Component One

No
 Markov Chain implemented on k+1 state for

kIP addresses

No
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Component Second

Figure 6.8: Topological order of RENO security solution
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Table 6.2: The Number of Vulnerability per Node_ID collected from Attack Score Module
(ASM)

Node ID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20
1○ 0 0 0 0 2 4 6 8 0 9 16 17 14 0 26 14 26 18 0 27
2○ 0 0 2 4 3 7 8 5 0 3 10 18 19 0 24 17 28 15 0 29
3○ 0 2 3 8 9 7 9 14 0 2 13 10 12 0 20 17 29 14 0 22
4○ 0 5 6 6 4 10 14 16 0 0 22 23 14 0 20 12 14 16 0 23
5○ 0 0 3 2 5 8 7 11 0 4 15 10 17 0 25 18 27 16 0 23
6○ 0 9 2 10 6 10 15 17 0 12 14 15 9 0 23 13 25 16 0 19
7○ 0 7 5 4 3 5 8 19 0 5 17 19 14 0 10 15 18 10 0 24
8○ 0 0 2 7 7 5 6 9 0 4 10 0 5 0 10 15 16 10 0 15

Node ID T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 T37 T38 T39 T40
1○ 10 23 10 0 6 40 36 28 10 0 28 19 20 18 6 0 0 0 11 14
2○ 13 24 12 9 9 37 38 15 12 0 22 23 20 15 4 0 0 0 10 11
3○ 10 20 13 10 12 37 39 19 13 0 24 27 23 14 0 12 14 0 10 17
4○ 10 15 16 16 14 19 24 18 16 0 18 12 18 16 0 14 12 0 21 17
5○ 9 10 10 22 14 18 27 20 10 0 22 19 17 16 5 10 11 0 25 20
6○ 12 13 10 25 26 19 25 17 10 0 25 23 28 16 3 30 14 0 24 20
7○ 13 17 12 14 13 25 28 19 12 0 19 19 18 10 0 10 9 0 19 17
8○ 4 5 12 12 12 25 16 16 12 0 0 10 11 10 9 10 12 0 10 0

Node ID T41 T42 T43 T44 T45 T46 T47 T48 T49 T50 T51 T52 T53 T54 T55 T56 T57 T58 T59 T60
1○ 0 0 36 43 11 0 14 10 46 38 27 21 40 0 16 48 36 21 0 30
2○ 0 9 34 38 11 0 14 9 58 35 29 20 37 0 14 57 38 26 0 27
3○ 0 10 42 40 12 0 10 11 49 34 22 23 37 0 20 52 39 29 0 29
4○ 0 11 45 33 13 0 9 11 34 46 23 18 19 0 10 49 24 24 0 11
5○ 0 11 26 36 23 0 10 9 37 36 23 21 18 0 10 38 27 23 0 12
6○ 0 12 23 25 21 0 11 14 45 26 19 24 19 0 13 34 25 18 0 13
7○ 0 10 11 12 21 0 9 0 48 30 24 19 25 0 10 30 28 12 0 0
8○ 0 10 10 0 5 0 0 10 46 30 15 0 25 0 0 11 16 16 0 0

Table 6.3: List of the most Attacked Node ID

Time Periods T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20
Most Attacked Node ID Null 6 4 6 3 6 6 7 Null 6 4 4 2 Null 5 5 5 1 Null 2

Time Periods T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 T37 T38 T39 T40
Most Attacked Node ID 6 2 4 6 6 1 3 1 4 Null 1 3 6 1 8 4 3 Null 5 5

Time Periods T41 T42 T43 T44 T45 T46 T47 T48 T49 T50 T51 T52 T53 T54 T55 T56 T57 T58 T59 T60
Most Attacked Node ID 6 6 4 1 5 Null 2 6 2 4 2 3 1 Null 3 2 3 3 Null 1

6.4.5 Markov chain analysis modelling

The Markov chain model that we construct has a total of nine states. In our experiments, we

look at eight states that correspond to the eight IoT node IDs. The ninth state is when no

IoT node is under attack. Using Equation (6.2), Equation (6.3), and satistical information

from Table 6.2 and Table 6.3, we determine the matrix of transition probabilities P at a

specific time, as shown below:

Initially, there is no IoT node under attack in the IoT network. Therefore, we obtain

an initial attack probability (Ap) as

Ap(0) = [0 0 0 0 0 0 0 0 1]
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P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.054 0.122 0.180 0.125 0.134 0.079 0.158 0.000 0.148

0.214 0.075 0.143 0.000 0.175 0.107 0.160 0.111 0.015

0.275 0.075 0.075 0.019 0.123 0.123 0.075 0.068 0.167

0.121 0.041 0.098 0.189 0.169 0.000 0.162 0.179 0.041

0.054 0.122 0.180 0.125 0.134 0.079 0.158 0.000 0.148

0.169 0.000 0.128 0.056 0.152 0.179 0.138 0.125 0.053

0.214 0.075 0.143 0.000 0.175 0.107 0.167 0.111 0.008

0.121 0.000 0.041 0.130 0.163 0.000 0.230 0.123 0.192

0.000 0.111 0.056 0.212 0.158 0.268 0.126 0.000 0.069

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

As per the experimental study, after time duration ‘t’ state probability of the nine sate

system can be predicted as below:

Ap(t) = Ap (0)P

As a result, we achieve

Ap(t) = [0.000 0.111 0.111 0.212 0.222 0.333 0.111 0.111 0.054]

Hence, we can predict the node ID 6○ (aaaa:c30c:0:0:6) is the one that is most targeted.

In Figure. 6.9 exhibits the probability of the attack on an eight-node IoT system at a

time instant ‘t’ in a percentage format. It assists in roving the LWSHP to the particular

node address, which is very likely to be attacked.

6.5 Performance evaluation

This section is divided into three subsections. Section 6.5.1 describes the experiment

environments and setups. Section 6.5.2 defines the metrics to evaluate the performances of

RENO. In Section 6.5.3, the performance of RENO is evaluated, and the competitive result

analysis is done.

6.5.1 Experiment environments and setups

An IoT scenario is considered for the performance evaluation of the RENO, as shown in

Figure 6.10 (a). IoT nodes are randomly deployed for sensing purposes and have multi-hop

path connectivity among themselves. IoT nodes are connected to the Internet through a
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Figure 6.9: Details of attack on IoT node IDs

6BR node with ample storage and computation power. The internal IoT nodes of the IoT

system are accessible by external nodes through the 6BR node using the Internet. As shown

in Figure 6.10 (a), both internal and external nodes can be malicious in nature. The scenario

is developed and tested in the Contiki Cooja [46] simulation and the FIT IoT-LAB [62]

testbed environments. The experimental parameters of Contiki Cooja and FIT IoT-LAB are

presented in Table 6.4. The comprehensive explanation of all simulation and testbed-based

experiments is as follows:

Case 1: Non-attack Scenario (Experiment 5.1): In non-attack cases, all internal

and external (IN +EN) legitimate nodes request for IoT service (i.e., temperature and

humidity) using the sky-websence web server. The experiment is conducted using 8, 16, 32,

64, and 128 IoT nodes, as shown in Figure 6.10 (b). Network traffic is filtered at distributed

ASMs.

Case 2: Multiple-Mix-Attack Scenario (Experiment 5.2): In attack scenarios, various
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Figure 6.10: IoT network setup for experimentation

Table 6.4: Simulation and real-time test-bed parameters

Parameter name Simulation Real time testbed

Operating system
Contiki 3.0,
Contiki 4.5

Contiki-NG

Simulator/Testbed Cooja Cooja FIT IoT-LAB
Network size 8,16, 32, 64 nodes
Radio Environment UDGM
Node Type Tmot Sky IoT-Lab A8
Routing Protocol RPL RPL Lite

RPL Objective Function
MRHOF - ETX,

OF0
MRHOF - ETX

MAC/adaptation layer Contiki MAC/6LoWPAN
Transmitter output power (dBm) 0 to -25
Receiver sensitivity (dBm) -94
Radio frequency 2.4GHz
Attack Modeled BOF attack, DDoS attack, Rank attack
Experiment Duration 60 minutes

attacks are generated from malicious nodes. This experiment contains two types of nodes

(i.e., Legitimate Node (LN) and Malicious Node (MN)). These nodes request services to the

sky-websence web server. We exert 2, 4, 6, and 8 spiteful nodes during these experiments,

as shown in Figure 6.11. These nodes initiate various attacks using IoT protocol stacks.

Case 3: Multiple-Mix-Attack with RENO Solution (Experiment 5.3): In this

scenario, Case 2 is executed with a RENO security solution. At the initial stage, simulation
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Figure 6.11: Snapshot of 4, 6 malicious nodes during these experiments

and a testbed are used to generate an in-house dataset that includes normal and multiple-mix

attack flows using 8, 16, 32, and 64 IoT nodes. In this scenario, we choose 15%, 30%,

and 45% of the IoT nodes that are malicious. These malicious nodes are used to start

multiple-mix attacks. The 6BR node has RENO, ASM, MCM, and MM modules that are

always active. Based on the MCM analysis, a subset of IoT nodes is chosen to activate the

RENO security solution in order to identify multiple-mix assaults. Over time, the active

nodes of the RENO security system are reshuffled based on the attack score given by ASM.

6.5.2 Performance metrics

The following metrics are defined to evaluate the performance of the RENO security solution.

• Throughput (THP): This metric measures the ratio of the network throughput in the

presence of multiple mix attacks with respect to the observed network throughput in

the absence of multiple mix attacks.

• CPU energy (ENEC): The metric measures the energy consumed by CPU in IoT

devices throughout the experimentation.

• Memory consumption (MEMC): It shows the percentage of memory utilization of the

IoT devices to run RENO throughout the experimentation.

• False alarm rate: The false alarm rates are estimated by applying Specificity and
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Sensitivity. Specificity estimates the proportion when the genuine traffic is identified

accurately, and Sensitivity estimates the proportion when the attack traffic is identified

accurately. Both Specificity and Sensitivity are represented as follows:

Specificity (α) =
TP

TP + FN
Sensitivity (β) =

TN

TN + FP
(6.5)

where, TP=True Positive (get nuine nodes identified accurately) FN=False Negative

(genuine nodes identified wrongly) TN=True Negative (malicious nodes identified

accurately) FP=False Positive (malicious nodes identified wrongly)

The FPR is the proportion when the genuine node is incorrectly classified as a

malicious node. FNR is the proportion when the malicious node is incorrectly

classified as a genuine node. The FPR and FNR can be defined as FPR = 1−α, and

FNR = 1 − β.

• Accuracy (ACC): The accuracy of the proposed RENO is defined as its ability to

effectively identify multiple-mix attacks in an IoT network, in addition to the typical

behavior in the IoT network. This has been calculated with Equation (6.6).

ACC =
TP + TN

TP + TN + FP + FN
(6.6)

• Attack detection time (ADT): It indicates the total amount of time needed to accurately

identify multiple mixed attacks.

6.5.3 Result analysis

For the evaluation of the RENO security solution, experiments are run on simulation as

well as a testbed (refer to Section 6.5.1). The results are presented in two parts as follows.

Section 6.5.3 shows the performances of the RENO on the Contiki Cooja simulation, and

FIT IoT-LAB test-bed environment, and Section 6.5.3 presents the competitive analysis of

the RENO performances on placement strategy and attack detection with existing protocols.

Simulation and testbed-based performance evaluation

We conduct three experiments: one in which there is no attack, one in which there is an

attack, and one in which there is an attack employing RENO security solutions using Contiki

Cooja [46] and FIT IoT-LAB [62]. All of these experiments run on different numbers of nodes.
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The IoT network traffic is analysed using collect view methods and the iperf [193] tool

in Contiki Cooja and FIT IoT-LAB, respectively. First, we evaluated the throughput

performances of these experiments, which are depicted in Figure 6.12 (a), Figure 6.12 (b),

and Figure 6.12 (c). The comparative threshold analysis with various IoT node counts and

associated experiment run times is shown in Figure 6.12 (a). The figure illustrates that an

increase in the number of nodes leads to a gradual drop in the average throughput. This

occurs as a result of factors such as the number of devices connected to the IoT network,

network congestion, packet loss, errors, etc.

In Experiment 6.2, the same number of nodes and a malicious node are used to

perform a multiple-mix attack. As shown in Figure 6.12 (b), the average throughput

suffers a significant drop of 34%-45% depending on the number of IoT nodes used and the

corresponding experiment run duration. This occurs as a result of malicious nodes causing

problems in the functioning of RPL, resulting in end-to-end delay and packet drop.

Experiment 6.3 is the one in which Experiment 6.2 with the RENO security solution is

carried out. As can be seen in Figure 6.12 (c), the implementation of the RENO security

solution results in an improvement of 32%-44% in the average throughput. In RENO, AS

and MCM analysis are used to make LWSHP work. As a result, it is much easier to spot

attacks that use a combination of methods.
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Figure 6.12: Avg. throughput for 50 min network execution in (a) Non-attack Scenario, (b)
Multiple-Mix-Attack Scenario, and (c) Multiple-Mix-Attack with RENO solution

Average energy overhead: In experiments 6.1, 6.2, and 6.3, we utilised the powertrac

and the Sysstat [192] tool to determine average power utilisation per node and average

energy consumption with the help of two types of RPL modules: RPL only and RPL collects.

Figures 6.13 (a) and Figure 6.14 (a) show how power utilisation and energy usage vary with
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the number of IoT nodes in a non-attack scenario. In assault situations, power utilisation

per node and energy consumption increase by 46.8% and 37.8%, respectively, as illustrated

in Figures 6.13 (b) and Figure 6.14 (b). This is due to while under attack conditions, we

are unable to achieve adaptive routing paths, local optimization, in-time packet processing,

and other similar goals. During experiment 6.3, we put the RENO security solution into

action and found that the average power usage per node and energy consumption are 1.57

mW per node and 98749 mJ for the whole IoT ecosystem. These results are depicted in

Figure 6.13 (c) and Figure 6.14 (c), respectively.

(a) (b) (c)

Figure 6.13: Avg. power per node for 50 min network execution in (a) Non-attack Scenario,
(b) Multiple-Mix-Attack Scenario, and (c) Multiple-Mix-Attack with RENO solution

(a) (b) (c)

Figure 6.14: Avg. energy consumption for 50 min network execution in (a) Non-attack
Scenario, (b) Multiple-Mix-Attack Scenario, and (c) Multiple-Mix-Attack with RENO
solution

Average multiple-mix attack detection time: Experiment 6.3 is run numerous

times with a changing number of IoT nodes to calculate the average attack detection time,

and attack detection time is recorded for each simulation. As the number of attack nodes

rises, the attack detection time decreases from 263.72 ms. to 246.21 ms., as shown in Figure

6.15 (a). Therefore, the detection time will be reduced according to the number of attack

nodes that are present. Since the time it takes the RENO to find a multiple-mix attack in

an IoT network is a concern for how effectively the attack detection module performs.

FPR and FNR: To analyse FPR and FNR performance metrics, Experiment 6.3 is
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carried out using a range of 8 to 128 IoT nodes. Experiment 6.3 is performed 100 times,

and the average FPR and FNR are calculated using Equation (6.5), as shown in Figure 6.15

(b). The average FPR and FNR go down as the number of IoT nodes, including malicious

nodes, rises, as seen in the figure. The reason for this is due to an increasing number of

IoT nodes makes it possible to execute RENO on the appropriate nodes and investigate

multiple-mix attacks.

(a) (b)

Figure 6.15: Avg. throughput, power and energy for 50 min network execution in attack
scenario

Memory consumption: In experiment 6.3, we used the size command and the

Sysstat [192] tool to assess memory utilisation in Contiki Cooja and FIT IoT-LAB,

respectively. The RENO security module has several submodules built within it, including

ASM, MCM, LWSHP, and MM. The 6BR node incorporates all of these sub modules, and

other IoT nodes that contain ASM are in an active state. Based on the ASM score, the

LWSHP node is also active. The 6BR node is a powerful node (like a PC, laptop, etc.) that

claims more ROM than other IoT nodes. The amount of ROM required to host the ASM

and LWSHP modules in resource-constrained nodes is smaller than the amount of ROM

available in constraint nodes (i.e., 48k in sky mote). Figure 6.16 illustrates the memory

overhead-related analyses. The overhead bar depicts the ASM and LWSHP’s true overhead

in the IoT ecosystem. In addition, we estimate the amount of RAM that is used by each of

RENO’s individual submodules, as seen in Figure 6.16. During the experiments, we use Sky

motes, and the total amount of RAM that they have is 10 kb. As a result, RENO modules

with 0.981 k additional RAM requirements can work efficiently on IoT nodes.

In the testbed experiments, we run non-attack scenarios, multiple mix-attack scenarios,

and attacks with RENO solutions. As mentioned in Section 6.5.2, the performance metrics

are used to assess the proposed solution (RENO). The experimental analysis shows Avg.
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Figure 6.16: RAM and ROM Usage

total energy consumption, Avg. power utilisation per node, and Avg. throughput for

the entire IoT network. Table 6.5 presents the experimental results of the Contiki Cooja

simulation and the FIT IoT-LAB real testbed over a 50-minute time interval (i.e., each

experiment runs for 50 minutes).

Table 6.5: Network energy, power consumption per node, and throughput for IoT ecosystem
(During RENO solution running on Contiki Cooja and FIT IoT-LAB).

Part A: During Contiki cooja simulation
N/W Energy (mJ) Node Power (mW) Throughput (Kbps)

Attack
Scenario

8N 16N 32N 64N 128N 8N 16N 32N 64N 128N 8N 16N 32N 64N 128N

Case 1 19901 32041 49012 57389 78839 0.75 0.81 0.98 1.15 1.29 0.732 0.711 0.694 0.651 0.621
Case 2 24834 43913 58736 70023 87189 1.11 1.29 1.42 1.53 1.83 0.441 0.422 0.412 0.398 0.381
Case 3 20110 33102 51341 58489 80010 0.83 0.91 1.01 1.23 1.34 0.729 0.698 0.689 0.649 0.598

Part B: During FIT IoT-LAB real-time test-bed execution
N/W Energy (mJ) Node Power (mW) Throughput (Kbps)

Attack
Scenario

8N 16N 32N 64N 128N 8N 16N 32N 64N 128N 8N 16N 32N 64N 128N

Case 1 21368 34833 50068 59189 80572 0.81 0.88 1.05 1.18 1.34 0.673 0.648 0.637 0.621 0.609
Case 2 28936 45892 59351 71105 87968 1.21 1.34 1.46 1.53 1.98 0.475 0.442 0.411 0.378 0.369
Case 3 22979 34135 52623 59134 81462 0.82 0.97 1.15 1.25 1.41 0.661 0.639 0.592 0.598 0.499

Comparison of the proposed security solution with the closely-related works

The RENO security solution’s performance on multiple-mix attack detection, as well

as system parameters, are compared to existing security solutions, and the results are
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summarized in tabular fashion in Table 6.6.

In [225], all nodes run security solutions. It is a security solution based on deep

learning. According to the findings, it is scalable with performance criteria such as FPR,

FNR, accuracy, and ADT, giving values of 3.47%, 5.73%, 93.58%, and (592.37-987.45)

ms, respectively. The author of [226] suggested a security solution that makes use of a

1-hop optimum vertex cover placement approach in which IDS nodes monitor flows in a

transparent manner. According to the paper results, the energy consumption, memory

utilisation, FPR, FNR, and accuracy are 178529 mJ, 7500/47507, 3.97%, 4.11%, and 95.36%.

In [216], the results of the proposed model show the performance parameters, such as energy

use, FPR, FNR, and accuracy, which are given as 137034 mJ, 4.31%, 5.24%, and 93.21%,

respectively. However, our RENO is scalable and detects multiple mix attacks with high

accuracy, minimum energy, minimum power per node, lowest memory consumption, and

minimum attack detection time, which is comparable to state-of-the-art works.

In [117], the BOF attack detection and prevention approach is carried out on every IoT

node. With this method, each IoT node does security analysis in addition to its other duties,

such as sensing and making decisions, without the need for any extra hardware. In addition

to this, it has a throughput on average of 0.681 kbps, an energy level of 168352 mJ, a memory

use (RAM/ROM) of 9893/52680, an average attack detection time of (723.35–965.32) ms.,

FPR and FNR values of 3.15% and 3.68%, respectively, and an attack detection accuracy of

97.23%. The author suggested hardware security modules in [219]. The hardware component

keeps an eye on execution traces in real-time to provide information about how the system

is behaving. It has additional hardware that occupies more space and consumes more energy

(143681 mJ). This approach gives an attack detection time range of (260.32–548.13) ms. on

average. In [220], the author uses standard static analysis to look at a distributed system

from a global point of view. This point of view makes it easier to find BOF attacks. This

system is also scalable and can make use of supplementary hardware. It requires additional

memory in the form of RAM/ROM (11585/54983) and additional power (160251 mJ). On

the other hand, as can be seen in Table 6.6, the RENO security solution that has been

proposed has a higher accuracy rate, a lower FPR/FNR value, a better throughput, a lower

energy consumption, a lower FPR/FNR value, a shorter amount of time needed to detect

an attack, and it provides support for scalability.
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In [221], the author employed a honeypot to enable a security system to recognise

DDoS assaults while retaining efficiency using a verification technique. In this method, all

traffic analysis is handled by one centralised machine. This approach requires the use of

supplementary hardware and a greater amount of energy. In addition, the proposed security

solution has an attack detection accuracy of 94.04%, an average attack detection time of

(763.36–895.46 ms), and FPR and FNR values of 4.24% and 4.61%, respectively. In [227],

the author improves single-learner AML-IDS models like PCA and 1-SVM to construct

efficient, scalable, and distributed intelligent IDS for IoT network intrusion detection. This

distributed AI/ML model can run indefinitely on IoT nodes, which use more power than

conventional RENO security models. Based on results, it is scalable with performance

criteria such as energy consumption, memory utilisation, FPR, FNR, accuracy, and ADT,

giving values of 12984 mJ, 8460/51783, 3.62%, 3.95%, 96.72%, and (550.73-635.28) ms,

respectively. The author offers in [223] a unique security architecture with two modules:

attack detection and prevention. The detection module provides fine-grained detection

using the “Looking Back” approach. Based on the detection module, particular packet types

receive the relevant mitigating countermeasures. The installation of this design necessitated

the usage of 143846 mJ of energy. FPR and FNR values (2.34% and 2.86%, respectively)

as a function of attack detection time (703.83-869.44) ms. However, the proposed RENO

security solution reduces FPR and FNR values with minimum overhead. The following are

the summarised flaws of existing security methods identified in Table 6.6:

• Existing security systems evaluate external traffic for just one form of attack identifi-

cation (i.e., Rank attack, BOF attack, and DDoS attack). As a result, internal traffic

attacks remain undetected.

• The memory footprint is not considered by the security solutions for attack detection.

• While detecting attacks on an IoT network, current security solutions do not take into

account the network’s overall energy consumption or its per-node power consumption.

• There are problems with the scalability of the security solutions.

• The FPR and FNR of the security solutions are greater.
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Table 6.6: Comparison of the proposed strategy with the closely related works.

Thread

Type
Ref.

Simulation/

Testbed

System

type

THP

(%)

ENEC

(mJ)

RAM/ROM

(byte)

FPR

(%)

FNR

(%)

ACC

(%)
SCA

ADT

(ms)

Rank

attack

[225] S○ D○ N/A N/A N/A 3.47 5.73 93.58 ✓ (592.37-978.45) ms.

[216] S○ C○ 0.732 137034 N/A 4.31 5.24 93.21 ✗ N/A

[226] S○ D○ N/A 178529 6580/49507 3.97 4.11 95.36 ✓ (547.21-684.53) ms.

BOF

attack

[117] T○ C○ 0.681 168352 9893/52680 3.15 3.68 97.23 ✗ (723.35-965.32) ms.

[219] S○ D○ N/A 143681 N/A N/A N/A N/A ✓ (260.32-548.13) ms.

[220] S○ T○ C○ N/A 160251 11585/54983 N/A N/A N/A ✓ N/A

DDoS

attack

[221] S○ C○ N/A N/A N/A 4.24 4.61 94.04 ✗ (763.36-895.46) ms.

[227] T○ D○ N/A 129894 8460/51783 3.62 3.95 96.72 ✓ (550.73-635.28) ms.

[223] S○ C○ N/A 143846 N/A 2.34 2.86 99.81 ✗ (703.83-869.44) ms.

Proposed

RENO
S○ T○ D○ 0.892 98749 6983/50451 2.52 2.78 99.78 ✓ (263.72-559.28) ms.

Simulation: S○, Testbed T○, Distributed: D○, Central: C○, Throughput: THP, Attack detection time: ADT,

N/A: Not Available, SCA: SCAlability, ADT:Attack detection time, Ref.=References

6.6 Summary

In this chapter, a novel security solution named RENO that merges the roving ability,

honeypots features, and ADS has been proposed. We implement and evaluate the RENO

security solution, demonstrating that the suggested lightweight RENO works well in the IoT

environment. The security solution improves performance by decreasing false positive (FP)

and false negative (FN) rates to 2.52% and 2.78%, respectively, which outperforms existing

security solutions. The suggested security method additionally makes use of a minimal

average energy consumption, as well as per-node power use and memory footprints that are

(ROM/RAM).

<<=8=;;
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"Cybersecurity is much like a game of chess; attackers

think multiple moves ahead, while defenders must cover all

possible angles."

- James Scott

7
C h a p t e r

Conclusions and Future Directions

In this thesis, several contributions have been made to detect and mitigate DDoS, BashLite,

Mirai botnet, LrDDoS, MrDDoS, Rank attacks, and Sinkhole attacks within IoT ecosystems.

This section emphasises the most important research contributions and their impacts.

Additionally, we identify future research directions that include both immediate extensions

to the work carried out in this thesis and emerging trends in the IoT field that will remain

relevant in the coming years.

7.1 Summary of Contributions

In the first contribution, the proposed security solution against DDoS attacks encompasses

notorious threats such as BashLite and Mirai botnets, which pose significant risks to IoT

ecosystems. Our first contribution focused on investigating a novel security solution for

identifying and choosing the best characteristics from network traffic data. Proposed security

solutions improve the accuracy of attack detection methods by utilizing the power of ML

strategies to identify attacks with unprecedented efficacy. Selecting relevant hyperparameters

for training models like the Naive Bayes Classifier and the NOC-SVM has helped identify

botnet attacks. Our proposed method has been rigorously evaluated on numerous datasets,

including CICIDS2017, Kitsuni, BoT-IoT, IScX, KDD99 cup, N-BaIoT, and an in-house

dataset. Throughout the evaluation, we conducted exhaustive comparisons against existing

state-of-the-art approaches and showed comparable results.
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In the second contribution, we proposed security solutions introducing a distributed,

lightweight, and energy-efficient PIA paradigm. The various PIAs use PFC and TVM to

analyse network packets within the IoT network. The proposed security approach effectively

detects LrDDoS attacks, showing proficiency in analysing network traffic originating from

authentic and compromised nodes. The internal and external network traffic of the IoT

ecosystem is significantly covered by the proposed security solution. Through careful analysis,

it can accurately find and stop LrDDoS attacks while reducing both FNR and FPR. However,

while our suggested security solution has many advantages, one potential disadvantage is

that it is based on simulated attack scenarios, which may not fully replicate the complexity

and diversity of real-world LrDDoS attacks. Despite these issues, the proposed LrDDoS

detection and mitigation security solution is noteworthy, providing a foundation for future

advancements in enhancing IoT security.

In our third contribution, we provide a complete approach to detecting and mitigating

MRDDoS attacks, which offers a number of significant advantages. First, this work provides

a comprehensive approach that can identify and mitigate both high-rate and low-rate DDoS

attacks, whereas earlier studies only handled these two types of attacks independently. In

addition, the robustness of the Intrusion Detection System (IDS) is improved through the

incorporation of Wasserstein Generative Adversarial Network (WGAN) approaches. The

novel training method, which combines WGAN-generated artificial flows with public and

in-house-generated data, significantly reduces data set distribution bias, thereby improving

the IDS’s accuracy. The proposal also includes a transparent and efficient IDS placement

mechanism that optimizes IDS node selection to strike a balance between energy overhead

and coverage. This optimization is formulated as the weighted minimal vertex cover problem

of a K-uniform hypergraph, and approximate solutions are provided. Extensive experiments

on the Contiki and FIT IoT-LAB testbeds show that the proposed strategy outperforms

existing solutions. Additionally, it outperforms current benchmark protocols in terms of

attack detection effectiveness while minimizing energy consumption. This multifaceted

strategy provides a reliable and resource-conserving response to MRDDoS attacks on IoT

networks.

In our fourth contribution, we present an exhaustive method for identifying and

mitigating multiple-mix attacks, which offers a number of substantial advantages. The RENO
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model (Roving lightwEight shadow hoNeypOt) that we propose introduces a lightweight

and adaptable method for detecting multiple-mix attacks in IoT networks. RENO achieves

this by extensively collecting data on attackers’ activities, thereby enhancing the detection

rate of multiple-mix attacks. Furthermore, the lightweight shadow honeypot can be easily

relocated to another node or device within the IoT network, increasing its likelihood of being

targeted. We use Markov chain analysis (MCA) to identify the most likely node or device

for an attack based on the existing IoT network profile. The RENO model’s applicability

and efficacy are confirmed by the MCA modeling procedure. We conducted a performance

comparison of the RENO solution versus other relevant approaches in order to showcase its

benefits. This evaluation shows the possible advantages of the RENO model by considering

things like throughput, energy consumption, memory usage, false-positive and false-negative

rates, accuracy, and attack detection time.

7.2 Future Research Directions

The contributions in this thesis can potentially be used as a foundation for future work,

particularly in studies aimed at establishing more effective and lightweight security methods

for IoT ecosystems. Despite the fact that the security mechanisms implemented in this

document have demonstrated their ability to effectively overcome the limitations of common

research conventions, as discussed previously, some limitations remain. These are some of

the new paths that this work will take in the future.

7.2.1 Exploring the Potential of Inter-Fog Resource Sharing

In our thesis, we present four key contributions aimed at enhancing security within the

Internet of Things (IoT) ecosystem. First, we employ machine learning (ML) techniques to

detect Distributed Denial of Service (DDoS) attacks. Our approach involves distributing the

detection module across resource-rich IoT nodes at the edge, capitalizing on the advantages

offered by existing IoT infrastructure. However, we acknowledge that our solution does

not explore Fog Computing or Inter-Fog Resource Sharing methodologies, leaving room for

future investigation in this area.

The concept of inter-fog resource sharing plays a crucial role in optimizing the efficiency

and performance of Internet of Things (IoT) networks, particularly in fog computing
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environments. In the context of IoT, fog computing represents an edge computing paradigm

where data processing occurs closer to IoT devices, reducing latency and enhancing real-time

decision-making. This paragraph highlights the importance of further exploring inter-fog

resource sharing within IoT networks and its potential impact.

• Current Challenges in Fog Computing: - Fog computing in IoT networks aims

to process data locally or at the network edge to minimize latency and reduce the

load on centralized cloud resources. However, heavy workloads or resource constraints

within a fog layer can lead to a bottleneck, forcing requests to be forwarded to the

cloud. This results in increased latency and potential resource underutilization.

• Resource Sharing Benefits: - Inter-fog resource sharing addresses these challenges

by enabling neighboring fog layers to collaborate and share resources. Resources can

encompass computing power, storage, and network bandwidth. Sharing resources

helps distribute the processing load more efficiently, reducing the need to transfer

requests to the distant cloud.

• Prevention of Cloud Overload: - Through inter-fog sharing, fog nodes can col-

laborate to process requests from nearby IoT devices, preventing unnecessary data

transfers to the cloud. This not only reduces cloud overload but also minimizes data

transmission costs and latency, making IoT applications more responsive.

• Enhanced Scalability and Reliability: - Resource sharing fosters scalability within

the fog layer, allowing it to accommodate an increasing number of IoT devices and

applications. It also improves the fault tolerance and reliability of the network, as fog

nodes can compensate for failures in neighboring nodes.

• Resource Allocation Algorithms: - Developing efficient resource allocation al-

gorithms is a key research direction in this area. These algorithms should consider

factors such as workload, proximity of fog nodes to IoT devices, and available resources

to make informed decisions about resource sharing.

• Security and Privacy Considerations: - While resource sharing enhances network

efficiency, it also introduces security and privacy concerns. Future research must

156



7. Conclusions and Future Directions

address these issues, ensuring that shared resources are used securely and do not

compromise sensitive IoT data.

• Network Orchestration and Management: - Implementing a robust network

orchestration and management framework is essential to facilitate seamless resource

sharing. This involves dynamically allocating and deallocating resources as per the

workload and network conditions.

In conclusion, inter-fog resource sharing presents a promising avenue for optimizing IoT

networks by distributing processing tasks and preventing unnecessary data transfers to the

cloud. Future research should focus on resource allocation algorithms, security measures,

and effective network management to harness the full potential of this approach, ultimately

enhancing the efficiency and reliability of IoT applications.

7.2.2 IoT and Blockchain Integration for IoT Networks

In our thesis, contributions 2, 3, and 4 involve security measures and their corresponding

mitigation strategies, all of which are executed in a distributed manner. However, throughout

the distributed execution process, we have not implemented checks for device integrity. This

omission raises concerns about the functionality of devices executing our solution. If a

malicious node participates in the execution process, it could compromise the integrity of our

solution and adversely affect its outcomes. To address this challenge effectively, integrating

blockchain technology with our solution emerges as a promising approach. By enabling

blockchain within our solution framework, we can enhance its resilience against malicious

nodes and ensure the integrity of the execution process. Notably, we have not explored this

method in our current solution, presenting a significant avenue for future research in our

thesis work.

Research and development efforts in the intersection of IoT and blockchain are focusing

on achieving the following goals:

• Scalable Permissioned Networks: Innovations are aimed at enabling permissioned

IoT networks to scale efficiently by designing consensus mechanisms that can handle

a large number of nodes. Sharding, sidechains, and off-chain solutions are explored to

improve scalability.
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• Enhanced Throughput for Permissionless Networks: In the context of permis-

sionless IoT networks, researchers are working on consensus algorithms, like proof-

of-stake (PoS) and delegated proof-of-stake (DPoS), to increase throughput while

maintaining security and decentralization.

• Hybrid Architectures: Combining the strengths of permissioned and permission-

less blockchains, hybrid architectures are emerging as a potential solution. These

architectures aim to balance scalability and throughput requirements in diverse IoT

scenarios.

• IoT-Specific Use Cases: Tailoring blockchain solutions for specific IoT use cases,

such as supply chain management, smart cities, and healthcare, is an ongoing focus.

These customizations aim to optimize blockchain architecture to meet the unique

demands of different IoT applications.

In summary, the integration of blockchain technology into IoT networks is a dynamic

field that continues to evolve. Addressing scalability and throughput challenges is essential to

unlock the full potential of blockchain in the IoT domain. Ongoing research and innovations

in consensus algorithms, network architectures, and use case-specific deployments are crucial

steps toward achieving these objectives and harnessing the benefits of blockchain technology

in the IoT ecosystem.

7.2.3 Threat Intelligence Sharing in IoT ecosystem

In our thesis contributions, we have leveraged intelligent and real-time testing methodologies

to assess the presence of attacks. Additionally, we have integrated machine learning (ML)

techniques by training ML models offline using diverse IoT datasets. However, it is important

to note that our current approach lacks the utilization of intelligent sharing mechanisms in

real-time within the IoT ecosystem. Thus, one potential avenue for future research within

our thesis direction involves exploring the integration of Threat Intelligence Sharing in IoT

ecosystems.

Threat intelligence sharing in the IoT (Internet of Things) ecosystem is a critical

aspect of enhancing security in the rapidly evolving landscape of connected devices. As a

future direction, it involves the collection, analysis, and dissemination of information related
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to IoT-specific threats and vulnerabilities among various stakeholders, including device

manufacturers, service providers, government agencies, and cybersecurity organizations.

Here are some key aspects of how threat intelligence sharing in the IoT ecosystem may

develop in the future:

• IoT-Specific Threat Feeds: Specialized threat intelligence feeds dedicated to IoT

threats will become more prevalent. These feeds will include information on emerging

vulnerabilities, malware targeting IoT devices, and attack patterns specific to IoT

ecosystems.

• Collaborative Platforms: The development of collaborative platforms and consortiums

where industry players, researchers, and government agencies can share threat intel-

ligence in a trusted and secure manner. These platforms will facilitate information

sharing among stakeholders to address common threats.

• Standardization: The establishment of standardized formats and protocols for sharing

threat intelligence in the IoT space. Standardization ensures that threat data can be

easily exchanged and understood across different organizations and systems.

• Privacy Considerations: Future threat intelligence sharing efforts will need to strike a

balance between sharing critical information for security purposes while respecting

user privacy and data protection regulations. Anonymization and data minimization

techniques will be employed to mitigate privacy concerns.

• Real-Time Sharing: The move toward real-time threat intelligence sharing, allowing

organizations to receive timely updates about emerging threats and vulnerabilities.

This enables faster response and mitigation actions.

• Automated Threat Detection and Response: Integration of threat intelligence feeds

with IoT security systems for automated threat detection and response. When a new

threat is identified, devices can automatically adapt their security measures or notify

administrators.

• Machine Learning and AI: Implementation of machine learning and artificial intelligence

for analyzing threat intelligence data. These technologies can help identify patterns

and anomalies in the massive amounts of data generated by IoT devices.
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• Regulatory Incentives: Government agencies may introduce incentives or regulations

that encourage organizations to share threat intelligence. This can help create a

culture of cooperation in addressing IoT security threats.

• Vulnerability Prioritization: Development of tools and methodologies for prioritiz-

ing vulnerabilities based on their potential impact on IoT ecosystems. This helps

organizations focus their resources on addressing the most critical threats.

• Global Collaboration: International collaboration on threat intelligence sharing to

address IoT security threats that transcend borders. Cybersecurity threats often have

a global reach, and cross-border cooperation is essential.

• Incident Response Coordination: Enhanced coordination among organizations dur-

ing IoT security incidents. This includes predefined incident response plans and

communication protocols for sharing threat intelligence during and after an incident.

• Sector-Specific Sharing: Tailoring threat intelligence sharing efforts to specific IoT

sectors, such as healthcare, energy, or transportation, to address industry-specific

threats and vulnerabilities.

In summary, the future direction of threat intelligence sharing in the IoT ecosystem

involves creating a collaborative and standardized framework for sharing information about

emerging threats and vulnerabilities. This proactive approach is essential to stay ahead

of evolving IoT security challenges and to protect the integrity and functionality of IoT

devices and systems.

7.2.4 Time Domain to Frequency Domain Analysis for IoT Security:

In our thesis, each contribution relies on time-domain traffic analysis. While some contribu-

tions employ ML-based security solutions, they predominantly utilize time-domain traffic

datasets for both training and testing purposes. However, despite these efforts, our solutions

encounter challenges in detecting concealed attacks such as LrDDoS attacks. Recognizing

the significance of frequency-domain analysis in identifying such attacks, we highlight the

importance of exploring this domain further. Detecting and mitigating threats within the

IoT ecosystem through frequency-domain analysis presents a promising avenue for enhancing

security measures.
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The exploration of transitioning from the time domain to the frequency domain in the

context of IoT security represents a promising future research direction. This approach

involves analyzing IoT data and signals in the frequency domain, which can provide unique

insights and solutions to enhance IoT security. Here’s an explanation of why this is an

important and promising avenue for research:

• Signal Analysis for Anomaly Detection: In the frequency domain, IoT signals and

data can be decomposed into their constituent frequency components. Analyzing

these components can help in detecting unusual patterns or anomalies that might

signify security breaches or unauthorized activities. Researchers can develop advanced

algorithms and techniques for more effective anomaly detection.

• Frequency-Based Cryptography: Traditional cryptographic techniques are often de-

signed for the time domain. Exploring cryptographic methods that leverage the

frequency domain can lead to innovative approaches for securing IoT communica-

tions. Frequency-based cryptography may offer increased resistance to certain types

of attacks.

• Resilience Against Jamming: Frequency domain analysis can help in identifying and

mitigating the effects of signal jamming and interference, which are common attack

vectors in IoT networks. Research in this area can lead to improved resilience against

jamming attacks.

• Energy-Efficient Security: Exploring the frequency domain can lead to energy-efficient

security solutions for resource-constrained IoT devices. Frequency-based security

mechanisms may require less computational power and energy consumption compared

to traditional methods.

• Cross-Layer Security: Integrating frequency domain analysis into a cross-layer security

approach can enhance the overall security posture of IoT systems. Researchers can

investigate how frequency-related insights can be applied across different protocol

layers.

• Machine Learning and Frequency Domain: Combining machine learning with frequency

domain analysis can lead to intelligent security systems that adapt to evolving threats.
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Machine learning algorithms can be trained to recognize abnormal frequency patterns

associated with attacks.

In summary, transitioning from the time domain to the frequency domain represents an

exciting future research direction for IoT security. It offers opportunities to develop novel

security techniques, cryptography methods, and anomaly detection systems that can better

protect IoT devices and networks from a wide range of threats.
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