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Abstract

Traditional classrooms are now required to satisfy the demands of teachers and students
to fulfill their ever-increasing expectations to provide quality teaching-learning experiences
and outcomes. The classroom system uses technology to enrich the students and teachers in
classroom teaching and learning. It gives birth to a blended learning platform based on the
usage of Information and Communications Technology (ICT), while researchers are also
looking for new ways to teach in the classroom. The purpose of a blended learning platform
is to incorporate new opportunities like the Bring Your Own Device (BYOD) paradigm and
mobile computing into classroom teaching-learning.

In a classroom, teachers face difficulties in monitoring and caring for individual students.
Technology-enabled on-demand classroom monitoring can assist the teachers. In real-time
classroom status visualization, the major challenges are showing the status and location of a
large number of students in a limited display area such as that of a smartphone with minimum
additional cognitive load on the teacher working in a time-constrained environment. Here,
cognitive load means the metal effort teachers need to understand classroom monitoring
information. Researchers are also facing challenges in notifying teachers and students about
the students’ pitfalls. The notification improves teacher-student interaction and engagement.
Usually, receiving notifications about weaknesses or pitfalls requires the teachers’ and
students’ focused attention to comprehend in a real-time classroom environment. This
makes it really challenging to design notification systems for in-class use. In addition,
classroom visualization and notification demand academic performance metrics (APMs) in
tracking student performance. However, performance assessment and prediction depend on
the challenges of selecting metrics.

To address the challenges of classroom visualization and notification, this thesis con-
tributes to determine metrics, and define academic performance state, and introduces the
concepts of a classroom visualization including notification techniques. We provide an
up-to-date literature survey to use the APMs and strengthen the state-of-the-art. This
survey helps in defining and predicting student performance states for real-time classroom
visualization and notification. In addition, we determine the APMs through a field study
to validate and compare the metrics in the Indian context. The aim of our classroom
visualization is to display the large data on students’ performance state in a limited available
display. A two-level visualization scheme is developed to display the state of one hundred
or more students on a desktop and/or smartphone screen the teacher might have. Our
goal is to display the status of the entire class, location of the student, and detailed state
information of the in-class students. In order to prevent disruptions to the usual flow of
instruction, it should also be simple for the teacher to check student performance state. We



propose an intelligent notification system for real-time classroom use. The system generates
automatic notifications to the user depending on students’ performance status in real-time.
The challenge here is ensuring the teacher’s primary task (lecture delivery) should not
be hampered. The notification also makes sure that instructors and students are aware
and focused throughout lectures, even in the face of the busy schedule in the classroom.
In this scenario, we developed a peripheral notification technique, which helps to reduce
the cognitive load and time to get the feedback of a teacher working in busy everyday
classroom activities. The system is designed to deliver notifications to students to analyze
and understand their performance at an early stage and on time.

We developed Android applications for implementing visual monitoring and notification
systems to evaluate usability. The high System Usability Scale (SUS) scores, perceived
usability, and the positive feedback from the users (teachers and students) point to the fact
that the proposed visual monitoring and notification system are likely to result in higher
learning outcomes.

Keywords: Academic metrics, Academic performance, Blended learning, Classroom
status, Classroom monitoring, Classroom-centered feedback, E-learning tool, Machine
learning, Overview+details, Peripheral alert, Predictive model
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1
C h a p t e r

Introduction

Since ancient times, traditional classroom instruction has gained popularity. In the past,

India was well-known for its traditional teachings taught in Ashrams (Gurukuls). A tradi-

tional classroom is a teaching and learning environment where students receive instruction

from teachers face-to-face. Teacher and student interactions take place in person. There

are many advantages of face-to-face teaching and learning in a classroom. The traditional

face-to-face classroom is beneficial because it gives a fixed and dedicated time for teaching

and learning. Most students believe that traditional classroom settings are good for learning

because they can easily interact with classmates and teachers. Students can gain deeper

knowledge, real-world examples, and stories from their teachers and classmates.

Despite the fact that traditional classroom settings support teaching and learning in

many ways, there are still a number of crucial needs that must be met to improve learning

outcomes. In a traditional classroom, the following challenges are observed:

• Clear audibility: Clear audio enhances the learning outcomes for both teachers and

students. Even if a student has not yet received a hearing impairment diagnosis, there

are a number of things that can affect their capacity to listen and hear clearly. Such

examples are the distance between teacher and students, classroom size, and noisy

environment.

• Visibility of the board: Teacher’s handwriting impacts the visibility of the teaching

content. However, it depends on various factors. A common factor affecting the



visibility of the board is the distance between the board and the students which

directly depends on the class size. When the class size is large, obviously the distance

between students and the board increases.

• Individual attention: It can be challenging to interact with every student daily

in every class. Even in smaller classes, it is not easy to interact with every student

due to the teacher’s teaching in a time-constrained environment. There are various

ways teachers can improve interaction with individual students, including their time,

learning feedback, relationships, team-building, and peer support. Unfortunately, it is

not always possible to do so, especially in large classrooms.

• Measurement of Learning at Real-Time: In classrooms, it is difficult to measure

the performance of learning that happens during teaching. Teachers must ensure that

their students have not been left behind before moving on to the next topic. It is crucial

to conduct a brief check-in to make sure everyone is getting the concepts, particularly

after introducing a new topic. If not, additional explanations could be based on faulty

assumptions, which could make some students lose interest, get confused, or begin to

question their abilities.

In order to address these challenges traditional face-to-face classrooms are adopting

projectors, smartboards, sound amplifiers, and other technologies to improve teaching and

learning. Researchers attempt to adopt new technology in classroom teaching-learning to

get the advantages of both traditional and technology-enabled classrooms [3]. Many forms

of classroom settings have been created using Information and Communications Technology

(ICT) and other intelligent solutions [4, 5].

Nowadays, classroom systems focus on monitoring, controlling, and motivating students

to improve teaching and learning process [6]. Modern technology aids the classroom system

in providing quality teaching-learning [3]. The technology-enabled on-demand classroom

analytics can assist the teachers in monitoring and improving student-teacher interactions

[7]. In classroom monitoring, the challenging task is to convey the overall classroom status,

academic performance, and student position in a classroom during lectures. Moreover, proper

classroom monitoring and Learning Analytics (LA) demand quality academic performance

metrics in quantifying student performance. The identification of state needs influential
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metrics that can help researchers, academicians, and students, keeping assessment and

prediction as a key to student performance [3].

In a time-constrained large classroom environment, real-time monitoring becomes more

challenging for teachers while minimizing their cognitive load. Here, cognitive load means

the metal effort teachers need to understand classroom monitoring information. The most

substantial challenge in classroom visual monitoring is representing large performance data

sets that satisfy specific classroom needs. There are challenges in designing an adequately

simple system concerning better interaction and user experience for visual monitoring. To

make such a visualizer usable, it must be designed using User-Centered Design (UCD).

The principal intuition is to develop a visualizer to explore and understand the data by

a non-expert user. Good data visualization also concerns design decisions such as data

abstraction as per the user’s cognitive ability or load and clustering of data into groups as

per reasonable goals.

Moreover, active research in classroom settings faces challenges in notifying teachers

and students about students’ difficulties and pitfalls [8]. In this research direction, the choice

of blended learning in a classroom environment can assist in receiving notifications about

the weaknesses of students. Therefore, intelligent classroom monitoring and notification

will continue to develop due to the rapid growth and increasing popularity of ICT and

innovative tools. It is also crucial to have a valuable strategy to enable future classroom

systems to achieve the quality of teaching-learning experience [4, 5].

1.1 Role of ICT in Teaching and Learning

Classroom teaching has been using ICT to strengthen the degree of the teaching-learning

process [9, 10]. At the current stage of technological development, a new form of classroom

teaching can be created. Advanced technology-supported classroom teaching helps access

educational resources, presents effective teaching content, and promotes teachers-students

interaction with the context of monitoring [6] and notification environment management

[8]. The use of ICT enhances interactivity and introduces accessibility of performance

metrics and learning materials provided by the classroom system to improve system usability

[10, 11].

The present-day learning platform and pedagogical objectives require teaching-learning
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tools that are interactive and adaptable enough to meet the present demands using ICT into

classroom settings [10, 12]. The research showed that inadequately designed and inefficient

classroom systems did not consider the utilization of ICT tools in the education process

[4, 5]. Some recent attempts are also made to present advanced technologies in classes [5].

The effectiveness of the ICT tools benefits current endeavors to reduce the challenges of real-

time classroom monitoring and notifications. The solution needs to address a fundamental

problem: the excessive complexity of advanced technology in classroom teaching often makes

it difficult to adapt effectively in achieving educational goals [3, 13]. The issues of technical

complexities are common in blended classes, and a good solution would enhance learning

outcomes [3].

1.2 Blended Learning Systems

Nowadays, technology-enabled classroom settings solve many of the difficulties a teacher

faces in a traditional face-to-face class. These classroom systems integrate technology into

classroom settings to improve learning outcomes. These forms of classes are also known

as blended classes. The ICT, Bring Your Own Device (BYOD) paradigm, and mobile

computing accelerate the research in setting up a blended classroom environment.

Blended learning is also known as the hybrid or mixed-mode of learning [14]. According

to Osguthorpe and Graham [15], blended learning combines physical classroom teaching

with computer-supported instruction. The phrase was redefined by Hoic-Bozic et al. [16] as

various combinations of classical classroom teaching, the Internet, and learning support with

advanced technologies, producing an efficient teaching-learning environment. Conceptually,

blended learning may combine various teaching-learning methods, different modes of learning,

and different interaction strategies.

The use of different learning methods such as e-learning, utilizing modern technologies,

and traditional classroom teaching-learning may be combined in this platform. Researchers

also blended various modes of learning methods in classroom teaching such as one-to-one

and group learning. In one-to-one learning modes (e.g., ‘individual learning’), a private

tutor or machine takes additional care of a student. In “group learning” a teacher partitions

students into groups and takes care of the groups. Researchers also incorporate and/or

mix different classroom interactions, such as ‘synchronous’ and ‘asynchronous’ interaction
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Blended Learning

 Support BYOD paradigm (smartphone/tablet/ 

laptop) for classroom activity

 Access teaching contents 

 Provide attendance

 Supply teaching material including lecture 

slide and real-time audio streaming

 Query posting and liking with response

 Conduct surprise/class test 

 Manage classroom

 Supply teaching contents 

 Take attendance

 Monitor classroom activities

 Respond to student queries 

Traditional 

face-to-face 

classroom 

environment 

Computerized online 

and/or e-learning 

environment 

Figure 1.1: Basic building blocks of a blended learning environment.

schemes. Synchronous interaction is all about real-time engagement between the teacher

and students. In the asynchronous interaction scheme, live interactions do not occur, but

the students can post queries that the teacher can address at their convenience. The

primary focus of blended learning is to determine an appropriate blending of this technology,

online and traditional classroom teaching methods, group and individual modes of care,

and synchronous and asynchronous schemes to design an intelligent learning platform. The

actual aim of mixing these techniques is to improve pedagogy in terms of better learning

experiences and outcomes [12, 17, 18, 19, 20, 21]. The goal of a blended learning platform

is to incorporate new options into classroom teaching and learning, such as the BYOD

paradigm, e-learning, and mobile computing. Figure 1.1 illustrates the concept of blended

learning setting.

The blended learning is advantageous over e-learning and classroom teaching in terms

of students learning achievements and outcomes [17]. Gitinabard et al. [18] reported that

students achieve better grades in this learning environment compared to the conventional

classroom teaching and e-learning system. The study by Nortvig et al. [21] further indicates

that blended learning leads to positive outcomes in terms of student satisfaction, learning
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achievement, and enhanced engagement in the teaching-learning process. Tikadar et al. [12]

found that classroom interactions have a beneficial impact on teaching-learning efficiency

when using a blended learning platform.

1.3 Difficulties in ICT enabled Classroom

The classroom is a physical platform used to deliver lectures or share knowledge [12]. The

use of learning tools is steadily expanding and is now prevailing in most of the education

systems [3, 8]. Technology-equipped classrooms introduce a new way of teaching-learning

into education. The design of classroom tools using UCD approach further enhances user

satisfaction and interaction leading to improved learning outcomes. Through such improved

interactions, the teacher is able to give timely feedback to the students, which leads to an

ideal classroom teaching environment for future classes. Nowadays real-time and offline

interactions between teachers and students are possible using advanced tools in teaching

and learning.

Identifying the possible hurdles to using ICT in educational institutions would be a

crucial step in enhancing the quality of teaching and learning. Academic researchers have

realized the importance of ICT in society and its potential for the future of education.

Educators appear to recognize the usefulness of ICT in institutions and suggest that

challenges persist in adopting these technologies [10]. There are several difficulties teachers

and students face in ICT-based blended classrooms. Some of the difficulties that need to be

overcome in improving learning outcomes in such classrooms are as follows.

• Support individual students: There is an issue with providing individualized

student support in a classroom teaching-learning environment. It is becoming more

obvious in all educational settings, particularly when the number of students in a class

increases. The primary challenges are determining and understanding the learning

issues different students experience during lecture. The focus is on what happens

when students have problems and become confused.

• Class size: Only a certain number of students can be present in the classroom

at any given time. The growth in the number of students in the class necessitates

increased quality resources with more teachers, classrooms, and reliable classroom
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infrastructure. As a result, responding to students who are stuck or confused with

guidance or feedback to help them grow might be difficult.

• Implementing blended learning: The challenge in implementing blended learning

is acquiring new technology and skills. Such examples include fostering understanding,

facilitating classroom discussion, and managing students. There are challenges in

minimizing teachers’ time and effort to understand the classroom and real-time

monitoring during class on a regular basis. The complexities of adaptation of new

technology is the common problem and a simple solution would help to improve

learning outcomes.

• Teachers’ effort: The teachers must put a lot of effort into designing the course

and lecture materials. The outcomes of the live class depend on the presentation and

flow of teaching and learning. The flaws in presentations and teacher performances

can result in significant problems. Therefore, it is vital to meet various difficulties

regarding the adaptation of innovative ICT tools.

An ICT-enabled learning environment demands teachers’ and students’ attention to

operate and interact in a real-time class lecture on monitoring and getting notification

information. It has the potential to disturb teaching-learning. An effective data visualization

for real-time classroom monitoring according to logical goals and data abstraction can help

to reduce user cognitive load [6]. In case of notification management, one solution is to

use peripheral interaction to minimize the disturbances [22]. The concepts of visualization

methods in a limited display and notification system design using peripheral interaction are

required to meet the state-of-the-art challenges. Therefore, an effective data visualization for

real-time classroom monitoring and notification system design using peripheral interaction

is required to meet the state-of-the-art challenges.

1.4 Motivation

The usage of advanced technology in education has increased exponentially to improve

teaching-learning. It helps to utilize and adopt technology in our everyday routine to improve

learning outcomes. Nevertheless, we still encounter performance issues in the utilization

of smart devices in education. Of course, BYOD does have its advantages for other tasks.
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Its portability and flexibility can be great for staying productive on the go or accessing

information quickly. However, it’s important to be aware of the limitations when considering

BYOD for specific classroom activities. Also, there are risks to using these devices to

perform tasks that are outside the classroom activities. Here, we must think of alternatives

to streamline and enhance user experience in a smart classroom system [3]. Advanced

tech-driven smart classroom systems adopt new interaction, input methods, and feedback

approaches toward devising modern teaching methodology. Suitable classroom feedback

to teachers and students, including comprehensive information about difficulties, plays a

crucial role in quality teaching. On-demand visualization of the real-time classroom status

can assist teachers in monitoring students using advanced technology. However, several

challenging issues still exist, including processing raw inputs (e.g., data about students’

criticality in terms of performances) and rendering in a limited display area. It helps the

instructor customize the lecture better and nurture the students overall academic growth.

Additionally, real-time feedback in the form of notifications concerning exceptional situations

to teachers and students can enhance engagement in teaching and learning.

One of the growing areas where digital technologies can play a significant role is in

classroom teaching and learning. The rapid growth of mobile technologies helps in effective

teaching for omnipresent use [23]. Various digital environments and technologies are being

used to improve academic performance, attendance, and other behavioral aspects during

a particular course [24]. These technologies are primarily used as supportive tools for

the teacher to effectively deliver the lecture (primary task) and improve teacher-student

interaction (secondary tasks). However, quality teaching is expected to know students’

progress, achievements, and difficulties to provide positive encouragement and to inform

students about anything wrong on the fly [6]. Furthermore, these systems require the

teacher’s focused attention to operate a Graphical User Interface (GUI). Thus, using GUIs

and technologies with regular teaching activities puts an additional cognitive load on

the teacher. Current research has focused on representing students’ learning states and

performances meaningfully to the teacher [6, 25, 26, 27]. However, to improve teaching-

learning, students’ classroom performance and engagement in learning must be visualized

[6]. The visualization is likely to help a teacher understand learners’ difficulties and the

need for the teacher’s attention and subsequent intervention [6, 27]. In the literature, we
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found a few approaches for monitoring and visualizing in-class students. However, there

are limitations to using important Academic Performance Metrics (APM) in identifying

students’ real-time difficulties and performances. In the classroom, real-time metrics on

the quality of instructional episodes let the instructor adjust the lecture and nurture the

academic progress of all students. However, several challenging issues include processing

raw inputs (e.g., data about students’ criticality in terms of performances) and rendering in

a limited display area.

Earlier research has also explored peripheral interaction, ambient display, and tangible

user interface to know the classroom’s pulse. These techniques are used to minimize teacher’s

additional cognitive load. These are used in designing innovative classroom settings [22].

There are many interactions in real life (during classroom teaching) that a teacher needs

to be aware of. For example, monitoring remaining lecture time or purposefully sipping

water or tea, can be seamlessly integrated with lectures and discussions work while not

considerably increasing their cognitive resources. Blending seamlessly these activities into

everyday classroom activities required minimal mental workload. The authors have shown

that these actions are required to shift attention when desired. However, performing a

teacher’s secondary or supporting tasks (e.g., knowing the students’ pitfalls) required shifting

the center of attention. The blending of these concepts in classroom settings design requires

less mental effort of the teacher. In this scenario, the peripheral interaction can allow the

teacher to provide quality teaching in a classroom. Additionally, the real-time feedback

in the form of notification concerning exceptional situations to teachers and students can

enhance engagement in teaching-learning.

1.5 Thesis Objective

The teacher in the classroom plays a significant role in teaching and learning. Quality-

teaching demands to know students’ performance states whether students are getting the

concepts or not. These data are crucial to provide more attention for a student or group

of students in the class. Nevertheless, the teacher needs performance information about

an individual student a group of students, or an entire class of students to enhance the

learning experience. These data are possible to access and comprehend faster using advanced

technology in a classroom teaching-learning process. In improving the instructor’s teaching
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quality, it will be required to understand the student’s academic performances on the fly

during lecture delivery. However, tasks may be overburdening when the classroom strength

is large (e.g., more than 100 students). Hence, expecting the instructor to manually glean

the real-time performance metrics of the classroom, which incurs a significant amount of

cognitive load, is unreasonable for the individual instructor, not scalable across society, and

a disservice to students. Therefore, designing a classroom monitoring tool is challenging.

To comprehend the classroom status information in an available or frequently used

display (such as that of a smartphone) demands real-time visualization techniques. Precise

visualization methods from a classroom perspective can reduce teachers’ cognitive load to

employ primary tasks (e.g., teaching). Like the traditional visual representation of complex

data sets in the form of pictures, charts, diagrams, and animations reduce human time and

help quickly perceive the entire data content. Researchers used visualization techniques

because the instructor needs a conscious thought process to comprehend what is happening

inside the lecture hall while delivering the lecture. Therefore, the teacher has a limited time

to visualize all the details. However, an extensive group of information, such as performance,

activity, attendance assessment, and records, must be shared with the instructor to enhance

teaching quality. Therefore, identifying academic performance and difficulties for classroom

systems demands influencing APMs to use visualizing or other real-time feedback systems.

Another challenge is that the students’ monitoring activity primarily relies on the

instructor’s visual attention on a device. As a consequence, the teacher can overlook the

visualizer in their busy time-constrained schedule. However, visual resources are limited and

need focused attention on teaching. In this scenario, we must render an alternative to bring

students’ states to the attention of the teacher. A peripheral interaction can reduce the

teacher’s cognitive load to utilize in the primary task. We can use intelligent techniques to

give feedback to teachers and students to improve student’s learning outcomes. Educational

apps on mobile devices can track student progress and provide actionable feedback in

real-time, leading to better learning outcomes. Feedback in the form of notifications can help

the instructors and the students in the classroom environment. Furthermore, on-demand

systems to address real-time proactive alert generation need to motivate the students for

active classroom participation in an available device in a classroom environment.

As we have already introduced, the challenging task in monitoring students is to show
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both the status and location of many learners in a limited display area. Furthermore, the

representation of such situations and location information is challenging without putting

an additional cognitive load on the teacher working in a time-constrained environment. A

well-thought notification on the available device (e.g., smartphone or tablet) can improve the

teacher’s interaction with students. However, understanding in-class status and notifications

needs teachers’ and students’ focused attention on seeing the information on the display. As

a consequence, interaction with smartphones or tablets requires users’ concentrated attention.

This attention-shifting may interrupt the lecture’s progress. Therefore, designing a real-time

notification system is important and challenging [8]. However, quality teaching-learning

demands knowing students’ progress, achievements, and difficulties to provide positive

encouragement and to inform students of anything wrong during lectures [6, 26, 27]. We

extend and explore visualization techniques and peripheral notifications using influencing

APMs in classroom settings to address these challenges. Here, another important note

is that identifying academic performance and difficulties for classroom systems demands

important APMs to be used in classroom visualization and notification systems. We describe

the following research problems to address the research challenges.

• Problem #1: A systematic study on academic performance metrics for assessing and

determining students’ difficulties in higher education to better monitor and know

learning pitfalls.

• Problem #2: Designing an intelligent system for the instructor, as part of the classroom

system, to visualize potential learning pitfalls of the students at an individual or overall

classroom level.

• Problem #3: Designing an intelligent notification system for the instructor and

students, as part of the notification, ensures that the teacher’s primary task is not

hampered. The system notifies on peripheral device and acts on it for engaging and

motivating in-class students in teaching-learning.

1.6 Summary of Contributions

The aims of the thesis are to develop and validate an intelligent real-time classroom

monitoring and notification system in a blended learning environment. We made three key
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contributions to achieve our ultimate goals. The major contributions of the thesis can be

summarized as follows:

Improve the teaching-learning experiences and learning outcomes in a blended

learning platform using real-time in-class students’ visual monitoring and intelligent

notification to both teachers and students.

Thesis goal

• Our research methodology identifies trends in using academic performance metrics

and methods to assess and predict academic performance over time. The classification

of students based on academic performance metrics to real-time monitoring and

notifications.

• We propose a novel interactive visualizer and monitoring dashboard, the Manas

Chakshu, for large blended classrooms to improve teaching-learning experiences.

• We present an in-class intelligent notification method that uses peripheral device and

interaction for teachers and students to tackle poor students in a blended classroom.

1.7 Thesis Contributions

The above contributions were made which effectively lead to ultimate goal of the dissertation.

Below, we describe about the contributions in brief.

1.7.1 Comprehensive Study on Academic Performance Metrics

We aim to use our findings to assess and predict academic performances in a course in higher

educational systems. We have reported a comprehensive study to select metrics for assessing

and predicting academic performance to address these challenges. We performed a critical

literature review (CLR) and identified 62 articles to determine metrics and their categories

using existing terminology. The categories helped to define frequently used metrics. Our

critical literature review also shows the role of the metrics’ relative importance in academic

performance assessment and prediction.

The major contributions that we made are as follows:
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• This CLR identified 62 primary articles to show the importance of the APMs. Initially,

we searched five known databases and got 45 articles. In the final stage, we followed

the forward snowballing [28] scheme of article search and got an additional 17 articles.

• We proposed eight best-suited categories to understand the broader aspects of the

academic metrics using on-dated terminologies.

• This CLR also determined frequently used metrics and described the role of relative

importance of the academic metrics.

• This CLR also reported seven recommended Machine Learning (ML) models to predict

students’ academic performance based on literature.

A better understanding of those academic performance metrics helps effective decision-

making in day-to-day classroom activities. We use three states, namely, C: critical, LC:

likely to be critical, and N: normal to real-time in-class monitoring and notifications. Some

students perform well in all aspects and require very less intervention, we term these students

to be of the N-type. There might be some students for whom intervention is desirable.

These are the LC-type students. There can also be students who must be given special

attention. We call them the C-type students. In this thesis, we considered forty-eight states

which is practically a bit tricky and complicated [29]. That is why we have combined these

states into three simpler states to easily remember and comprehend the states.

1.7.2 Real-time Interactive Classroom Monitoring

In order to address issues of classroom monitoring, we propose a real-time interactive

visualizer. The visualizer consists of two levels, implemented as a sequence of four algorithms.

In the first (overview) level, the entire classroom status is visualized using a grid structure.

An optimum grid size is computed first (first algorithm), keeping in mind the issue of

“clickability”. Each grid element indicates a cluster of students. A second algorithm was

proposed to compute the criticality of each cluster for subsequent visualization. Three

colors are used to visualize the classroom. Red indicates a critical cluster of students

that require immediate teacher intervention; yellow denotes a likely to be critical cluster,

which has the potential to turn critical; and green indicates a normal student cluster. The

rendering of the clusters with colors is done with the help of another (third) algorithm. The
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final (fourth) algorithm is used to obtain the details of each cluster in the second (details)

level. In this level, student details (including state information) are displayed in the form of

a grid of pre-stored images of the students belonging to particular clusters.

To further refine the visualizer, we design the “Manas Chakshu” - a real-time visual

monitoring dashboard for blended classrooms. The proposed dashboard is based on the basic

concept of a two-level dashboard, with significant optimization and non-trivial challenges.

The optimization pertains to the screen-area utilization at both the overview and display

levels. The major non-trivial challenges include a better strategy for calculating classroom

status utilizing weighted states and an improved method for identifying critical classroom

regions.

In order to carry out the experiments, we developed an application for the visual

monitoring system. The inputs to the same are the classroom configuration matrix and

the corresponding state matrix in the visual monitoring application. In this, we assumed

the classroom as a rectangular seating arrangement, which is the general convention. The

application uses four proposed algorithms to process these inputs and generate the visual

interface. To perform the experiments, we assigned the aforementioned three states to the

students (C, LC, and N).

1.7.3 Intelligent Notification System

We reported a notification system design that includes complex alert scheduling during

lecture delivery, both for the teachers and the students. The system design is real-time

feedback-driven for the blended classroom settings. The system notifies teachers when

students are at risk, not engaged in learning, and/or not participating in real-time classroom

discussions. The system will take care of notification fatigue and disturbances in lecture

flow due to the feedback in real-time using available peripheral devices and interaction. The

notification helps the instructors evaluate themselves and change their teaching patterns to

make the class more engaging. Therefore, the solution provides the teacher and students

with a digital notification to monitor the students’ activity and provide real-time feedback

automatically.

To validate our notification system, initially, we did an empirical study using a system

prototype. Finally, we implemented the notification system as an Android application based
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Contribution 2 : A real-time interactive visualizer for large classroom

Renders individual student details to 

visualize in the second level

Proposed four algorithms: first three algorithms are responsible for first 

level and the fourth algorithm is for second level visual rendering

Empirical validation: helps to ascertain 

usability of the visualizer
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ter 4

Built ML-based student performance predictive model and 

computing time interval based on feedback statistics

Contribution 4 : Real-time classroom notification

Designed algorithms for choosing feedback 

modality based on logic and availability of device

Built  high-fidelity prototype and Android 

application of the proposed system

Tested functionality and validated usability using the 

prototype and Android application of the system

C
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p
ter 6

Defined students state for classroom 

monitoring dashboard

Contribution 3 : Manas Chakshu - A real-time classroom monitoring dashboard

Designed optimum grid layout generation algorithm for both 

levels based on available display

Proposed algorithm for novel weighted 

student states and critical cluster computation

Compared and validated  the  theoretical performance and 
perceived usability of the  Manas Chakshu

C
h
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ter 5

Figure 1.2: Summary of the contributions

on user preferences and requirements identified in the empirical research.

1.8 Organization of the Thesis

Figure 1.2 depicts a visual representation explaining the contributions of the thesis. The

chapters are mapped onto the contributions of our work. This thesis is divided into seven

chapters. The organization of the thesis and details of chapters in brief are as follows.

Chapter 1: entitled “Introduction”, introduces the basic terms needed to comprehend

the entire work. The motivation, objective, brief discussion of the problems addressed in
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the thesis, and contributions of the thesis are presented in this chapter.

Chapter 2: entitled “Related Work”, presents the literature review which are relevant

to the proposed intelligent real-time classroom visualization and notification system. This

chapter describes previous classroom monitoring and notification systems and their related

works, as well as critical studies of these works, in order to demonstrate the novelty of the

proposed system.

Chapter 3: entitled “Comprehensive Study on Academic Performance”, reports

an up-to-date critical literature review on the academic performance metrics. Moreover, we

take Indian teachers’ choices of frequently used metrics through an online field study to

reuse them. The survey helped to validate the importance of these metrics in the Indian

context.

Chapter 4: entitled “A Real-time Interactive Visualizer for Large Classrooms”,

presented the design and validation of an interactive visualizer for large classrooms. The

visualizer is intended to aid classroom instructors in more effective teaching. It is designed

for relatively small displays as well, making the system useful for the instructors who can

use it on a smartphone or tablet that they might be carrying.

Chapter A: entitled “Manas Chakshu - A Real-time Classroom Monitoring

Dashboard”, describes the intelligent classroom visualization in detail to monitor in-class

students. We propose a novel interactive and dynamic visual monitoring dashboard, the

Manas Chakshu for large classrooms to overcome the present difficulties.

Chapter 6: entitled “Intelligent Real-time Classroom Notification System”, reports

a notification system design in detail that includes complex alert scheduling during lecture

delivery, both for teachers and students. The system design is real-time feedback-driven for

the blended classroom system.

Chapter 7: entitled “Conclusions and Future Work”, concludes this thesis with a

summary and functional prototype of an intelligent classroom visualization and notification

system, including its scope. It also discusses the research directions for future work.

<<=8=;;
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C h a p t e r

Related Work

This chapter describes related work on deploying intelligent real-time classroom visualization

and notification systems in a technology-enhanced classroom. This study on related work

brings together a set of contributions that form the backbone of this research. The related

work consists of three parts: the description of the role of metrics in academic performance

assessment and prediction, the importance of classroom monitoring and visualization, and

intelligent notification to expand the existing system.

2.1 Role of Academic Performance Metrics (APMs)

The following subsections review the importance of academic performance metrics. We

ascertain the need for metrics to explore the present need.

2.1.1 Influential Metrics

Colleges and universities collect reams of student educational data to evaluate student

performance. The metrics include various internal assessment marks and attendance [30].

Current studies also show that behaviors and affective states are also recorded over the course

using the digital back-channel concept [31]. The use of these metrics in real-time decision-

making for large classroom teaching-learning has many benefits [32]. The academicians

and teachers use a few of these APMs pro-actively to guide students. Nowadays, the ICT

and BYOD paradigm allow teachers and students to utilize these APMs and become more

active in the classroom. Recently, numerous data visualization efforts have attempted to
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provide teachers and administrators with student performances summaries to monitor and

increase student interaction [1, 33]. Adopting ICT and BYOD concepts with traditional

face-to-face classrooms has been used as influential metrics to support students and teachers

[3]. The various possible approaches have already been developed to become reactive in their

classrooms. Such systems have gained their place. However, they are limited to adopting

change in day-to-day face-to-face real-time blended classroom activities. Therefore, more

data-driven decision-making and real-time tools are required to empower blended classrooms,

which have been ignored to date.

In this area, researchers are looking for available metrics that may be used for perfor-

mance predictions, search algorithms that can improve predictions, and quantify aspects of

student performance. Furthermore, research into student performance prediction aims to

find interconnected metrics and the underlying reasons why influential APMs work better

than others. In this respect, the APMs and selective metrics (i.e., frequently used metrics

and their availability) play a crucial role.

2.1.2 Academic Performance Assessment

Presently, assessment in student learning is an extensive research topic [34, 35, 36]. Assess-

ments have a significant impact on student learning [35]. The learning and co-curriculum

assessment helps to measure a student’s academic performance. Higher educational systems

use the final grades to assess students’ performance. The summative assessment is an

essential part of the process of verifying a student’s knowledge [37, 38]. The summative

tests are typically performed on paper with representatives during specific periods, identi-

fying potential academic difficulties. Given the importance of assessments in computing,

researchers are concentrating on the practical challenge of grading with limited instructor

resources [30]. In terms of grading, computer science educators have devised techniques to

enhance the grading process for a range of evaluations. Harrington et al. [39] assessed the

accuracy of manual TA markings during marking parties and advised organized group exam

marking sessions in a recent study on test grading.

The grades are based on course assessment marks, exam scores, and students’ activities

[40]. Teachers monitor student academic performance using these internal assessment

metrics. The grades of any student depend on different metrics like internal assessment
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(including laboratory file work, class tests, and viva-voce). However, some papers describe

academic performance more broadly. The study [41] defines academic performance as

measuring a student’s activities and competence in courses. Students typically strive for

good study efficiency by aligning their studies as closely as possible to expected assessment

criteria [42, 43]. Students can use formative exams to discover areas of difficulty and to

help them self-regulate their learning [44]. Designing systems to improve grading for coding

assignments is another topic of research [45]. For example, Dewey et al. [10] employed

constraint reasoning from the programming language literature to create auto-grading

test suites. This review article on project auto-grading [46] is recommended to readers.

Automating the grading process saves teachers significant time and effort, freeing them up to

focus on more productive tasks like providing in-depth feedback, facilitating discussions, and

providing personalized support. However, most systems use multiple-choice and true-false

tests to evaluate when it comes to exam grading automation. Typical exams include code

and brief responses, which are not always multiple-choice and true-false-based. However,

it is feasible to take tests solely on computers. To address the challenges, researchers use

internal course performance metrics to predict academic performance [30, 47].

2.1.3 Academic Performance Prediction

Choosing metrics for predicting students’ academic performance has become more challenging

due to the availability of a large volume of data [30, 48]. Literature reveals that ML is

present everywhere in everyday life (e.g., product selection, which movie to watch, and

what product/food to order), more importantly, from educational problem-solving [49] to

recommender systems (e.g., e-learning material) [50].

In recent years the application of ML algorithms has drawn researchers’ attention in

academic performance prediction [51], which supports teachers, and tests students [52]

in education. In teaching-learning, the use of ML is increasing that identify the quality

of teachers [53, 54]. The colleges and universities are using ML for early intervention

[55, 56], and prediction for a better quality of learning outcome [50]. It also covers different

educational problems, such as learning product selection [57, 58], examination time schedul-

ing, assessments [59], course planning, and academic advancing system [60, 61]. We have

observed many ML algorithms are commonly used in students’ performance prediction. The

19



2.1. Role of Academic Performance Metrics (APMs)

Support Vector Machine (SVM), Neural Networks (NN) [60], K-nearest Neighbors (KNN),

Naive Bayes (NB), Decision Tree (DT), Logistic Regression (LR), and Random Forest (RF)

classifiers are very important [51].

2.1.4 Use of Academic Performance in Blended Learning

According to Osguthorpe and Graham [15], blended learning combines physical classroom

teaching with computer-supported instruction. Blended learning is also known as the

hybrid or mixed-mode of learning that requires student performance state to improve

teaching-learning [3].

ML is currently being used extensively to predict students’ academic performances

[49]. The prediction can assist in the development of computerized adaptive evaluations

[51]. The ML-based evaluation offers teachers and students continuous feedback on how

they learn, the help students require, and their progress toward their learning goals [52].

One of the most potential application areas that use ML in education is the early warning

system [62]. Early warning will also help to improve students’ retention rate in a course or

program. Universities and teachers can reach out to “at-risk" students using advanced tools

and provide them with the support they need to succeed [63]. Teachers and institution

personnel can use machine learning-based algorithms to classify students’ performance and

provide better assistance to students.

Predictive models are now used in many educational institutions to improve students’

engagement in teaching-learning [64]. ML algorithms can automatically extract complicated

patterns from existing data attributes, allowing them to make intelligent decisions using

currently available academic performance metrics [65].

2.1.5 Role of an Intelligent System in Education

Researchers are more focussing on building various intelligent systems in diverse educational

settings. Many intelligent systems use Artificial Intelligence (AI), Intelligent Tutoring

Systems (ITS), Learning Analytics (LA), and Educational Data Mining (EDM) systems in

education. Contribution to this field can be improved using well-defined APMs in tracing

students’ regular performance. Without dependable APMs, optimizing these intelligent

systems is like taking a chance. We cannot successfully identify areas for development or
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personalize learning experiences unless we have precise data on what works and what does

not.

The application of AI become an emerging field of research to meet modern learning

and instructional needs in blended classrooms [66]. The AI-enabled Machine Learning

(ML)-based predictive models for Student performance can reduce teachers’ effort and time

in real-time decision-making to improve learning outcomes [67, 68]. An ITS in blended

learning settings can use ML techniques to acquire real-time student-related performance

data that helps teachers intervene during the early phases of a course [69, 70]. LA is a

popular classroom monitoring tool [29]. LA helps teachers collect, interpret, and analyze

students’ performance data generated during the teaching and learning process. However,

designing interactive LA is challenging for real-time blended classroom use due to the

busy schedule of the teachers [71]. EDM is a growing discipline that combines education

and informatics. Its significance in today’s educational scene arises from the numerous

advantages it provides institutions. EDM enables educators to maximize learning outcomes

by evaluating large educational data sets using a variety of data mining approaches. One

key issue addressed by EDM is predicting student performance before final exams [72]. With

such insight, educators can intervene proactively to improve student progress and reduce

dropouts. As a result, research in EDM is mainly focused on constructing advanced student

performance prediction models.

As a result, models that predict student performance and classify performances are very

useful in teaching and learning. However, selecting metrics that determine the achievement

of the course and program remains a challenging issue. Particularly, the challenges are to

assess the potential of using available influential metrics and utilizing machine learning

algorithms in a blended learning platform.

2.2 Student Monitoring and Visualization

There is a spurt in interest in technology-enabled visual monitoring of students to support

teaching and learning in live classrooms [3, 6], particularly in the context of the blended-

learning environments [73, 74, 75]. Efforts have been made in this direction to provide the

teachers with visual aids for real-time student monitoring [6, 76, 77, 78]. Such tools aim

to draw the attention of a teacher to the difficulties faced by the students and subsequent
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intervention [6, 27], leading to a possible fine-tuning of the teaching-learning strategies [1].

Research on data visualization has witnessed a growing interest in building interactive

user interfaces to comprehend complex data [6, 79, 80, 81, 82]. One of the major challenges

in interactive visualization of large-scale datasets is to visualize the data in a relatively

smaller display. To address the challenge, a set of approaches are widely used that include

the focus+context, overview+details, fish-eye view, and, other distortion-based methods

[83, 84, 85, 86, 87]. Literature reveals that increasing interest in visualization research

has given rise to a variety of visualization tools, models, and systems designed to address

visualization challenges in different domains of application [81, 88, 89]. Classroom teaching

is one of the potential application areas of student performance visualization.

2.2.1 Methods of Real-time Classroom Monitoring

Classroom monitoring can aid teachers in perceiving the real-time performance and critical

states of students. Creation of classroom monitoring aid for educational purposes in general

and real-time classroom use, in particular, is gaining popularity in recent times [6, 25, 90, 91].

Diana et al. [92] reported a real-time learning analytics tool for K-12 teachers. A

similar attempt was made to design Lumilo [7], a wearable and real-time learning analytics

tool. Mathioudakis et al. [26] reported a system to identify and perceive the weaknesses

of individual students and the overall classroom status. Harfield et al. [93] introduced

a supportive environment for teachers in a classroom. The settings integrate the BYOD

paradigm with regular teaching [94]. The environment combined supportive tools for

monitoring the progress of the students. Chiou and Tseng [25] proposed a wireless sensor

and network-based classroom system. The system allows detecting real-time classroom

status and individual student progress. The proposed classroom system allows a teacher to

monitor the student states. Other notable works in this direction include the EduSense [95]

and the iKlassroom [96].

The EduSense [95] is a classroom sensing system that provides theoretically-motivated

metrics using an array of commodity cameras. The concept of automated classroom analytics

promises to provide fidelity, scalability, and temporal resolution that are impractical with

the existing method of in-class observers. The study offers the Learning Dashboard for

Insights and Support During Study Advice (LISSA) [76], a learning analytics dashboard that
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was created, refined, and tested with the help of study advisors. The evaluation, gathering,

analysis, and reporting of information on students and their environments for the purpose

of comprehending can lead to cognitive load. Therefore, use of this system for real-time

classroom use to improve learning is limited. A wireless sensor network-based intelligent

classroom management system [25] with context awareness is suggested and put into practice.

It is built up with a variety of sensors and actuators that regulate the feedback devices.

The system helps to monitor students’ states through learning behavior management. The

classroom size they considered was 24 intelligent desks. Therefore, setting up such a

system required huge infrastructure costs and did not consider addressing the challenges of

representing the states when the number of students is more than 50 or a few hundreds. The

real-time analytics [92] have various components of the teacher’s dashboard. The system

consists of a timeline for classroom replay controls, a class summary with estimates of student

progress, and a visual representation of students. The visual representation of students has

not considered the time to comprehend the students’ states. Moreover, all the information

is displayed on the screen at a time, which may increase valuable time for comprehending

student state when the number of students increases. Authors [93] reported on a system

that allowed the teachers an “open monitoring environment”. This system lets one to check

a group status as a bar chart. There is no way of checking individual students’ states and

their location in the class. The idea of iKlassroom is a real-time teaching analytics solution

[96]. The iKlassroom reported a usage scenario for classroom practice, exhibited design

sketches and screenshots, and they indicated possible contributions to enhance monitoring

of students. The authors did not address the challenges of locating students and the overall

status of the class, but rather the challenges of individual students’ state identification.

Raja et al. [6] presented a Radio Frequency Identification (RFID) based visualization

and activity monitoring system. The system allowed a teacher to identify the level of

involvement of the students in a classroom. Therefore, classroom visualization is an

important research topic.

2.2.2 Methods of Real-time Classroom Visualization

It is well-known that a good visual representation reduces the human cognitive load to

comprehend the data [97, 98, 99]. The most challenging task in developing a real-time
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visual classroom monitoring system is to represent learning performance and behavior in a

meaningful way [6]. A quality visual monitor can aid teachers in quickly observing student

learning performance and behavior [100, 101, 102]. In order to comprehend the state of the

students, the student states must be retrieved and represented suitably [3]. Overview+details

is a visual representation technique in which two parallel views are combined simultaneously

on a single display device [103]. The technique is particularly suitable for information

visualization on small-sized display devices, such as those of smartphones or tablets. In such

devices, highlighting details about some information or data about an object of interest

improves user performance [103].

The idea of a real-time student locating system using RFID is reported for a real-time

student visualizing system [6]. The visualizer is suitable for desktop-based applications

to locate students. Moreover, the system uses symbols to represent 28 students’ status.

Therefore, for a larger number of students and available devices like smartphones, the utility

of the system is questionable. A student can be represented in a classroom environment

in different ways. Two basic methods are the representation of each student with a square

grid element [25] and another is using Chernoff faces which are basically smiley-like face

representations of students. The emotions on Chernoff face visualize the state of the

student. The emotions change based on students’ activity [104]. Some implementations

of visualization techniques group students by their current state as in [104] while some

represent them as their physical position in a classroom [25].

However, none of the previous studies dealt with large classrooms. In such classrooms,

the primary challenge is to be aware of the status of a large number of students continuously

and in real-time, to take effective and quick corrective actions, if needed. The reported

systems were not designed to help the teacher identify problem cases effortlessly and quickly

during lectures.

2.3 Notification for Blended Classroom

The automated notification system is essential to manage classes effectively to enhance

teaching-learning [105]. However, the effective integration of the student’s academic perfor-

mance metrics to identify at-risk students in a course and give both the students and teacher

feedback is challenging. But the real-time feedback helps to learn from the mistakes of both
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instructors and students. There is a lack of real-time decision-making and motivation to

enhance teaching and learning using timely notification at the institutional level.

2.3.1 Multimodal Notification for Classroom Use

Singley et al. [105] reported a system that is designed to understand what is happening

in a class. The system identifies unusual learning patterns during lecture delivery. The

system generates an alert to the teacher on a stationary device (desktop) based on the

specified pattern. Chiou et al. [25] suggested a wireless sensor-based classroom application

that detects the real-time condition of the classroom and the student’s status. The system

comprises a subsystem that delivers alerts when students are inattentive. The light-emitting

diode (LED) flashlights were used to alert learners in a classroom. However, with this

signal, the challenging task is to present students’ deficiencies in instructors’ notice and

motivate them towards classroom learning outcomes. One particular challenge is that using

light signals to indicate understanding can be distracting for other classmates. A potential

solution is providing timely alerts [26]. The commonly used smartphone and wearable alerts

ensure timely feedback without hindering classroom interactions.

One of the current research studies reported that multimodal smartphone-based alerts

and awareness are potentially better for understanding real-time circumstances. The

multimodal alert (sound and visual in combination) types can affect user acceptability and

usability [106]. There are studies on sound alerts to inform the user of critical situations.

The sound alert gained popularity in various fields such as hospital intensive care units [107],

atomic power plants [108], aviation [109], and alert vehicle drivers [110]. The visual alert

and awareness represented in the form of colors, shapes, and text improve the intelligibility

of the feedback [106] when using smartphones and wearable devices.

These techniques, e.g., smartphones and wearable devices, usually require users’ focused

attention to perceive alert and awareness contents. Extensive research is required to utilize

the concepts of real-time multimodal alerts in appropriating them for classroom use.

2.3.2 Technological Distractions on Notification

Earlier research studies in the fields of Human-Computer Interaction (HCI) and ubiquitous

computing reported the bad effects of technological distractions or interruptions in different

situations (e.g., driving, walking, academics) [111, 112, 113]. Leiva et al. [111], in their
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research study, observed that interruptions caused by app-switching and incoming phone

calls have interruption costs. Levine et al. [112] have mentioned in their research studies

that disturbances varied on tasks and situations. Mehrotra et al. [114] reported the

smartphone interruption measurements based on notification content and context. However,

some research studies suggest suitable moments (e.g., appropriate time, multitasking,

synchronizing interruptions with user behavior and cognition) for interruptions to optimize

distractions [114, 115, 116].

Bakker et al. [117, 118] outline how technology is adopted to develop such a system to

reduce teaching-learning disturbance in HCI. The key idea was that the teacher could interact

in their background or periphery to know the students’ difficulties, thereby reducing her/his

cognitive load while teaching. Moreover, peripheral interaction is used in human attention

management [118]. Recent works [119, 120] explored a generalized strategy to investigate

three system designs (CawClock, NoteLet, and FireFlies) on peripheral interaction. Based

on their studies, they suggested some characteristics and their practical development goal

to optimize distraction. Olivera et al. [121] aim to present how multitasking (e.g., parallel)

interaction and natural interaction are favorable in HCI. The work uses the tangible user

interface to identify advantages in Personal Computer (PC) based systems. Bakker et

al.[122] explained an interactive system design called “FireFlies” through a system prototype.

The system supports a primary school teacher to interact in the periphery of their attention

to know the in-class student’s needs. The system integrates information, such as light

and audio signals, through the peripheral device. The experimental study permits the

teachers to control the mentioned signals through physical interaction and shows how it

can become a part of everyday teachers’ routines. Doris Hausen [123] builds peripheral

interaction as a secondary task carried out in the user periphery. The author recommended

a classification approach to avoid disruption by peripheral tasks. Verweij et al. [22] adopted

peripheral interaction in a regular classroom setting as the upgraded version of FireFlies

called “FireFlies2”.

To address the challenges of digital distractions and cognitive overload in classrooms,

we have investigated the potential of utilizing peripheral selection for feedback delivery and

optimizing alert fatigue management strategies. This approach aims to minimize disruptions

to learning while keeping teachers and students informed about their real-time performances.
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2.3.3 Studies on Alert Fatigue

Alert fatigue is the notion of supplying a large number of frequent message content on

user devices [124]. Fatigue is one of the human psychomotor qualities [125], which controls

our cognitive functions that affect productivity, decision-making [126], and memory [127].

However, fatigue can negatively influence attentiveness, resulting in a slowdown of reception

times [124].

Cognitive load and alert fatigue are closely related to each other. The cognitive load

increases when we use more cognitive resources of our working memory to memorize or

perceive information. Alert fatigue happens when an individual receives a large number of

alerts [128, 129]. It also becomes difficult when forwarded with inadequate time or requires

more cognitive resources to differentiate relevant from irrelevant content. Alert information

that is not informative contributes to this overload. Uninformative alert contents are similar

to false alerts. In the human factors literature, it is well established that false alerts reduce

responsiveness to Wide Area Network (WAN) and negatively affect overall task performance

[130, 131]. The replicated appearance of alerts leads to decreasing responsiveness due to alert

fatigue [132, 133, 134]. An alert, or awareness is useful when first noticed but becomes less

effective as the recipient becomes accustomed to the alerts over time. Alert fatigue has the

potential to desensitize teachers and students in classroom teaching-learning. Fatigues have

become our focus of consideration to alert teachers and students to reduce their cognitive

load, freeing up mental resources. In face-to-face teaching-learning in a class, alerts can

help customize lectures and motivate users to actively participate in classroom teaching.

We believe structural and sensible notification management can help optimize alert fatigue

in the classroom and extend the research field.

2.4 Summary of the Chapter

In this chapter, we have reported the related works for academic performance metrics, class-

room monitoring, and notification for blended learning. We have observed that the existing

work on academic performance metrics can be used to determine students’ performance

standards and assess and predict the states. After the crucial studies of the literature,

we have found that academic performance metrics, determination of performance, and

prediction methods are important in the current context. However, selecting metrics that

determine the achievement of a course and program remains a challenging issue. Particularly,
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the challenges are to assess the potential of using available influential metrics and utilizing

machine learning algorithms in a blended learning platform.

The metrics and the predictive models need to be adapted to the real-time performance

monitoring in our assumed blended learning system to improve learning outcomes. Thus,

we aimed to build real-time classroom monitoring and validate the real-time classroom

visualization to address all the classroom visualization issues so that we can utilize academic

performance states for building an intelligent real-time classroom visualization system

that is able to detect the performance states of the students based on their academic

performance metrics. To gain more meaningful use of that data demands effective decision-

making instruction in a day-to-day classroom activity. One of the solutions is to create

new technology-enhanced notification tools to address the challenges of alerting and giving

feedback to support teachers and students in a blended classroom [67].

Research is limited in the direction of real-time proactive notification generation to

motivate students for active classroom participation on an available device in a classroom

environment. The exciting peripheral interaction techniques can support the instructor

in perceiving the updated status of the classroom [22]. However, the existing methods

still have some significant shortcomings: (i) the use of LEDs or flashlights in a classroom

setting that may disturb students or teachers. (ii) teachers’ focused involvement is required

to comprehend the notification (iii) the existing research does not consider the critical

component of quality teaching for lecture flow, the variation of the modality and content,

or the timing to deliver the notification. The proposed novel interactive visualizer and

notification are presented in the subsequent chapters to address the challenges.

<<=8=;;
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Comprehensive Study on Academic
Performance

3.1 Introduction

Academic metrics are crucial in interpreting and predicting student performance to improve

teaching and learning in blended learning environments. However, there are challenges in

determining the metrics and improving prediction accuracy to quantify students’ performance.

We have reported a critical literature review (CLR) with a field study on the usage of

metrics for interpreting and predicting academic performance to address these challenges.

Our CLR includes 62 articles for determining influential metrics and their categories

using existing terminology. The CLR helps to show the importance of academic metrics,

select category-wise frequently used metrics, and their relative importance in performance

interpretation and prediction. In addition, we have conducted a field study to test the

usage and applicability of academic metrics for performance prediction. In this field study,

we received 369 teachers’ responses from 109 reputed higher educational institutions on

the usage of academic performance metrics. Based on these responses, we determined

18 influential academic performance metrics, including nine frequently used metrics. This

research summarizes our findings using 3-level tags to choose metrics with relative importance

based on CLR and field study. We have reported seven recommended machine learning

models based on CLR in predicting academic performance. This contribution offers a

comprehensive examination and analysis of CLR, field investigations, and prediction models.

The precise insights provided can enable the use of academic metrics for monitoring and

predicting student achievement and performance in blended learning environments.
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3.2 Research Questions and Methodology

We aim to use our findings to assess and predict academic performances in a course in

higher educational systems. This study addressed three research questions using a three-fold

systematic methodology.

3.2.1 Research Questions (RQ)

Academic performance assessment and prediction became the focus of many researchers and

studies [30, 3, 47]. We studied the following research questions to contribute to understanding

the influential metrics and techniques in students’ academic performance assessment and

prediction.

RQ1: Which academic performance metrics (APMs) are used to assess and predict student

performance based on CLR?

RQ2: Which ML models are explored in academic performance prediction in the literature?

RQ3: Which of these APMs are adopted and preferred by Indian teachers?

3.2.2 Overview of the Research Methodology

To address the above research questions RQ1 and RQ2, the major contributions which we

made are as follows:

• This CLR identified 62 primary articles to show the importance of the APMs.

• This study provides details on important academic performance metrics for assessment

and prediction of students’ performances.

• We also determined frequently used metrics and described the role of relative importance

of the academic metrics.

• This study explored different ML models that are used in academic performance

prediction.
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Table 3.1: Search results based on keywords, inclusion and exclusion criteria

Source Raw results Inclusion or exclusion criteria
IEEE Xplore 523 72
ACM digital library 570 78
Google Scholar, 470 60
Scopus link 453 42
Springer link 463 33
Total 2479 285

Table 3.2: Details of our inclusion, exclusion, and quality criteria for literature search

Inclusion Exclusion Quality
The research addresses determination
of academic metrics, assessment and
prediction.
The research discuses an empirical
study.
The research is on academic
performance prediction for
supporting teaching-learning.

The paper have no
abstract.
The paper is published
before 2013.
The paper is not
published in English.
The paper is not a
research or peer-reviewed.

Should clearly address a research problem.
Should contain clear objective/aim of
the research.
The research contains adequate description
on research methods
The research clearly explain academic
metrics used, data analysis and findings on
academic performance prediction.

CLR Methodology

We use five common online bibliographic databases to get the research articles. The databases

are IEEE Xplore, ACM digital library, Google Scholar, Scopus Link, and Springer Link. The

articles were searched based on search keywords academic performance AND metrics

OR assessment OR prediction. This search approach produced a total of 3352 hits,

which included 2479 different papers based on the search keywords (see Table 3.1 middle

column). Then, we scanned the papers based on inclusion/exclusion criteria (see Table 3.2)

and selected 285 papers (see Table 3.1). Finally, we scanned the full text of those studies on

quality criteria (see Table 3.2 right column) and selected 45 primary papers discarding 240

articles from our initial search. In addition, we follow the forward snowballing scheme for

searching valuable articles to strengthen the search. The term snowballing refers to finding

articles using the reference list or citations from source papers [28]. A total of 62 articles are

used for our study, out of which 45 were from the initial search and 17 using the snowballing

approach. The outcomes were obtained by reviewing and analyzing those selected articles.

The detailed summary of the CLR and the key outcomes are shown in Figure 3.1.

Online Field Study (OFS) Methodology

The primary objective of the OFS is to answer the RQ3. Figure 3.2 shows the data

collection method and finding steps. We used online platforms and email as a comparatively
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3.2. Research Questions and Methodology

Database Search based on key words

Remove articles not 

clearly mention the 

categories of academic 
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Remove articles not clearly 

mention the types of metrics 

involved in assessing or 

predicting performances 

Remove articles not 

mention weight or relative 

imports of the metrics 

N=2479Step 1

Elimination based on exclusion and 

inclusion criteria 
N=285Step 2

Scan paper and elimination based on 

quality criteria
N=45Step 3

Additional search for paper using  

forward snowballing
N=45+17Step 4

Propose 8
categories of 

metrics

Step 5

N=12 N=45
N=3

Explore the 

importance of  

various weight or 

relative importance 

of the metrics 

Determine broad variety 

of metrics and identified 

8 frequently used 

metrics

Figure 3.1: Details of the critical literature review process and key outcomes based on N
number of existing works.

cost-effective OFS alternative. The systematic steps help collect a large data sample from

participants in a short duration. The OFS assists in avoiding the challenges of approaching

professors and academicians in person in widespread geographical locations. Section 3.4

helps in gathering data on teachers’ sensitive grading and evaluation schemes and determines

our OFS outcomes. The major contributions are summarized as follows:

• We carried out the OFS using Google Forms1 with survey questionnaire to reuse

the available metrics, test the applicability of frequently used metrics, and relative

importance for better performance assessment and prediction in the Indian context. We

selected four most distinguished categories of HEIs having higher national importance

and reputation all over India for our OFS.

• We collected mailing addresses of institute administrators and faculties. These mailing

addresses cover 146 reputed HEIs, all 30 states (including union territories), and 6

disciplines spread all over India.
1https://docs.google.com/forms/d/e/1FAIpQLSfuIuqrhyE-WwQ0VI2i64O0adwtJXzEAkWl4FfM1ywkHMiuhw/

viewform
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Figure 3.2: Major steps of our field study methodology and finding process.

• We received responses from 369 teachers about the available performance metrics and

relative importance usages for academic assessment in India. We identified 18 metrics

and determine nine frequently used metrics out of 18 metrics considering at least 130

teacher participants (above 35%) usage the metrics to assess students’ performance.

We reported the relative importance of the nine frequently used metrics based on

teachers’ choices.

• Statistical t-Tests were performed to observe the significant difference between the

mean relative importance for the frequently used metrics in various categories of HEIs

in India. Finally, we prioritize metrics using a 3-level tag, i.e., high, medium, and low,

using citation count (based on CLR) and empirical evidence (collected by OFS). The

tags helped to select frequently used metrics based on availability.

3.3 Critical Literature Review (CLR)

The following subsections review the importance of academic performance metrics. We

ascertain the need for frequently used metrics and their relative importance to explore the

present need.
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3.3. Critical Literature Review (CLR)

3.3.1 Influential Categories of Academic Performance Metrics

Influential categories of APMs can help researchers and academicians to reuse them [135]

keeping assessment and prediction as a key to student performance. Categories help

researchers and academicians to understand the nature of metrics [30]. Therefore, we have

identified the APM categories based on their importance and the data source used. We

determine APM categories to provide a new understanding of the field using state-of-the-art

terminologies. After carefully analyzing 62 publications, we identified 12 that conveyed

a clear summary of the metrics categories. The remaining 50 have reported important

academic performance metrics without categorizing them. Their research objective was not

the categorization of the academic metrics Table 3.3 outlines the list of these articles in detail

with a count of metric categories. Most of the other studies are older than a decade. Also,

the studies did not even mention the categorization of metrics. Table 3.3 shows that the

number of categories of APMs varies widely (3 to 10). The variations indicate researchers

assume various levels of abstraction while categorizing APMs.

Furthermore, we observed that some of these categories could merge [40] or expand

for very less number of categories [41] using state-of-the-art terminologies. Therefore, we

propose 8 APM categories using existing terminologies to understand the performance

metrics better (see Figure 3.3). These 8 categories are primarily a combination of the

findings reported in the studies [30, 40, 139]. We observed that the learning behavior and

affective states are closely related. However, learning behavior and affective state metrics

are two separate components. Na and Tasir (2017) [143] reported that learning behavioral

metrics include interactions collected within students and their learning environments (e.g.,

task time and the number of clicks). The affective states metrics are learning emotional

data collected from the physiology of the students (e.g., moods, feelings, or expressions)

during teaching-learning [3, 143]. Therefore, learning behavior and affective state metrics

are two separate categories of APM that are justifiable. All other APM categories and their

names are self-explanatory (see Figure 3.3).

We have identified 5 influencing categories of APMs (1 to 5) based on citation count

(see Figure 3.3). The maximum citation count is 12 (out of 12) for the categories related

to external assessment and students’ demographics. The second highest citation count is

11 for the internal assessment APM category. The minimum citation count is 7 out of 12
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3. Comprehensive Study on Academic Performance

Table 3.3: Summary of the Categories of Students Academic Performance Metrics (APM)
Used in Existing Literature

[S.L. No.] Authors [Cita-
tion]

Categories of APM used to assess and predict academic performances Count

[1] Alamri and Alharbi
(2021) [136]

pre-course data, current course data, demographic data, personality met-
rics, and engagement levels

5

[2] Ameri et al. (2016) [56] demographic attributes, family background attributes, pre-enrollment
attributes, financial attributes, enrollment attributes, and semester-wise
attributes

6

[3] Chitti et al. (2020)
[137]

behavioral, academic, demographics, and psychological 4

[4] Francis and Babu
(2019) [138]

behavioral, academic, demographics, and extra 4

[5] Hellas et al. (2018) [30] demographic (e.g., age, gender), personality (e.g., self-efficacy, self-
regulation), academic (e.g., high-school performance, course performance),
behavioral (e.g., log data) and institutional (e.g., high-school quality, teach-
ing approach).

5

[6] Hu et al. (2017) [139] demographic, student history record and performance, student record and
performance in current course, activity and course performance, learning
behavior, self-reported metrics, and others

7

[7] Kumar et al. (2017)
[140]

personal attributes, family attributes, academic attributes, institutional
attributes,

4

[8] Lei et al. (2015) [41] academic performance, socio-economic, personal information 3
[9] Muthukrishnan et al.
(2017) [141]

basic information- students profile, current and past grades, basic family
details extended information- parents’ education, income level, siblings
and etc. holistic information- locality, school / university status, social
recognition and rest

3

[10] Papamitsiou and
Economides (2014) [142]

demographic characteristics, grades (in pre-requisite courses, during as-
sessment quizzes and their final scores), students’ portfolios, multimodal
skills, students’ participation, enrollment and engagement in activity and
students’ mood and affective states

7

[11] Saa et al. (2019) [135] students e-Learning activity, students previous grades and class perfor-
mance, students environment, students demographics, instructor attributes,
course attributes, students social information, course evaluations, students
experience information

9

[12] Shahiri et al. (2015)
[40]

internal assessment, external assessment, extra-curricular activities, psy-
chometric, students’ demographics, engage time, family demographics,
institutional background, social network interaction, and other (soft skill)

10

(approximately 60%) for learning behavior and affective states categories. The crucial point

is to note that external assessment, particularly pre-course data is a commonly used APM

category [41, 135, 136, 141]. Student demographics, such as gender, are often considered in

educational research to predict academic performance [30]. Some studies suggest that female

students may exhibit certain learning styles that are associated with academic success, such

as being more organized and conscientious [30, 40]. The internal assessment category gains

popularity because the HEIs can easily access the APMs that the instructor had collected

and recorded [144]. The trend of using learning behavior and affective state gaining recently,

are still relatively new and rare [3, 143, 145]. However, family demographic and institutional

background are rarely used APM categories [40]. Therefore, the first 5 categories of the

APMs (1 to 5) are considered as the influencing APM categories (see Figure 3.3). In the
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3.3. Critical Literature Review (CLR)

Influencing categories of APMs

Internal 
assessment 

[12]

current course data, 

academic course 

performance, 

student record and 

performance in 

current course, 

current grade, 

during assessment 

quizzes and their 

final scores, class 

performance, 

course attributes, 

course evaluations

Citation : 11
[1], [3], [4], [5], [6], 
[7], [8], [9], [10], 
[11], [12]

External 
assessment 

[12]

pre-course data, 

pre-enrollment 

and semester-
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high-school 

performance, 

student history 

record and 

performance, 

past grades, 

grades in pre-

requisite 

courses, 

students 

previous grades 
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[1], [2], [3], [4], 
[5], [6], [7], [8], 
[9], [10], [11], 
[12]

Learning 
behavior [6]

behavioral 

data, 

 students' 

participation, 

enrollment 

and 

engagement 

in activity, 

students e-

learning 

activity, 

engage time

Citation : 7

[3], [4], [5], 
[6], [10], 
[11], [12]

Affective 
states[10]

engagement 

levels, 

psychological,  

personality 

(e.g., self-

efficacy, self-

regulation), 

activity and 

course 

performance, 

students' 

mood, 

psychometric 

Citation : 7

[1],  [3], [5], 
[6],  [10], [11], 
[12]

Student 
Demographics 

[5] [12]

demographic 

data, 

demographic 

attributes, 

demographics, 

demographic 

(e.g., age, 

gender), personal 

attributes, 

personal 

information, 

students profile, 

demographic 

characteristics

Citation : 12

[1], [2], [3], [4], 
[5], [6], [7], [8], 
[9], [10], [11], 
[12]

Family 
demographics 

[12]

family 

background 

attributes, 

financial 

attributes, 

family 

attributes, 

socio-

economic, 

locality, 

social 

recognition, 

parents' 

education, 

income 

level, 

siblings 

Citation : 5

[2], [7], [8], 
[9], [12]

Institutional 
background 

[7]

 institutional 

(e.g., high-

school 

quality, 

teaching 

approach), 

institutional 

attributes, 

school or 

university 

status

Citation : 4

[5], [7], [9],    
[12]

Others
[6], [12]

enrollment 

attributes,  self-

reported metrics, 

and rest, students 

environment, 

instructor 

attributes, 

students 

experience 

information, 

students social 

information, 

extra-curricular 

activities, social 

network 

interaction, and 

other soft skill

        
Citation : 6

[2], [4], [6], [9], 
[11], [12]

1 2 3 4 5 6 7 8

Figure 3.3: Categorization of APMs that can help to understand metrics used for assessment
and predicting performance of the students from the articles listed in Table 3.3 [Number
indicates the Article S.L. No.] from Table 3.3.

following subsections, we reviewed another important component students monitoring and

visualization.

3.3.2 Frequently Used Metrics (FUM)

The FUMs help to assess and predict student academic performances [30, 146, 147, 4, 148].

We observed a crucial contribution reported in [30] to identify FUMs. Hellas et al. (2018)

[30] reported that course grades, individual exam grades, GPA/CGPA, and assignment

performance metrics are the preferable FUMs. Table 3.4 shows 5 influencing categories of

APMs and the wide variety of metrics found in related work.

We have selected 45 out of 62 articles based on three essential aspects to review on

FUMs (see Figure 3.1). These 45 articles include nine out of 12 mentioned in Tables 3.3

(Chapter 2). Table 3.4 summarizes the wide variety of metrics that have been used to

assess and predict student academic performance. The metrics are sorted in the descending

citation count. The count indicates the number of unique metrics used in the literature
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3. Comprehensive Study on Academic Performance

Table 3.4: Top 5 APM categories and the broad variety of metrics utilized in existing
literature to assess student performance

(No.)
Category

Broad Variety of Metrics (Sorted with Descending Citation Count) Metrics
Count

(1) In-
ternal
Assess-
ment

Assignment Performance [146, 149, 150, 147, 151, 138, 40, 30, 144, 152, 143, 51, 153, 135, 154,
155], Class Test Marks/Scores [156, 146, 157, 149, 150, 147, 151, 40, 158, 47, 51, 153, 154, 155],
Attendance [146, 56, 150, 147, 138, 41, 40, 30, 143, 153, 154, 155], Quizzes [150, 138, 144, 40,
142, 143, 159, 153, 135, 154], laboratory test grade/score [147, 160, 40, 152, 154, 155], Mid-term
Assessment [146, 4, 30, 144, 143], Seminar Performance [146, 147, 155], homework [146, 144],
race calculated based on internal input metrics [156], credit hours attempts, percentage
of passed credits, percentage of dropped credits, percentage of failed credits [56], subjects
studied currently [160], end-semester marks [147, 155], viva-voce and sessional test, PostCourse
Performance and Course Performance [30], one key course marks and one fundamental course
marks [41]

20

(2) Ex-
ternal
Assess-
ment

University Course GPA/CGPA [156, 161, 157, 56, 150, 160, 147, 138, 41, 40, 158, 4, 148, 162,
152, 143, 51, 135, 154, 163, 164], High School Marks/Grade [156, 157, 56, 165, 160, 41, 158, 30,
51, 163], Previous Course Internal Marks [161, 157, 41, 40, 4, 148, 30, 51, 154, 163], Admission
Score [157, 41, 148, 30, 163], and Number of Previous course Failure [41, 30], marks include in
3 subjects: Malay Language, English, Mathematics [156], composite ACT (American College
Testing) score, Math ACT score, English ACT score, reading ACT score, Science ACT score
[56], previous semester marks[147], pre-course Performance [30], past grades [141], a particular
subject score [40]

18

(3)
Learning
Behavior

Total Time Study Material Viewed [157, 56, 151, 138, 148, 162, 166, 30, 152, 143, 142, 159, 153],
Number of Log in [157, 56, 138, 148, 166, 30, 152, 143, 142, 159, 153, 135], Participation in
Classroom Discussion [157, 56, 138, 166, 30, 152, 143, 142, 159, 153], Assessment Activity
[157, 150, 162, 166, 143, 51, 159, 153], Task Time [151, 166, 30, 142], responses for a course
[149], participation in the course [146], raised hands [138], concept assessment, browsing
history[30], 4 questionnaire-based learning behavior assessment [47]

14

(4) Affec-
tive State

Self-regulation [157, 149, 162, 30, 142, 47], Student Engagement [149, 30, 143, 142, 47, 154, 159],
Stress or Anxiety [157, 162, 30, 47], Student Interest [149, 162, 30, 154], Student Mood
[167, 142], self-efficacy [30, 167, 143, 135], log data on affective state [30, 167], general
proficiency performance [147], students self-confidence [149], 7 psychometric APM on uploaded
lecture materials [47]

13

(5) Stu-
dents’
Demo-
graphics

Gender [156, 161, 157, 56, 168, 149, 150, 165, 138, 148, 162, 30, 158, 41, 163, 135, 154],
Age [161, 157, 56, 150, 165, 162, 30, 41, 163, 135, 154], Nationality [168, 138, 158, 163, 135],
Hometown [156, 138, 158], Traveled Distance [157, 148], Marital Status [163], Address [149, 150],
birth year [158], disability [41, 154]

9

to assess and predict students performance. The first two categories of APMs, namely,

internal assessment and external assessment, have the highest number of metrics counts (see

Table 3.4). The counts are 20 and 18, respectively. The higher number indicates that the

researchers used a broad variety of metrics to predict and assess academic performance. The

metrics counts are relatively lower for the remaining categories (see Table 3.4 right column).

Figure 3.4 summarizes the category-wise citation counts of the FUMs to understand

the importance of the metrics given in the literature. Our findings considered a metric

to be a FUM if its citation count is more than 35%. Figure 3 illustrates the category

of the APM and the individual FUM. We identified 8 FUMs having at least 16 citation

counts. The 3 FUMs out of 20 metrics is from the internal assessment. The metrics are

assignment performance, class tests marks/scores, and attendance. The citation counts for

these 3 FUMs varied between 16 to 23 (i.e., 35.56% to 51.11%). The FUM in the external
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3.3. Critical Literature Review (CLR)

Figure 3.4: Details of influencing categories of APMs and the FUMs with citation count
impacting the assessment and predicting performance of the students

assessment category consisted of 1 out of 18 metrics. The FUM in this category is university

course Grade Point Average (GPA) or Cumulative Grade Point Average (CGPA), and the

citation count is 25 (i.e., 55.56%). In learning behavior, we identified 2 FUMs. The citation

counts are 16 and 17 (i.e., 35.56% and 37.78%). The FUMs are total-time study material

viewed and the number of log-ins for various learning activities. In students’ demographics,

we identified 2 FUMs (citation count 20 and 17). The FUMs are student gender and age

(citation count 44.44% and 37.78%). One crucial fact is that no FUM from the affective

state APM category was selected based on our citation count constraint. The primary

reason is that the usage trend of the affective state APM is relatively new [3]. However,

Table 2 can help in choosing any number of FUMs based on the category of APM and

citation count. The popularity of using metrics like learning behavior and affective state

have increased in recent years to predict the performance of students in blended learning

settings [3, 143, 159].

In the Indian HEI context, we found three valuable contributions related to the use of

FUMs. Baradwaj et al. (2012) [147] evaluated the end-semester examination performance

using 8 FUMs. Kumar et al. (2017) reported 10 crucial FUMs applied to predict student

performance. All the metrics are included in Table 3.4. The study [144] hints us relative

importance or weights of the FUMs are another crucial factors for the evaluation and

prediction of student performance. However, the above studies overlook the analysis of the

relative importance among the metrics to predict and assess student performance [4]. The

details about relative importance are explained in the following subsection.
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Table 3.5: Details of the APMs with RIs or weight and their categories

Authors Metrics used in assessing and predicting student
academic performance

RI or
weight of
the metrics

Category of the APM

Huang S.
and Fang N.
(2013) [4]

cumulative GPA, statics grade, calculus I grade, cal-
culus II grade, physics grade, dynamics mid-exam
#1 score, dynamics mid-exam #2 score, dynamics
mid-exam #3 score, dynamics final exam score

4, 4, 4, 4, 4,
15, 16, 15,
and 100

The first 5 APMs are Exter-
nal Assessments, and the
remaining 4 APMs belongs
to Internal Assessment.

Hussain et
al. (2019)
[169]

Assessment Marks: semester #1, semester #2,
semester #3, semester #3, semester #4, semester
#5, semester #6

20, 20, 40,
40, 80, and
80

All APMs are related to the
External Assessment cate-
gory.

Meier et al.
(2016) [144]

Homework Assignments: homework #1, home-
work #2, homework #3, homework #4, homework
#5, homework #6, homework #7, midterm exam,
course project, and final exam

20, 20, 20,
20, 20, 20,
20, 25, 15,
and 100

All APM are of the Internal
Assessment category.

3.3.3 Relative Importance (RI) of the APMs

RI is the weight of the APM that may vary based on the teacher’s evaluation strategy and

courses taught [144]. The RI of metrics directly connects with the data recorded by the

teachers in assessing academic performance [144, 4]. Meier et al. (2015) [144] pointed out

that there are higher chances of changing in RIs of the APMs over the year/time. One of the

objectives of using varied RIs for APMs is to prioritize teachers’ assessment strategies. We

observed that dynamic RI values are rarely used in assessing and predicting performances.

Table 3.5 summarizes 3 crucial contributions to the metrics with their RI values using course

data. All the APMs belong to the Internal Assessment and External Assessment categories.

However, timely assessment and prediction based on the course data are challenging

for many reasons. The primary reason is that at the beginning of the course, performance

assessments (e.g., quizzes) are weakly correlated with marks in later in-class exams and

the overall assessment score [144]. Moreover, if we consider that a course instructor uses

the same teaching material over the year, there is still a chance that the assignments and

exam patterns may change. Therefore, there are higher chances that RIs for APMs will

vary. In this direction, the identification of RIs for APMs has paramount importance. All

the studies mentioned earlier are connected, valuable, and encouraging as their key focus is

to determine student performance. Moreover, existing studies show that APMs, FUMs, and

RIs play a pivotal role in performance assessment and prediction. A limitation of using the

current metrics is that they are challenging to apply in diverse education scenarios. Metrics

such as GPA, learning behavior, self-efficacy, and affective states (see Table 3.4) are not

readily available to the teachers. Some metrics have not been collected and the rest are not
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Table 3.6: Recommended ML models after conducting the critical literature review

Model References (n=32) Count
Support Vector Machine
(SVM)

[3], [30], [40], [51], [55], [4], [138], [141], [135], [150], [164], [60] 12

Naive Bayes (NB) [3], [139], [40], [160], [51], [55], [137], [138], [135], [143], [148], [150], [152],
[156], [158], [163], [165], [168], [170]

20

Decision Tree (DT) [3], [30], [139], [171], [40], , [160], [51], [56], [151], [49], [136], [137], [138],
[141], [135], [143], [147], [150], [156], [157], [164], [165], [168], [60], [170],
[172]

27

Artificial Neural Networks
(ANN)

[30], [139], [40], [160], [51], [137], [138], [141], [135], [147], [150], [157], [165],
[168], [60], [170]

17

K-nearest Neighbor
(KNN)

[30], [171], [40], [160], [51], [137], [135], [143], [147], [150], [157], [158], [165],
[172], [173], [174]

16

Random Forest (RF) [3],[30], [160], [51], [55], [56], [49], [141], [163], [164], [170], [175] 12
Logistic Regression (LR) [51], [55], [56], [49], [135], [143], [144], [157], [163], [60], [170], [175], 12
Adaboost (AB) [56], [49], [143], [169], [175] 5
Rule-based (RB) [136], [137], [156] 4
Multiple Linear Percep-
tron (MLP)

[51], [4], [135], [148], [152], [164] 6

Deep Learning (DL) [51], [136], [169] 3
Linear Discriminant Anal-
ysis (LDA)

[51] 1

available due to privacy. Therefore, we focus on identifying APMs, FUMs, and RIs based

on some easily accessible metrics, which the instructor collects.

Recent studies do not address the above aspects. Moreover, they are focused on a

limited number of disciplines or populations. There is no varied population across a domain,

HEIs, and geographical location to replicate studies and extend in reusing the FUMs and

their RIs. The FUMs, particularly for internal assessment, are vast (see Table 3.4). Selecting

FUMs to assess student performance is a tedious task. Moreover, based on our observation,

the RI aspects are neglected mostly in prior studies except [144]. In the Indian HEIs context,

studies are limited in number, not up-to-date , and done for a specific discipline or HEIs

[162].

3.3.4 Recommended ML Models

The prediction of students’ performance helps to track academic performance and achieve-

ments throughout the course at an early stage [176, 177]. To predict student performance

requires academic metrics and machine learning (ML) algorithms [160, 178]. However, early

detection of poor students and providing personalized intervention using frequently used

metrics have positive impacts on learning outcomes [30]. As a result, models that predict

student performance and classify performances are very useful in teaching-learning. The

recommended studies that prefer ML models are given in Table 3.6.
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SVM, 36%

NB, 61%

DT, 82%

ANN, 52%

KNN, 48%
RF, 36%

LR, 36%
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RB, 12% DL, 9%

LDA, 3%Other, 39%

ML models recommended for academic performance 

prediction 

SVM NB DT ANN KNN RF LR MLP AB RB DL LDA

Figure 3.5: Comparative results obtained using support vector machine (SVM), Naive bayes
(NB), decision tree (DT), artificial neural network (ANN), k-Nearest neighbors (kNN),
random forest (RF) and logistic regression (LR) algorithms for predicting a student’s
academic performance

The choice of metrics for predicting students’ academic performance has become more

challenging due to the availability of a large volume of data [48, 30]. In recent years,

applications of ML algorithms have drawn researchers’ attention in academic performance

prediction [51]. We have observed many ML algorithms are commonly used in students’

performance prediction. Predictive models are now used in many educational institutions to

improve students’ engagement in teaching-learning [64]. ML algorithms can automatically

extract complicated patterns from existing data attributes, allowing them to make intelligent

decisions using currently available academic performance metrics [65]. An intelligent tutoring

system in blended learning settings can use ML techniques to acquire real-time student-

related performance data that help teachers intervene during the early phases of a course [70].

The SVM, NN, KNN, NB, DT, LR, and RF models are very important and recommended

based on CLR (see Figure 3.5).

However, the validating applicability of the metrics usages and answer RQ3 in the

Indian context needs further studies. We believe that teachers can better answer these
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questions based on their experiences as they frequently evaluate performances. Therefore,

involving teachers in validating the applicability of metrics and finding FUMs and RIs is

justifiable.

3.4 Online Field Study (OFS) Methodology

We have conducted a descriptive [179] online faculty survey. This survey determines AMPs,

FUMs, and their RIs used in the Indian HEIs. In our study, we have followed the standard

survey guidelines [180, 181, 182]. Guidelines help us in various ways to prepare a good

survey design, like developing a well-written questionnaire, getting a response from a large

population, and reporting data with satisfactory research goals and validity [179, 180].

Throughout the research process, great care was taken to ensure the study’s ethical

integrity. Before participants’ involvement in this study, participants were provided with

comprehensive information regarding the nature, objectives, and potential implications of

the research. Each participant provided their informed permission after being fully informed

of their rights, which included the option to withdraw from the study at any moment

without being charged. The details of our survey are given in the following subsections

(summarized in Figure 3.2).

3.4.1 Preparation of Survey Questionnaire

We have determined APMs, FUMs, and RIs through a questionnaire-based survey. The

initial version of the questionnaire was developed using the knowledge of APMs, FUMs,

and RIs reported in the literature (mentioned in Tables 3.3, 3.4, and 3.5). We also adopted

terminologies found in open-access APMs that are available in various data repositories

[30, 48]. The final version of the questionnaire is developed using experienced teachers’

opinions and feedback from a pilot study.

We carefully selected the teachers for our pilot study. All teachers have at least five

years of teaching experience. The participants were course instructors of reputed HEIs.

Teachers, including six males and three females, volunteered for this study. The average

teaching experience of the participants is 11.22 years (SD = 4.99). In our pilot study, the key

focus was to inquire about how a teacher uses different APMs to assess and provide grades.

Moreover, we requested all the participants to report honest feedback about the components
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Figure 3.6: Categories of higher educational institutions (including universities) throughout
India and their participation in the online faculty survey

of the study and ambiguity in the questionnaire wording (see Chapter 5.6.3, page 121 [179]).

The pilot study guided us to get an initial idea about the suitable combinations of survey

components and fine-tuning the questionnaire.

We received 7 out of 9 verbal and nonverbal positive feedback on the research study.

Moreover, we received 20 encouraging APMs after analyzing feedback from the participants.

The positive feedback and the considerable variation of APMs motivate us to conduct

further extensive research studies. We finally developed the questionnaire based on the

feedback received from the teachers. The questionnaire consisted of a combination of

dichotomous, multiple-choice, and open-ended questions [179, 181]. There are two sections

in our questionnaire. The first section contains questionnaire statements related to the

demographic profile of the teachers. The second section consisted of questions to understand

how a teacher uses different APMs and RIs to assess students in HEIs.

The Google form was circulated all over India to receive responses from the participants

through email. The form contained questionnaire, including brief information about the

importance of their response and the research. We collected data on grading and marking

with final grading components using the questionnaire from the teacher participants. The

survey data helped to confirm which APMs are reliable in assessing academic performance.
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Figure 3.7: Category-wise higher educational institutions and universities throughout India
and their participation in the faculty survey.

3.4.2 Approach

We followed a systematic strategy to make the results of the survey valid and reduce bias

[179]. We identified 146 HEIs of 4 categories (see Figure 3.6) based on their national

importance. The institutions are geographically spread all over India (see Figure 3.7).

In India, HEIs include many technological institutions managed and funded by the In-

dian government. These are the most competitive, reputable, and nationally/internationally

recognized institutes. The institutions are the Indian Institute of Technology (IITs), Na-

tional Institute of Technology (NITs), National Institute of Technical Teachers Training and

Research (NITTTRs), and Indian Institute of Information Technology (IIITs). Out of these,

the central universities were established based on a Central Act, whereas the State Act

44



3. Comprehensive Study on Academic Performance

established the state universities. These are funded and managed by the central and state

governments, respectively. The state/central government does not fund private universities

but recognizes and is regulated by both government bodies.

In our survey, we followed many strategies to minimize sampling bias. Initially, we

prepared the category-wise targeted list of HEIs (see Figure 3.6). Then, we visited the

websites of institutions to collect the faculty mailing addresses. We followed some strategies

to reduce gender bias in the respondent population. We maintain a male-to-female ratio of

1:1 while collecting the mailing addresses. We cover all the disciplines seen in particular

HEIs. We collect 1526 e-mail addresses to conduct the survey. Mailing addresses include

Institute Directors, Principals, Academic Deans, Heads of Departments (HODs), individual

teachers, academicians, and other distinguished administrators. We sent an official request

to them to participate in our online survey. We also requested them to share the mail with

their faculty colleagues to respond to this survey. The e-mail contains a brief introduction

about the purpose of the study, a Google form uniform resource locator (URL) for a response,

and our short identity with an internal research website URL to validate and know more

about our research activity.

Moreover, we followed some strategies to reduce non-response bias and improve response

rates. We requested participants to respond to our survey within a week. If teachers do not

respond within a week, we resent the survey request to them. We got a higher response rate

with a gentle reminder. After receiving a response, we sent a thanking e-mail requesting

them to circulate the survey request to their close contacts. We received positive responses

and appreciation from many teachers, academicians, and administrators for conducting the

survey. Figure 3.6 shows the number of HEIs we approached with their categories and the

number of institutes from which teachers participated in our survey. Figure 3.7 depicts the

geographical distributions of the HEIs locations in India.

3.4.3 Participants

Data collection for our survey from participants began on March 11, 2020, and ended on

December 28, 2021. Figure 3.6 shows the number of institutions we approached and received

responses to our survey. Figures 3.8, 3.9 and 3.10 describe the discipline-wise distributions

and demographic information of the participants. All participants who volunteered in the
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Figure 3.8: Discipline wise participants distribution

Figure 3.9: Participants teaching experiences
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Figure 3.10: Distribution of teachers age who volunteered in this survey

study are from 109 HEIs geographically scattered across India (see Figure 3.7). In this study,

we analyzed response data received from 369 teachers employed in HEIs. The response

consisted of APMs and their RI values used by teachers to evaluate student performance.

Figure 3.8 shows the discipline-wise number of participants who responded to our survey

request. Figure 3.9 shows the statistics of the teaching experiences of all the teachers who

participated in this study. The average teaching experience of the participants is 13.78 years.

The teaching experience varies between 1 to 53 years. Figure 3.10 shows the age/frequency

distribution of the responses received from participants in our survey. The age frequencies

of the participants are between 25 - 78 years. The average age of the participants is 40.50

years. The overall gender distribution of the teachers is 65.39% male and 34.39% female.

In summary, the overall statistics of the discipline-wise distribution and demographic

information show that our study covers teachers of almost all disciplines, experiences, and

age groups. Moreover, the survey covers broader academic classes (HEIs), disciplines, and

geographical locations all over India.

3.4.4 Results and Observations

This section investigates various performance metrics to address the research questions

(RQ2.1 and RQ2.2) in the Indian context. We characterize the APMs, FUMs, and their

RIs preferred by Indian teachers. Table 3.7 demonstrates 24 APMs. We have determined

these metrics from the received teachers’ responses. We observed that there are some

redundant APMs in the list. Therefore, we have revised the APM list based on semantics,
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Table 3.7: Broad varieties of 24 APMs based on Indian Teachers Choice

(SL. No.) Academic Performance Metrics
(APMs)

(SL. No.) Continuation of APMs

(1) Quizzes Marks (13) Class Test Marks
(2) Home Work Marks (14) Assignment on Term Paper Performance
(3) Internal Examination Performance (15) Practical Examination Marks
(4) Mid-Semester Examination Marks (16) Class Performance
(5) End-Semester Examination Marks (17) Presentation on a Project Topic grade
(6) Surprise Test Marks (18) Class Interaction
(7) Attendance (19) Observation on Individual’s Attention
(8) Projects Performance (20) Mini Project Performance
(9) Assignments Performance (21) Viva Voce
(10) Sessional Examinations Marks (22) Small Write-up
(11) Seminar on a Topic Performance (23) Presentation Contest
(12) Class Participation Performance (24) Performance on Audio-Video Recordings

meaning, and the context of the usage of the metrics. Table 3.8 shows the revised list

contains 18 APMs. We also reported valuable observations about the APMs while revising

the list. Class performance (16) is synonymous with quizzes (APM1) or class test marks

(APM3). Similarly, project performance (8), presentation on a project topic grade (17),

and mini-project performance are merged and treated as APM8. Furthermore, some APMs

convey a similar meaning semantically, like the internal examination (3) and class test marks

(13) as APM3, and assignment on term paper performance (14) as assignment performance

(APM9).

Table 3.8: Revised APMs and their category information (SL. No. from Table 3.7, IA:
Internal Assessment and LB: Learning Behavior)

[Level] Academic Performance Metrics (APMs) [Level] Continuation of APMs
[APM1] Quizzes Marks (1 and 16, IA) [APM10] Presentation Performance (23, IA)
[APM2] Home Work Marks (2, IA) [APM11] Viva-voice (21, IA)
[APM3] Class Test Marks (3 and 13, IA) [APM12] Class Participation Performance (12 and 18, IA and

LB)
[APM4] Mid-Semester Examination Marks (4,
IA)

[APM13] Sessional Examinations Marks (10, IA)

[APM5] End-Semester Examination Marks (5,
IA)

[APM14] Practical Examination Marks (15, IA)

[APM6] Surprise Test Marks (6, IA) [APM15] Observation on Individual’s Attention (19, IA and
LB)

[APM7] Attendance (7, IA) [APM16] Seminar on a Topic Performance (16, IA)
[APM8] Projects Performance (8, 17, and 20,
IA)

[APM17] Performance on Small Write-up (22, IA)

[APM9] Assignments Marks (9 and 14, IA) [APM18] Performance on Audio-Video Recordings (24, IA)

We also determined categories of the APMs to link with state-of-the-art APM categories.

We observed that all APMs except APM12 and APM15 belong to the internal assessment

category. The APM12 and APM15 have dual meanings. If a class teacher observes and

notes class participation, then it should be an internal assessment. If the system checks the
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students’ activity logs while using technology, then it is learning behavior. Similarly, the

observation of individual students’ attention should be either an internal assessment or a

learning behavior. Moreover, if the APMs are used for future courses, they should be the

external assessment category of the APM.

Figure 3.11 describes 18 APMs and the percentage of participants who prefer the

metrics for performance assessment. More than 70% of teachers use the 3 APMs, namely,

APM4, APM5, and APM9. The APM1, APM3, and APM7 are in favor of using 50% - 70%

participants. A range of 30% - 50% participants prefer the APM2, APM6, and APM8. The

10% - 30% teachers adopt the APM10, APM11, and APM12 in assessing students. Below

10% participants choose the remaining APMs (APM13 - APM18).

FUMs to Assess Academic Performances

This survey identified 9 FUMs (FUM1 - FUM9), namely, APM1 to APM9, out of 18 APMs

used by the teachers (see Table 3.8 and Figure 3.11). We consider an APM as FUM if it is

used by more than 35% of the teachers to assess their students. Moreover, this study and

the analysis of the response data help us in characterizing 9 FUMs (see Table 3.9) based on

Indian teachers’ preferences. Figure 3.11 shows that FUM4, FUM5, and FUM9 are used by

above 70% of teachers based on a percentage of the respondent. The 50% - 70% participants

favor the FUM1, FUM3, and FUM7. The FUM2, FUM6, and FUM8 are favored by 30%

- 50% participants. The APM surprise test mark (FUM6) is selected to evaluate student

performance by 36.04% (133 out of 369) participants.

The other crucial point that should be discussed in understanding the FUMs is the

RI values for the metrics. We have analyzed FUMs and their RIs with our overall and

category-wise HEIs levels in the following subsections.

Relative Importance (RIs) for Frequently Used Metrics (FUMs)

In our study, we found that 85.80% of participants use varied RI for each APM. Therefore,

RI is an essential component for APMs as most of the teachers prefer separate RI for each

APM. We investigate the relationship between the FUMs and the RIs based on teachers’

choices of performance metrics. Table 3.9 shows descriptive statistics in understanding

the overall HEIs preferred RIs used in HEIs. It helps to explore the relationship deeply
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Figure 3.11: Academic performance metrics (APM) and their usages preferences by the
Indian teachers in the course performance assessment

Table 3.9: Summary of the percentage (%) of participants preferences and the descriptive
statistics of RIs for FUMs.

SL. No. with frequently used metrics (FUMs) % of
preferences

Descriptive Statistics of relative importance (RIs)
Mean Median Mode SD

[FUM1] Quizzes Marks 55.02 12.16 10 10 5.84
[FUM2] Home Work Marks 44.61 12.74 10 10 5.84
[FUM3] Class Test Marks 60.97 15.58 15 10 7.63
[FUM4] Mid-Semester Examination Marks 73.23 23.31 20 20 5.51
[FUM5] End-Semester Examination Marks 86.62 37.11 35 30 11.46
[FUM6] Surprise Test Marks 36.06 12.42 10 10 8.9
[FUM7] Attendance 50.56 8.6 10 10 3.83
[FUM8] Projects Performance 45.72 14.94 10 10 10.46
[FUM9] Assignments Marks 70.63 14.52 10 10 9.71

with FUMs based on teachers’ responses. The end-semester examination (FUM5) has

the highest mean RI value of 37.11. The second highest mean RI value is 23.31 for the

metric mid-semester examination (FUM4). The mean RI for “class test marks (FUM3)" is

15.58. The metrics like, “quizzes (FUM1)”, “homework (FUM2)”, “surprise test (FUM6)”,

“performance in projects (FUM8)”, and “assignments marks (FUM9)” have mean RI values

between 10 to 15. The FUM, i.e., “attendance (FUM7)", has a minimum mean RI value of

8.6.

We have identified the 3 highest RI values for FUMs with varied mean median, mode,

and standard deviation. They are FUM3 (M=15.58, Median=15, Mode=10, and SD=7.63),

FUM4 (M=23.31, Median=20, Mode=20, and SD=5.51), and FUM5 (M=37.11, Median=35,

Mode=30, and SD=11.46) utilized by the teachers. However, we have got 7 FUMs with

equal median and mode. We have obtained the RI values with an equal median and mode

of 10 for 6 FUMs (FUM1, FUM2, and FUM6 to FUM9). We have also observed that the

FUM4 has a higher equal median and mode value (median = mode = 20).
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Table 3.10: An inferential statistical t-Test to observe the significant difference between the
means of RIs of the influencing metrics used in various categories of institutions in India.

Institutions Compared No significance difference has been found while tested statistically with RIs of
overall HEIs (M=14.91, SD=8.09, n=12) using t-Test with α = 0.05)

Central Universities RIs of Central Universities (M=14.44, SD=8.06, n=12) [t(22)=0.14, p=0.44]
NITs RIs of NITs (M=14.44, SD=8.06, n=12) [t(22)=0.15, p=0.43]
IITs RIs of IITs (M=13.87, SD=7.17, n=12) [t(22)=0.33, p=0.37]
IIITs RIs of IIITs (M=14.41, SD=8.51, n=12) [t(22)=0.15, p=0.44]
State Universities RIs of state universities (M=13.82, SD=8.91, n=12) [t(22)=0.31, p=0.38]
Private Universities RIs of the private universities (M=16.27, SD=10.36, n=12) [t(22)=0.35, p=0.36]

Comparison studies on RI for FUM used in Indian HEIs

To deeply analyze the importance of FUMs, we have compared the RI values of 9 FUMs and

their 95% confidence interval for each HEI. We observed that the overall 95% confidence

interval varies based on HEI categories. Figure 3.12 illustrates the findings of RIs used

by Indian teachers in a course. We have also performed a significant test on the usage of

RI values based on the institution categories to understand the variation across India. In

this comparative study, we have not considered the institute category of NITTTRs, as we

received responses from only 4 HEIs out of 109 belonging to this category. We determine

the overall HEIs preferred RIs for individual FUMs by considering all responses received in

our survey. We calculate the RIs for individual FUMs, considering only the institutions’

responses from that specific HEI category. We also examine the significance of the RI

differences statistically for each type of HEI with overall HEIs’ preferred RI. We perform a

t-Test (two-sample assuming equal variances) for all statistical tests demonstrated in this

section [183].

Figure 3.12 shows the comparison of the overall HEIs’ RIs with the individual categories

of institutions’ RIs usages for individual FUMs. We observed similar RI values for each

FUM for all categories of institutions. There are no differences in the 95% confidence

interval for both overall HEIs with individual institutions except NITs. Figure 3.12(b) shows

there is a higher variation in the 95% confidence interval for all RIs of individual FUMs for

NITs. Table 3.10 summarizes the statistical test results. The RIs for FUMs of individual

institution categories do not significantly vary with the overall Indian HEIs’ RIs.

To determine the quality metrics, we summarized our findings with three high-level tags

(see Table 3.11). The results show that 3 FUMs (FUM3, FUM7, and FUM9) are common

in literature and survey studies. We also observed some dissimilarities in the Indian context.
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(a) Overall HEIs and Central Universities (b) Overall HEIs and NITs

(c) Overall HEIs and IITs (d) Overall HEIs and IIITs

(e) Overall HEIs and State Universities (f) Overall HEIs and Private Universities

Figure 3.12: Description of Relative Importance (RIs) of the Frequently Used Metrics
(FUMs) and their 95% confidence interval comparison for overall Indian Higher Educational
Institutions (HEIs) with (a) Central Universities, (b) NITs, (c) IITs, (d) IIITs, (e) State
Universities, and (f) Private Universities.

The findings show that surprise tests (FUM6) and performance in projects (FUM8) are

preferred by only Indian teachers as their state-of-the-art citation count is zero. FUM1 and

FUM4 have citation counts 10 and 6, which means that existing literature uses these metrics

to assess and predict performances like Indian teachers. FUM2 and FUM5 have a low

citation count (only 2). The homework marks (FUM2) were preferred by 165 of 369 teachers

(45.21%). The 86.72% teachers (320 out of 369) use the end-semester examination (FUM5)

as a very high metric preference in India. We have also suggested normalized RIs based on

the mean, median, mode, and standard deviation of our empirical data (see Table 3.11). The

citation counts help to choose metrics based on the importance given in the state-of-the-art.

The participants’ preferences and suggested RIs guide to select metrics based on empirical

evidence. The high-level tags as low, medium, and high interpretation prioritize the overall
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Table 3.11: Summary of the findings about FUMs, suggested RIs, and their interpretation
as 3 level tags (high, medium, and low) based on CLR and OFS

FUMs State-of-the-
art citation
count out of
48

3 level tag
based on
citation
count

% of par-
ticipants
preferred

3 level tag
based on
participants
preferences

Relative
impor-
tance

3 level tag
based on
relative im-
portance

overall
impres-
sion

[FUM1] 10 medium 55.02 medium 15 medium medium
[FUM2] 2 low 44.61 low 10 low low
[FUM3] 15 high 60.97 medium 15 medium medium
[FUM4] 6 medium 73.23 high 25 high high
[FUM5] 2 low 86.62 high 35 high high
[FUM6] 0 low 36.06 low 10 low low
[FUM7] 13 high 50.56 medium 10 low medium
[FUM8] 0 low 45.72 low 15 medium low
[FUM9] 17 high 70.63 high 15 medium high

importance of the FUMs. The FUM1 to FUM9 are internal assessments APM category.

However, the same metrics are considered as the external assessment category while reusing

the same for future courses.

3.5 Summary of the Chapter

In this chapter, we have determined the following: academic performance metrics, frequently

used metrics, relative importance, and predictive models based on the literature review

and an online field study. The prior approaches use various academic performance metrics

without covering the teachers’ actual recorded data and their opinions. In this study, we

link the state-of-the-art academic performance metrics, frequently used metrics, and relative

importance with teachers’ choices of metrics through a faculty survey. The faculty survey

covers large geographical locations and diverse populations to find the frequently used metrics.

Given the potential privacy risks associated with data containing personally identifiable

information, we decided not to rely solely on automated logging in our online field study.

Instead, we opted to contact teachers individually by email to obtain informed consent before

collecting any potentially sensitive information. This allowed us to ensure transparency

and respect for participants’ privacy throughout the data collection process. This study

also identifies an optimized number of academic performance metrics termed as frequently

used metrics. The relative importance values and the confidence interval for the frequently

used metrics help in showing the usage importance and variations of category-wise HEIs in

the Indian context. The t-Test shows no significant differences in their relative importance

values based on the various categories of HEIs with the overall relative importance values.
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This suggests that the relative importance of these factors is consistent across different types

of HEIs. There’s no evidence to suggest that the factors are more or less important in one

type of HEI compared to others. Therefore, we hope that the suggested relative importance

of the frequently used metrics can help to structure the assessment and predict performances

in the Indian higher education systems. The high-level tags for frequently used metrics and

relative importance will help in choosing metrics to quantify student performance for an

intelligent tutoring system. We expect that the survey will benefit many multidisciplinary

researchers such as intelligent tutoring systems, educational data mining, and learning

analytics. Moreover, we believe that the broad familiarity of the academic performance

metrics and recommended ML models will help to choose suitable metrics and reuse findings

in the predictive methods.

The details of publications expected from this contribution are as follows:

Journals Under Review

1. Ujjwal Biswas and Samit Bhattacharya, “Usage of Academic Metrics to Predict

Student Performance in Blended Learning Environment”, IEEE Transactions on

Learning Technologies, Revised and resubmitted [Chapter 3]

2. Ujjwal Biswas and Samit Bhattacharya, “AI-enabled predictive modeling of student

performance using teacher choice of metrics”, International Journal of Artificial

Intelligence in Education (IJAIED), [Chapter 3]

<<=8=;;
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4
C h a p t e r

A Real-time Interactive Visualizer for Large
Classrooms

4.1 Introduction

Classroom teaching is one of the potential application area of visual monitoring. In a

classroom, the teachers are expected to be aware of the attendance level, state of learning

and the mental state (e.g., frustrated/excited) among others, of each individual student

so as to make the teaching more effective and improve the learning outcome. Usually,

acquiring such knowledge is easier in classroom having small number of students (thirty

or less). This is so since in a small class, the teachers are likely to be able to “see” all the

students and determine the state (physical/mental) from visual inspections. Also, frequent

interactions between the teacher and students are more likely to take place in classes with

less students, which in turn can also help the teacher understand the mental as well as the

learning state of the students. It is also possible to keep track of student records such as

attendance or performance in examinations and use those for a better understanding of the

state of a student inside the class, without affecting the teaching significantly. For example,

it is not very difficult for a teacher to check the records of a particular student quickly to

know his/her attendance. For larger classrooms with more students (more than fifty), such

awareness about the class becomes problematic. For example, if a teacher wishes to know

about the attendance record for a particular student, s/he is likely to take much more time

to retrieve the record (as compared to a similar task in a smaller classroom), which in turn

may “eat away” teaching time (if the teacher needs to do it many times) affecting the overall

teaching process (and consequently the learning outcome). The more important of the tasks
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that a teacher is likely to be interested in doing in a classroom are listed below.

1. The teacher may wish to quickly identify the students, who are not engaged in the

teaching process (without actually requiring to closely interact with each and every

student personally as that is impossible in a large class considering limited teaching

periods of typically one-hour duration).

2. The teacher may like to retrieve the allied records (e.g. attendance or past performance

in examinations) for such dis-engaged students quickly (without having to go through

voluminous records).

3. A teacher may also like to learn about particular students/group of students in a

particular region of the classroom (e.g., two students sitting in the left corner of the

last row) for random check. In a small class, the teacher may walk-up to the student(s)

and interact. However, such an approach may not be feasible in large classrooms, as

it is likely to reduce available teaching time significantly.

In such situations, the teacher is likely to be benefitted from a visualizer of classroom status.

Such a visualizer is expected to ease the effort required to identify problem cases (either

systematically as in (1) in the above list or through random checks as in (3) in the list)

including retrieval of individual details (as in (2) in the list).

There are several challenges in large classroom visualization. First of all, it is difficult

to display the status of the entire class on a relatively small display area (for example, if

we wish to display the state of one hundred students on a 21 inch desktop screen or a 10

inch tablet that the teacher might have). This is primarily because the teachers need to see

both the state and the location of the students. Moreover, the state information should

also be easily identifiable by the teacher so that the regular flow of teaching does not get

affected. No present classroom visualizer addresses these challenges. In order to overcome

these difficulties, we propose a novel visualizer for large classrooms.

4.2 Design of the Proposed Visualizer

Our proposed visualizer is interactive, it renders the classroom status in two levels, where

the change in levels happens through interaction (tap/click). In the first level, a teacher gets
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to see an overview of the classroom status (with the help of color codes). The individual

student details are visualized in the second level. An overview of the visualizer along with

the assumptions we made are described next.

4.2.1 Overview and Assumptions

Our first assumption is that the classroom is organized in the form of a two-dimensional

matrix. Each cell in the matrix represents a seating position for the student. We have two

objectives: to visualize the status of the classroom as well as the details of the individual

students. We define classroom status as the aggregation of the individual states of the

students. In order to design an efficient and usable visualizer, we propose a set of three

states: critical (denoted by C), likely to be critical (denoted by LC) and normal (denoted

by N). A student can be in either of these states at any instant of time. When a student is

doing well and do not require any intervention by the teacher, s/he is in the N state. There

might be some others for whom the intervention by the teacher is desirable. Their states

are LC. There can also be students who must be given special attention by the teacher

immediately. These students are in the C state.

At any instant, the classroom is likely to contain all the three types of students

(considering the classroom to be large). In the first level of the visualizer, we group all

the students in the classroom into clusters. Each cluster represents a state type (N, LC

and C). We render these clusters on a rectangular grid with color codes. We use three

colors to denote the three types: red to indicate the C clusters, yellow to refer to the LC

clusters and green to represent the N clusters. The idea is illustrated in Figure 4.1 (first

level visualization part).

The grid color is dynamic. It changes every few minutes reflecting the change in the

students’ state as the teaching progresses. We set a value of fifteen minutes to update the

grid colors assuming it to be sufficient to capture any change in the state of the students.

However, the fixed value is not necessary and the teachers can set it, based on his/her

experience.

In the second level, the teacher can get the details about the students. The information

is overlaid on a visual representation of the students. We used a colored bounding box on an

image of the student as the visual representation to indicate the exact state of the student.
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Figure 4.1: Illustration for the two-level visualizer including three states (critical denoted by
C, likely to be critical denoted by LC and normal denoted by N). The bottom part of the
figure depicts the first level (with grid layout) and second level (with the students’ photo in
a colored bounding box).
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The image is prestored (captured during the registration for the course). The color code

used is the same as in the first level with the same significance.

In order to get to the second level, the teacher needs to tap or click on a grid element

in the first level. For a touchscreen device, a tap is required. If the visualization is rendered

on a desktop screen, mouse click is needed. A further tap/click on the visual representation

reveals the details for the students (textual description of the state information). Along

with the details, an overview of the entire classroom status is also present in the second level

(in a small region of the screen). With a tap/click on this region, the teacher can get back

to the first level view. The idea is illustrated in Figure 4.1 (second level visualization part).

Here, we primarily focus on designing a real-time classroom visualizer. The visualizer

aims to anticipate the mental and learning states of students in a BYOD classroom using

their mobile devices which are very similar to the research work [184]. As this visualizer

design is to use the system in real-time (during the class), if the design uses more than

three states, there is a chance to take teachers’ teaching time to comprehend the students’

states. This contribution utilizes three states (C, LC, and N) and develops visualization

and intervention techniques using these states as the basis. The key concern is balancing

real-time usability with the comprehensiveness of the visualizer with the three states. Here

are some key considerations and potential strategies for addressing real-time uses (mentioned

in introductions 1, 2, and 3). The design has the following key concepts: trade-offs and

optimization of the display of states for real-time use.

• Using fewer states reduces cognitive load for teachers but might oversimplify student

states.

• A simpler model might be easier to act upon quickly but could miss without having

to go through voluminous records.

• Focus on states that necessitate immediate action, potentially using a three-state

model for real-time display.

• Primary view with essential states for quick comprehension and option to drill down

into more detailed states when needed.

The proposed visualizer is discussed in detail in the next section.
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4.2.2 Proposed (four) Algorithms

The visualizer takes two inputs: the student location and the student state information.

In order to get the location information, we consider a classroom to be organized into a

rectangular grid. Thus, each student can be located with an integer pair (x, y), with respect

to a 2D classroom reference frame. At the beginning of the class, the location of each

student is supplied to the visualizer. We further assume that the state information for

each student is supplied on a continuous basis (either manually fed by a teaching assistant

or automatically captured and transmitted to the visualizer system by an ICT-enabled

infrastructure). The continuous supply of information is assumed for dynamic upgrade. The

visualizer consists of four separate algorithms: a grid generator, a threshold calculator, the

dynamic grid coloring and the second-level visualizer. At first, the visualizer generates a

grid layout taking into account the classroom configuration and the screen characteristics.

Each grid element represents a cluster of students in the classroom. The algorithm is shown

in Algorithm 1.

ALGORITHM 1: Dynamic Grid Generation
Input: Classroom seating arrangement SM×N , where M*N is the matrix dimension, screen size (Sh) and width

(Sw) in pixels.
Output: The dynamic grid GR×C where R× C is the grid dimension.

/* Compute the maximum number of rows and columns possible. */

1 RowMax =

⌊
Sh

100

⌋
2 ColMax =

⌊
Sw

100

⌋
/* Compute grid dimension so that the grid elements are “clickable” AND the students are

distributed in equal numbers among the grid elements. */
3 if M is not prime then

/* Let factor(M) represents the set of the proper factors. */
4 factorize M
5 else
6 factorize M+1

7 if N is not prime then
/* Let factor(N) represents the set of the proper factors. */

8 factorize N
9 else

10 factorize N+1

11 if Maximum value in factor(M) is less than RowMax. then
12 Set R = the maximum value in factor(M)

13 if the maximum value in factor(N) is less than ColMax. then
14 Set C = the maximum value in factor(N)

15 Return R and C as the dimension of the grid.

In the algorithm, we first find the maximum number of rows and columns possible

on the display that makes each grid element “clickable”. It is important on a touchscreen
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device to have the interactive elements (such as the buttons) “clickable” (can be termed

as “touchable” in case of touchscreen interaction). The term implies that the interactive

elements should have a size larger than the size of our thumb; otherwise, the area would

not be properly visible and it would be difficult to touch at the right place. Findings from

earlier research works [185, 186] indicate that the minimum touchable area ranges from

10 square mm to 20 square mm (i.e., approximately 36 to 72 pixel in width as well as in

height). To be on the safe side, we considered a touchable area to have the height and width

of 100 pixels each. Note that if an area is touchable with the finger, it is easily clickable

with mouse cursor (in case of desktop screen). Therefore, we divide the screen height and

width (in pixels) by 100 each (lines 1-2) to get the maximum number of rows and columns

that ensures that each grid element would be “clickable”. The maximum numbers, however,

serve as an upper limit only. If we directly use the numbers to set the grid dimensions, the

resulting grid may have poor perceptual quality due to the presence of a (possibly) large

number of rows and columns. In order to optimize the perceptual quality of the output grid,

we propose the following (see Algorithm 1).

We first factorize the classroom dimensions and create two lists of the factors: one for

the rows and the other for the columns (lines 4-6, 8-10). In each list, we find out the factor

that is less than or equals to the corresponding maximum value (e.g., the maximum row

value for the factors pertaining to the number of rows in the classroom and the maximum

column value for the corresponding column factors) (lines 12-14). These factors are set as

the grid dimension and returned as the output of the algorithm (line 15).

The factorization of the classroom dimensions is a novel step required to ensure that

the display grid elements contain equal number of students. At the same time, we ensured

that the grid elements are “clickable” by choosing only the factors that are less than or

equals to the maximum possible rows or columns. When any one or both of the classroom

matrix dimension(s) is/are prime number(s), we add one dummy row or column or both

to the original number of rows and columns in the classroom, as the case may be. We do

so to enable us to factorize the dimensions. The state of the students in the dummy row

and column is set to a special state D (or dummy), so that these do not affect the overall

criticality computations. Note that the algorithm involve primality testing and factorization.

We can use any standard algorithm for these tasks. The algorithm is illustrated with an
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ALGORITHM 2: Threshold Calculation
Input: Classroom seating arrangement matrix CM×N ; student state matrix SM×N , and the display grid GR×C .
Output: A threshold value (Th) and the criticality score GCR×C .

/* For each grid element, compute a criticality score (by adding up the number of students in
the C or LC state. The criticality score is initialized to 0. Also compute the total
criticality score for the entire classroom, which is initialized to 0. */

1 for Eveery element in GR×C do
2 for Every student in the grid element do
3 if Corresponding entry in SM×N is either C or LC then
4 Criticalityscore+ = 1.

5 Store the criticality score for the grid element in the corresponding entry for GCR∗C .
6 Total criticality score (for the entire classroom) += criti-cality score.

7 Compute the average (avgCS), maximum (maxCS) and minimum (minCS) criticality scores for the entire
grid (using GCR×C).

/* Compute an elevation factor (SF ) to manage the number of critical elements */

8 if avgCS ≤
N

2
, (N is the number of students in each grid element) then

9 SF =
maxCS −minCS

N
10 else

11 SF =
maxCS − avgCS

N

12 Threshold = (1 + SF ).avgCS
13 if Threshold<maxCS then
14 Return Threshold.
15 else

/* if the threshold value exceed the maximum criticality score, we will not have any
critical grid elements to display. In such cases, we re-compute threshold without any
elevation of the average criticality score. */

16 Find the median (medCS) and mode (modeCS) of the distribution represented by the criticality score
values (GCR×C).

17 if avgCS ≥ medCSANDavgCS ≥ modeCS then
18 Threshold = avgCS.
19 else if medCS > avgCS AND medCS > modeCS then
20 Threshold = medCS.
21 else if modeCS > avgCS AND modeCS ≥ medCS then
22 Threshold = modeCS + 1
23 else
24 if avgCS ≤ N/2 then
25 Threshold = +∞
26 else
27 Threshold = −∞

28 Return Threshold

example in Figure 4.2.

The second algorithm (the threshold generator) computes a threshold value that is used

to identify the nature of the grid elements. The algorithm is shown in Algorithm 2. We

first compute a criticality score (CS) for each grid element and store it in the corresponding

location of a two dimensional matrix GC (line 5). GC has the same dimension as the grid

G (i.e., R× C). For example, the CS value of G(1,2) is stored in GC(1,2) [i.e., the CS of

the grid element located at the 1st row and the 2nd column is stored in the 1st row and the

2nd column of GC]. The CS value represents the nature of the grid element. The higher
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Figure 4.2: Illustration of the grid generation algorithm.
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the value, the more critical is the corresponding grid element implying the need for the

intervention by the teacher. It may be recalled that each grid element represents a cluster

of students in the classroom. Each student is assigned a criticality type based on his/her

state: either C, LC or N. In order to compute the CS for a grid element, we compute the

total number of students in the element having either C or LC type and then store it (line

4-5). We also compute the total CS for the entire classroom in this step for subsequent use

(line 6).

In the next step of the algorithm, we compute the average CS (avgCS), minimum CS

(minCS) and the maximum CS values (maxCS) for the display grid (line 7). Note that the

CS can have a minimum value of 0 (when every student in the set of students represented

by the grid element is of type N) and a maximum value of N, where N is the total number

of students represented by a grid element (when every student in the grid element is of type

C or LC).

We can set the avgCS as the threshold: any grid element having a CS value above this

would be a critical element requiring some intervention of the teacher. In order to understand

the implications of using the avgCS as the threshold, we performed an empirical study

with thirty six classroom scenarios. The scenarios were generated by varying two factors

systematically: classroom seating dimensions (six levels) and student state distribution

(six levels). We considered six state distributions. Each distribution was characterized by

the percentage of critical students (i.e., having the states C or LC or both) in each grid

element (cluster of students). The six distributions were - less than 50%, 50-60%, 60-70%,

70-80%, 80-90%, and above 90%. The six seating arrangements (matrix dimensions) we

considered in our study were 9x9, 10x12, 12x10, 13x13, 11x15, and 15x11. For each of the

classroom scenarios, we applied the Algorithm 1 to determine the total number of grid

elements. Subsequently, we computed the avgCS and determined the number of critical grid

elements. The results are shown in Table 4.1 (the third and fourth columns from the left).

As can be seen in the Table (fourth column), the use of the avgCS as threshold resulted

in a large number of critical grid elements, with the number increasing very fast as the

classroom dimension increases. In fact, between 50% and 80% of the grid elements were

getting categorized as the critical grid elements in most of the cases, with the choice of the

avgCS as the threshold. If such situations are to occur in practice, it may not be possible
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for the teacher to intervene in all the potential cases due to the limited class time available.

Thus, it falls upon the teacher to decide on the students to attend, potentially increasing the

cognitive load of the teacher, which may be detrimental to the teaching process. In order to

avoid that, we tried to minimize the number of critical grid elements for the teacher. To do

so, we first elevated the average CS value by a factor. The factor value is decided based

on the relationship between the average CS value and the half of the maximum CS value

possible (i.e., N/2). If the average CS value is less than N/2, the factor value is more (line

8) compared to the case where the avgCS is more than N/2 (line 10). We then multiply the

avgCS with this factor to get the threshold (line 12). In this way, we elevate the threshold

from the avgCS. Any grid element with the CS value higher than the threshold would be

marked as critical for the teacher, implying that the teacher attend to those students.

Due to the elevation, it may happen that the elevated threshold overshoots the maximum

CS value (i.e., it becomes greater than the maximum). In that case, no grid element can

be marked as critical. In order to take care of such situations, we compute the elevated

threshold only when it is less than the maximum CS of the grid (line 12). Otherwise, we

re-compute the threshold value in a different way (line 13-27). We consider the distribution

of the CS values and compute the median and mode of the distribution (if no statistical

mode is available, i.e., all values are having the same frequency, we simply take the highest

value). On the basis of the relationships between the average, median and mode of the

distribution, we set the threshold (lines 17-27) and return it (line 28). The conditions are

designed to take care of the facts that the CS values can be positively skewed, negatively

skewed or not skewed (i.e., all possible distributions are taken care of that are practical). In

Figure 4.3, we illustrate the algorithm with the same example used in Figure 4.2.

As Figure 4.3 shows, just having the display grid with the criticality values is not likely

to be of much help to the teacher. The values in itself do not make it easy for the teacher

to identify the critical students. Therefore, we propose an algorithm to color the grid, with

the assumptions that the coloring would make it easier for the teacher to get a snapshot

of the classroom criticality. The algorithm is shown in Algorithm 3. It takes as input the

grid with critical scores (i.e., GC that was computed in the second algorithm) and the

threshold (the output of the Algorithm 2). In the Algorithm, we re-compute the criticality

scores for each interval of visualization by dividing these values with weight values. We
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Table 4.1: Case Studies of Different Classroom Scenarios.

Classroom
seating
arrange-
ment

Student
state distri-
bution (%
of critical
students
in each
cluster)

Total num-
ber of grid el-
ements com-
puted with
Algorithm 1

Number
of criti-
cal grid
elements
based on
above
avgCS

Number
of criti-
cal grid
elements
with
elevated
thresh-
old

Elevated
thresh-
old
over-
shooting
maxi-
mum CS

Number
of criti-
cal grid
elements
based on
CS distri-
butions

9x9 <50 9 4 1 NA NA
50-60 9 4 2 NA NA
60-70 9 4 2 NA NA
70-80 9 5 2 NA NA
80-90 9 6 2 NA NA
90-100 9 4 4 NA NA

12x10 <50 30 23 0 Applicable 7
50-60 30 7 7 NA NA
60-70 30 14 7 NA NA
70-80 30 17 9 NA NA
80-90 30 21 14 NA NA
90-100 30 26 22 NA NA

10x12 <50 30 22 0 Applicable 10
50-60 30 13 7 NA NA
60-70 30 18 7 NA NA
70-80 30 15 11 NA NA
80-90 30 21 16 NA NA
90-100 30 26 19 NA NA

13x13 <50 49 37 0 Applicable 8
50-60 49 21 1 NA NA
60-70 49 29 11 NA NA
70-80 49 19 15 NA NA
80-90 49 28 23 NA NA
90-100 49 32 28 NA NA

11x15 <50 30 21 0 Applicable 10
50-60 30 11 3 NA NA
60-70 30 18 4 NA NA
70-80 30 14 9 NA NA
80-90 30 22 13 NA NA
90-100 30 24 15 NA NA

15x11 <50 30 21 1 NA NA
50-60 30 14 3 NA NA
60-70 30 17 6 NA NA
70-80 30 15 9 NA NA
80-90 30 22 11 NA NA
90-100 30 25 14 NA NA
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Figure 4.3: Illustration of the algorithm to calculate the critical grid elements and the
threshold.
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ALGORITHM 3: Grid Coloring
Input: The critical scores (GCR×C) matrix and the threshold.
Output: Colored grid.

/* In order to assign a color to a grid element, we compute a weighted criticality score.
The weight values are stored in a Color Weight matrix (CWR×C). At the beginning, the
values in this matrix are initialized to one. */

1 for each time interval do
2 if Number of values in GC above threshold is >3 then then
3 for Each GC value above threshold do

/* recalculate the criticality score with weights. */

4 GCij =
GCij

CWij

5 Color grid elements having top 3 values in GC as Red.
6 Color the remaining grid elements that are having GC values above the threshold as Yellow.
7 Color the rest of the grid elements as Green.

/* Update the weights in CWR×C. */
8 for Each element in CWR×C do
9 Set value to one if color assigned to corresponding element in the grid is Green.

10 Set value to two if color assigned to corresponding element in the grid is Yellow.
11 Set value to three if color assigned to corresponding element in the grid is Red.

12 else
13 Assign the Red color to all the elements with the criticality value above the threshold.
14 Assign the Green color to the remaining grid elements.

15 Render the colored grid on the display.

use a matrix (Color Weight matrix or CW) having the same dimension as that of the grid.

Each element in this matrix is used as the weight to re-compute the criticality value of

the corresponding grid element as shown in line 4. We use integer values (one, two and

three) as weights for the colors green, yellow and red, respectively. Intuitively, if an element

is colored red in an interval, the teacher is already aware of the criticality of the element.

Therefore, it is futile to highlight the same element with red in the next interval. Instead, it

is preferable to highlight other critical elements. That idea is implemented by the criticality

score recomputation (line 4) and the assignment of colors on the basis of the new score

(lines 2-4). The CW values are updated in lines 9-11 for use in the coloring for the next

interval. However, if the grid has three or less number of elements with the CS value above

the threshold, we assign the red color to all those values and the green color to the rest (line

14). No element is assigned the yellow color. The grid is rendered on the display with the

assigned colors, as illustrated in Figure 4.4.

There are a couple of important points to be noted in the grid coloring algorithm. First

of all, we used the three colors (red, yellow and green) to make the display “intuitive”. It

is expected that the teacher is familiar with these colors as these are commonly found in

traffic signals. Therefore, they are likely to learn and remember the meaning of these colors

easily. Also, when the number of critical elements are more than three, we have decided to
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Figure 4.4: Illustration of the grid coloring algorithm.

assign the red color to the top three elements in terms of their criticality score. If we assign

the red color to only the element with the top CS value, there might be many yellow colored

grid elements, making it difficult for the teacher to decide. Similarly, more number of red

colored grid elements may likewise increase the cognitive load of the teacher (to decide

which and how many to attend). The value of three seems to be an optimal choice based on

our intuition.

The three algorithms constitute the first level of the visualizer. The first level is intended

to give the teacher a complete overview of the classroom. However, the teacher cannot get

the detailed information about individual students at this level. For that, we designed the

second level visualization algorithm shown in Algorithm 4 with illustration in Figure 4.5.

The algorithm is executed once the teacher taps/clicks on a grid element. On tap/click,

a new screen appears on the display. There are two components of this display (see Figure

4.5). The upper component contains images of all the students present in the cluster

represented by the grid element. The images are pre-stored (during the course registration

time). Each image is surrounded by a colored rectangle corresponding to the criticality

state (C, LC or N) of the student. On further tap/click on an image, detailed information

about the student is displayed (see Figure 4.5). The state information stays on the screen

for twenty seconds [187] and then disappears automatically.

We have used images to represent students in the second level. The images occupy
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ALGORITHM 4: Second Level Visualizer
Input: Classroom seating arrangement, Student state, colored grid, interaction event (tap/click).
Output: Second level display with details and overview.

1 while tap/click on a grid element in first level do
2 Get the location of the element (row and column numbers).
3 Get the images of the students at the location using the classroom seating arrangement.
4 Get their criticality type using the GC matrix.
5 Create a display area covering the upper two-thirds of the screen.
6 for Every student at that location do
7 if his/her criticality type is C then
8 Display his/her image inside a Red rectangle within the two-thirds display area.
9 else if his/her criticality type is LC then

10 Display his/her image inside a Yellow rectangle within the two-thirds display area.
11 else
12 Display his/her image inside a Green rectangle within the two-thirds display area.

13 Display the colored grid in the lower one-third of the screen.

14 while interaction made in second level display do
15 if tap/click on an image then
16 Display the state details of the student in a pop-up display that stays on the screen for twenty

seconds.
17 if tap/click on the colored grid then
18 Return to the first level display.

Figure 4.5: Illustration of the second level visualization.
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two-third region of the screen. Nowadays, 5.5 inch screens sizes are commonly found on our

mobile phones. Hence, one main concern is to determine the number of images that can be

accommodated in the two-third region of such a display. We found that the two popular

social networking sites, namely the Facebook and the Instagram, use sizes of 128x128 and

110x110 (in pixel squares) respectively, to display profile pictures on smart phones. We

propose to use similar sizes to display the student images.

The remaining one-third area of the screen is used to give an overview of the classroom

status. It contains the colored grid in a reduced form (see Figure 4.5). Individual elements

of this overview grid is not selectable through interaction, however on tap/click on any part

of the overview region, the second-level display disappears and the first level is displayed on

the whole screen again (i.e., the overview component of the second level serves as a means

to return to the first level).

It may be noted that the colored bounding boxes enclosing the images of the students

follow the “consistency” principle of interface design. We used the same colors, with the

same meanings, as in the case of the colored grid of Algorithm 3.

4.2.3 Empirical Validation

There are mainly three aspects on which the proposed visualizer (or any such teacher

awareness system) should be evaluated. The very first measure of evaluation should be the

efficiency: does it allow the teachers perform the monitoring tasks efficiently, where we can

define efficiency as the time to complete each monitoring task. The task completion time

should be as low as possible, to avoid reducing the teaching time in the limited lecture period

available (typically about one hour). Otherwise, the teaching process might be affected.

The second metric for evaluation should be the user satisfaction of the system. Ideally it

should be high, so as to ensure that the teachers find the system acceptable and are willing

to use it. Finally and most importantly, we should also evaluate the effect of the system on

the learning outcome. The third aspect, however, is difficult to measure since it requires a

systematic study over a reasonably long period (say for example, one semester) considering

the large classroom sizes. We conducted controlled studies to evaluate mainly the efficiency

and the user satisfaction of our proposed design. However, we also performed surveys and

interviews on the study participants to understand the likely effect of the proposed visualizer
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on the learning outcomes.

Setup Used

In order to carry out the experiments, we developed an app for the visualizer. In the app,

the input is a classroom configuration matrix and the corresponding state matrix. We

assumed a classroom size having fifteen rows and eighteen columns (i.e., the matrix is of size

15x18). The app processes these inputs to produce the visualization following the algorithms.

In order to perform the experiments, we randomly assigned states to the students. Figure

4.1 illustrates the visualization of the classroom.

We created a simulated classroom setting to perform the study. In the setting, one

participant acted as a “teacher” and between fifteen to twenty participants were the “students”.

We took proper care to select both the teacher and student participants. Only those with

prior teaching experience were enlisted to act as teachers. All the student participants were

undergraduate or graduate students. Each “teacher” was asked to take a thirty minute

lecture in front of the students. The lecture was taken with the help of a smartboard and

projector. The role of the “students” were to keep the teacher engaged during the teaching

(by asking questions), to mimic the real-world classroom constraints faced by a teacher. In

that way, the interactive classroom scenario was created.

The app was used to collect data from the “teachers” during the teaching. We used the

HTC Desire 816 smartphone having 5.5 inches display, 1.5GB RAM and Quad-core 1.6 GHz

Cortex-A7 processor. The device had Android version 5.0.2, software number 2.34.720.2,

and HTC SDK API level 6.55. Additionally, we video-graphed the entire teaching sessions

for later analysis.

Design of Tasks

In order to collect data, we asked the “teacher” participants to perform twelve tasks during

their teaching sessions. The tasks are shown in Table 4.2. As we mentioned earlier, we

assumed an interval of fifteen minutes to change the color codes of the grid. Thus, there

were two such intervals in the thirty-minute lecture delivered by each ”teacher”. Our tasks

were designed to cater to these two intervals. Additionally, we also ensured that all the

levels of the visualizer were covered with the tasks. We also conducted a pilot study with
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Table 4.2: The list of tasks for functionality and feature testing for first level (FL), second
level (SL) and both level (BL) in the visualizer interface.

Task Task Set for the first window (15 minutes) Task Significance (visualizer level)
T1 Touch all the critical grid elements. To confirm the color scheme not/understood (FL)
T2 Tell the approximate percentage of the critical stu-

dents present in the classroom.
At a glimpse, if it is possible for a teacher to perceive
classroom status (FL).

T3 Touch all critical grid elements from the most critical
zone in the classroom, out of the four zones - LF
(left front), RF (right front), LB (left back), RB
(right back).

To check if the teacher can identify the most critical
zone/region that requires the teacher’s attention
(FL).

T4 Touch all normal grid elements from the best nor-
mal status zone (LF or RF or LB or RB) in the
classroom.

To check if the teacher can identify the least criti-
cal zone/region that does not require the teacher’s
attention (FL).

T5 Identify five critical students in the whole class (by
touching the corresponding images).

To check if the color scheme in the second level is
not/understood (SL).

T6 Identify all the critical students in the left front (LF)
part of the class (by touching the corresponding
images).

To check if the teachers can understand the color
scheme and the mapping between the real classroom
and the grid (BL).

T7 Identify all the critical students in the last row of
the class.

To check if the teachers can understand the color
scheme and the mapping between the real classroom
and the grid (BL).

Task set for the second window (last 15 min-
utes)

Task Significance (visualizer level)

T8 Mark all the students in the left back (LB) part of
the class (by touching the corresponding images).

To check if the teachers can understand the color
scheme and the mapping between the real classroom
and the grid (BL).

T9 Determine the number of students present in a grid
cell.

To check the idea of clustering at a glimpse (BL).

T10 Identify one student who remained critical through-
out the lecture (30 minutes).

To check the ease with which a teacher can explore
the visualizer to identify a specific student with a
specific status (SL).

T11 Identify one student who remained non-critical
throughout the session (30 minutes).

To check the ease with which a teacher can explore
the visualizer to identify a specific student with a
specific status (SL).

T12 Identify all the critical students in the last row of
the class.

To check if the teachers can understand the color
scheme and the mapping between the real classroom
and the grid (SL).

another set of “teachers” (seven in number) to check the appropriateness of the tasks (the

wordings and the understanding by the participants) before the tasks were used in the data

collection phase.

Participants

We collected data from a total of twenty seven “teacher” participants (twenty male and

seven female). All of them were volunteers. They had at least one year teaching experience

and all were regular user of smartphone and tablets. The age group of the participants were

within 25-41 years, with the average age of 32 years and average teaching experience 4.59

years of undergraduate students of science and engineering (at the college and university

level). Among the twenty seven, twenty took part in the experiments (fifteen males and five

females). The rest were used to finetune the tasks (wordings and feasibility) of Table 4.2.
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4.2. Design of the Proposed Visualizer

Figure 4.6: Controlled experiment session for validating our visualizer.

Experimental Method

Before data collection, each “teacher” participant was introduced to the visualizer app for

about fifteen minutes. During this phase, the participants were trained to operate the app

and also were given some dummy tasks to perform for familiarization. During the data

collection phase, the participants were asked to “take a class”. Each participant was asked

to prepare power point slides for a thirty minute lecture (one week in advance). They were

free to choose a topic of their interest (so that they were confident and comfortable during

the lecture delivery). The “student” participants were instructed to ask as many questions

as they wished during the lecture delivery. The intention was to keep the “teacher” busy as

in a regular classroom and collect data in that state.

During the lecture delivery, each teacher participant was asked to perform the tasks of

Table 4.2. The tasks were given to them in printed form, as can be seen from Figure 4.6.

The app logged all the touch events along with the time stamps during the execution of

each task by each participant. Along with the data logging, we also collected post session

ratings for the system from each participant. For the purpose, we designed a questionnaire
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4. A Real-time Interactive Visualizer for Large Classroom

Table 4.3: The SUS-based questionnaires used to collect ratings from the participants.

Modified SUS statements (used in the study)
I think that I would like to use this visualizer frequently during the class lecture.
I found the visualizer unnecessarily complex during the class lecture.
I thought the visualizer was easy to use during the class lecture.
I think that I would need the support of a technical person to be able to use this
visualizer during the class lecture.
I found the various functions in this visualizer were well-integrated.
I thought there was too much inconsistency in this visualizer.
I would imagine that most people would learn to use this visualizer very quickly.
I found the visualizer very cumbersome to use during the class lecture.
I felt very confident using the visualizer during the class lecture.
I needed to learn a lot of things before I could get going with this visualizer during the
class lecture.

based on the SUS [188]. The questionnaire is shown in Table 4.3. A five-point Likert scale

was used to rate the visualizer, having the ratings 1 (Strongly disagree), 2 (Disagree), 3

(Neutral: neither agree nor disagree), 4 (Agree), and 5 (Strongly agree).

4.2.4 Results and Analysis

We recorded both quantitative and qualitative data during the experiment. Quantitative

data included task completion times, accuracy, and post-session ratings. Qualitative data

included the observational data for each participant we recorded manually during the studies

as well as the analysis of the recorded videos. When we talk about a real-time classroom

visualization system, especially one that makes use of video technology, we must talk about

user data privacy. We have taken proper care of the ethical issues, and we have signed

a consent form before recording the video data. Additionally, such data also included

comments received from the participants about the system.

One measure of system efficiency is the task completion rate (TCR). We computed

it using Eq. 4.1, where TCRPi indicates the rate for the ith participant. The results are

shown in Figure 4.7. Only for two of the participants (2 and 5), the rate is below 50%. The

rate varies between about 67% and 100% for the remaining 18 participants with an average

accuracy rate of nearly 83%, indicating a high success rate.

TCRPi
=

Number of tasks completed successfully

Total number of tasks
× 100% (4.1)
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Figure 4.7: Task completion rate for the participants in the experiments.

The high completion rates indicate that the participants found most of the tasks

doable in the classroom. The rates, however, do not in themselves indicate anything on the

proportion of lecture times a teacher needs to spend on getting aware about the classroom

status through the use of the system. Ideally, the teachers should be able to perform the

visualization-related tasks taking as little time as possible, so that they get more time to

teach. In order to understand this aspect of our visualizer design, we computed the average

time (ASCTTi ) taken by the participants to perform tasks successfully with Eq. 4.2, where

P is the total number of participants, tj is the time taken by the jth participant to complete

the task, B is 1 if the participant successfully completed the task and 0 otherwise and N is

the total number of participants who successfully completed the task.

Task time is computed based on the time taken by the participant to complete or quit

the task. If a task is not completed successfully, then the time is measured until the user

quits the task. We used the video recordings to determine the time before quitting. The

average successful task completion time for each of the twelve tasks are illustrated in Figure

4.8.

ASCTTi =

∑P
j=1B × tj

N
(4.2)
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Figure 4.8: Descriptive statistics for task completion times for the twelve tasks.

Figure 4.8 illustrates the descriptive statistics for the task completion times by the

participants. It indicates that the tasks T2, T9, T10, and T11, which are likely to be

performed frequently in a classroom, can be performed in less than 6 seconds (a reasonably

small number considering a one hour lecture). Few other likely to be frequent tasks, namely

T3, T4, T5, and T12, can also be completed in about 15 seconds (again, a small number

considering the overall lecture duration). The remaining tasks (T1, T6, T7 and T8) are likely

to take higher time to complete. However, T1 and T8 are not expected to be performed

frequently in an actual class. Thus, the average task completion time (for the remaining ten

tasks) was about 10 seconds. This value is certainly not very high with respect to a typical

one-hour lecture slot (about 0.3%). We computed other descriptive statistics, namely the

median and geometric mean for all the tasks, as illustrated in the figure, to support our

argument. Figure 4.8 includes the 95% confidence interval as well. The CI values indicate

that the task completion times we computed are likely to represent the actual times required.

Thus, the relatively small task completion times for the frequently performed tasks indicate

the proposed visualizer can be used by the teacher in a classroom without affecting the

lecture delivery time much.
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We also compared the task completion times observed in the simulated classroom

setting to the task completion times in the absence of any distractions, to understand the

performance of the teachers in a real classroom setting. In order to do that, we determined

the ideal mean task completion times when participants were not engaged in teaching.

We performed a separate study involving the seven participants who did not take part in

the actual experiment. We asked them to carry out the tasks but without any “students”

present (i.e., they were not interrupted by questions during the execution of the tasks).

We took the mean of the times taken by the participants to complete each task as the

ideal task completion time. We then compared this time with the observed (mean) task

completion time (i.e, the average task completion times we recorded during the experiments).

The difference between the mean observed time (M=11.88, SD=8.12, n=12) and the ideal

time (M=10.80, SD=7.42, n=12) was found to be statistically not significant [t(22)=2.07,

p=0.368]. The results indicate that the design of the proposed visualizer does not affect the

task completion times significantly in the classroom setting.

In summary, what we found in our analysis was that the majority of the participants

could complete most of the tasks in very less time, as compared to the overall lecture time

available. Also, the times they took in the presence of distractions (i.e., the simulated

classroom setting) were not significantly different from the times that would have been

required in an ideal situation without distraction. These observations point to the efficiency

of the proposed visualizer.

In order to measure the user satisfaction of the proposed system, we collected and

analyzed the ratings by the participants on the SUS questionnaire, shown in Figure 4.9. As

the Figure 4.9 shows, the minimum SUS score is 60. The score varies between about 65 and

90 for 18 out of the 20 participants, with an average score of nearly 75. The score indicates

that the user satisfaction of the visualizer is also high. In other words, the teachers are

likely to perceive the visualizer as usable and thus, acceptable for use in a classroom.

Along with the above quantitative analysis, we also asked the teacher participants on

their overall impression on the system, including its utility in teaching. All the participants

agreed that the system is going to be helpful to the teachers. A majority of them (seventeen

out of the twenty) found the system to be easy to learn and remember due to the intuitive

design strategies (color schemes and interactions). Some of them (three out of the twenty),
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Figure 4.9: The SUS ratings obtained in the experiment.

however, felt that the system might require some time to get familiarized. All of them were

very satisfied with the visualizer and opined that the awareness afforded to the teacher by

the system would be very helpful to device effective intervention strategy for better learning

outcome. There was no unanimity, however, on the best intervention strategy to be adopted.

Eighteen participants felt that the intervention may be immediate for those students falling

under the red-colored grid elements (most critical) and delayed for the others (the student

clusters represented by the yellow color). The delayed intervention should be after the class,

so as not to spend further lecture time on intervention only. The participants suggested

that the system might have a feature to “remember” all those students for whom delayed

intervention is recommended. Only two among the participants felt that all the interventions

may be delayed and after the class. The need to have a facility to remember all the cases

for intervention was highlighted by those participants as well.

Although the system manages to address most of the challenges associated with large

classroom visualization, we found three major shortcomings with the system. In the

visualizer, three student states are defined: normal (N), likely to be critical (LC) and critical

(C). The last two states indicate the need for a teacher to intervene for improved learning
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outcome for those students. In the current system, both C and LC states carry the same

weight though, making it difficult to discriminate between the two at the overview (first)

level. This may affect a teacher’s perception of the classroom status. A second problem

with the present visualizer is the way it highlights the classroom status. Presently, it paints

the top three most critical clusters of students in the red color. It is possible that three

adjacent clusters are highlighted. This scheme is actually not very informative since the

teacher can be made aware of the criticality of the region of the classroom where all these

clusters are located, even if only one of the adjacent clusters is highlighted with red. As a

result, other critical sections of the classroom may not get due attention due to this specific

highlighting scheme proposed. There is a third and important drawback as well. In the

present visualizer, emphasis is given on the optimization of the number of grid elements

in the first level only. As a result, the number of clusters for a large classroom remains

minimum and visible on the display. However, the cluster sizes (the number of students)

increase in that case, making it difficult to accommodate all the students in the same display

in the second (details) level. The issue is resolved with the use of scrolling interfaces, putting

additional physical and cognitive load on the teacher.

We propose a novel interactive and dynamic visual monitoring aid, the Manas Chakshu

for large classrooms to overcome these difficulties. We use weighted criticality scores to

discriminate between the student states. We also developed algorithms to optimize the

display at both the levels and also to highlight critical sections of the classroom more fairly.

We performed both theoretical and empirical studies to demonstrate the improvements our

proposed system achieved with respect to the state of the art system. In this article, we

describe the design and implementation of our proposed system along with the comparative

study details and results.

4.3 Discussion

We wanted to design a visualizer that is easy to learn and remember. In order to achieve

this objective, we used the “consistent” design principle commonly found in the design of

interactive systems [189]. The consistency principle is applied at two levels: external and

internal. The external consistency refers to the use of the three colors to visualize the grid

in the first level. The colors are commonly used in the traffic signals around the world,
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with the similar meaning. Therefore, the use of the colors is consistent with our everyday

knowledge. The use of the same color code with the same meaning in the bounding boxes

enclosing the images of the students in the second level takes care of the internal consistency

in the design.

For the visualizer, we also took care of the important human factor of clickability. It

depends on the size of our thumb. By taking care of this concern in the first algorithm

(Algorithm 1), we tried to ensure that the interaction is error-free and effective. Otherwise,

the users are likely to make many errors owing to the so called “fat finger problem” leading

to irritations and reduced usability of the visualizer (particularly with touch devices). It is

important to note here that the above problems are mostly related to the mobile devices

(smart phones and tabs), characterized by small displays. Considerations for such mobile

devices, in the design of the visualizer, is important as we wanted to make the visualizer

usable with any device. It may be argued that there are typically desktop or laptop

computers available in a classroom and hence the need to have the visualizer rendered on a

mobile device is not so important. That may be true in many cases. However, it is also

quite possible that the teacher may like to roam around the classroom and want to visualize

the status during such movements. If the visualizer is rendered only on a desktop/laptop,

the movement of the teacher would be restricted. By making our system compatible with

the mobile devices, we wanted to address such mobility aspects of classroom teaching as

well.

The threshold calculation is also designed to increase the acceptability of the visualizer

among the teachers. The idea is to keep the number of critical regions of the classroom that

requires immediate intervention by the teacher to a minimum (three at the most). More

numbers are likely to create confusion in the teacher’s mind leading to possible disruption

in the flow of teaching.

While the above took care of the human side of the system (the users), we also considered

the issues that are related to the design of efficient systems. These include the factorization

of classroom dimensions, primality testing and the associated corrective measures, the

criticality score measure and the consideration of its distribution and so on. The ideas are

all unique, nontrivial and used to come up with an optimal system design under the given

context.
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In our empirical study, we evaluated both these aspects (efficiency and user satisfaction)

of the visualizer. The simulated classroom environment we created for our study had

between fifteen to twenty student participants, who were instructed to ask as many questions

as they wished to the teacher. On an average, we found roughly two questions per student

in each session. In other words, there were between thirty to forty questions asked to the

“teacher” participants in each teaching session (of thirty minute duration). If we extrapolate

this number to a sixty minute lecture period, it comes to between sixty to eighty questions.

The number is in fact more than the number of questions typically encountered in a large

classroom, as the experience of one of the authors show. This number indicates that the

simulated environment could closely represent the actual classroom setting, indicating the

validity of the findings beyond the simulated environment.

In the study, we found that the users can use it with high accuracy, as revealed by the

TCR measure. The ASCT measure indicates that the visualizer does not require the teacher

to take away significant time from teaching to visualize and learn about the classroom status.

The measure indicates the efficiency of the proposed visualizer. The SUS scores indicated

that the user satisfaction is also likely to be high, indicating higher level of satisfaction with

the system. The feedback obtained from the participants also indicate that the teachers are

likely to be satisfied and benefited with the system. In fact, earlier studies have revealed

that any teaching method that brings satisfaction to the teacher is likely to result in better

learning outcome as well [190]. Although we did not directly evaluate the effect of the

proposed visualizer on the overall learning outcome, the high SUS score as well as the

feedback from the teacher participants indirectly points to the fact that the proposed system

is likely to result in higher learning outcome through timely intervention. The intervention

strategy should be immediate for the most critical students whereas it can be delayed

(post-class) for the other likely to be critical students.

Although the literature on visualization is quite extensive, we did not find any other

work that is applicable in the context of large classrooms. The nature of the problem is

unique! On the one hand, we have data sets that are not very large but not very small

either. The existing approaches, on the other hand, are designed to take care of very large

datasets or for small data sets. The large data visualizations may be more cognitively

demanding and not suitable for a time constrained environment such as a live classroom.
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The small data set visualization techniques are not applicable for visualization of large

classrooms on small display areas. Therefore, we believe our proposed approach provides

a novel and unique solution to a previously unsolved challenge. It may be noted that

the visualizer assumes a two dimensional matrix as an initial classroom configuration. In

practice, such configurations occur in many situations other than classrooms as well. For

example, the seating arrangements in a movie theater. Our proposed visualizer is expected

to work in such situations also (basically, any situation where the input can be provided

as a two-dimensional matrix). Thus, although large classrooms are our main target, the

proposed system is generic and applicable in non-classroom situations as well.

In spite of the novelty and utility, there are few points of concern. First of all, we

assumed that the state information is already available. It is of course very challenging

to get the information. For that, we first need to understand what is a “state”. We can

consider the mental state of a student (e.g., excited, frustrated, engaged and so on) to be

a state. The attendance record of a student can also be construed as a state (attending

regularly, irregular, mostly regular and so on). Another potential candidate for defining a

state is the learning level (advanced, intermediate, backlogger and so on). There are many

other such potential “states” (e.g., level of understanding, classroom activity level). We can

define the state of a student as any one or a combination of these “potential states”. It is

difficult to capture some of these states such as the mental states, although there are few

works in this direction to gather the students’ state information from their mobile usage

behavior [191]. Some other states are easier to capture such as the attendance and the

level of learning (using scores in classroom tests). Our visualizer does not focus on these

challenges. However, this is not a limitation as such since the visualizer can still be used

with whatever state information are available (for example, the state of attendance). Also,

we assumed a two dimensional matrix data structure as input to the visualizer. Sometime,

the classroom seats might not be organized in the form of a matrix. Instead, we might

encounter other shapes such as a semicircular seating arrangements commonly found in

many lecture galleries. Although we can potentially map such structures to two-dimensional

matrices (sometimes by adding dummy rows/columns/both), we plan to study such cases in

future as well.
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4.4 Summary of the Chapter

We presented the design and validation of an interactive visualizer for large classrooms. The

visualizer is intended to aid the classroom instructors for more effective teaching. Moreover,

it is designed for relatively small displays as well, making the system useful to the instructors

who can use it on a smart phone or tab that they might be carrying. However, it may be

noted that the design is generic, making it applicable for situations where the matrix-like

seating arrangement can be assumed. It is also to be noted that the algorithms of the

visualizer are designed to take care of various human factors with the objective of increasing

the system’s usability. Many non-trivial optimizations are also made into the visualizer to

make it efficient as well, considering the given context. The usability of the visualizer is

ascertained through detailed empirical studies.

The details of publication from this contribution are as follows:

Journals

1. Samit Bhattacharya, Viral Bharat Shah, Krishna Kumar, and Ujjwal Biswas, “A real-

time interactive visualizer for large classroom”, ACM Transactions on Interactive

Intelligent Systems (TiiS), 11, no. 1 (2021): 1-26, [Chapter 4]
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5
C h a p t e r

Manas Chakshu - A Real-time Classroom
Monitoring Dashboard

5.1 Introduction

The visualizer discussed in Chapter 1 consists of two levels, implemented as a sequence

of four algorithms. In the first (overview) level, the entire classroom status is visualized

using a grid structure. An optimum grid size is computed first (first algorithm), keeping

in mind the issue of “clickability”. Each grid element indicates a cluster of students. A

second algorithm was proposed to compute the criticality of each cluster for subsequent

visualization. Three colors are used to visualize the classroom. Red indicates a critical

cluster of students that require immediate teacher intervention, yellow denotes a likely to

be critical cluster, which has the potential to turn critical and green indicates a normal

student cluster. The rendering of the clusters with colors is done with the help of another

(third) algorithm. The final (fourth) algorithm is used to obtain the details of each cluster

in the second (details) level. In this level, student details (including state information) are

displayed in the form of a grid of pre-stored images of the students belonging to particular

clusters. The workflow of the algorithms is depicted in Figure 5.1.

Although the system manages to address most of the challenges associated with large

classroom visualization, we found three major shortcomings with the system discussed in

Chapter 1. In the visualizer, three student states are assumed: normal (N), likely to be

critical (LC) and critical (C). The last two states indicate the need for a teacher to intervene

for improved learning outcome for those students. In the current system, both C and LC

states carry the same weight though, making it difficult to discriminate between the two at
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Figure 5.1: Shows the basic idea and the flow of our initial algorithms [1]

the overview (first) level. This may affect a teacher’s perception of the classroom status. A

second problem with the present visualizer is the way it highlights the classroom status.

Presently, it paints the top three most critical clusters of students in the red color. It

is possible that three adjacent clusters are highlighted. This scheme is actually not very

informative since the teacher can be made aware of the criticality of the region of the

classroom where all these clusters are located, even if only one of the adjacent clusters is

highlighted with red. As a result, other critical sections of the classroom may not get due

attention due to this specific highlighting scheme proposed. There is a third and important

drawback as well. In the present visualizer, emphasis is given on the optimization of the

number of grid elements in the first level only. As a result, the number of clusters for a

large classroom remains minimum and visible on the display. However, the cluster size

(the number of students) increase in that case, making it difficult to accommodate all the

students in the same display in the second (details) level. The issue is resolved with the use

of scrolling interfaces, putting additional physical and cognitive load on the teacher.

We propose a novel interactive and dynamic visual monitoring aid, the Manas Chakshu

for large classrooms to overcome the above difficulties. We use weighted criticality scores

to differentiate between the student states. We also developed algorithms to optimize the

display at both the levels and also to highlight critical sections of the classroom more fairly.

We performed both theoretical and empirical studies to demonstrate the improvements our

proposed system achieved with respect to the initial system design [1]. In this chapter, we
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describe the design and implementation of our proposed Manas Chakshu along with the

comparative study details and results.

5.2 Design of Manas Chakshu

In order to overcome state-of-the-art system difficulties, we propose a novel interactive and

dynamic visual monitoring aid the “Manas Chakshu” for large classrooms (see Figure 5.2).

5.2.1 Choice of Students State

Like in the present system [1], Manas Chakshu requires two inputs: the classroom size and

the student state information. We considered the same three states of a student, namely

Critical or C, Likely to be Critical or LC, and Normal or N.

We have two objectives: to visualize the status of a classroom as well as the details of the

individual student’s state. We assume there are three aspects of the students that a teacher

is interested to know.

• Mental state: If the student is engaged in the classroom activities (asking questions

and/or answering questions asked by the teacher or the other students) and if the

materials being taught is understandable to the students. With this knowledge, the

teacher can easily identify those students who require special attention (those who are

not engaged and/or not understanding the lecture).

• Physical presence: The teacher might also be interested to know if the students

regularly attend the classes or habitual absentees. In the latter case, the teacher might

warn the students.

• Learning state: This state reveals the performance of the students in various

examinations. The state also reveals the progress made by the students. Those who

are unable to perform are likely candidates for special care.

We propose to consider four mental states for a student: engaged with the classroom

activities and understanding the lecture, not engaged (may be due to shyness and/or

laziness) but understanding the concepts being taught, engaged but not understanding and
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Figure 5.2: Shows the basic blended classroom setting and the flow of algorithms with their
outcomes.
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Table 5.1: Details of students’ states: Criticality, Mental State, Physical Presence (High:
Attendance>75%, Medium: 50%<Attendance<75%, Low: Attendance< 50%), and Learning
State (Excellent: Score>75%, Good: 60%<Score<75%, Pass: 40%<Score<60%, Fail:
Score<40%).

Criticality Mental State Physical
Presence

Learning
State

Normal (N)

Engaged and
Understanding

High

Excellent
Good
Pass
Fail

Medium Excellent
Good

Low Excellent
Good

Not Engaged but
Understanding High Excellent

Good

Engaged but Not
Understanding High

Excellent
Good
Pass

Not Engaged and
Not Understanding High Excellent

Likely to be
critical (LC)

Engaged and
Understanding

Medium Pass
Fail

Low Pass

Not Engaged but
Understanding

High

Medium
Excellent
Good
Pass

Engaged but Not
Understanding

High Fail

Medium
Excellent
Good
Pass

Low
Excellent
Good
Pass

Not Engaged and
Not Understanding High Good

Pass

Critical (C)

Engaged and
Understanding Low

Fail

Not Engaged but
Understanding

High
Medium

Low

Excellent
Good
Pass
Fail

Engaged but Not
Understanding

Medium
FailLow

Not Engaged and
Not Understanding

High

Medium

Excellent
Good
Pass
Fail

Low

Excellent
Good
Pass
Fail
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finally, neither engaged nor understanding. Similarly, for the physical presence, we assume

three states: those having 75% or more attendance, those with attendance between 50%

and 75%, and finally, those having less than 50% attendance. The learning state depends

on both the past performance and the performance in the tests carried out in the class on

that day (measured in terms of an overall score). We combine them and define four learning

tests: excellent (those scoring more than 75%), good (those with scores between 60% and

75%), average (students having scores between 40% and 60%), and poor (those with scores

less than 40%). The states might seem arbitrary. However, these were designed following

the teaching experience of one of the authors of this paper.

We combine these states together to obtain the state of a student in a classroom, as shown

in Table 5.1. The combination yields a total 48 possible states (4 × 3 × 4 = 48). In a

classroom, a student can be in any one of these 48 states. There can be three types of

students. Some are performing well in all the aspects and do not require any intervention by

the teacher. We can map such students to the Normal state, as defined in the exiting work.

There might be some others for whom the intervention by the teacher is desirable. These

are the likely to be critical types (denoted by LC). There can also be students who must be

given special attention by the teacher. We call them the critical types (denoted by C). The

leftmost column of Table 5.1 indicates these types corresponding to the combination of the

state of the students.

5.2.2 Basic Setting and System Diagram

We further assume, as in the current system, that the classroom is represented as a matrix

where each cell represents a student position and the state information is already available

through an ICT-enabled infrastructure such as the systems reported in [192] and [27]. Our

system, which is based on the idea proposed in [3, 176], requires a classroom server, i.e., a

local server, a Wi-Fi (communication medium), and a set of client devices, as shown in Figure

5.2. The user (teacher and students) performs classroom teaching-learning activities through

the client devices. The local server is responsible for supplying the learning materials

and interfaces for classroom interactions. It also takes the role of rich and analytical

computations on behalf of the clients, securely stores the students’ state information, and

supplies it to the users based on the needs and policies designed by the administrators.
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The institute may provide the client devices, or students and teachers can bring their own

devices (laptops/smartphones) and use them to participate in the teaching-learning process.

The design follow an overview+details visual technique [103]. In the overview level,

the classroom is displayed in the form of a rectangular grid. Each grid element represents a

group of students. We compute the weighted criticality of each element and color it with red

for most critical, yellow for likely to be critical, and green for normal. This way, the teacher

gets to know the students to monitor (the critical clusters). In order to get finer details of

the students in a cluster, the teacher taps/clicks on the corresponding grid element. This

brings on the screen the details view of the classroom. In this level, the teacher gets to see

the detailed status of the students belonging to the group. The status information might

include the physical presence (attendance), the mental state (not engaged/understand and

so on), level of understanding as well as the learning state, subject to the availability of

those information (see Table 5.1). An overview for the whole classroom is also present on

the display. In order to return to the overview level, the teacher needs to tap/click on the

overview region (see Figure 5.2).

The proposed system comprises of four algorithms. In the first algorithm, an optimum

grid size is generated for both the levels. In the second algorithm, the first level grid

elements are assigned a criticality score. In the criticality score calculation, we introduce

the novel concept of weights for each student’s state. On the basis of these scores, the

grid is rendered with the specific color coding by the third algorithm. We introduce an

intelligent rendering mechanism in the third algorithm. In this rendering, regions that are

already highlighted once are not highlighted again in subsequent time intervals. Such a

rendering mechanism makes the visualizer fairer as the other critical regions get chance

to be highlighted and noticed by the teacher. The fourth and final algorithm implements

the second level visualization. In our proposed system, the second level visualization is

implemented with a dynamic display allocation strategy so as to make optimum use of the

available display space. The four algorithms are explained in the following sections.

5.2.3 Optimum Grid Layout Generation for Both Levels

We propose the Algorithm 5 to generate optimum grid sizes for both the levels. The objective

is achieved in four stages, as shown in the algorithm. In the first stage (lines 1-2), we compute
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the maximum number of rows and columns that the display can support. On a touchscreen,

the grid elements should be touchable for better interaction. The interactive components

such as buttons should be clickable for non-touchscreen displays. The above term implies

that the interactive grid should have a size larger than our thumb’s size; otherwise, the

area would not be properly visible, and it would be challenging to touch at the right place.

Findings from earlier research [185, 193] indicates that the minimum touchable area ranges

from 10 square mm to 20 square mm (i.e., approximately 36-72 pixel width and height). In

this work, we considered a touchable area of height and width of 100 pixels each (nearest

round figure) to be on the safe side. Notably, if an area is touchable with the finger, it is

easily clickable with a mouse cursor (on laptop/desktop screen). Therefore, we divide the

display height and width by 100 each to get the maximum number of rows and columns that

ensure each grid element would be “clickable". In the second stage of the algorithm (lines

3-5), we compute the maximum possible grid size of images in the second level visualization

such that the images are recognizable. In order to come up with this computation, we

made use of the fact that the two popular social networking sites, namely, Facebook and

Instagram, use sizes of 128x128 and 110x110 (in pixel squares), respectively, to display

profile pictures on smartphones, as reported in [1]. We used the former to determine the

size of each image in the second level display. This computation helps in making optimum

use of the display for the second level visualization. The optimum grid size for the first level

visualization is computed in the third stage of the algorithm (lines 6-11). Finally, on the

basis of the optimized first level, we determine the screen area to be allocated to display the

student images in the second level, for optimum utilization of the screen real estate in the

fourth stage (lines 12-18). The computed optimum grid size and screen area are returned

for use by the subsequent algorithms in line 19.

5.2.4 Weighted Student States and Critical Cluster Computation

Once the optimum grid size for the first level is computed through the Algorithm 5, we

compute a threshold value for each student cluster (i.e., grid element) to determine the

critical clusters for visualization. The steps to achieve the threshold computation are

presented in Algorithm 6. The computation is divided into two phases. In the first phase

(lines 1-10), we first compute a weighted criticality score for each cluster. This score
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ALGORITHM 5: Optimum Grid Generation
Input: M ×N - maximum students’ seating capacity in a classroom, student state matrix SSM×N , display

height DH , and display width DW

Output: Display grid size for the first level visualization, student cluster size and the display area coverage
in the second level

/* Compute the maximum number of rows and columns possible on display. */

1 Maximum possible rows =

⌊
DH

100

⌋
2 Maximum possible columns =

⌊
DW

100

⌋
/* Determine maximum possible rows and columns in the second level, assuming the

available display area initially to be 67% or two-thirds of the total area */

3 Compute maximum possible number of “recognizable images” (IR) on the display: IR =

⌊
DH ×DW

128× 128

⌋
4 Maximum clickable number of rows (of recognizable images) in second level (RS) :

RS =
available display area ×DH

128
5 Maximum clickable number of columns (of recognizable images) in second level (CS) :

CS =
available display area ×DW

128
/* optimize first level display */

6 Index = 1;
7 while Index×RS > M OR Index > RMAX do

/* to account for different display orientations, namely landscape and portrait */
8 a. R = Indext; b. Indext++ ;

9 Index = 1;
10 while Index× CS > N OR Index > CMAX do

/* to account for different display orientations, namely landscape and portrait */
11 a. C = Indext; b. Indext++ ;

/* Optimize second level available display area */

12 Compute cluster size =
⌊
M ×N

R× C

⌋
;

13 if cluster size < 4 then
14 a. Available display area = 50% of the total area (i.e., half);
15 else if 4 ≤ cluster size <10 then
16 a. Available display area = 67% of the total area (i.e., two third);
17 else
18 a. Available display area = 80% of the total area;

19 Return R, C, cluster size and the available display area for the second level.

represents the nature of a grid element (i.e., student cluster). The higher the value, more

critical is the corresponding grid element, implying more urgent need for the teacher’s

intervention. In the state-of-the-art approach [1], as we mentioned earlier, there was no way

to distinguish between critical clusters and create a relative order of the clusters in terms

of criticality. However, such ordering is necessary to ensure that the teacher’s attention is

drawn judiciously to the neediest students, considering the time constraint of fixed classroom

teaching periods. In order to address this issue, we propose to have weights for each student

state. The weights indicate the relative criticality of the states. In order to compute the

weighted criticality score for a cluster, we set weight values as 0.10 for the N (Normal) state,

0.50 for the LC (Likely to be Critical) state, and 0.90 for the Critical (C) state (the actual
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ALGORITHM 6: Weighted criticality score and display threshold calculation
Input: Classroom seating matrix CSM×N , student state matrix SSM×N and display grid matrix DGR×C

Output: Weighted threshold (TW ) value and the weighted criticality score matrix WCSR×C .
/* Compute weighted criticality scores for each student clusters based on weight of the

state N=0.1, LC=0.5, C=0.9 of a student and store the values in the matrix. */
1 for every element in DGR×C do
2 for every student in the grid element do
3 if Corresponding entry in SSM×N is N then
4 criticality score += 0.10
5 else if Corresponding entry in SSM×N is LC then
6 criticality score += 0:50
7 else if Corresponding entry in SSM×N is C then
8 criticality score += 0:90

9 Store the weighted criticality score for the grid element in the corresponding entry for WCSR∗C .
10 Total criticality score (for the whole classroom) += criticality score.

/* compute weighted threshold for rendering */
11 Compute average (CSavg), maximum (CSmax) and minimum (CSmin) weighted criticality score for

the whole classroom using WCSR∗C
/* compute an elevation factor for management of critical grid elements */

12 if CSavg ≤
0.9×N

2
(N = number of students in each cluster) then

13 Elevation Factor (EF ) =
CSmax − CSmin

N
14 else

15 EF =
CSmax − CSavg

N

16 Weighted Threshold (TW )=(1 + EF )× CSavg

17 if TW < CSmax then
18 Return TW

19 else
/* When TW exceed the CSmax, no critical grid element shall be eligible for

display. In that case, we re-compute TW without elevation to determine critical
grid elements. */

20 Find median and mode of the distribution of the score stored in WCSR×C .
21 if CSavg ≥ median AND CSavg ≥ mode then
22 TW = CSavg

23 else if median > CSavg AND median>mode then
24 TW = median
25 else if median > CSavg AND mode ≥ median then
26 TW = mode+ 1
27 else
28 if WCSAV G ≤

n

2
then

29 TW = +∞
30 else
31 TW = +∞

32 Return TW and WCSR∗C

calculation of the critical score is shown in Algorithm 6, lines 1–8). Moreover, we use FUMs,

such as exam marks and attendance to define student criticality (see Table 5.1).

We performed a simulation study to determine the state weights (Table 5.2). In the

study, we experimented with different classroom sizes, pre-defined student state distributions

and various weight values. Based on the simulation settings, we computed the number of

critical grid elements for each setting following the Algorithm 6. As can be seen from (Table

5.2), we experimented with integer weights including the one used in the state of the art
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Table 5.2: Case studies with different weights of the states for various classroom scenarios.
Each cell of columns C, D, E, and F contains the number of critical grid elements to be
highlighted, improvement in percentage (%) with existing work [1] based on Algorithm 2

A (class-
room size)

B (% of
C+LC
students
in class)

C
(Weights:
C=LC=1,
N=0) (as
per [1])

D
(Weights:
C=3,
LC=2,
N=1)

% E
(Weights:
C=9,
LC=4,
N=1)

% F
(Weights:
C=0.9,
LC=0.4,
N=0.1)

%

13x13=169

< 50 10 10

0

8

33.33

6

16.67

50-60 1 8 8 8
60-70 12 10 9 10
70-80 20 20 18 23
80-90 23 18 16 16
90-100 28 30 30 28

14x16=224

< 50 16 15

83.33

14

66.67

10

100

50-60 32 30 30 31
60-70 17 12 12 8
70-80 14 13 14 10
80-90 10 8 6 5
90-100 26 26 26 24

18x16=288

< 50 14 12

0

12

83.33

9

100

50-60 30 30 28 28
60-70 30 30 24 24
70-80 14 14 12 13
80-90 16 16 16 14
90-100 18 20 14 16

21x17=357

< 50 14 14

50

12

100

10

100

50-60 10 10 8 8
60-70 12 10 10 9
70-80 36 32 32 32
80-90 32 32 30 28
90-100 14 10 12 9

21x21=441

< 50 10 12

-16.67

10

0

9

100

50-60 13 14 13 12
60-70 24 24 25 22
70-80 21 20 21 20
80-90 11 8 7 7
90-100 10 12 10 8

approach [1] (columns C-E) and also the fractional weights (column F). The weight values

were choses to put maximum emphasis on the C state, followed by the LC state and the

least emphasis on the N state.

It may be noted in Table 5.2 that the percentage improvements in the performance

of Algorithm 6 is computed in terms of the number of grid elements that the Algorithm

identifies as critical for subsequent visualization. It should be as less as possible, to reduce

the physical and cognitive load of the teacher. If the number is more, the teacher has to

put additional effort to intervene for improved learning outcome. Optimizing the critical

clusters, therefore, is essential for improved system performance. Among all the weights

chosen, the best performance is obtained with the weights of col F (Table 5.2): C=0.9,

LC=0.4, N=0.1. Hence, we have chosen these weights for the student states.
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ALGORITHM 7: Dynamic Grid Coloring
Input: the weighted criticality score matrix and the threshold
Output: first level of the visualizer (with a colored grid)

/* determine all clusters with the criticality score above threshold */
1 Sort the criticality score values of all the grid elements in descending order.
2 Determine the grid elements with score above the threshold.

/* determine 3 non-adjacent clusters to highlight */
3 if number of elements above threshold > 3 then
4 Identify all possible triplets of clusters out of all the clusters with criticality score above threshold.
5 for each triplet do
6 Compute Euclidian distance between the 3 elements (D):

D=
∑2

i=0

√
(Xi+1 −Xi)2 + (Yi+1 − Yi)2

7 Sort all the distance values.
8 Assign red color to the 3 grid elements (triplet) with the highest distance value.
9 Assign yellow colors to the remaining elements above the threshold.

10 Color all the remaining elements with green.
11 else
12 Assign red color to all the grid elements having value above the threshold
13 Assign green color to the remaining grid elements

14 Render the colored grid on the display

In the second phase of the Algorithm 2 (lines 11-31), we compute a threshold value of

the criticality score to mark a cluster (grid element) as critical or not. We first compute

the average, minimum and maximum of the scores for all the clusters. Intuitively, we can

set the average of these values as the threshold; any cluster with score above the average

can be marked as critical and visualized accordingly. However, this simple approach may

lead to a large number of clusters marked as critical. In that case, teacher will be burdened

with the need to attend a large number of students, which may not be feasible given the

classroom time constraint. In order to avoid this problem, Bhattacharya et al [1] proposed

an approach of an elevated threshold [1]. We have made use of the same here (lines 12-32).

The only difference here is that the values considered are the weighted average, weighted

maximum and the weighted minimum values.

5.2.5 Fair Visualization for Improved Awareness

The first two algorithms are designed to produce a matrix of numbers with each number

denoting the weighted criticality score of the corresponding student cluster. A threshold

value is also computed. Any criticality score value above the threshold represents critical

student clusters. These are, however, numbers. We need to visualize these numbers for

quick comprehension of the classroom status. That is achieved with the third algorithm

(Algorithm 7).

The algorithm 7 takes as input the criticality score matrix and the threshold values
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computed in the Algorithm 6. It first sorts the criticality scores of the grid elements in

descending order (line 1). In the sorted list, if the number of grid elements with score above

threshold is less than or equals to 3, we simply assign the red color to all such elements

and the green color to the rest (lines 8-10). Otherwise, we perform the steps 4-7. We first

compute all the possible triplets of grid elements with values above the threshold. For

each of these triplets, we calculate the total Euclidian distance, by utilizing the coordinate

information of each cluster in the triplet with respect to the grid. These values are then

sorted and we choose the one with the maximum distance value. The corresponding clusters

(grid elements) in the triplet are assigned the red color. If there are other grid elements

with score above the threshold, those are assigned the color yellow. All the remaining grid

elements are colored green. In this way, we get the three clusters (grid elements) that

are maximally spread in the classroom, thereby ensuring that the teacher’s attention is

optimally drawn to all sections of the classroom. Finally, the grid is rendered on display

with the assigned colors. It may be noted here that we have chosen to utilize the three colors

as prescribed by Bhattacharya et al [1]. We have also kept the number of grid elements to

be highlighted with the red color (i.e., the most critical elements) as 3 for the same reason

as described in [1]. The dynamic nature of the grid coloring is also retained as reported in

[5], with the colors changing every fifteen minutes reflecting the change in the state of the

students as teaching progresses. We set this value based on the research study indicating

that attention level begins to decline between 10 to 15 minutes [194]. However, a teacher

can set this value as per his/her convenience also.

5.2.6 Dynamic Second Level Visualization

The first three algorithms create the first level of the proposed system interface. The first

level is dedicated to giving the teacher a comprehensive overview of the classroom status.

However, the teacher cannot get the detailed knowledge about individual students at this

level. For that, we have designed the second level-rendering algorithm shown in Algorithm

8. This algorithm is similar to the one reported in [1] with the only difference being the

screen area used to display the student details. In our proposed system, we make use of the

dynamic available display area as computed by Algorithm 5 instead of a fixed two-thirds

area of the screen. Our proposed scheme is thus adaptable with the cluster size, making
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more efficient use of the available screen.

ALGORITHM 8: Overview+Details Visual Rendering
Input: classroom seating arrangement, first level grid, student states, available display area, and interaction

event (tap/click).
Output: Overview+Details status on the display

1 while tap/click on a grid element in the first level do
2 Get the location from the grid matrix.
3 Get images of the students who are part of the cluster from the classroom seating matrix.
4 Get their criticality score from the student state matrix.
5 Create a display area covering the available display area as computed in Algorithm 1

/* M ×N classroom size, R× C=first level grid maximum size as computed in
Algorithm 1 */

6 Create image grid: row number = M
R

, column number = N
C

.
7 for every student in the grid element do
8 if corresponding student criticality type is C then
9 Render student image with a red bounding box.

10 else if corresponding student criticality type is LC then
11 Render student image with a yellow bounding box.
12 else if corresponding student criticality type is N then then
13 Render student image with a green bounding box.

14 Display the colored grid in the remaining portion of the screen (overview).

15 while interaction made on the display do
16 if tap/click on an image then
17 Display the state details as a pop-up that stays on the display for twenty seconds.

18 if tap/click on the overviw then
19 Return to the first level display.

5.3 Performance Comparison Study

As described in the previous section, we have made many significant and novel changes

in the Manas Chakshu design. In order to determine the effect of these changes on the

performance of the visualizer, we performed a comparative study of our proposed system

with the existing system. The details of the study are presented next.

5.3.1 Performance Metric

In order to compare performance, we have defined a metric that captures the overall

performance involving both the first (overview) and the second (details) levels. The metric

is shown in Eq. 5.1.

P = POverview_level × PO+D_level (5.1)

It is computed as a product of two terms: performance at the first level (POverview_level)

and performance at the second level (PO+D_level). The first level performance is computed
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as in Eq. 2.

POverview =
Maximum possible grid size

Maximum possible grid size +computed grid size
(5.2)

In Eq. 5.2, we compute the performance of Algorithm 5 as a ratio of two terms:

maximum possible grid size with the constraint that each element should be clickable and

the computed grid size by the Algorithm 1. It is a normalized value ([0,1]) with higher

values representing better performance.

In order to compute the second level performance, we propose Eq. 5.3 & 5.4. In

these equations, we compute two more ratios related to the row and columns in the second

(details) level (the part that displays student images). The ratios are computed based on the

maximum number of rows and columns possible to display perceivable images (computed

in Algorithm 5) and the image grid size obtained from the classroom matrix (computed in

Algorithm 6).

PO+D_level_row =


Max no.of rows allowed in second level

No.of rows in each cluster
, if < 1

1, otherwise
(5.3)

PO+D_level_col =


Max no.of col allowed in second level

No.of col in each cluster
, if < 1

1, otherwise
(5.4)

The PO+D_level_row (or PO+D_level_col) can be 1 or more, if the number of rows (or

columns) of students in the second level is less than the maximum number of rows (or

columns) possible (to have a perceivable student image). In such cases, we do not need the

scroll bar in the second level. This is likely to lead to reduced physical and cognitive load

to the teacher. Thus, these metrics capture the performance of the second level visualizer in

terms of the presence or absence of the scrollbar.

5.3.2 Results

We compared the performance across device platforms (mobile, tablet, and desktop), display

resolutions, and different classroom sizes (1×1 to 50×50). We had collected device resolution

data of mobile devices for Apple, Samsung, Google, Huawei, Xiaomi and Oneplus; data

of tablet devices were collected for Apple, Samsung and Lenovo; data of desktop devices
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Table 5.3: Summary of the performance comparison study of our proposed visualizers with
the existing method [1] and percentage (%) of improvement.

Device Screen
resolution

Minimum touchable
area 63 dp

Minimum touchable
area 95 dp

Minimum touchable
area 126 dp

A B % A B % A B %
DESKTOP 1683*2992 0.91 0.99 8.53 0.82 0.99 16.68 0.77 0.97 20.79
DESKTOP 1353*2165 0.86 0.99 12.78 0.76 0.97 20.87 0.69 0.94 25.22
DESKTOP 1097*1950 0.80 0.97 17.22 0.70 0.94 24.14 0.61 0.87 25.76
DESKTOP 1127*1804 0.79 0.97 17.73 0.69 0.93 24.36 0.60 0.86 25.65
DESKTOP 1225*2178 0.85 0.98 13.42 0.73 0.96 22.99 0.67 0.93 26.19
DESKTOP 1100*1956 0.805 0.97 16.94 0.70 0.94 24.14 0.61 0.87 25.76
MOBILE 786*393 0.37 0.49 12.21 0.25 0.32 7.08 0.18 0.23 4.26
MOBILE 881*407 0.387 0.50 11.98 0.26 0.34 7.75 0.18 0.23 4.26
MOBILE 955*429 0.40 0.52 12.49 0.27 0.36 8.7 0.20 0.25 4.66
MOBILE 640*360 0.22 0.28 5.56 0.12 0.14 2.12 0.08 0.09 0.87
MOBILE 846*412 0.38 0.50 11.98 0.25 0.32 7.08 0.18 0.23 4.26
MOBILE 720*360 0.24 0.29 5.28 0.13 0.16 2.26 0.08 0.09 0.87
MOBILE 994*447 0.45 0.59 14.47 0.29 0.39 10.01 0.22 0.27 5.71
MOBILE 912*410 0.39 0.51 12.13 0.26 0.34 7.75 0.20 0.25 4.66
MOBILE 667*375 0.22 0.28 5.56 0.13 0.16 2.26 0.08 0.09 0.87
MOBILE 736*414 0.33 0.42 9.09 0.21 0.26 4.85 0.14 0.17 2.68
MOBILE 812*375 0.26 0.34 7.41 0.16 0.20 3.54 0.11 0.12 1.59
MOBILE 896*414 0.39 0.51 12.13 0.26 0.34 7.75 0.20 0.25 4.66
TABLET 1053*1684 0.77 0.96 19.7 0.68 0.93 24.64 0.60 0.85 25.26
TABLET 1241*1655 0.82 0.97 15.52 0.72 0.94 22.06 0.64 0.90 25.73
TABLET 994*1494 0.76 0.95 19.68 0.63 0.90 27.1 0.55 0.79 23.24
TABLET 857*1428 0.71 0.93 22.29 0.58 0.82 24.44 0.47 0.67 19.97
TABLET 981*1309 0.74 0.94 20.24 0.62 0.88 26.66 0.55 0.77 22.21
TABLET 677*1083 0.55 0.76 21.08 0.44 0.60 16.17 0.34 0.46 11.93

were collected for Asus, Lenovo, Xiaomi, Apple, HP and Dell. We visited the websites of

the manufacturers to collect the data. Next, we mapped the resolutions to dip (device

independent pixel) based on the standard conversion rules 1. Also, one of the objectives of

the visualizer is to have a large enough grid size so that the elements are distinguishable

and clickable/touchable. According to the previous findings, the minimum touchable area

should be between 10 - 20 square mm [185, 193]. In our study, we have considered three

values: the lower limit of 10 square mm, the upper limit of 20 square mm, and the average

of the two or 15 squire mm as a minimum touchable area. These areas were converted to

dip resolutions as well following standard conversion rules 2, which gave us 63 dp, 95 dp,

and 126 dp for 10, 15, and 20 mm square touchable display areas, respectively.

We run both the algorithms for all the combinations of minimum touchable area,

resolution of the display and classroom sizes. We calculated the performance metric for

each of these cases. For each screen resolution on each device platform, we executed the

algorithms for all the class dimensions. Therefore, for each screen resolution there will be

1 https://developer.android.com/training/multiscreen/screendensities
2https://developer.android.com/training/multiscreen/screendensities
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2500 different combinations (from 1x1 to 50x50) and the corresponding performance values.

We took average of all these 2500 results. Theses average results for each device platform

and resolution are shown in Table 5.3. In the Table 5.3, A denotes the initial system [1]

performance and B represents the performance of our proposed system Manas Chakshu. We

have also shown the % improvement in performance of our system over the existing system

alongside.

Table 5.3 shows that our proposed visualizer outperforms the existing system in all test

scenarios (device platform, resolution and class sizes) for the three touchable area measures.

With the touchable area as 63 dp, we found that the performance of the new design is

significantly better than the existing design in 90.92% of the cases. In the remaining cases,

it performed as good as the existing system. When we set the touchable area to 95 dp, our

proposed design performs better in 89.72% of all the cases. The performance improvement

reduces a bit further to 86.72% of all the cases when the touchable area was set to 126 dp.

Overall, our proposed system was found to have performed significantly better in 89.12% of

the cases compared to the existing classroom visualizer [1].

5.4 Empirical Usability Study

Although the performance study clearly indicated significant improvement over the existing

system, it was meant to test the performance of only the screen-area optimization scheme.

In addition to the optimization, we have also introduced two changes to improve the user

(teacher) experience. These are, (a) weighted state concept to more refined identification of

critical clusters, and (b) critical cluster visualization. There was no direct way to check the

system performance with respect to these changes except empirical usability testing. We

carried out such a study, which is described next.

5.4.1 Setup

In the study, there were two distinct stages. In the first stage, we collected task performance

data from a group of teachers in a simulated classroom environment. In the second stage,

we collected perceived usability data from the teacher participants on the basis of a set of

questionnaires.

The setup for the simulated classroom study was the same as the one reported in [1]. It
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was comprised of two Android applications developed to render the existing work [1] (App A,

contribution reported in Chapter 4) and the proposed (App B) visualizers on a smartphone

screen and a group of teachers and students. We used a Sony Xperia C3 smartphone with

a 5.5-inch display, 8GB of ROM, 1GB of RAM, and a 1.2 GHz quad-core processor to

render the visualizer (for an imaginary classroom of size 15× 18). The device had Android

version 5.1.1. In the simulated classroom setting, one participant acted as a “teacher”. The

teaching was done in the presence of between 15 - 20 students. We took proper care to select

both the teacher and student participants. Only those who had prior teaching experience

were considered as teachers. All the student participants were Undergraduate (UG) or

postgraduate (PG) students. Each teacher took half an hour lecture in front of the students.

The lectures were conducted with the help of a smartboard and projector. Students were

instructed to the teacher engaged during the teaching (by asking questions), to mimic the

real-world large classroom constraints faced by a teacher.

In order to capture the task performance, we used the same set of twelve tasks as

reported in [1]. All task performance data were logged by our app for later analysis. Along

with the data logging, we also collected post-session ratings from each participant. The

ratings were collected with a questionnaire having three components: questionnaire for

teacher satisfaction (TSQ), perceived efficiency (PEQ), and perceived learnability (PLQ).

The questionnaire was based on the Computer System Usability Questionnaire (CSUQ)

[195], Questionnaire for User Interface Satisfaction (QUIS) [196], Usefulness, Satisfaction,

and Ease of use (USE) [197], and Perceived Usefulness and Ease of Use (PUEU) [198]. The

questionnaire is shown in Table 5.4. A five-point Likert scale was used to record ratings,

with values 1 (strongly disagree), 2 (disagree), 3 (neutral: neither agree nor disagree), 4

(agree), and 5 (strongly agree).

5.4.2 Participants Details

We have collected data from 26 participants (19 males and 7 females). Each had at least

two years of teaching experience, and all were regular users of smartphones and tablets.

The participants’ age group was within 29-41 years, with an average age of 32.96 years and

teaching experience of 5.37 years.
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Table 5.4: Details of questionnaire used to collect ratings from the teacher participants and
ratings (mean, standard deviation (SD), and interpretation) in terms of user perceptions
about the system use.

Construct Item No.Questionnaire statements Teachers’ rating score (n=26)
Mean SD Interpretation

Teachers
satisfaction
questionnaire
(TSQ)

TSQ1 Overall, I am satisfied with how easy it is to use this
visualizer during a class lecture.

3.96 0.53 agree

TSQ2 It is simple to use this visualizer. 4.62 0.5 strongly agree
TSQ3 I can effectively complete my work using this visualizer. 3.81 0.49 agree
TSQ4 I am able to complete my work quickly using this visualizer. 3.77 0.76 agree
TSQ5 I am able to efficiently complete my work using this visual-

izer.
3.73 0.6 agree

TSQ6 I feel comfortable using this visualizer. 3.96 0.66 agree
TSQ7 It was easy to learn to use this visualizer during a class

lecture.
3.88 0.52 agree

TSQ8 I believe I became productive quickly using this visualizer. 3.73 0.72 agree
TSQ9 I feel I need to have it in my classroom lecture. 4.58 0.5 strongly agree
TSQ10 I would recommend it to my colleague. 4.54 0.51 strongly agree

Perceived
efficiency
questionnaire
(PEQ)

PEQ1 I find it easy to get students’ states using visualization
approach.

3.88 0.71 agree

PEQ2 Interacting with the visualization tool does not require a
lot of mental effort.

4.53 0.5 strongly agree

PEQ3 I find visualization approach is easy to handle. 4.03 0.66 agree
PEQ4 Do you feel it will add your workload in a classroom? 3.88 0.77 agree
PEQ5 Do you feel it will take additional time to know your stu-

dents’ status in a classroom?
2.96 0.53 agree

Perceived
learnability
questionnaire
(PLQ)

PLQ1 Learning to operate the visualizer is not difficult. 4.38 0.49 agree
PLQ2 Remembering color schemes and interaction is not difficult. 4.57 0.5 strongly agree
PLQ3 Performing tasks is straightforward. 3.88 0.52 agree
PLQ4 I can quickly become skillful with the visualizer. 3.57 0.5 agree
PLQ5 My interaction with the visualizer would be clear and un-

derstandable.
3.73 0.72 agree

5.4.3 Experimental Procedure

We performed one between-group study. One group of thirteen teachers (10 males and 3

females) performed the tasks with App A. The other group (of the remaining 13 teachers

with 9 males and 4 females) performed the tasks with our proposed visualizer (App B). We

followed the same procedure to collect the task performance data as in [1].

5.4.4 Results and Observations

As reported in Chapter 4, a useful measure to compare task performance is the mean task

completion time [1]. We used the logged task performance data to compute that for each task

(see Figure 5.3). It may be observed in the figure that the mean tasks completion times are

less with our proposed visualizer as compared to the existing system. Overall, our proposed

visualizer the Manas Chakshu achieved 27.96% less task completion time on average. We

also performed a t-Test to determine the statistical significance of the results. The group

mean difference was found to be significant [t(11)=5.097, p(0.0003)<0.05]. The results
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Figure 5.3: Performance in terms of mean task completion time for the existing visualizer
(Design A) and “Manas Chakshu” (Design B)

indicate that the proposed Manas Chakshu outperforms the existing visualizer in terms of

the task completion time. The Cronbach’s alpha values of TSQ, PEQ, and PLQ were found

to be 0.8123, 0.7574, and 0.7724, respectively, indicating high reliability (>0.6, [6]). The

rating scores (mean, standard deviation (SD), and interpretation) are shown in Table 5.4.

The maximum mean rating score for TSQ is 4.62 (for TSQ2) with SD=0.5 interpreted as

strongly agree, and similarly, we got high scores for TSQ9 and TSQ10. The high score values

indicate that the system is simple, and users want to have it in the classroom and willing to

recommend it for further use with high acceptance. The minimum score is 3.73 (for TSQ5

and 8), which is not bad, but they agreed and accepted. The remaining scores were close to

4, which is also a higher score. The mean values for PEQ were on the higher side too, except

probably PEQ5. These values indicate a reasonably high degree of perceived efficiency. In

PLQ, the scores vary between 4.57 - 3.73, which indicates perceived learnability is high. In

summary, the results suggest that the perceived usability in terms of teachers’ satisfaction,

efficiency, and learnability ratings of the proposed system is highly acceptable.
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5.5 Discussion

The proposed monitoring aid is designed to equip a teacher in a classroom to monitor the

students. It does so without explicit awareness of the classroom students. The design is

similar to having an invisible eye, which can see things without being seen - the minds’ eye.

Hence, the name that means the same in Sanskrit.

Our proposed design is built on the idea espoused in [1]. We assume the state data

(Table 5.1) to be available. The students’ mental states are challenging to gather [3], even

though attendance and learning levels are simpler to determine. We kept the basic design

elements intact as in the existing system. These include the use of a two-level visualizer,

three colors for visualization of the classroom status as well as the student details (image

bounding box) and split-screen approach in the second level of visualization. This is done to

ensure that the perceived usability and system acceptability are not affected. At the same

time, we introduced significant and non-trivial changes in the way the system works.

One of the significant changes we brought in the design is the optimization of the

classroom status visualization at both the overview (first) and details (second) levels. Unlike

in the existing approach, we computed the first-level grid size based on the maximum

possible grid size at the second level. In doing so, we ensured that the first level grid size

remains “clickable/touchable”, the student images in the second level are “perceivable” and

finally, screen-area available to display the student images with details is maximized to

eliminate the need for scroll-bars. The second significant change we introduce is the way the

critical student clusters are determined and visualized. We introduced the idea of “weighted”

criticality score to improve the classification of student clusters as critical or non-critical.

Once those are identified, we ensured that the clusters are suitably highlighted so as to

draw the teacher’s attention to the classroom regions where it is due, with the help of the

“distance maximization” method. Our performance comparison and empirical user studies

show that the changes managed to improve the performance of the visualizer significantly,

without adversely affective the perceived usability.

In order to test the performance of Manas Chakshu, we proposed a performance metric

and computed the scores for the existing design and our proposed design. The approach

revealed the extent of improvement our proposed system achieves vis-a-vis the exiting

design. In order to test the effect of these changes on the system usability, we relied on
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the methodology used in [1] including the setup and experimental procedures. Along with

that, we also collected feedback through questionnaires, which we designed for the purpose.

Although these tests can be relied upon to conclude about the significance of our proposed

approach, we feel a longitudinal study in a real-classroom setting is required to come to

a final conclusion about the system performance and its impact on the teaching-learning

outcome. We intend to do that in future. One limitation is that there is a need to implement

a full-fledged system that should be able to capture student states. Automatic capturing

of such states in an ICT-enabled classroom infrastructure can be of great help in realizing

the goal. Few promising works have been reported in the literature in this direction, such

as Tikadar et al [3]. Our other future goal is to integrate those works with our proposed

visualizer, Manas Chakshu to come up with an integrated blended-learning system classroom

teaching for studies as well as practical use.

5.6 Summary of the Chapter

This research work presented the design and validation of a novel teaching aid, the “Manas

Chakshu”. It is meant to let a teacher visualize the current status of a classroom as well as

individual student’s state. The proposed aid is a significant improvement over an existing

classroom visualization tool. The improvements pertain to the optimization of screen-area

usage, more refined differentiation methods of critical students, and an improved classroom

status awareness scheme. Our studies (both theoretical and empirical) show that our

proposed system significantly improves system performance without affecting usability.

This contribution has been published in a Q1 journal. The details are as follows:

Journals

1. Samit Bhattacharya, Ujjwal Biswas, Shubham Damkondwar, and Bhupender Yadav,

“Real-time ICT-based Interactive Learning Analytics to Facilitate Blended Classrooms”,

Education and Information Technologies, URL: https://doi.org/10.1007/s10639-

023-12327-x [Chapter 5]
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6
C h a p t e r

Real-time Classroom Notification System

Designing peripheral notifications to support teaching-learning is progressively increasing.

To address the challenges of real-time notification, we propose a novel real-time multimodal

peripheral notification system for supporting teachers and students in a student-centered

blended classroom. The proposed system takes advantage of peripherals (such as smartphones

and wearable bands) to avoid issues with real-time notification. Furthermore, it reduces

additional cognitive load and notification fatigue to perceive status during class. The

technique helps to minimize notification fatigue and motivate students to be attentive during

lectures. It consists of a performance prediction and classifications to automatically send

notifications based on intervention strategies (e.g., timing, message content, and modality).

The challenges addressed are identified through user interviews and interactions (teachers

and students). We investigated users’ opinions on the current notification with interactive

sessions. Using UCD method, we went through many trials to finalize the notification

method and feedback contents. The approach has helped to refine the design over twelve

weeks (eight weeks of the interactive session, including four weeks of trial and error method

before the final version). In summary our major contributions are as follows.

• The proposed system design includes performance prediction, classifying academic

performance of the students, real-time learning and/or engagement states. Based on

some intelligent intervention strategies, the statistics related to students’ performance

automatically send feedbacks to the end users.

• The dynamic feedback timings are based on historic feedback statistics, choice of

peripheral devices, and feedback modalities. We propose two real-time feedback



Figure 6.1: Illustrates the User-Centered Design (UCD) for building and validating the
system.

scheduling algorithms based on feedback timing, device selection, and modalities to

optimize user fatigue.

• We went through many trials to finalize the feedback method with usable contents.

The design process has helped to understand user demands, their priorities, and refine

the design accordingly.

• The challenges addressed are identified through intensive interviews and interactions

with the teachers and students. The entire process takes around eight weeks of

interactive sessions and functionality testing with users before the final design of the

proposed system.

The above contributions help in perceiving weaknesses [12], seamless teacher-student

interaction [176], monitoring students performances [1], providing timely feedback to student

[8].
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6.1 Design of the Notification System

In order to address the research gap, we propose a novel real-time multimodal notification

system for blended classrooms. We follow an UCD method to design the system [199]. The

research procedure to design the system is shown in Figure 6.1. There are three phases in our

research procedure. The phases are system design, implementation, and empirical validation.

The design phase consists of four key subgoals to develop intelligent feedback system. The

subgoals are 1) building ML-based student performance predictive model, 2) computing

time interval based on feedback statistics, 3) choosing feedback modality based on logic and

availability of device, and 4) designing algorithms to achieve the design goals (see Figure

6.1 top part). The implementation is the second phase of our research procedure. The

entire process is based on building high-fidelity prototype and Android application of the

proposed system (see Fig 6.1 middle part). The final phase of research procedure is empirical

validation. It has two core parts - testing system functionality and validating system usability

(see Figure 6.1 bottom part). Testing system functionality using prototype of the system

helps us to refine the final design. It involves interactive meetings with users (teacher and

students) for about eight weeks before the proposed final design is built. Validating system

usability helps in performing user study for testing and validating the system interface

using the Android application. This phase is based on four key components and takes

approximately four weeks. Further details regarding empirical validation is discussed in

section 6.2.

6.1.1 Overview of the System

The basic infrastructure required for our classroom feedback system is similar to the blended

classroom systems reported in [12, 176]. Students use headphones to hear the live stream

voice of a teacher. The design of our system follows a client-server architecture. It needs

a classroom server and a collection of teacher and student client devices, including a

communication medium such as WiFi. The classroom server securely stores student data

and performs complex calculations such as analytical computations for generating real-time

feedback (see Figure 6.2 part C).
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Figure 6.2: Illustration of the notification systems: basic logic flow for optimization of
multimodal notifications for students during lecture session (top right) and the idea of
teacher’s notification (bottom right).
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Basic System Settings

The system allows sending feedback to students and teachers on two types of devices using

classroom server and WiFi. A smartphone or tablet serves as the main device, whereas a

smart watch/bracelet is kept as an additional secondary device. The system dynamically

chooses primary or secondary devices to give feedback to in-class students and teachers. The

basic logic flow for real-time feedback are shown in Figure 6.2 (part D and E). For students,

the audio alert is sent only when the headphone is connected (see in Figure 6.2, part D

top right) which ensures no disturbance to other students present in the class. We assume

student engagement and learning performance states are available using the concepts of

state identification reported in the work [3]. We also assume that it is possible to identify

posture of the teachers as well as the position of their smart phones. It could be done using

the sensors of their smart phones. Sensors like accelerometer, gyroscope, magnetometer,

and touch sensors are common embedded sensors in a smartphone [184] and it is possible

to detect the postures such as sitting, standing, walking, and running using smartphones’

accelerometer sensor [200]. In our work, we assume three types of postures of the teachers

namely, 1) sitting, 2) standing, and 3) walking, which can be detected using smartphone

sensor while delivering lecture. The combination of posture and smartphone positions (i.e.,

on the desk, in hand, and in the pocket) help to select the real-time feedback modality for

teacher (see Figure 6.2 part E).

Predictive Models for Student Performance

We use ML model for predicting and classifying students academic performance. Academic

performances help in real-time decision-making and notifying in-class students. Our system

uses three state classifications of students. The states are similar to the real-time classroom

visualizer reported in [1]. The states are C, LC, and N. We refer some students as being

of the N-type because they consistently do well and require little assistance. For certain

students i.e., LC-types the intervention might be desirable. Students who need special

attention may also exist, known as C-types. These states help to ensure that students get

the optimum number of notifications to reduce fatigue.

The proposed predictive models used suitable classifiers to predict students’ performance

during the ongoing course [30]. Our approach helped to conform the predictive model

111



6.1. Design of the Notification System

building using suitable classifiers and available assessment data. We use seven state-of-the-

art machine learning models (based on our survey discussed in chapter 3) to verify and

build the student state predictive model. The predictive models are SVM, NB, DT, ANN,

kNN, RF, LR [30, 201].

We use course assessment metrics (such as attendance, class test performance, and

quizzes) to predict students’ performance and classify them based on performances during

the ongoing course. It helps to conform predictive model building using the convenient

classifiers. The system predicts states using data from the students assessments for the

course. To validate our ML-based prediction and classification model, we collected data

from five experienced teachers from the Department of Computer Science and Engineering,

IIT Guwahati. Data are collected for 4 laboratory and 8 theory courses for 1358 students.

The model was trained and evaluated using the cross-validation approach. We used a train

and test split, in which we trained our model on 80% of our data and kept the remaining

20% to test it (e.g., 80:20 split). In this study, we have used data from one theory course

and one laboratory course.

Precision =
True Positive

True Positive + False Positive
(6.1)

Recall =
True Positive

True Positive + False Negative
(6.2)

F1Score =
2× Precision×Recall

Precision+Recall
(6.3)

Accuracy =
True Positive + True Negative

True Positive + False Positive + False Negative
(6.4)

We used precision, recall, F1 score, and accuracy [202, 203, 204] to adapt ML algorithms

for the predictive model. Precision is used to calculate the probability of a positive test

result (see Eq. 6.1). High precision values imply the input data are accurately classified

students with a high probability. Precision indicates the fraction of students who performed

poorly in classroom. Our goal is to predict students’ performance with high precision value.

High precision indicates that the probability of accurately predicting the states related to

students’ performance is high. For example, if the state of the student is N, the model with

a high precision has a greater chance of predicting the state as N type. The number of true

positives of the actual course predicted by the model is measured by recall [205, 206]. We
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Figure 6.3: Performance of machine learning algorithms in predicting students’ academic
performance for Lab course.

calculated the recall measure (see Eq. 6.2), the percentage of all students in the data set who

are critical and were correctly classified by the classifiers. The present study model’s recall

(see Eq. 6.3) can be deduced as higher recall scores indicate better classifier performance.

Recall and precision work together to determine how effectively an algorithm performs. We

used the accuracy metrics to evaluate state classification model accuracy and applicability

(see Eq. 6.4). Fig. 6.3 & 6.4 show the comparative results of our studies for proposing

an ML-based predictive model and classification. In our study, we have observed that the

highest 88-100 percent accuracy is attained by decision trees, support vector machines, and

naive bayes classifiers. We have used decision tree based model to achieve high-performance

prediction and classification of students’ states.

Interval Time (T) for Real-time Feedback

Our real-time in-class feedback of students depend on the dynamic time interval T. The

interval T will decide the frequencies of the feedback. For example if we provide 12 maximum

feedback in an hour class to a student. In this case the value of T should be 5 minutes.

The design goal of the automated and dynamically suggested interval T is to enhance
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Figure 6.4: Performance of machine learning algorithms in predicting students’ academic
performance for Theory course.

the in-class teaching-learning experience and minimize feedback fatigue. It is required to

optimize the number of feedback to students during lecture delivery, thereby minimizing

fatigue. Minimizing fatigue helps to improve system usage satisfaction. Earlier research

has revealed that any teaching method that brings satisfaction to the students or teacher is

likely to result in better learning experiences and outcomes as well [1].

We use the feedback score (FS) and instantaneous score (IS) to calculate T for real-time

alerts. Initially, the interval time T0 is fixed (i.e., 5 minutes) for the start of the class.

However, teachers can change the time T0 based on their classroom handling experience. It

may also vary automatically depending on the time T based on equations (see Eq. 6.5 to

6.8); hence it is called a dynamic time interval.

Eq. 6.5 helps to calculate the feedback score (FS). It is the average number of feedback

per interval up to the last class, i.e., (n− 1). We assume classes are as {1, 2, 3..., n− 1, n},

where n indicates the nth live class. The numerator of Eq. 6.5 calculates the total number of

feedback up to (n-1) class. The denominator calculates total feedback intervals up to (n-1)

class. Here, we consider a live class having {1, 2, 3..., i− 1, i} feedback intervals. Eq. 6.6

helps to calculate instantaneous score (IS) for the nth live class up to the expired interval. It
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is the average number of feedback per interval up to the ith interval. We compute feedback

factor (Ffact) using Eq. 6.7. It helps to increase or decrease the next feedback interval Ti+1.

The number of feedbacks theoretically increases for smaller values of T. However, frequent

feedbacks may lead to high fatigue in the students. In contrast, increasing the value of T

reduces number of feedback counts. Our intuition behind these dynamic time intervals is to

reduce the number of feedback when most of the students are engaged by increasing the

interval T, during lecture. The value Ti+1 helps to get the next feedback interval for nth

live class (see Eq. 6.8). The Ti is the ith feedback interval and the (Ffact) calculated using

Eq. 6.7 from the feedback statistics. The (Ffact) helps to increase the interval Ti+1 if the

value is positive; otherwise, it decreases the interval.

In every expiry of the interval T system will check for a students states e.g., C, LC,

and N in the classroom (see Figure 6.2., part D) and send feedback.

Feedback score (FS) =
Total no. of feedbacks sent since last class

Total no. of feedback intervals expired since last class
(6.5)

Instantaneous score (IS) =
Total no. of feedbacks sent in a live class

Total feedback intervals expired in a live class
(6.6)

Feedback factor (Ffact) =
FS − IS

FS
(6.7)

Ti+1 = Ti × (1 + Ffact) (6.8)

The visual feedbacks are potentially better for understanding real-time circumstances.

The feedback containing visual content with information are termed as multimodal feedback

which are important for perceiving the content in real-time [106]. In our system, each

feedback has a time interval, feedback content, and feedback modality. The audio and visual

combinations in modalities can impact user acceptability and usability [109]. Therefore,

we consider four feedback modalities in designing the system. The audio alert has gained

popularity in different fields, such as hospital [107], atomic power plants [108], aviation [109],

and vehicle drivers [110] applications. The visual colors, shapes, and text alerts improve the

user experience using smartphones and wearables [106].

We use text, audio, vibration, and screen flash modalities for building Android applica-

tion for the proposed system. Figure 6.2 (part D & E) shows detail logic flow for scheduling

feedback with modalities. Student real-time feedback depends on three parameters, the

predicted state of the student, real-time engagement, and availability of the peripheral
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ALGORITHM 9: Students’ Feedback Scheduling
Input: All available states of students (N:normal, LC: likely to be critical, C:critical) including real

time engagement, learning performances, and smartphone sensory data.
Output: Send feedback for the students whom it is aplicable.

/* Organize and reformat the data to request and generate the feedback during class.
*/

1 for Each start of the class session do
2 for Every registred student in the course do
3 processCoursePerformanceData()
4 deviceType=smartphone
5 FM=selectFeedbackModality()
6 FC=mapFeedbackContent()
7 if Login flag true AND FM is not empty AND FC is not empty. then
8 scheduleFeedback()

9 for Each expairy of the time interval do
10 for Every student in the classroom do
11 processRealTimePerformanceState()
12 selectPeripheralDevice()
13 FM=selectFeedbackModality()
14 FC=mapFeedbackContent()
15 if FM is not empty AND FC is not empty. then
16 scheduleFeedback()

17 for At the end of the class do
18 for Every student in the classroom do
19 processCoursePerformanceData()
20 processFutureData()
21 deviceType=smartphone
22 FM=selectFeedbackModality()
23 FC=mapFeedbackContent()
24 if FM is not empty AND FC is not empty. then
25 scheduleFeedback()

devices (headphones and smart band). For critical state students, it checks real-time state

based on that send audio and vibration feedback. Similarly, for S2 state student system

provide screen flash and beep for faster effect on feedback. Similarly, for teachers’ real-time

feedback, it depends on smartphone position, teachers’ device handling data, and classroom

students’ performance status. There are two modalities of real-time feedback vibration and

beep sound. When teachers’ primary device is in use, the system will select a secondary

device, i.e., a smart band. Based on teachers’ posture, modality of the feedback will be

decided. In the worst case, the system will select sound alert to user as it may disturb

students.

Algorithms for Scheduling Feedback

The design of the system collectively presents real-time scheduling algorithms for in-class

feedback to improve teaching-learning activity. The overall algorithm consists of four princi-
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ALGORITHM 10: Teacher’s Feedback Scheduling
Input: All available states of students (N:normal, LC: likely to be critical, C:critical) including real time

engagement, learning performances, and smartphone sensory data.
Output: Send feedback to teacher when it is aplicable.

/* Organize and reformat the data to request and generate the feedback during class. */
1 for Each start of the class session do
2 for Every registred student in the course do
3 processCoursePerformanceData()
4 deviceType=smartphone
5 FM=selectFeedbackModality()
6 FC=mapFeedbackContent()
7 if Teachers’ login flag true AND FM is not empty AND FC is not empty. then
8 scheduleFeedback()

9 for Each time interval during class do
10 for Every student in the classroom do
11 processRealTimePerformanceState()
12 selectPeripheralDevice()
13 selectSmartphonePosition()
14 processTeachersGesture()
15 FM=selectFeedbackModality()
16 FC=mapFeedbackContent()
17 if FM is not empty AND FC is not empty. then
18 scheduleFeedback()

19 for At the end of the session do
20 for Every student in the classroom do
21 processCoursePerformanceData()
22 processFutureCourseData()
23 deviceType=smartphone
24 FM=selectFeedbackModality()
25 FC=mapFeedbackContent()
26 if FM is not empty AND FC is not empty. then
27 scheduleFeedback()

pal concepts: selection of feedback content, device to be used (peripheral or smartphone),

modalities (e.g., text, audio, screen flash, and vibration), and intelligent feedback timing

(e.g., when to schedule feedback). Algorithm 9 is proposed to handle students’ feedback.

Algorithm 10 is used for scheduling and managing feedback to teachers.

Algorithm 9, describes how our system generates the list of feedback for students.

This list of feedback is based on three timings. The timings are at the start, during, and

end of the class lecture. "Start" means when students join the class by logging in to the

in-class server using available WiFi. The procedure processAcademicPerformanc checks

the performance, and if any abnormal issues are found for a particular student or list of

students, it initiates sending feedback (see line 3). The selectFeedbackModality procedure

helps to select the feedback modality. The mapFeedbackContent procedure processes and

maps suitable feedback content for a particular student. The scheduleFeedback procedure
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schedules feedback based on modality and content. “During” class means giving feedback to

students in a live class. The procedure processRealTimeState checks an individual student’s

real-time state in a live class. If abnormal states are identified, generate requests for feedback.

The logic flow, device selection, choice of the modality, and feedback content are shown

in Figure 6.2 part D (the list of procedures involved is mentioned in lines 9 to 16). “End”

of the class means when students log out from the in-class server and are about to leave

the class. The system generates the list of feedback for students based on the procedure

mentioned in lines 17 to 28. The partitioning of the feedback into three timings, i.e., the

start, during, and end of the class, reduces feedback fatigue during lectures.

Like Algorithm 9, Algorithm 10 describes the TeachersFeedbackSheduling procedure.

At the start of the class, the list of the procedures shown in lines 1 to 8 helps to generate

feedback based on students’ overall course performance. The functionality and the logic

flow of the list of procedures for real-time feedback (see lines 9 to 18) are shown in Figure

6.2 part E. At the end of the class, when teachers are about to leave by logging out from

the in-class server, our system generates feedback based on the statistics of students’ course

performances and future course data. The list of all procedures is given in lines 19 to 27.

The algorithms are intended to give real-time feedback to students and teachers about

their performance and engagement in the teaching-learning process. Most importantly,

when and how to generate and provide feedback to minimize the cognitive burden on

comprehension of performance status and state. Our design supports deploying novel

techniques and technologies in blended classroom settings such that neither users nor the

flow of the teaching-learning is disturbed. We went through many studies to finalize validate

the design. Details of our empirical studies are discussed in the next section.

6.2 Empirical Validation

The empirical validation have two phases. They are testing system functionality and

validating system usability. The functionality testing is based on in lab study, prototype

design, and pilot study. We carried out six user studies to validate and confirm the system

design. A total of 87 participants (34 teachers and 53 students) participated in our empirical

validation. All the participants are PG or research scholars in the Department of Computer

Science and Engineering, IIT Guwahati, Assam, India.
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In-Lab Studies for Requirement Gathering

2 focused groups, 

6 teachers (G1), 7 students (G2)

Pilot study using system prototype
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Figure 6.5: Illustrates basic idea and system prototype for in-Lab and pilot study.

6.2.1 In-Lab Studies for Requirement Gathering

In the initial stage, we conducted two focused group studies. The G1 consists of six teachers

(four male and two female), and in G2, seven students (five male and two female). All

teachers have experience of about 5 to 14 years of teaching and delivering a lecture in a

hall containing more than 100 students. Notably, G1 teachers have at least seven years of

smartphone and a year of smart band usage experience. The teachers’ age group was 30 to

42 years (an average of 33.67 years). The G2 students have at least five years of interface

design experience, seven years of smartphone usage experience, and more than one year of

smart band usage experience. The students’ age group was 24-33, with an average of 28.43

years.

Procedure

We performed a semi-structured interview process. We start with a short introduction, and

signing the consent form takes about 10 to 15 minutes, including addressing their queries

about the system’s functions. All the discussion audios are recorded to improve system

design and post-analysis of the feedback. We use a color-printed copy on all different systems
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features (see Figure 6.5 left part).

We requested users to provide their opinion on a printed copy of the questionnaires in

a 5-Point Likert Scale about the system functions, including additional advice (see Table

6.1). We collect ratings for analysis and validation of functional requirements and their

usefulness in real-time classroom use. Each participant spent about 40 to 50 minutes of

their valuable time in completing the entire session.

Findings

The focus groups G1 and G2 studies show that the acceptance of smartphone and wearable

technologies in classroom alerting and feedback is important. G1 users rated the system

functions with more than 75% (9 out of 12) cases with mean ratings between 4.17 to 4.67

and remaining between 3.50 to 3.67 (see Table 6.1, 3rd column from the left). Also, for G2

participants, we received an issue where user mean ratings are below 4 (3.87) (see Table 6.1,

4th column from the left). All teachers and students were satisfied with the novel idea and

technologies to utilize real-time in-class teaching-learning.

We have observed four main research challenges to answer based on teachers and

students reported opinion. The actual user requirements are to answer (a)-(d) for improving

the acceptability of the system are mentioned in Table 6.2 left column. We also received

some valuable inside about the system functions to answer. The design should support the

correlation of students’ academic performance aspects, learner-centric (instead of teacher-

centric), and provide user-friendly platforms.

6.2.2 Prototype Design and Pilot Study

We addressed the research challenges (a)-(d) in designing the system interface to make it

usable in a real-time blended classroom based on user feedback. The details are given in

Table 6.2 right two columns. We conducted a paper-based mockup session (see Figure 6.5

right part) to evaluate the system design based on the above goals, user preferences, and

requirements identified in the initial studies. Each participant took between 50 and 55

minutes to finish the whole session.
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Table 6.1: Statements for functionality and feature testing for users perception about the
proposed system interface based on user rating.

Teachers’ perception
statements about the system

Students’ perceptions
statements about the system

In-lab study Pilot study
T (G1)
(n=6)

S (G2)
(n=7)

T (G3)
(n=9)

S (G4)
(n=13)

X̄±
SD

X̄±
SD

X̄±
SD

X̄±
SD

Do you feel partitioning alert and
awareness contents into three inter-
vals (starting, during, and end) of
the class session reduce teachers’
alert fatigue?

Do you feel partitioning alert and
awareness contents into three inter-
vals (starting, during, and end) of
the class session reduce students’
alert fatigue?

4.67
±
0.52

4.43
±
0.53

4.78
±
0.44

4.23
±
0.93

Do you think the alert and aware-
ness contents to teachers using a
combination of smartphone and
smart-band during the lecture de-
livery reduce teachers’ alert fatigue
instead of using smartphones only?

Do you think the alert and aware-
ness contents to students using a
combination of smartphone and
smart-band during the lecture de-
livery reduce alert fatigue instead
of using smartphones only?

4.67
±
0.52

4.43
±
1.13

4.00
±
0.50

4.31
±
0.95

Do you think the alert and aware-
ness to teachers using a combina-
tion of smartphone and smart-band
during the lecture delivery reduces
users’ technological distractions in
lecture flow instead of using a smart-
phone only?

Do you think the alert and aware-
ness to students using a combina-
tion of smartphone and smart-band
during the lecture delivery reduces
users’ technological distractions in
learning flow instead of using a
smartphone only?

3.67
±
1.03

4.14
±
1.07

4.22
±
0.44

4.08
±
1.04

What is your opinion about stu-
dents’ characterization based on
their performance metric, and de-
laying alert for relatively good stu-
dents will reduce alert fatigue?

What is your opinion about stu-
dents’ characterization based on
their performance metric, and de-
laying alert for relatively good stu-
dents will reduce alert fatigue?

3.50
±0.84

4.29
±0.49

4.00
±0.87

4.08
±0.86

What is your opinion concerning
the delaying alert T to 3T time in-
terval that will reduce alert fatigue
for relatively good students?

What is your opinion concerning
the delaying alert T to 3T time in-
terval that will reduce alert fatigue
for relatively good students?

4.17
±0.75

3.86
±1.07

4.33
±0.71

4.38
±0.65

What is your view about the char-
acterization of students based on
their performance metric and delay-
ing alert for relatively good students
will optimize technological destruc-
tion?

What is your view about the char-
acterization of students based on
their performance metric and delay-
ing alert for relatively good students
will optimize technological destruc-
tion?

3.50
±0.84

4.14
±0.69

4.11
±0.78

4.31
±0.63

What is your view concerning the
delaying alert T to 3T time inter-
val that will reduce technological
destruction for relatively good stu-
dents?

What is your view concerning the
delaying alert T to 3T time inter-
val that will reduce technological
destruction for relatively good stu-
dents?

4.33
±0.52

4.29
±0.76

4.11
±0.60

4.38
±0.51

What is your perception regard-
ing the delaying alert time interval
T=fixed (maybe 5 minutes) to re-
duce real-time alert fatigue?

What is your perception regard-
ing the delaying alert time interval
T=fixed (5 minutes) to reduce real-
time alert fatigue?

4.67
±0.52

4.00
±0.82

3.78
±1.09

3.62
±0.96

The various functions for notifica-
tion are well integrated for real-time
large classroom use.

The various functions for notifica-
tion are well integrated for real-time
large classroom use.

4.33
±0.52

4.14
±1.07

4.22
±0.67

4.38
±0.50

The various functions for notifi-
cation are necessary for real-time
large classroom use.

The various functions for notifi-
cation are necessary for real-time
large classroom use.

4.33
±0.52

4.43
±0.53

4.33
±0.50

4.15
±0.80

I would like to use this notification
in my classroom teaching.

I would like to receive this alert
and awareness content in my class-
room for further assistance and bet-
ter learning.

4.67
±0.52

4.00
±0.82

4.56
±0.53

4.23
±0.83

I feel the system will help in cus-
tomizing the lecture.

I feel the system will help to avoid
future difficulties.

4.67
±0.52

4.14
±0.90

4.56
±0.53

4.07
±0.95

Additionally, if needed some functionalities or features in system design please mention those.
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Table 6.2: Details of the system requirements based on in-Lab studies, our solutions, and
overall remarks to address the requirements.

Requirements based
on in-Lab studies

Our Solutions Over all remarks

(a) what will be the
appropriate notifica-
tion timing to in-
tervene in regulating
the teachers’ and stu-
dents’ behaviors to
improve in-class en-
gagement and inter-
action?

We propose the design consideration of
dynamic timing to get back students
and teachers into teaching-learning
with minimizing the interruption.

The system automatically determines actual
timing for teachers using interaction data and
embedded sensory data (e.g., screen lock) of
smartphone for the teacher. The timing of stu-
dents’ notification depends on the classification
of students states to reduce fatigue (see in Fig-
ure 6.2 top part). Also, proposed timing (start,
during, and end of the class session) of notifica-
tion will reduce human user cognitive load in
their busy schedule.

(b) what will be the
suitable frequency of
notification for avoid-
ing students fatigue?

The classification of students into per-
formance state is to optimize the num-
ber of notification. The system will
vary time intervals for relatively poor
performer to good students i.e., critical
student to normal for real-time notifi-
cation (see in Figure 6.2 top part). The
T, 2T, and 3T are time in minute use
to reduce the number of notification for
relatively good students (here normal
students).

The real time notification count is not constant.
The teacher can change the T value according to
their classroom handling experience. However,
our initial notification both from teacher and
student confirm that notification count 12 -
4 is acceptable. If we decrease the T value,
theoretically, it will increase the problem of
fatigue. When we increase the T, then still,
there is a chance of missing the positive effect
of the real-time notification.

(c) how to select
the teacher’s primary
and peripheral de-
vices to avoid technol-
ogy distractions?

The system selects primary or sec-
ondary devices dynamically in real-
time notification to teachers. Our
design selects a device to notify the
teacher in their periphery of attention
to minimizing lecture flow disturbance.
The dynamic device selection ensures
that the teacher’s primary task, the
lecture delivery not hampered (see in
Figure 6.2 bottom part).

We use two types of input data to select the
teacher’s peripheral device. The input data are
primary device screen on/off system informa-
tion and tap/touch stroke sensory data. When
the primary device screen is not locked, the
system checks the touch stock. While the pri-
mary device screen is not locked for the period
and a touch stroke detected notification is sent
to the peripheral. The touch stock detection
within the time means the teacher is using the
primary device for teaching-learning. In this
case selection of peripheral devices can reduce
the teacher’s disturbance.

(d) what are the
notification contents
and the modalities
of alerts and aware-
ness to render on
users’ devices to min-
imize classroom dis-
tractions?

We group classroom notification, keep-
ing in mind the suitable contents and
modalities. The data gathering module
captures and stores course performance
data. The data is formatted and reor-
ganized as per the timing, content, and
modalities (see Figure 6.2) to schedule
notification by the system.

The prediction module can provide real-time
information about the students real-time state.
The states and the update about new class-
room activities will initiate new notification
generation requests. We consider text, audio,
vibration, pop-up, and screen flash notification
modalities.

Results and Observations

In the prototype design and pilot study, we invited two groups of participants. Six men and

three women comprise the nine teachers in group three (G3). The 13-student group is the

other G4 (nine males and four females). The teachers’ age group was within 29-40 years,

with an average age of 33 years, teaching experience of 6.56 years, and smartphone usage

experience of 7.89 years. The students’ age group was 25-34 years, with an average age of

28.77 years, interface design experience of 6.69 years, and smartphone usage of 7.39 years.

We asked both teachers and students to rate and comment on a printed copy of the
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Table 6.3: Open-ended statements for users (teachers and students) perceptions about the
system for qualitative analysis.

Item
No.

Teachers’ open-ended questionnaire
(TOQ)

Item
No.

Students’ open-ended questionnaire (SOQ)

TOQ1 Do you agree that the 16 alert and aware-
ness mentioned above are useful for class-
room teaching?

SOQ1 Do you agree that the 16 Alert and awareness
mentioned above are useful for classroom teaching
learning?

TOQ2 Do you agree that the 16 alert and aware-
ness timing are useful for classroom teach-
ing?

SOQ2 Do you agree that the 16 alert and awareness
timing are useful for classroom teaching learning?

TOQ3 Do you agree that the 16 alert and aware-
ness and their timing are helpful to en-
hance your teaching?

SOQ3 Do you agree that the 16 alert and awareness
including their timing are helpful to enhance your
learning?

TOQ4 Do you agree that the three real-time
(during class) peripheral alert is useful for
classroom teaching?

SOQ4 Do you agree that the four intervals t to 3t time
interval (fail category students to outstanding
students) varies for real-time alert is useful for
classroom teaching learning?

TOQ5 Do you agree that the three real-time
(during class) peripheral alert will reduce
class flow disturbance?

SOQ5 Do you agree that the four intervals t to 3t time
interval (fail category students to outstanding
students) varies for real-time alert will reduce
class flow disturbance?

TOQ6 Do you agree that the three real-time
(during class) peripheral alert will reduce
alert fatigue?

SOQ6 Do you agree that the four intervals t to 4t time
interval (fail category students to outstanding
students) varies for real-time alert will reduce
alert fatigue?

TOQ7 Do you agree that the alert messages
are sufficient for real-time classroom use? SOQ7 Do you agree that the time interval t=5 minute

is sufficient for real-time alert to reduce alert fa-
tigue?

SOQ8 Do you agree that the alert and awareness mes-
sages are sufficient for real-time classroom use?

Additionally, if you want to add some functionalities or features in alert and awareness
feedback design, please mention those:

questionnaire. The functions described in Table 6.1 are tested using the same questionnaires.

We also use the sample notification content to get the user a rating on a 5-point Likert

scale based on timing, importance, and modalities. Furthermore, we also include the seven

yes/no construct items for teachers (TOQ: teachers open-ended question) and eight for

student participants (SOQ: students open-ended question), including the opinion mentioned

in the table (see Table 6.3). We collected ratings for analysis and validation of functional

requirements and their usefulness using yes/no with explicit remarks for real-time classroom

use.

G3 users rated the system functions in more than 75% (9 out of 12) cases, with mean

ratings ranging from 4.17 to 4.67 and remaining between 3.50 to 3.67 (see Table 6.1, 3rd

column from the left). Also, for G4 participants, we received an issue where user mean

ratings are below 4 (3.87) (see Table 6.1, 4th column from the left). All teachers and students

were satisfied with the novel idea and technology for real-time in-class teaching and learning.

Most of the participants agreed on the system design features in the TOQ statements.
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In TOQ6, 100% (9 out of 9) users reported that the intelligent peripheral alert features

would reduce alert fatigue. In TOQ2, 88.89% (8 out of 9) users agreed that the list of

alert and awareness features is helpful for in-class use. For other remaining feature sets

(TOQ statements), 80.67% users decided that the list of features is also crucial for real-time

classroom use.

Most of the participants agreed on the system design features on SOQ statements.

In SOQ1 to SOQ4 and SOQ6, 92.30% (12 out of 13) users decided that the intelligent

features are helpful in classroom teaching and learning. In SOQ5, 84.62% (11 out of 13)

users agreed that the time gap t to 3t alert scheme is helpful for in-class use. For other

reaming feature sets (SOQ7 and SOQ8 statements), 61.54% of users agreed that the list of

alert and awareness features is also essential.

The quantitative analysis consists of the 16 notification contents in which the partici-

pants’ level of satisfaction with the construct statement is shown in the table (see Table

6.4). The mean rating for teachers varies from a maximum of 4.67 to a minimum of 3.58,

with an average mean of 4.22. These average mean values indicate that all the teachers’

participants strongly agree that the contents are necessary. Similarly, the mean rating for

students varies from a maximum of 4.39 to a minimum of 3.54, with an average mean of

4.08. These average mean values indicate that all student participants strongly agree that

the contents are necessary and suitable for real-time use.

However, some users (3 teachers and three students) mentioned that they “need a

clearer idea about the alert scheduling, “need real-time state identification”, “need clear

motivation of using notification modalities”, and “how to manage dynamic notification time

interval?

6.2.3 User Studies for Validating System Usability

System usability should be another evaluation metric. It should ideally be high to ensure

that the users find the system acceptable and are eager to use it. The final and most crucial

evaluation should be on the system’s effect on the learning outcome. However, it is not easy

to quantify because it necessitates a thorough study over a long period of time (at least one

semester). We conducted controlled experiments to assess the efficacy and usability of our

suggested design.
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Table 6.4: The summary of the alert and awareness timings and contents with modalities
for proposed system interface with user rating and interpretation (IP).

Content
Delivery
Timing

Alert and awareness
Content Example
for Teacher

Alert and awareness
Content Example
for Students

Teacher’ Rating Students’ Ratings

Experienced Normal Experienced Normal

X̄±SD Interp-
retation X̄±SD IP X̄±SD IP X̄±SD IP

Staring
of Class
Session

More than 50% of
students performed
below average in last
(quizzes/exam)

You failed in the last
test (quizzes/exam),
please try to im-
prove

4.33
±
0.62

Agree 4.30
±
0.62

Agree 4.08
±
0.73

Agree 4.25
±
0.66

Agree

Number of students
failed in last test out
of total students

You are excessively
absent from class,
please try to im-
prove your presence

4.33
±
0.62

Agree 4.22
±
0.66

Agree 3.92
±
0.82

Agree 4.25
±
0.62

Agree

List of students
excessively absent
from class

You missed last sur-
prise assessment for
your absence

4.75
±
0.43

Agree 4.70
±
0.55

Strongly
Agree

4.69
±
0.60

Strongly
Agree

4.58
±
0.66

Agree

List of students
missed last assess-
ment for absence

You submitted
incomplete assign-
ment, please try to
avoid it

4.33
±
0.85

Agree 4.26
±
0.90

Agree 4.31
±
0.82

Agree 4.15
±
0.96

Agree

List of students sub-
mitted incomplete
assignment

Very poor per-
formance in
assignments/home-
work, please try to
improve it

4.42
±
0.64

Agree 4.48
±
0.58

Agree 4.38
±
0.62

Agree 4.48
±
0.50

Agree

List of students’
poor performance
on writing assign-
ments

Build confidence in
completing assign-
ments

4.00
±
0.71

Agree 3.91
±
0.65

Agree 4.00
±
0.68

Agree 3.85
±
0.76

Agree

List of students
faces difficulty in
completing assign-
ments

You are constantly
late in a class, please
try to avoid it

4.50
±
0.65

Agree 4.34
±
0.63

Agree 4.38
±
0.62

Agree 4.30
±
0.68

Agree

List of students lack-
ing basic communi-
cational skills

Please improve your
basic communica-
tional skills

4.50
±
0.50

Agree 4.52
±
0.58

Agree 4.54
±
0.63

Agree 4.53
±
0.55

Agree

During
the Class
Session

Percentage of stu-
dents not engaged in
learning

You are not engaged
in learning, please
be with class lecture

4.58
±
0.64

Agree 4.65
±
0.63

Strongly
Agree

4.69
±
0.61

Strongly
Agree

4.55
±
0.71

Agree

Percentage of stu-
dents not under
standing

You are not under
standing the con-
cepts, please try to
be active

4.58
±
0.64

Agree 4.65
±
0.56

Strongly
Agree

4.54
±
0.63

Agree 4.58
±
0.67

Agree

Percentage of stu-
dents absent from
class work or discus-
sion

Your participa-
tion in class
work/discussion
is very poor, please
involve

4.67
±
0.47

Strongly
Agree

4.65
±
0.47

Strongly
Agree

4.46
±
0.84

Agree 4.58
±
0.49

Strongly
Agree

50% students not
engaged in learning
(Peripheral)

No talking please 4.58
±
0.64

Agree 4.52
±
0.65

Agree 4.62
±
0.49

Strongly
Agree

4.55
±
0.63

Agree

40% students not
under standing (Pe-
ripheral)

Performed be-
low average in
quizzes/exams

4.50
±
0.50

Agree 4.43
±
0.50

Agree 4.46
±
0.50

Agree 4.53
±
0.50

Strongly
Agree

60% students absent
from class work or
discussion (Periph-
eral)

Your Grade dropped
significantly be care-
ful

4.50
±
0.50

Agree 4.57
±
0.50

Strongly
Agree

4.54
±
0.63

Agree 4.48
±
0.59

Agree

At the
End of
the Class
Session

Students’ Grade
dropped signifi-
cantly

Your absence rate is
higher than an aver-
age students test

4.50
±
0.64

Agree 4.39
±
0.82

Agree 4.54
±
0.75

Agree 4.23
±
0.85

Agree

Higher absence rate
than an average
in quizzes/class
test/surprise test

Next assignment or
home-work submis-
sion dead line

4.50
±
0.64

Agree 4.48
±
0.65

Agree 4.54
±
0.50

Strongly
Agree

4.43
±
0.63

Agree

Setup Used

We built a final Android application (app) for the system discussed in section 6.1 to do

the usability study. The predicted states and the related performance are the inputs for

the app. The program processes these inputs, using the algorithms to build the intelligent
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Table 6.5: Modified SUS-based questionnaire used to collect usability ratings on our
intelligent feedback system.

Modified SUS-based statements
I think that I would like to use this intelligent feedback system frequently.
I found the intelligent feedback system unnecessarily complex.
I thought the system interfaces was easy to use.
I think that I would need the support of a technical person to be able to use this system.
I found the various functions in this system were well-integrated.
I thought there was too much inconsistency in this feedback system.
I would imagine that most people would learn to use this system interfaces very quickly.
I found the feedback system very cumbersome to use.
I felt very confident using the feedback system.
I needed to learn a lot of things before I could get going with this intelligent system.

feedback system. We assigned the states to the students at random to conduct the usability

study. The visual representation of the intelligent feedback system is shown in Figure 6.2.

Participants

In the final phase, the teachers group (G5, 14 male and 5 female) and in the students’ group

(G6, 26 males and 7 females) were participated. The teachers’ age group was 28-37 years,

with an average age of 32.56 years, teaching experience 3.2 years. The students’ age group

was 21-28 years, with an average age of 25.36 years.

Experimental Method

Each participant was taught the intelligent feedback app, it takes roughly fifteen minutes

before data collection. During this phase, the participants received instructions on how to

use the app and some practice assignments.

The post-session ratings of the system by each participant were also collected to

complete this study. We used SUS based questionnaire for testing usability of the proposed

system [188]. Table 6.5 shows the modified SUS questionnaire. We used five-point Likert

scale with the following ratings: 1-Strongly disagree, 2-disagree, 3-neutral: neither agree nor

disagree, 4-agree, and 5-strongly agree. However, to determine the possible impact of our

system on the learning outcomes, we conducted surveys to confirm it. We also validated the

functions and the importance of the feedback content. The same questionnaire (see Table

6.3) and the contents (see Table 6.4) were used to gather user ratings similar to initial study

(see section 4.1).

To create a background for discussion, we demonstrated all different schemes for both
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smartphones and peripheral notification (see Figure 6.2). These visual representations of

notification are chosen based on diverse feature sets, including timing, content, type, and

visual appeal. Each visual representation of notification content delivered to participants

device (see Table 6.4). The opinion gathering, rating collection, and verbal feedback has

taken approximately an hour in the context of real-time in-class notification design (see

Figure 6.2) similar to the pilot study.

6.3 Results and Analysis

During this study, we collected both quantitative and qualitative data. The post-session SUS

ratings, rating on system functions, and rating on feedback contentment are the quantitative

data. The qualitative data included observational data for each participant, which the

author manually documented during the study. Furthermore, such data includes comments

received from participants about the usability of the system and infers whether the system

will improve the learning outcomes.

We gathered and analyzed participant ratings on the SUS questionnaire to assess user

satisfaction with the proposed system, as shown in Figure 6.6. As seen in Figure 6.6, the

minimum SUS score is 60 for students and 65 for teacher participants. A score of 60 means

“ok” based on benchmarks [2]. The average SUS score for the teacher is approximately 76.

The average SUS score for the students is around 74. The score is relatively high, and

according to the benchmark, the score is good. For four of the 11 participants, the score

ranges between 80 and 87.5, with an average of approximately 83.13. The score shows

that user satisfaction is high while using an intelligent feedback system. In other words,

teachers and students are more likely to consider the intelligent feedback system usable and

appropriate for classroom use. Similar to the initial study, high acceptance of the system

functions and the useful contents of the feedback (see results in Table 6.1 & 6.4 of 5th and

6th columns from the left). Based on the teachers’ rating the minimum mean rating on

features is 3.86 which is not bad but acceptable (see Table 6.1, 5th column from the left).

All other ratings for teachers are more than five out of five which means users highly accept

the system’s features. For students, the mean ratings are between 3.6 to 4.38 which are

almost similar to the teachers’ ratings (see Table 6.1, last column from the left). Therefore,

the end-users have expressed appreciation for the proposed system’s intelligent features. In
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Figure 6.6: The details of SUS ratings’ bench mark [2] and ratings obtained in our usability
study.

the case of feedback content, the minimum mean ratings for teachers and students are 3.91

and 3.85 (see Table 6.4, last two columns from the left). Similarly, the maximum ratings

are 4.70 and 4.58. The results show that most of the feedback content is important for the

intelligent real-time feedback system.

In addition to the quantitative analysis stated above, we asked the teacher and student

participants about their general impression of the system, including its utility in the

classroom. Most of the teachers (seven out of eleven) considered the system easy to learn

and remember due to the intuitive design strategies (modality and peripheral interactions).

Yet, some of them (two out of eleven) thought the intelligent feedback system would take
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some time to get used to the system. They were all happy with the intelligent feedback

system design and agreed that the system’s feedback would be highly beneficial in developing

effective intervention methods for improved learning outcomes. Fifteen out of nineteen

students said that the assistance should be immediate for students during the class (the most

crucial) and delayed for the other category of feedback (start and end of the class). The

delayed feedback should take place after the class to avoid wasting more teaching-learning

time on intervention. Participants advised that the system should include a feature called

“modality of feedback” that may help in real-time assistance. Two participants believed

that feedback should be postponed until after the lesson. Participants also emphasized the

necessity of having the facility to recall all feedback cases for action.

6.4 Discussion

This section discusses the key design goals and the user validation of the proposed system

for use in a real-time blended classroom. The system design is the outcome of a three-step

iterative UCD method (see Figure 6.1). It uses students’ course performance state prediction

with classification, dynamic feedback timing, and choice of peripheral devices selection with

multimodal feedback content to make the system design unique and intelligent.

The identification of student academic performance states is challenging for real-time

use [1]. Extensive research have been done to predict states in this direction [30]. We utilized

the ML-based prediction and classification model in our system design to avoid student

feedback fatigue for real-time learning environment. We got an accuracy of approximately

96%-100% using an academic dataset and suggested valuable predictors by decision trees

classifiers (see Figure 6.3 & 6.4). This system helps teachers and students get timely feedback

on their learning performance and engagement to improve learning outcomes.

The design goal behind the dynamic time interval is to optimize the number of feedback.

Our system increased the interval, i.e., T to 3T, when students were in a critical state to a

normal state (see Figure 6.2., part D). The dynamic timing T (see Eq. 6.4) is calculated

using the feedback factor (see Eq. 6.3), depending on the course feedback statistics. Eq.

6.1 and Eq. 6.2 help to calculate T based on historical and live class feedback statistics.

Eq. 6.1 calculates the number of feedback messages sent per interval based on the historic

feedback statistics. Eq. 6.2 computes the instantaneous score based on feedback scheduled
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for the present interval in the live class. The idea of using feedback statistics is unique and

novel. Based on our user study, participants agreed that delaying feedback time intervals

for comparatively good students helped to reduce real-time feedback fatigue (see Table 6.1).

Majority of the experienced teachers agreed that the design principle of peripheral

feedback to teachers reduces lecture flow disturbances (see Table 6.1). There are chances of

disturbing the teaching-learning flow by giving feedback on users’ smartphones. Therefore,

only smartphone feedback is non-persistent. The persistence of feedback based on real-time

users’ peripheral device selection and the modality helps to improve usability and prevent

fatigue. The participants found that the proposed intelligent feedback system is useful

for real-time in-class teaching and learning (see Table 6.1 and Figure 6.6). Interestingly,

100% of the 100% teachers agreed that the real-time peripheral feedback should reduce

user fatigue, and over 90% of the teachers agreed that the intelligent feedback system could

reduce lecture flow disturbance. Furthermore, students and teachers appreciated the idea

of classifying students’ performances to reduce the number of real-time in-class feedback.

Students, however, appreciated the intelligent notification system design, as evidenced by

their positive comments and high usability ratings (see Table 6.1 and Figure 6.6).

All the participants (teachers and students) appreciated the system features. We get

higher ratings from students and teachers in three key system design directions: usefulness,

usability, and reduced disturbance in lecture flow including feedback fatigue (see Table 6.1).

We also compared the experienced (G1 and G2) and normal users’ (G3 and G4) ratings

while using the system in the context of classroom use. We took the mean ratings reported

by the experienced and normal participants (not experienced). We performed t-Test on the

users perception ratings for the intelligent feedback interface. Table 6.6 shows the details of

the research hypothesis including null and alternative hypothesis. In our research hypothesis

testing, we compared the ratings with the mean ratings for the two groups. The difference

between the mean observed for normal teachers (G3) ratings (M=4.47, SD=0.172, n=16)

and the experienced (G1) ratings (M=4.44, SD=0.204, n=16) was found to be statistically

not significant [t(30)=2.045, p=0.336]. Similarly, for experienced students (G2) and normal

students (G4) ratings (M=4.41, SD=0.172, n=16) and the experienced ratings (M=4.39,

SD=0.204, n=16) were found to be statistically not significant [t(30)=2.042, p=0.384].

Therefore, the utility and usefulness of the system design are valuable for all categories of
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users. Similarly, experienced students’ mean ratings vary between 4.69 and 3.92. The users

also agreed that the 12 feedback contents were useful. On the other hand, users strongly

agreed that the other four feedback contents are also extremely useful. The regular student

users’ mean scores ranged between 4.58 and 3.85 (agreed with 14 contents are useful and

remaining two are extremely useful). These mean values and interpretations indicate that

all teachers and students agreed that the contents were useful and necessary (see Table 6.1).

Table 6.6: Details of the research hypothesis including null and alternative hypothesis to
perform t-Test for users’ perception on uses of feedback interface.

User Hypothesis (null/alternative) P-value Significance dif-
ference

Teacher

Null hypothesis H1
0

: The mean ratings reported by the
experienced teachers is the same as the mean ratings
reported by the normal teachers (not experienced).

Alternative hypothesis H1
1

: The mean ratings reported
by the experienced teachers is different as the mean
ratings reported by the normal teachers (not experi-
enced).

p=0.336 statistically
not significant,
therefore, null
hypothesis holds
and the alterna-
tive hypothesis is
rejected

Student

Null hypothesis H2
0

: The mean ratings reported by the
experienced students is the same as the mean ratings
reported by the normal students (not experienced).

Alternative hypothesis H2
1

: The mean ratings reported
by the experienced students is different as the mean
ratings reported by the normal students (not experi-
enced).

p=0.384 statistically
not significant,
therefore, null
hypothesis holds
and the alterna-
tive hypothesis is
rejected

The statistical test results (see Table 6.6) indicate that the design of the proposed

system does not significantly affect the experienced user’s rating in the classroom setting for

both teacher and student reported in Table 6.1. These statistical test results and feedback

analysis indicate high user satisfaction with the proposed system design. Earlier studies

have shown that any teaching tool that brings satisfaction to the teachers and students is

likely to result in better learning outcomes [1].

We performed the user study with a relatively small number of students (n=52)

and teachers (n=30), so generalizability to the broader academic population of real-time

classroom usage is restricted. Albert et al. (2013) [207] reported that system testing with a

small group could identify the majority of usability issues. Moreover, testing with a few

experienced users (at least five) for interactive system studies is usually recommended [207].
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Therefore, we hope that generalizability will not be an issue in designing the novel intelligent

notification system. Furthermore, the ubiquitous portable devices, such as smartphones and

wearable peripherals, utilized for in-class feedback simplify the users’ ability to comprehend

and understand.

According to the SUS ratings (see Figure 6.6), usability is also high, indicating higher

satisfaction with the system. The participant response also suggests that the students and

teachers will likely benefit from the system. Past research has shown that any teaching

strategy that makes students and teachers happy will also provide higher learning outcomes

[1]. The high SUS score and the feedback from the end user indirectly indicate that the

proposed system is likely to produce higher learning outcomes through timely feedback, even

though we did not directly assess the impact of the proposed intelligent real-time feedback

system on the overall learning outcome.

6.5 Summary of the Chapter

This chapter has reported peripheral notification design to facilitate in-class teaching-learning

and empirical validation of the system. We suggested the three predicted states. However,

that might be challenging for universities, particularly those with small student records.

We utilize the classification of three states [1] and peripheral selection in our real-time

notification system to avoid alert fatigue in real-time face-to-face teaching-learning, which

is novel and unique. Teachers and students confirm that the system is crucial for better

learning outcomes. The idea is novel and valuable based on user feedback (see Table 6.1).

The results show that teacher and students participants preferred the system design (see

Table 6.1). The user found the tool helpful for real-time classroom teaching-learning. All

teacher participants agreed that multimodal peripheral feedback would reduce alert fatigue.

Moreover, participants believe that one crucial design goal, lecture flow disturbance, can be

optimized using users’ peripheral selection. The teachers prefer characterizing and classifying

students into performance states to optimize the number of alerts during the lecture. On

the other hand, student participants also appreciated and gave positive comments on the

tool’s uses. Users also agreed that only smartphone alert content is non-persistent, as there

are more chances of disturbing the teachers’ lecture flow. The persistence of alerting based

on the teacher’s peripheral alert adds to improve usability and helps to ensure alert fatigue
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established through the empirical study.

We obtained positive comments from participants in three directions usefulness, reduced

alert fatigue, and disturbance in lecture flow (see Table 6.1). Experience users advised that

combining more explicit alerts and feedback contents would be more helpful.

The details of publications from this contribution are as follows.

Conferences

1. Ujjwal Biswas and Samit Bhattacharya, “Multimodal Peripheral Alert to Improve

Teaching-Learning for Blended Classroom”, In ICT Analysis and Applications:

Proceedings of ICT4SD 2022, pp. 703-713, Singapore: Springer Nature Singapore,

[Chapter 6]

Journals

1. Ujjwal Biswas and Samit Bhattacharya, “ML-based Intelligent Real-time Feedback

System for Blended Classroom”, Springer, Education and Information Technolo-

gies (2023). https://link.springer.com/article/10.1007/s10639-023-11949-5 [Chapter

6]

Journal Under Review

1. Ujjwal Biswas and Samit Bhattacharya, “AI-enabled Multimodal Peripheral Notifi-

cation System for Student-centered Blended Classroom”, IEEE Transactions on

Artificial Intelligence, [Chapter 6]
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7
C h a p t e r

Conclusion and Future Work

We have proposed an intelligent real-time classroom visualization and notification system.

We made three key contributions to achieve our ultimate goal to integrate both the visualizer

and notification system into a blended classroom environment. We have identified important

performance metrics to characterize students based on potential academic performance

metrics for real-time classroom monitoring. We have performed a critical literature review

and determined metrics with their categories using most recent terminology. This chapter

concludes the thesis with descriptions of incorporating classroom visualization techniques

with peripheral notification for in-class use. The following section and subsections depict

the summary of the thesis, along with a discussion on the limitations, and scope for future

work.

7.1 Summary of the Thesis

The primary goal of our thesis work is to propose a real-time classroom monitoring and

notification system for blended classroom settings. The system can automatically determine

students’ states and assist teachers in monitoring students in real time. Students’ states

in terms of learning progress are determined by their academic performance metrics. The

real-time classroom monitoring necessitates the use of unique visualization techniques. We

proposed four classroom visualization algorithms. Because existing classroom visualization

methods did not appear to be easily adaptable in the current real-time classroom context,
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An intelligent real-time classroom visualization and notification system
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Figure 7.1: Summary of the thesis with research aims.

we created four new algorithms. The first three algorithms help to render the overview of

the present classroom performance status. The fourth algorithm shows individual students’

learning performances and their detailed states. We have further enhanced the real-time

classroom visualization techniques to make the visualizer usable. The modified techniques

help to optimize screen-area usage, provide a more refined determination of critical students,

and an improved classroom status awareness scheme. Finally, we designed the notification

system to improve real-time teaching and leaning process in a blended classroom.

This research explores the commonly available peripheral devices (smartphones, smart

bands, and headphones) for real-time classroom monitoring and notification. The summary

of the thesis including research aims are shown in Figure 7.1. The figure depicts each

contribution and how the aims of the thesis are achieved to enhance the learning outcomes

in a blended classroom.

7.1.1 Study on academic performance metrics and performances

This research determines academic performance metrics, frequently used metrics, relative

importance and ML models to predict student performances based on the critical literature
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review and field study. Additionally, we test the applicability and usage of academic metrics

to predict academic performance.

We observe that the prior approaches use various academic performance metrics without

covering the teachers’ actual recorded data and their opinions. This study identifies an

optimized number of academic performance metrics termed as frequently used metrics. We

reported the state-of-the-art academic performance metrics, frequently used metrics and

relative importance to link with the metrics chosen by teachers through the critical literature

survey and the field study. The field study covers large geographical locations and diverse

populations to find the frequently used metrics. The relative importance values and the

confidence interval for the frequently used metrics help in showing the usage importance

and their variations. The t-Test shows no significant differences in their relative importance

values based on the various categories of HEIs with the overall relative importance of the

frequently used metrics. Therefore, we hope that the suggested relative importance of the

frequently used metrics can help to predict performances with higher accuracy in the higher

education systems. The high-level tags for frequently used metrics and relative importance

will help in choosing metrics to quantify student performance for intelligent tutoring systems

in a blended learning environment. We observe seven ML models, namely, SVM, ANN,

KNN, NB, DT, LR, and RF models are very important in predicting academic performances.

However, DT, SVM, and NB models outperform in predicting academic performances using

suggested academic metrics.

We expect our research will benefit many interdisciplinary researchers, intelligent

tutoring systems, educational data mining, and learning analytics. Particularly, the broad

familiarity of the academic performance metrics will help to choose suitable metrics and

reuse findings in the ML models to predict academic performance routinely in a blended

learning environment.

7.1.2 Real-time interactive visualizer for large classrooms

We presented the design and validation of an interactive visualizer for large classrooms. The

visualizer is intended to aid the classroom instructors for more effective teaching. Moreover,

the system is helpful for teachers since they may use smartphones or tablets that they may

be carrying because it is also designed for relatively small displays. However, it may be
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noted that the design is generic, making it applicable for situations where the matrix-like

2D seating arrangement can be assumed. It is also to be noted that the algorithms of the

visualizer are designed to take care of various human factors with the objective of increasing

the system usability. Considering the given context, many non-trivial optimizations are also

incorporated into the visualizer to make it efficient as well. The usability of the visualizer is

ascertained through detailed empirical studies.

7.1.3 Manas Chakshu

In this research work, we presented the design and validation of a novel LA tool, the Manas

Chakshu. It is designed to let teachers see their classroom status and how individual students

in the class are doing at any given moment. The proposed visualizer achieved a significant

improvement over existing classroom visualization techniques. The improvements concern

the effective use of display screens, a more precise identification of students who are at risk,

and an improved mechanism for keeping track of classroom conditions. Our studies (both

theoretical and empirical) show that our proposed system significantly improves system

performance without affecting usability.

7.1.4 Real-time notification system

This research presented the design of an intelligent real-time feedback system for in-class use.

This system design addressed the challenges of managing suitable feedback timing, choice of

feedback content, and feedback modality to optimize user fatigue. The peripheral device

selection for the users helped to improve the system usability and to maintain lecture flow.

The idea is unique and not addressed in the state-of-the-art techniques. Studies show that

users are interested in using it regularly in real-time classrooms. Teachers agreed that the

system would enhance teaching efficiency by timely knowing the difficulties of students in

a classroom routinely. Teachers who participated in the studies believed that systematic

student feedback would raise the standard of care in a real-time classroom. Positive student

feedback demonstrates that our system can regularly help to correct the students when they

know their performances. The higher SUS score also shows that users will get chances to

rectify themselves when they know their weaknesses timely.

We hope the reported findings and intelligent real-time feedback design considerations
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will inspire learning technology researchers in digital feedback for classroom use. In addition,

researchers will be encouraged to deal with research challenges and hurdles when designing

the real-time feedback system.

7.2 Limitation

Despite its novelty and usability, there are a few concerns and limitations to our intelligent

real-time classroom visualizer and notification system design. One primary concern is

the need to define the concept of “state” and determine the key academic performance

indicators that should be monitored and notified. We assume that feedback information

is already available. Obtaining the data is, of course, difficult and is an emerging branch

of research [3, 27]. A student’s state, such as engagement state might be considered as a

performance state. A student’s attendance record can also be seen as a state (attending

regularly, irregularly, mostly regularly and so on) [1]. The learning performance is another

possibility for defining a state (advanced, intermediate, backlogged and so on). There

are numerous additional potential “states” (e.g., level of understanding, level of classroom

activity) [176, 177]. A student’s state can be defined as any one or a mix of these “possible

states”. Although, there are a few efforts made in this area to obtain the students’ state

information from their mobile usage behavior [3, 176], it is difficult to capture some of

these states, such as the “mental states” [184]. The states, such as attendance and level of

learning, are more easily captured (using scores in classroom tests). Our intelligent visualizer

and notification system does not pay attention to the issues of capturing the mental state.

However, this is not a limitation because the intelligent visualizer and notification system can

be used with whatever state information is provided (for example, the state of attendance,

engagement, and learning performances).

The limitation of our notification system is in determining the alert contents. Just by

using the data from their mobile sensors, it is challenging to compute some of the alert

contents, such as identifying students talking in a class and their level of comprehension of the

concepts delivered in the classroom [184]. Some other contents are more straightforward to

compute, such as the attendance, the quiz and the class test performances. Our notification

system design is not focused to address these challenges. This is not a limitation though, as

our system continues to utilize any feedback content that is available.
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The other limitation is that we assumed a teacher’s posture, such as sitting, walking,

and standing as the available input to the system. Nowadays, it is possible to capture these

posture using an accelerometer sensor embedded in a smartphone [200]. This sensor records

acceleration data along the three axes (x, y, and z) at each sample instant. These sensory

data help to identify the human posture such as sitting, standing, and walking. In a given

time interval, the deviation of sensory values is less for standing and large for walking when

compared with the sensory values recorded for sitting posture [200]. In our initial phase of

the system design, we performed a pilot study and experienced a similar observation on

posture identification. Therefore, it is possible to identify these postures to address this

limitation.

7.3 Scope for Future Work

The contributions made in this thesis can be used to advance the field of blended learning

environments. Our research has addressed various aspects and challenges of this domain.

However, it is important to acknowledge that there is still ample room for further exploration

and improvement. Moving forward, we propose several potential research directions that

are worth pursuing. The following is a list of such future research directions:

1. In this thesis, we use predictive modeling for students’ academic performances for the

classroom notification system. However, predictive modeling of students’ states can

also be implemented for the classroom visualizer.

2. The proposed visualizer is implemented for commonly available rectangular 2D class-

room sitting arrangement. This system can be adapted to work with other seating

arrangements of the classroom. An updated system is required to check for the

applicability of the system to visualize non-rectangular seating configurations as well

(such as semicircular sitting arrangement).

3. In this thesis, we collected data from our Department of Computer Science and

Engineering, IIT Guwahati, built the predictive models, tested them, and used DT

model to predict students’ performance states. Further research can be done to gather

frequently used metrics and test the suitability of applying them with a focus on the

relative importance of the metrics to predict the academic performances of students.
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4. Our notification system assumed the teacher’s posture for selecting modality of the

real-time feedback to reduce lecture flow disturbances. There is a possibility to extend

our research to identify and predict the posture of the teacher automatically and

integrate it into our system to further reduce the real-time feedback fatigue.

5. Individual visualizer and notification modules that we presented can improve learning

outcomes in blended classroom environments. However, it can be extended to work

with an integrated visualization and notification module for in-class use.

<<=8=;;
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A
A p p e n d i x

Appendix

A.1 Consent Form

The consent form used in the controlled experiments for my thesis is shown one by one in

the figures. It is vital to notice that the precise name of the experiment differed between

each study, although all the other fields on the form stayed the same. To ensure ethical

data collection, participation in these trials was only permitted after receiving informed

consent from both the subjects and the researchers involved, indicating their agreement to

all of the terms mentioned in the consent form.



A.1. Consent Form

Figure A.1: Details for online survey request and consent.
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Consent Form

Figure A.2: The URL and the details of the research and researcher.
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A.1. Consent Form

Figure A.3: Details of the teachers’ consent form for visualizer

176



Consent Form

Figure A.4: Details of the teachers’ consent form and user ratings for Manash Chakshu
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A.1. Consent Form

Figure A.5: Request later for data collection for notification system
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Consent Form

Figure A.6: Details of the teachers’ consent form for notification system

179




	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	List of Symbols
	Introduction
	Role of ICT in Teaching and Learning
	Blended Learning Systems
	Difficulties in ICT enabled Classroom
	Motivation
	Thesis Objective
	Summary of Contributions
	Thesis Contributions
	Comprehensive Study on Academic Performance Metrics
	Real-time Interactive Classroom Monitoring
	Intelligent Notification System

	Organization of the Thesis

	Related Work
	Role of Academic Performance Metrics (APMs)
	Influential Metrics
	Academic Performance Assessment
	Academic Performance Prediction
	Use of Academic Performance in Blended Learning
	Role of an Intelligent System in Education

	Student Monitoring and Visualization
	Methods of Real-time Classroom Monitoring
	Methods of Real-time Classroom Visualization

	Notification for Blended Classroom
	Multimodal Notification for Classroom Use
	Technological Distractions on Notification
	Studies on Alert Fatigue

	Summary of the Chapter

	Comprehensive Study on Academic Performance
	Introduction
	Research Questions and Methodology
	Research Questions (RQ)
	Overview of the Research Methodology

	Critical Literature Review (CLR)
	Influential Categories of Academic Performance Metrics
	Frequently Used Metrics (FUM)
	Relative Importance (RI) of the APMs
	Recommended ML Models

	Online Field Study (OFS) Methodology
	Preparation of Survey Questionnaire
	Approach
	Participants
	Results and Observations

	Summary of the Chapter

	A Real-time Interactive Visualizer for Large Classrooms
	Introduction
	Design of the Proposed Visualizer
	Overview and Assumptions 
	Proposed (four) Algorithms
	Empirical Validation
	Results and Analysis

	Discussion
	Summary of the Chapter

	Manas Chakshu - A Real-time Classroom Monitoring Dashboard
	Introduction
	Design of Manas Chakshu
	Choice of Students State
	Basic Setting and System Diagram
	Optimum Grid Layout Generation for Both Levels
	Weighted Student States and Critical Cluster Computation
	Fair Visualization for Improved Awareness
	Dynamic Second Level Visualization

	Performance Comparison Study
	Performance Metric
	Results

	Empirical Usability Study
	Setup
	Participants Details
	Experimental Procedure
	Results and Observations

	Discussion
	Summary of the Chapter

	Real-time Classroom Notification System
	Design of the Notification System
	Overview of the System

	Empirical Validation
	In-Lab Studies for Requirement Gathering
	Prototype Design and Pilot Study
	User Studies for Validating System Usability

	Results and Analysis
	Discussion
	Summary of the Chapter

	Conclusion and Future Work
	Summary of the Thesis
	Study on academic performance metrics and performances
	Real-time interactive visualizer for large classrooms
	Manas Chakshu
	Real-time notification system

	Limitation
	Scope for Future Work

	Bibliography
	List of Publications
	Appendix
	Consent Form


