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Abstract

Text is one of the main sources of transmission of information between humans. It varies
from personal chats to corporate e-mails, legal documents to scientific research articles,
social media posts to blogs, and news bulletins to public announcements. The amount
of such unstructured text in the open world is rising at an exponential rate. However,
only a fragment of this information is available as knowledge for computer algorithms.
Natural Language Processing (NLP) tasks such as Information Extraction (IE) and its sub-
task Relation Extraction (RE) / Relation Classification (RC) can significantly improve the
conversion from unstructured text to structured knowledge. Nonetheless, RE/RC is largely
restricted due to the absence of high-quality datasets for training data-hungry deep neural
models, which have shown excellent performance in other NLP tasks.

The overarching objective of this dissertation is to explore unconventional ways of
improving large RC datasets and learning from them. Existing large RC datasets have few
relations labels, ignore relations between relations, and are noisy and imbalanced. Creating a
new dataset is not an optimal solution as it is a time- and cost-intensive process. The primary
focus of this thesis is to analyze noise present in existing large-scale RC datasets and propose
automated methods to mitigate some of the noise. In particular, work is focused on three
main objectives, (i) characterizing the noise present in the dataset; (ii) exploring automatic
and cost-sensitive approaches to reduce noise from the RC dataset; and (iii) analyzing the
cost of reannotating them.

To this end, this dissertation makes three major contributions toward improving the RC
from a large crowd-sourced dataset TACRED. The first work focuses on exploring the use
of the relation between relation labels for reducing noise and improving RC models. Our
preliminary analysis as well as some contemporary studies indicate that several incorrect
relation labels can be identified by examining the corresponding subject_entity and
object_entity. Based on this observation, we build a taxonomical relation hierarchy
(TRH) from multiple KBs. We used it as a template for creating a similar TRH for TACRED
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which is then used for exploring noise in positive instances and incorporating hierarchical
distance between relation labels in RC models.

For our second contribution, we did a comprehensive evaluation of noise in the TACRED.
All our analyses are based on SOTA RC models’ predictions and performance. Following our
findings, we investigate automated and cost-sensitive strategies for reducing noisy instances
based on the nearest neighbors of examples with false-negative predictions and examples
from a cleaner subset of TACRED. Empirical results have shown improved performance on
the newly generated datasets.

In our third and final contribution, we utilize relation hierarchy for budget-sensitive
reannotation of TACRED. We introduce the concept of a reannotation budget to provide
flexibility on how much data to reannotate. We also proposed two strategies for selecting
data points for reannotation. We performed extensive experiments using the popular RC
dataset TACRED. We have shown that our reannotation strategies are novel and more efficient
when compared with the existing approaches. Our experiments suggest that the reported
performance of existing RC models on the noisy dataset is inflated. Furthermore, we show
that significant model performance improvement can be achieved by reannotating only a part
of the training data.
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Chapter 1

Introduction

Currently, Deep Learning is the dominant paradigm in the solution for the Relation Clas-
sification (RC) task. With improvements in the Deep Neural Networks, the performance
of Deep Learning based models for the RC task is also improving. Despite the progress in
such models, the performance of RC models on the most widely used dataset is restricted to
the range of 75% - 80% in F1-Score. Some of the recent papers attribute this restriction in
model performance to the quality of the dataset. Furthermore, they observed that the models’
performance can be improved by reannotating either part or the entire dataset. Their work, on
the other hand, is heavily reliant on human efforts, either through experts or crowd-sourcing.
To this end, in this dissertation, we explore automated and cost-sensitive approaches for
analysing and reducing noise from the large RC dataset TACRED. In our first work, we
create a label hierarchy and use it to improve dataset quality and to modify cross-entropy
loss function for model optimization. Then, in the second work, we thoroughly analyse
state-of-the-art models’ predictions and performance to characterize noise in the dataset and
further evaluate two different strategies for reducing the noise. Finally, in the last chapter,
we introduce the concept of a reannotation budget, to efficiently reannotate datasets with
minimal effort.

1.1 Motivation

Since the introduction of the internet, the amount of digital data in the form of news articles,
blogs, emails, government documents, chat logs, research articles, etc., is increasing at an
exponential rate. Given the heterogeneous and unstructured nature of data, it will be of some



value only if it can be tagged and annotated efficiently. Tagging such large amounts of data
is not possible manually. Hence, there is a need for a system that automates the extraction
and annotation of structured information from text. This structured data can later be used in
various real-world applications, such as:

• Search engines retrieving set of relevant documents,

• Virtual assistants answering facts based queries using online encyclopedia such as
Wikipedia,

• Business domain-specific applications like, analysis, reasoning and decision making
from news and reports for businesses,

• Biomedical domain-specific applications such as, analysing drug interaction, protein
reactions based on bio-medical research articles and clinical trials.

Information Extraction (IE) is the task of extracting precise information from large
unstructured text corpora and making it available in annotated structured form. IE systems
take in large volumes of documents as input and output a structured resource of knowledge
or facts. Such knowledge resources are often called "knowledge bases" (KBs). Some of the
most popular KBs are DBpedia [1], Wikidata [2], and YAGO [3].

IE uses various linguistic, natural language processing (NLP) and text mining tasks
and techniques. It includes text normalization, finding and classifying real-word entities,
connecting those entities, and finding and classifying relations between the identified entities.
Among all such tasks, Named Entity Recognition (NER) [4] and Relation Extraction
(RE) [5] are the two important tasks.

Named Entity Recognition is the task of identifying, and classifying real-world entities
mentioned in the given text. For example, in Figure 1.1 Albert Einstien, Hermann Einstien,
and Pauline Koch are entities of type Person in the sentence.

Relation Extraction is the task of extracting the relation mention between a pair (or more)
of entities present in the text. The identified relation is classified into one of the relation
labels. This process is known as Relation Classification (RC). For example, in Figure 1.1,
entities Albert Einstein, Hermann Einstein, and Pauline Koch are extracted from the given
sentence. Relation between them is identified and classified as relation parent. Even though
RE and RC differ from each other, they have been synonymous in the literature. The focus of
this thesis is on the Relation Classification (RC) problem.

Relations between entities are a crucial component of structured knowledge. It can be
mentioned in numerous different ways in the text. Thus, the main objective of RC is to



Fig. 1.1 Example of RC and it’s potential applications. The relation triples (Albert Einstien,
per : parent, Hermann Einstien) and (Albert Einstien, per : parent, Pauline Koch) from the
sentence in the Figure, is first identified using RC and then it is populated in the Knowledge
Base. Populated Facts are further used by Question Answering (Q&A).

Albert
Einstien 
Albert Einstein,
German-born
theoretical physicist,
is the son of
Hermann Einstein,
and Pauline Koch.

RC

RC Text  

Knowledge Base
Albert Einstein, parents, Hermann Einstein
Albert Einstein, parents, Pauline Koch
Albert Einstein, place_of_birth, Ulm
Albert Einstein, place_of_death, New Jersey
Albert Einstein, nationality, German

Question: Who are parents of Albert Einstein?

KBC
Q&A

Knowledge Base
Albert Einstein, place_of_birth, Ulm
Albert Einstein, place_of_death, New Jersey
Albert Einstein, nationality, German

devise methods that can efficiently identify relations of interest, no matter the way they are
mentioned. The identified relation label along with the entity pair is generally arranged
as a triple. This triple is finally used in populating facts in KBs (Automated Knowledge
Base Completion (AKBC)). Such triples can then be used by NLP tasks such as question
answering (illustrated in the Figure 1.1).

Relation Classification is generally formulated as a supervised learning problem. Earlier
approaches relied heavily on models such as SVMs and kernel methods, whereas recent works
heavily rely on modern deep neural models such as LSTMS and transformer-based models.
Training these models requires a large amount of quality annotated datasets. Generating
quality annotated datasets at such a large-scale has always been challenging due to the time
and cost involved. Even after manual annotation, large datasets are often noisy.

For downstream applications, noisy nature of dataset is a matter of concern. Specially,
for application domain such as finance and medicine the consequences can be immediate and
irreversible. Extracting incorrect information from a document in the financial domain can
cause exceptional business losses. Whereas, in the case of clinical document analysis, it can
lead to erroneous decisions that could directly impact human life.

The majority of existing research focuses on either generating new datasets in cost- and
time-effective ways or reannotation involving experts. In this thesis, we focus on identifying
the reason behind the noisy nature of the dataset. How can we reduce such noise without



relying much on experts or manual efforts? What percentage of dataset reannotation is
enough for efficient model training?

1.2 Challenges

Applications that rely on relation classification highly depends on the quality and precision
of the extracted relation instances. Therefore, the high performance of relation classification
becomes crucial for their success. In practical scenarios, RC suffers from following set of
challenges:

1. Shallow set of relation labels: Existing RC benchmark datasets like ACE and TA-
CRED rely on task-specific corpora such as multilingual automatic content extraction
and TAC KBP slot-filling, respectively. Consequently, the set of relation labels gets
restricted to the underlying corpus. Moreover, deriving relations between the relation
labels becomes impossible because of the handful of relation labels.

2. Ambiguity in relations: Relation mention in a sentence is often learned based on the
context between the entity mentions. But determining the boundary between certain
relation labels gets complex due to the overlapping context. For example, relations
country of birth and countries of residence often get confused, as in most cases, a
person’s country of birth is amongst one of their countries of residence.

3. Long-tail distribution: The performance of the model depends on the quality and
quantity of training samples for each class label. However, finding a proportionate
number of instances for each class has always been a challenge while creating large
datasets.

4. Noisy Dataset: RC is a classification problem and therefore requires a large dataset
for efficient training of deep neural models. Generating a large dataset for supervised
learning requires experienced annotators and subject-experts. Finding such experts to
annotate hundreds of thousands of sentences could be a very costly process. Hence,
researchers rely on annotation tools such as Amazon Mechanical Turk (AMT) to
employ multiple annotators. Inexperience and lack of expertise among those annotators
lead to noise in the dataset. For example, Alt et al. [6] in their work, have highlighted
the noisy nature of TACRED [7], largest and most-popular RC dataset.

5. Inflexible Reannotation Strategies: All efforts to reannotate the noisy RC dataset
involve either linguistic experts reannotating a fixed set of the dataset or inexperienced
crowd-sourced annotators reannotating according to modified guidelines.The problem
with the former approach is that all the noisy instances cannot be annotated due to
the cost involved in hiring linguistic experts. In the latter case, reannotating the entire
dataset will take the same amount of time and money as creating a new dataset and
may not even be required.



1.3 Problem Description

Large crowd-sourced datasets often exhibit one or more of the challenges mentioned in the
previous section. Some recent studies have suggested that label noise is the prominent reason
why RC model performance is stuck at a certain threshold on TACRED. Due to the incorrect
annotations, the accuracy of the models has decreased, making the learning process more
complex.

Some of the earlier work has been devoted to studying the noise and reannotating the
dataset. However, those efforts heavily rely on expert analysis and crowd-sourced efforts,
which ignore the inherent relation definition and model predictions, and, finally, do not allow
for a flexible number of re-annotations.

In this thesis, our primary objective is to explore automated, cost-efficient strategies and
heuristics to:

• Identify the root cause of noise in the dataset.

• Reduce noise from the dataset by either elimination or reannotation.

• Improve model optimization, making it robust for noisy dataset.

• Identify minimum number of reannotation enough for efficient model training.

1.4 Contribution

In this dissertation, we make three contributions towards the identified objectives. We used
the most-widely used and the largest crowd-sourced RC dataset TACRED [7] for this purpose.
The graphical overview of our work is presented in Figure 1.2.

1.4.1 Contribution 1: Taxonomical Relation Hierarchy and it’s applica-
tion in Relation Classification

Our preliminary analysis, as well as some contemporary studies [6, 8], indicate that sev-
eral incorrect relation labels can easily be identified by examining the corresponding
subject_entity and object_entity. Based on this observation, the first contribution
introduces a framework for building taxonomical relation hierarchy (TRH) from multiple
KBs. We used this framework as a template to build a similar TRH for TACRED, which is



Fig. 1.2 An Overview of thesis contribution.

then used for exploring noise in positive instances and incorporating hierarchical distance
between relation labels in RC models. In this work, we explore how we can use relation
hierarchy to address all of the identified challenges in the earlier Section 1.2.

In our first contribution, we explored multiple KBs like Wikidata, DBpedia, and Wikipedia
Infoboxes to compile a list of all possible relations between entity types Person, Organiza-
tion, and Location. We collected a set of 623 canonical relations and arranged them in a
taxonomical relation hierarchy following the proposed framework. Further, we used that
relation hierarchy as a template for creating a similar relation hierarchy for 41 TACRED
relation labels. We used the generated TRH to eliminate 164 ambiguous instances from
the dataset. To address the long-tail distribution of relation labels and ambiguity in relation
boundaries, we relabeled 17 finer relations with their coarser relation labels, improving
model performance by an average of 1.3 percent across four baseline models. Finally, we
used hierarchical distance to scale cross-entropy loss (CE Loss) and proposed hierarchical
distance scaled cross-entropy loss (HCE Loss). Our proposed approach HCE Loss improved
SpanBERT’s [9] performance by 3% in F1-Score.

In this work, we have just used TRH for filtering and relabeling some of the instances to
reduce noise, long-tail distribution, and relation ambiguity problems. However, TRH can
further be used for augmenting instances of relation labels using templates learned from the
sentences and valid triples of either coarse or fine relations from knowledge-bases.



1.4.2 Contribution 2: Model-based Characterization and Reduction of
noisy instances from RC dataset

From our first contribution, we realize that of all the challenges mention in the Section 1.2,
noisy nature of data posed the most threat. Thus towards the second contribution, we did a
comprehensive evaluation of noise in the TACRED and explored automated and cost-sensitive
strategies for reducing noisy instances.

Following TRH in our previous contribution, [10], we could only eliminate a few noisy
positive instances. Thus, the true picture of noise in the TACRED dataset was still unclear.
Therefore, we explore the model-based characterization of noise present in the TACRED
dataset and two strategies to handle potential noisy instances. Analyses of model prediction
results indicate that the incorrect labelling of instances as NO_RELAT ION class or negative
relation is predominantly responsible for the noise in the data. Hence, this work proposes two
different strategies for identifying potential noisy negative relation instances for elimination
and reannotation. The first strategy, intrinsic strategy (IS), is based on finding the nearest
neighbour to the model’s false negative prediction. Whereas, the second strategy, extrinsic
strategy (ES), requires a subset of clean TACRED instances. Models trained on a dataset
with elimination based on the intrinsic strategy show improvement when models are evaluated
on the cleaner version of the test set. The performance of the models significantly improved
with the extrinsic strategy for both the eliminated and reannotated datasets. Furthermore,
identifying noisy instances among positive relation classes using the extrinsic strategy shows
further improvement in the models’ performance.

1.4.3 Contribution 3: Budget-Sensitive Reannotation of noisy RC dataset

In our third and final contribution, we address the last challenge, "inflexible reannotation
strategies", mentioned in section 1.2. We utilize relation hierarchy for budget-sensitive
reannotation of TACRED.

Given the large size of datasets, reannotation of the complete dataset is not always
possible due to the time and cost involved. In this work, we have introduced the concept
of a reannotation budget to provide flexibility about how much data to reannotate. We also
proposed two strategies for selecting data points for reannotation. Our approach capitalises
on the taxonomic hierarchy of relation labels from our earlier work, [10]. For each data
point, we compute the graph distance between the actual label provided in the dataset and
the predicted label using an ensemble of RC models. Data points with a higher value for



this distance are given higher priority for the reannotation task. We performed extensive
experiments using the popular RC dataset TACRED. We have shown that our reannotation
strategies are novel and more efficient when compared with the existing approaches. Our
experiments suggest that the reported performance of existing RC models on the noisy dataset
is inflated. The F1 score of these models drops from the range of 60%-70% to as low as below
50% when tested on clean test data generated using our reannotation strategy. Furthermore,
we show that model performance improvement can be achieved by reannotating only a part
of the training data.

1.5 Thesis Outline

The thesis (Figure 1.2) is organized as follows.

Chapter 1 presents the background, motivation and problem formulation.

In Chapter 2, we first describe essential deep learning models, basic NLP terminologies,
and concepts associated with the Relation Extraction and Relation Classification tasks. Then
we provide a comparison between different RC approaches and available datasets.

In the next three chapters, we present the three contributions of the thesis. Relevant
literature reviews are presented in the corresponding contribution chapters. In Chapter 3,
we present the creation of a taxonomical relation hierarchy and its adaptation to TACRED
for improving RC. In Chapter 4, we present a comprehensive analysis of noise in the RC
dataset TACRED and also explore two approaches for finding noisy instances for elimination
and reannotation. In Chapter 5, we present two strategies using hierarchical distance for
budget-sensitive reannotation of RC datasets.

Finally, in Chapter 6, we conclude and discuss future research work.



Chapter 2

Background

This chapter serves as a foundation for the following chapters. We first introduces basic
modelling approaches used in NLP. We then provide an overview of common natural language
processing (NLP) tasks.

Subsequently, we describe essential terminologies and concepts, followed by describing
the main task of this thesis: relation classification. We describe different problem formulation,
modeling approaches, and datasets specific to RC task.

2.1 Modelling Approaches

In this section, we’ll go through the deep neural models that are commonly used in NLP
tasks, specifically RC, and that will be referenced frequently throughout this thesis.

Word Embeddings

When using neural models for NLP tasks, each word wi in a sentence s needs to be mapped
to a vector of real numbers. This real-valued vector xi for a word wi is known as word
embedding. The word embeddings for entire vocabulary V for a dataset D is stored as an
embedding matrix E ∈ R|V |×d . A sentence s, consists of a sequence of words [w1, w2, ..., wn]
is represented as a sequence of word embeddings [x1, x2, ..., xn] before giving them as inputs
to a neural network. Some of the most commonly used static word embeddings are Word2Vec



[11], Glove [12], and FastText [13]. In this thesis, we have used Glove embeddings unless
explicitly mentioned otherwise.

Recurrent Neural Network (RNN)

RNNs [14] are type of neural networks in which the output from the previous step is used as
input in the current step. In traditional neural networks, inputs and outputs in the adjacent
steps are independent of one another. However, in some circumstances, such as, when
predicting the next word of a phrase, the information from prior words are necessary, and so
the previous words must be remembered. RNNs have the concept of ‘memory’ that helps
them store the states or information of previous inputs to generate the next output of the
sequence.

However, due to the problem of vanishing or exploding gradients, the RNNs faces
difficulty learning over longer sequences. At each stage of the forward pass, the hidden
state is multiplied by the weight matrix. During the backward pass, or back-propagation, the
gradients are multiplied with the same values at each step, which can cause the gradients to
explode or vanish. The model is unable to learn in both circumstances. One of the reasons
for developing long-short term memory networks is to address this issue.

Long Short Term Memory Network

LSTMs [15] are popular RNN architecture introduced to address the problem of long-term
dependencies. That is, if the previous state that is influencing the current prediction is not in
the recent past, the RNN model may not be able to accurately predict the current state. To
remedy this, LSTMs have “cells” in the hidden layers of the neural network, which have
three gates– an input gate, an output gate, and a forget gate. These gates control the flow of
information which is needed to predict the output in the network. The LSTMs were designed
to overcome the vanishing gradients problem that occur when training traditional RNNs.

Bidirectional Long Short Term Memory network (biLSTM): To comprehend the
context efficiently in some NLP tasks, it is necessary to understand not only the previous
words in the sequence, but also the forthcoming words. A biLSTM is a sequence processing
model that achieves this by using two LSTMs: one that takes the input forward and the other
that takes it backwards. This effectively boosts the amount of data available to the network.

We have used LSTM, biLSTM and position-aware LSTM [7] throughout our works.



Convolutional Neural Network

CNNs [16] are another type of neural networks most commonly used for computer vision
related tasks. In this dissertation we have used CNN adapted for NLP tasks [17]. Typically, a
convolutional layer slides filters of different window sizes over the concatenated input word
embeddings. Each filter weight computes a new feature for each window of k words. Finally
min, mean, or max pooling is applied to get the most essential feature by reducing the feature
map.

We have used CNN proposed by Nguyen et al. [18] for relation classification in all our
works.

Transformers

The transformer [19] is a more modern neural network architecture that was inspired by a
desire to replace RNNs’ fundamentally sequential computation with a more parallelizable
method based on (self-)attention [20]. The transformer layer, consists of two sub-layers:
multi-head self-attention and a position-wise feed-forward neural network, as the basic
building block. Around each of the two sub-layers, a residual connection [21] is used,
followed by layer normalisation [22]. This architecture is used by many state-of-the-art
methods for language modelling and transfer learning, such as the OpenAI GPT [23] and
BERT [24].

In our works we have used transformer-based models such as BERT [24], RoBERTA
[25], and SpanBERT [9]

2.2 Natural Language Processing

Natural Language Processing (NLP) allows computers to understand text in the same manner
as humans do. This is usually expressed as a set of annotation tasks, in which a text is
mapped to linguistic structures that indicate its meaning. We used machine learning based
tools to learn such mappings.

Now I’ll provide a quick review of the tasks that will be mentioned throughout this thesis.
For each task, Figure 2.1 presents an example sentence with annotations. Sequence labelling



Fig. 2.1 Annotations for natural language processing tasks.

TASK ANNOTATION

Sentence New Delhi is the capital of India.

Tokenization New Delhi is the capital of India

Part-Of-Speech 
Tagging NNP BBP VBZ DT NN IN NNP

Named Entity 
Recognition B-LOC I-LOC O O O O B-LOC 

Dependency Parsing compound nsubj root det attr prep pobj

tasks such as part-of-speech tagging, named entity identification, and dependency parsing
assign an output yi to each word wi.

Tokenization: Tokenization is breaking a sentence into a list of tokens. Tokens can be word,
character, or sub-words.

Part-of-speech (POS) Tagging: POS tagging assigns each word in a text its corresponding
part-of-speech tag. A part-of-speech is a group of words with common grammatical features,
such as nouns, verbs, adjectives, adverbs, pronouns, prepositions, conjunctions, and so on. A
word can also be more than one part-of-speech when used in different context. For example,
in sentence Lucy was making lunch for Francis, "make" is in the form of verb, whereas in
the sentence What are the make, model, and year of this car?, it is in the form of noun.

Named Entity Recognition (NER): NER tagging is one of the sub-task of IE. It involves
identifying real-world or abstract object mention, in a given sentence and classifying it with
one of the categories. The identified real-world objects are known as named-entities. Some of
the most common named-entities types are PERSON, LOCATION, ORGANIZATION, and
so on. Generally, the types depend upon the underlying application. For example, biomedical
texts will focus on entity types such as GENES, DRUGS, PROTEINS, DISEASES, etc. NER
is an important step for relation extraction.



Dependency Parsing: Dependency parsing determines the dependency structure, or de-
pendency parse, of a sentence. The parse is made up of words connected by directed links
that represent the sentence’s grammatical structure. Each link connects a head word to its
dependent (the child), which alters the head according to the connection’s syntactic relation-
ship. Many applications use dependency parsing, including co-reference resolution, question
answering, and relation extraction.

2.3 Knowledge Bases

A Knowledge Base (KB) is a collection of data that represents real-world facts. Unlike
traditional databases, which are represented as tables. Knowledge Graphs (KG) are a popular
approach to store KBs on a computer in a graph structure format. The graph’s nodes represent
entities, while the labelled edges reflect relationships between them. A KG can be represented
as a set of (subject, predicate, object) (SPO) triples, where subject and object are entities,
and predicate is a binary relation type. Presently, various KBs available, the most notable
ones that we have used in our work are:

Wikipedia Infobox

Wikipedia is a multilingual, web-based, free-content encyclopedia project supported by the
Wikimedia Foundation. It is based on a model of openly editable content. Wikipedia’s
articles provide links designed to guide the user to related pages with additional information.
Since its creation in 2001, Wikipedia has grown rapidly into one of the largest reference
websites. As of 8 May 2022, there are 6,495,516 articles in the English Wikipedia 1.

Wikipedia infobox is a fixed format table added to the Wikipedia page. It summarizes
important facts and statistics of a particular page in a tabular format. The information
it contains are comparable, concise, materially relevant to the subject and already cited
somewhere in the article.

1https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia


Freebase

Freebase is large collaborative Knowledge Base, initially developed by MetaWeb in 2007.
It was later acquired by Google in 2010 and was shutdown in 2016. Metaweb described
Freebase as "an open shared database of the world’s knowledge". Freebase contained data
from various sources such as Wikipedia, Notable Name Database (NNDB), Fashion Model
Directory, MusicBrainz and data contributed by it’s users. It’s 2015 snapshot is available for
download and contains a total of 1.9 billion triples.

DBpedia

The DBpedia project was started in 2007 jointly by the Free University of Berlin and the
University of Leipzig to automatically extract structured information contained in Wikipedia,
such as infoboxes, category information, geo-coordinates, and external links. It contains
around 600 million triples in the English language and around 2.5 billion triples in other
languages combined.

Wikidata

Wikidata [2] is a collaborative edited Knowledge Base operated by WikiMedia Foundation.
It aims to provide a common source of data which can be easily accessed by WikiMedia
projects and by anyone under public domain license. Wikidata is a document-oriented
database, focused on items. Each item represents a topic and is identified by a unique
number. An item can have one or more statements. Information is added to items by creating
statements, in the form of key-value pairs, with each statement consisting of a property (the
key) and a value linked to the property. Wikidata currently contains 97,626,220 items and
more than 4000 properties2.

2.4 Relation Extraction & Classification

Relation Extraction is the task of detecting the semantic relation mention between the entity
mentions in the text and was first formulated at Message Understanding Conference (MUC)

2https://www.wikidata.org/wiki/Wikidata:Statistics

https://www.wikidata.org/wiki/Wikidata:Statistics


1998. Relation r can be defined on any number of entity. It is defined as a tuple with entities
as its element.

r = (e1,e2, ...,e j)

where, ei is an entity and r ∈R, the set of all possible relations. Relation can be n-ary tuple,
but in this dissertation, we focus only on binary relation. For example, Founder_Of(Steve
Jobs, Apple), where Founder_Of is the relation between entities Steve Jobs and Apple.

Relation Classification is task of classifying the identified relation mention with one of
the relation class. Relation classification is usually defined as supervised learning task that
learns a function f which maps input features x derived from a sentence s to a relation label
r ∈ R. This can formally be defined as, given a sentence s annotated with a pair of entities
(e1, e2), an RC model tries to predict the relation r between subject entity e1 and object entity
e2 (i.e. f (x,e1,e2) 7→ r), where r is either one of the relation from a fixed set of relations (R)
or no_relation.

In this work, we consider the function f as a deep neural network (DNN) with softmax
as output layer.

p(ŷ/s,(e1,e2)) = So f tmax(Wh∗+b)

ŷ = argmaxr(p(ŷ/s,(e1,e2)))

where h∗ is output from last hidden layer of DNN, W & b are corresponding weights and
biases and ŷ is the output relation. The training objective is to score the correct r ∈ R∪{φ}
over all incorrect relation, using loss function such as cross entropy loss given by,

J =−
nr

∑
i=1

tilog(yi) (3)

where t ∈ Rnr is one-hot encoding to represent the ground-truth and y ∈ Rnr is the estimated
probability for each relation label by softmax.

Some of the popularly used datasets and methods are discussed as follows:



2.4.1 Datasets

Majority of the earlier RC models have used SemEval-2010 task 8 [26] and ACE multilingual
datasets [27]. However, these datasets are not relevant for large-scale relation classification
setting as they are small in size and address only hand-full of relations.

Distant Supervision [28, 29] has provided a way to address the absence of a large-scale
RE dataset at low cost by leveraging a KB. But, in practice, the generated dataset is highly
noisy. Noise is primarily due to either incomplete nature of knowledge bases (false negative
instances) or due to incorrect mapping with entity mentions (false positive instances).

TACRED [7], a large crowd-sourced RC dataset, has become popular in the recent years.
It contains more than 100 thousand instances manually annotated by crowd-sourced workers.
For all empirical analysis, we have used this dataset.

However, some studies [6, 8] have suggested that it contains significant annotation errors.
Alt et al. [6] trained a multitude of models to score the instances based on misclassification.
They end up reannotating around 2500 instances from test and dev set with the help of
linguistic experts (referred as TACRev). Whereas the other work from Stoica et al. [8]
modified the annotation guidelines and reannotated the entire dataset with the help of crowd-
sourced workers (referred as ReTACRED).

2.4.2 Methods

The literature shows following established approaches of the relation classification methods:

2.4.2.1 Rule-based Methods

Early rule-based methods [30] use hand-crafted extraction rules or templates for different
relation labels, similar to regular expression. An input is processed in subsequent steps
via pattern matching on logical forms extracted from the input. Some of the later methods
[31, 32] rely on sentence templates, derived from supervised data. The templates include
surface-level word representations, dependency parse grammar, and entity types. Once the
templates are obtained, they can be used to extract relations from text via explicit pattern
matching.

An advantage of pattern-based methods is that it allows humans to handcraft rules and
easily inspect the systems state, which is often required in industrial applications. However,



these approaches are not scalable, hence majority of the research got shifted towards machine
learning and deep learning methods.

2.4.2.2 Statistical & Machine Learning Methods

Statistical machine learning methods involve formulating complex mathematical models on
available dataset. These methods required extensive feature engineering before-hand, where
the lexical, semantic, syntactic, and entity-specific features are extracted from the input text.
The commonly used features are: dependency parse tree, entity mentions, entity distance,
POS tags, and so on.

Some of the earlier used approaches were based on SVM [33–35], kernel methods [36–
39], and maximum entropy models [40]. These methods exhibit scalability and superior
performance. However extensive feature engineering is their major limitation.

2.4.2.3 Deep Neural Methods

Recent relation classification methods use neural networks to model the problem, which
has resulted in a significant improvement in the performance, owing to their capacity to
learn meaningful input representations automatically and successfully model sequential
data. Socher et al.[41] were the first to apply neural networks to the task using a matrix-
vector recurrent neural network (MV-RNN) to encode the input token sequence according
to its syntactic parse tree. Various works [42, 43, 18] using CNN with different filter size,
shortest-dependency path were proposed for relation classification. The other set of approach
includes using LSTMs and BiLSTM [44–46, 7] along dependency path, attention layers, and
position-aware encodings.

More recently, graph convolutional neural networks (GCN) for relation extraction gained
a lot of interest. For example, Zhang et al. [47] apply graph convolutions over the dependency
tree of input sentence along the shortest dependency path. Similarly, self-attention models
such as transformer has also received attention recently. For instance, [48] extend the
transformer architecture for relation classification. Some of the works following BERT based
architecture [9, 49–51] have established state-of-the-art result on different RC datasets.

Different deep neural models have different characteristics. Thus, they have provided
various advantages in dealing with various relation classification problems. They are scal-



able and does not require extensive feature engineering. Therefore, they have been highly
successful in most of the learning problems.



Chapter 3

Taxonomical Relation Hierarchy and it’s
application in Relation Classification

Chapter Highlights

• Most of the datasets available for the Relation Classification task have very few relation
labels, ignore relation between relations, and are noisy and imbalanced.

• We propose a manual framework to create a taxonomical relation hierarchy from
multiple knowledge bases.

• We proposed taxonomical relation hierarchy based filtering heuristic to remove noisy
instances and relabeling heuristic to tackle long-tail distribution and overlapping
relation boundary problem.

• We propose scaling cross-entropy loss using shortest-path distance between actual and
predicted label in relation hierarchy.

• The proposed heuristics improves the baseline model performance on the RC dataset
TACRED.

• We also analyzed the model’s predictions based on distance between actual label and
predicted label to show effectiveness of our proposed loss function.

• Publications related to this chapter are
– “Taxonomical Hierarchy of Canonicalized Relations from Multiple Knowledge

Bases” presented at CoDS-COMAD 2020.

– "Improving Relation Classification Using Relation Hierarchy" presented at
NLDB-2022.



Abstract

Due to the availability of large datasets, deep neural models have achieved remarkable
success in numerous domains. However, the quality of labeled data is a concern since the
majority of the large crowd-sourced dataset generation relies on untrained annotators and
imbalanced corpora. Problems such as long-tail distribution, ambiguous label boundaries,
and noisy labels severely impact the generalization capabilities of deep learning models.
Thus, taking care of the above-mentioned challenges is one of the open areas in the RC
domain. The work in this chapter is based on the assumption that exploitation of relation
among relations can help in taking care of these challenges to some extent.

In this chapter, our objective is to address these challenges of the RC task using a novel
relation hierarchy. Towards this objective, we address two important questions. First, how do
we define an unambiguous and interpretable taxonomical (is-a) relation hierarchy? Second,
how do we utilize the relation hierarchy for improving RC datasets and models? To answer
the first question, we obtain a representative large number of relations from knowledge
bases, focusing on person, organization and location entity types. Further, we canonicalize,
filter, and combine the identified relations from the previous step to construct a taxonomical
relation hierarchy (TRH) of 623 canonical relations.

Finally, for the second question, we explore the widely used large RC dataset, TACRED,
to identify the potential impact of using relation hierarchy for RC. We first arrange the
relation labels of TACRED into a relation hierarchy, following the template of TRH. This
arrangement led us to the following observations: (i) the object entity types of some instances
do not align with the annotated relations; (ii) the existence of overlapping relation label
boundaries; and (iii) the long-tail distribution of relation labels. Subsequently, we propose
TRH-based filtering and relabeling heuristics to address these challenges. Lastly, we propose
a scaled cross-entropy loss using the shortest-path distance between ground truth and the
predicted label from the relation hierarchy. Our extensive empirical analyses indicate filtering
and relabeling, and the scaled cross-entropy loss help improve the model performance. These
improvements show the positive impact of using relation hierarchy for the RC task.

3.1 Introduction

In recent years, relation classification (RC) has gained significant attention in the NLP
research community. The surge in attention is due to RC being an important intermediate



step for several NLP tasks, including Automatic Knowledge Base Completion (AKBC)
[52], Information Retrieval (IR) [53], Reasoning [54], and Question Answering (QA)[55].
However, the adaptation of RC in the pipeline for the mentioned downstream NLP task has
been frustratingly slow because of the average performance of deep neural models on the
large RE/RC datasets [7, 29]. The performance of a deep neural model largely depends on the
training dataset. And our studies have shown that the existing RC resources [27, 26, 29, 7]
have at least one of the following bottlenecks: limited number of relation labels, absence of
canonical relations, and noisy and imbalanced datasets.

The first and second limitations are because of the pre-defined handcrafted or corpus-
dependent relations list [27, 26]. To scale the number of relations, a few datasets [29, 56] rely
on external knowledge bases using distant supervision strategies. However, the generated
dataset is noisy due to incomplete knowledge bases. Creating a large manually annotated
dataset necessitates the involvement of a subject expert, making the process time- and cost-
intensive. To mitigate this high labeling cost, researchers rely on non-expert platforms,
such as Amazon’s Mechanical Turk (AMT). However, the use of such platforms results in
unreliable labels due to inexperienced crowd annotators, as in the case of TACRED [7], a
large crowd-sourced RC dataset.

To address the challenges mentioned above, we conducted a thorough study of relational
resources. And our preliminary study suggests that, (i) even though KBs like Wikidata [2]
and DBpedia [1] incorporate deep hierarchical ontologies, they do not explicitly address
relations, and the unambiguous extraction of relation hierarchy from them is non-trivial.
(ii) several incorrect relation labeling can be identified by examining the corresponding
sub ject_entity and ob ject_entity. For example, relation PARENT exists for both organization
and person, but an organization cannot be PARENT to person and vice-versa.

Thus, it is important to create a large database of relations, that considers relation as
a concept and is defined based on sub ject_entity_type and ob ject_entity_type. Further,
it must cover all possible relations that could exist between a pair of entities, taxonomic
and semantic associations between relations, and their synsets. This study initiates work
in that direction. We assume properties and attributes appearing in structured knowledge
bases (KBs) and ontologies are good representatives of all possible relations. Therefore,
we extract relations from Wikipedia Infobox templates1 manually, and from DBpedia and
Wikidata triples in a data-driven way. We collect an exhaustive list of relations between
PERSON, ORGANIZAT ION, and LOCAT ION entity types. Following that, we construct a
taxonomical relation hierarchy (TRH) of 623 canonical relations.

1https://en.wikipedia.org/wiki/Wikipedia:List_of_infoboxes

https://en.wikipedia.org/wiki/Wikipedia:List_of_infoboxes


Further, to explore the use cases of TRH in learning from noisy and imbalanced RC
datasets, we thoroughly analyze the RC dataset TACRED [7] and the state-of-the-art RC
models[7, 57, 9, 51, 50]. Our analysis indicates the following challenges: (i) the presence of
instances in which subject or object entity types do not match with the annotated relation
label, (ii) the presence of long-tail relation classes, and (iii) the presence of a few relations
with overlapping definition.

Using TRH as a template, we first create a relation hierarchy for TACRED relation
labels. Then, we introduce a filtering heuristic to eliminate instances with ambiguous
subject-object-entity-type-pair from the TACRED, generating a variant dataset TACRED-F
for the above-mentioned first challenges. Next, we relabel instances associated with similar
relational concepts with coarser relation labels following the relation hierarchy (TACRED-FR)
to address the second and third challenges. Our heuristics have shown improved performance
across all the baseline models.

Finally, we have used the hierarchical distance between relation labels in the relation
hierarchy to scale the cross-entropy loss (CE Loss). The primary objective here is to penalize
more if the distance between the ground-truth and the prediction in the relation hierarchy is
large. For illustration, let us consider an example sentence: "Apple was founded by Steve
Jobs". The ground-truth relation is ORG : FOUNDER between the entities Apple and Steve
Jobs. If a model M1 predicts ORG : TOP_MEMBER/EMPLOY EE and model M2 predicts
PER : SCHOOL_AT T ENDED, then the prediction from M2 will be penalized more than
the prediction from M1. The proposed Hierarchical Distance Scaled Cross-Entropy Loss
(HCE Loss), scales the loss value by 2 and 6 for M1 and M2, respectively. The empirical
results using SpanBERT[9] show that model perform better with HCE loss compared to CE
loss. Further analysis of the results of models using HCE loss shows that the number of
misclassifications, where the distance between predicted and ground-truth labels is high, is
reduced significantly.

Figure 3.1 provides an overview of the work. The primary focus of this work is to show a
few examples of effective use of relation hierarchy for relation classification from noisy and
imbalanced datasets. In this process, this chapter makes the following major contributions:

• Create a taxonomical relation hierarchy of more than 600 relation labels using multiple
knowledge bases.

• TRH based filtering and relabeling heuristics to target RE/RC dataset challenges
such as, incorrect object entity type sentence detection, long-tail distribution, and
overlapping relation label boundary.

• Using hierarchical distance to scale cross-entropy loss for better optimisation.



Fig. 3.1 Overview of our work.
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3.2 Literature Review

3.2.1 RE Datasets

The majority of the earlier RC models have used ACE multilingual datasets [27] and SemEval-
2010 task 8 [26]. The most commonly used ACE 2004 dataset has 16,771 annotated instances
labeled with 24 fine-grained relation labels. Whereas the SemEval dataset has 10,717
instances annotated with 19 asymmetric semantic relations (Table 3.1). Given their size, the
number of relation labels, and the type of relation labels, these datasets are not useful for
large-scale relation classification tasks. Thus, to overcome these challenges, researchers have
adapted Distant Supervision (DS) startegies[28, 29]. DS has provided a way to address the
absence of a large-scale RE/RC dataset at a low cost by leveraging a knowledge base. But, in
practice, the generated dataset is highly noisy. Noise is primarily due to the use of a single
and incomplete KB, leading to a significantly large number of incorrectly labeled instances.
The use of multiple KBs is still not possible as different KBs do not use the same ontology
and nomenclature.

TACRED [7], a large crowd-sourced supervised RC dataset, has become popular in recent
years. It contains more than 100,000 instances labeled with one of the 41 relation classes or
NO_RELAT ION (Table 3.1). However, 80% of the dataset is labeled as NO_RELAT ION
and some recent studies [6, 8] have suggested that it contains significant annotation errors.
On further evaluation of the dataset, we observed that amongst positive instances there is a
significant imbalance indicating long-tail distribution (the number of instances varies from
less than 20 to more than 2000 for different relation classes). There are several relation labels,
where it is hard to draw hard label boundaries, for example, PER : COUNT RY _OF_BIRT H
and COUNT RIES_OF_RESIDENCE, ORG : SUBSIDIARIES and ORG : MEMBERS. All
these challenges motivate us to use this dataset for our work.



Dataset # Rel. # Examples
SemEval-2010 Task 8 19 10,717
ACE 2004 24 16,771
NYT Corpus 52 695,059
TACRED 42 106,624

Table 3.1 A comparison of RC dataset statistics.

3.2.2 Relation Classification Models and Relation Hierarchy

Earlier methods relied on statistical learning [40, 33, 38, 39] with hand-crafted feature set on
ACE datasets [27]. They were later followed by deep neural models [42, 44] on the SemEval
[26] dataset. In recent years, TACRED [7] has become the most-widely used dataset for RC
because it contains a relatively high number of relation classes and corresponding instances.
Various deep learning approaches such as position aware attention on top of LSTM [7], graph
convolutional network over dependency parse tree of a sentence [57], transformer [19] based
[48], fine-tuning pre-trained BERT model [58], knowledge infused language models [59],
and models [50] utilising entity specific information along with language models have been
explored.

Given the absence of a hierarchy of relations in RC datasets, very few efforts have
been made in this direction. Nonetheless, previous works, such as [60] and [61] aim
for hierarchical relation extraction on distantly supervised 2010 NYT dataset [29] by
introducing a hierarchical attention model and reinforcement learning respectively. Earlier,
Wang et. al.[62] also proposed a SVM-based model for hierarchical RE on ACE 2004 dataset.
In a recent work [63], Chen et. al. proposed a bi-directional LSTM network along with a
loss function to optimize the RC model. They have used the hierarchy from Wikidata. While
defining the loss function, they consider the relations of each layer as the ground truth to
make a prediction and compute the loss at each layer as the hierarchical loss. Nonetheless,
these works are subject to the following restrictions: (i) They consider a very shallow
hierarchy specific to the given dataset, (ii) The use of hierarchy is restricted to their proposed
methodology, and (iii). Their proposed approach cannot be generalized to general RC.

Building and utilizing a relation hierarchy is largely an unexplored research direction in
the RC domain. In this work, we introduce a relation hierarchy by organizing more than 600
relations between PERSON, ORGANIZATION, and LOCATION entity types collected from three
KBs. We further derive a similar relation hierarchy for TACRED and use it to explore the
impact of using a relation hierarchy on the performance of baseline models. To the best of



Fig. 3.2 Framework for creating taxonomical relation hierarchy using Wikipedia Infobox
Templates, Wikidata, and DBpedia.
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our knowledge, this is the first work that utilizes label hierarchy in learning from noisy and
imbalanced datasets.

3.3 Relation Hierarchy

A relation triple (e1,r, e2) represents relation r between subject entity e1 and object entity e2.
We extract triples from DBpedia and Wikidata dump. The triples are later used for finding
relations and support set of relations.

Figure 3.2 summarizes the following steps of hierarchy creation:

• we start with extracting relations from Wikipedia Infobox templates manually, and
DBpedia and Wikidata in a data-driven way between person, organization, and location
entity types.

• In step 2 we canonicalize relation names for smooth merging of hierarchy.

• In step 3, we filter relations from the list based on the frequency.

• In step 4, we create hierarchy for individual knowledge resource manually.

• Finally, we create a relation hierarchy of 623 canonical relations.

All the mentioned steps are discussed in details in following subsections,

3.3.1 Getting relation list

Wikipedia infobox stores structured information in the form of attribute-value pairs following
an infobox template. Since entries in the infobox are done manually by crowd-sourced
workers, we observed lots of irregularities while parsing the infobox. Therefore, instead
of collecting triples and relations automatically from infobox, we chose to manually scan



template pages to curate a list of relations. We selected 170, 77 and 89 infobox templates for
person, organization, and location respectively. We followed Wikipedia infobox template
categories while selecting templates. And used translation count2 for filtering templates.
We refer to this list of relations as Li. For DBpedia and Wikidata, we follow a data-driven
approach. for generating triples, we parse Wikidata JSON dump3 and DBpedia mapping-
based Infobox dump4.

Then we collect all the unique relations from the triples dataset (where e1 and e2 are
one of the three types: person, organization, and location). The two lists of relations are
henceforth referred as Ld (from DBpedia) and Lw (from Wikidata).

3.3.2 Name canonicalization

Even though the three sources are closely related, they follow different nomenclature for
their relations. Thus, the same relation can have different names in different lists. For
example, consider relation placeOfBirth, which is birth_place in Wikipedia Infobox ,
birthPlace in DBpedia, and place of birth in Wikidata.

To canonicalize relation names, we follow steps from the Algorithm 1. If a relation name
is a single word, consider it as it is, given all the characters are in small-case. Otherwise,
capitalize all the words except the first word, remove the in-between spaces, and concatenate
all the words. For example, place of birth becomes placeOfBirth. In the case of multiple
names for the same relation (as in the earlier example), we choose one of them and store the
respective mapping. Following this procedure, we obtain canonicalized relation lists Ci, Cd

and Cw from Li, Ld and Lw respectively.

3.3.3 Filtering

This step ensures that our relation hierarchy focuses on frequently occurring relations. We
analysed the frequency of each relation label across infoboxes to identify the threshold for
filtering. We observed that more than 60% of the relation labels have frequency of more than
100. Further, it covers the proportionate number of relations for all three entity types (Person,
Location, and Organisation). This was not the case when the number was 200, 500, or 1000.
We adopted to the same threshold (100) for filtering from both DBpedia and Wikidata.

2Number of Wikipedia pages that use the template
3https://dumps.wikimedia.org/enwiki/
4http://downloads.dbpedia.org/2016-10/core/

https://dumps.wikimedia.org/enwiki/
http://downloads.dbpedia.org/2016-10/core/


Algorithm 1 Steps for canonicalising relation names
Input: relation r
Output: c_relation

1: if len(relation.split()) == 1 then
2: c_relation = relation.lower().
3: else
4: num_words = len(relation)
5: words = relation.split()
6: while num_words > 0 do
7: c_relation = c_relation+words[num_words].capitalize().
8: num_word = num_word −1
9: end while

10: end if
11: return relabel_sids,eliminate_sids

We filter out relations from the list Ci if they appear in less than 100 infoboxes. Similarly,
a relation is filtered out from the lists Cd and Cw if it has less than 100 associated triples in
their support set.

3.3.4 Hierarchy creation

According to [64], a relation r describes a relationship between two entities by associating
them with certain entity types. Thus, it is natural to classify based on the subject and object
entity types at the top level. Consider the relation founder, subject entity type is organization
(org) and object entity is of type person (per), thus it falls under the branch org-per. Since
it is organization specific relation, org-per.founder will fall under org which falls under
the root rel.

Initial levels of hierarchy are described as:

• At depth 0: root node referred as rel

• At depth 1: we distinguish based on subject entity type. In this level there are 3 nodes
per (person relations), loc (location relations), and org (organization relations).

• At depth 2: we distinguish based on both subject and object entities. In this level, there
are 9 nodes (For example, per-loc subject entity: person and object entity: location)
and each node of this level are henceforth referred as a bucket for relations.



All the relations from the three filtered lists are distributed across 9 buckets. We manually
arrange relations in the hierarchy whenever is-a association exists between two relations.

Taxonomically, similar relations (child nodes) are placed under the same parent node. If
the parent node is not present in the filtered relation list, the canonical relation list is referred
to. If present, that referred relation is chosen. Otherwise, a new parent node is introduced. In
our hierarchy, we have introduced a total of 12 new nodes.

Hierarchy creation is done manually based on our collective judgment following the
relation triples (collected from KBs) associated with each relation. Manual efforts ensure the
hierarchy is more interpretable and noise-free.

3.3.5 Hierarchy merging

Hierarchies Hi, Hd and Hw are created following the guidelines from the previous step.
Finally, they are merged into one common hierarchy H by eliminating the duplicates and
placing taxonomically similar relations under the same branch.

3.4 Application of Relation Hierarchy: Case study on TA-
CRED

We explore some of the potential uses of a relation hierarchy with the help of TACRED, a
large-scale noisy and imbalanced relation classification dataset. In particular, we present the
following use cases: (i) ambiguous instance filtering, (ii) relabeling of instances belonging to
overlapping relation classes, and (iii) scaled cross-entropy loss definition using the relation
hierarchy.First, we briefly describe the TACRED and the creation of a hierarchy of TACRED
relation labels following the TRH template discussed in Section 3.3.

3.4.1 TACRED and corresponding relation hierarchy

TACRED is a sentence-level dataset where each instance contains a sentence and a pair of
entities. One entity represents the subject entity and the other represents the object entity.
Each instance is labeled with one of the 41 relation labels (positive label) or no_relation
(negative label). Negative instances account for almost 80% of the entire dataset. The



TACRED dataset has a total of seventeen entity types. We arranged these fine entity types
into four coarse entity types. Table 3.2 demonstrate the mapping between the entity types.
We observe that subject entity types for all relations in TACRED are either PERSON or
ORGANIZAT ION and object entity types can be mapped to one of the four coarse types,
namely, PERSON, ORGANIZAT ION, LOCAT ION, and MISC.

Coarse Entity Type Fine Entity Types
PERSON PERSON

ORGANIZATION ORGANIZATION
LOCATION CITY, STATE_OR_PROVINCE, COUNTRY, LOCATION

MISCELLANEOUS
TITLE, RELIGION, NUMBER, URL, DATE, DURATION, NATIONALITY,
CAUSE_OF_DEATH, MISC, CRIMINAL_CHARGE, IDEOLOGY

Table 3.2 Mapping between coarse and fine entity types

Following the steps mentioned in the earlier Section 3.3, we create eight relation buckets
based on the two subject and four object entity types. Relations in each bucket are manually
arranged following is-a relation. We have also introduced a few new relations in the hierarchy
to better represent the taxonomic relation between the relations. For example, we have
introduced a new relation PER : LOCAT ION_OF_BIRT H. This relation is the parent node
for the following relations: PER : CITY _OF_BIRT H, PER : COUNT RY _OF_BIRT H, and
PER : STAT E_OR_PROV INCE_OF_BIRT H. In all, we introduce a total of seventeen new
relations corresponding to non-leaf nodes in the hierarchy. All relations from the original
TACRED dataset are mapped to the leaf nodes in the relation hierarchy. Figure 3.3 shows the
TRH corresponding to the TACRED relation labels.

3.4.2 Filtering Ambiguous Instances

A relation is defined between a pair of entities; hence, the domain and range of a relation
are defined over entity types. Certain relations can be defined with multiple subject and
object entity types. For example, relation PARENT can exist between two PERSONs as
well as between two ORGANIZAT IONs. Thus, some relations can have multiple entity
types for subject and object entities. Moreover, in one of the recent works [65], while
evaluating various RC models, the authors observed that the models rely heavily on entity
type information. Therefore, RC needs to consider unambiguous combinations of subject and
object entity types for a given relation. However, some instances in the TACRED dataset do
not follow this rule. For example, there are instances in the training datasets (Figure 3.4) with
COUNT RY and LOCAT ION as the object entity type for relation ORG : SUBSIDIARIES.



Fig. 3.3 TACRED Relation Hierarchy

Fig. 3.4 Sample example with incorrect annotation from TACRED.

Hailing the initiative, the Afghan finance minister said that the agreement 
was part of a process that begun in 2007, when Afghanistan first begun its 
debt relief program under the International Monetary Fund (IFM) and the 
World Bank' Heavily Indebted Poor Countries Initiative (HIPC).

(International Monetary Fund, Afghanistan)

Annotated Relation Label: org:subsidiaries

A country or location cannot be a subsidiary of an organization. This indicates an annotation
error.

On examining positive instances from the TACRED training dataset, we found that all
the positive instances can be divided into 69 distinct relation triples (subj_ent_type, relation,



obj_ent_type). Out of these 69 distinct triples, there are 11 triples for 6 relations with
ambiguous object entity types. Table 3.3 lists all such incorrect triples. The table also specifies
the percentage of the relation instances belonging to a given triple category. Consider the
relation ORG : ALT ERNAT E_NAMES. Out of all the instances of this relation in the training
dataset, 2.85% instances are of the type where the subject entity is an ORGANIZAT ION
and the object entity type is MISC. We believe that these data points are potentially noisy.
Because an alternate name for an organization should be typed as an organization. Similarly,
we believe that the rest of the triples in the table also correspond to potentially noisy instances.
Samples corresponding to such triples should be eliminated while training and testing the
RC models. We eliminated 164 sentences (Table 3.4) from the TACRED dataset following
this approach.

subj_ent_type relation obj_ent_type % instances for a relation
train dev test

ORGANIZATION ORG:ALTERNATE_NAMES MISC 2.85 2.37 0.94
ORGANIZATION ORG:MEMBER_OF COUNTRY 13.11 6.45 16.67
ORGANIZATION ORG:MEMBER_OF LOCATION 9.02 3.23 5.56
ORGANIZATION ORG:MEMBER_OF STATE_OR_PROVINCE 4.1 0 0
ORGANIZATION ORG:PARENTS COUNTRY 5.24 4.17 3.23
ORGANIZATION ORG:PARENTS LOCATION 2.45 1.04 1.61
ORGANIZATION ORG:PARENTS STATE_OR_PROVINCE 1.05 0 0
ORGANIZATION ORG:SUBSIDIARIES COUNTRY 0.34 1.77 0
ORGANIZATION ORG:SUBSIDIARIES LOCATION 9.12 13.27 2.27

PERSON PER:ALTERNATE_NAMES MISC 7.69 2.63 9.09
PERSON PER:EMPLOYEE_OF LOCATION 0.07 0.27 0.38

Table 3.3 Statistics of incorrect combinations of subject and object entity types for a given
relation

Based on manual evaluation of misclassified instances, [6] has shown that there are
significant numbers of instances incorrectly assigned as NO_RELAT ION, even though one
of the 41 relations is valid. However, identifying incorrectly negatively labeled instances is
beyond the scope of this work.

Partition #examples filtered % of Positive labeled instances
train 117 0.9 %
dev 35 0.64 %
test 12 0.36 %
total 164 0.75 %

Table 3.4 The Number of instances filtered from each partition of TACRED. Total number
of positive train instance: 13012, positive dev instances: 5436, and positive test

instances: 3325 .



3.4.3 Fine to Coarse Re-Labeling

In supervised datasets, data sparsity for some class labels is a very common problem.
Furthermore, this problem leads to the long tail distribution of class labels, eventually hurting
the overall model performance. TACRED also has an inequitable distribution of instances in
training data. For example, Figure 3.5 shows that each of the top 3 relations has more than
2000 instances, while the bottom 5 have fewer than 100 instances.

Fig. 3.5 Histogram representing distribution of examples in training data across relation
labels. Source: https://nlp.stanford.edu/projects/tacred/

The other challenge with RC datasets is the identification of class boundaries between
certain relations labels due to overlapping contexts. This problem is presented for relations
LOCAT ION_OF_BIRT H, LOCAT ION_OF_DEAT H and LOCAT IONS_OF_RESIDENCES
in Table 3.5. When one such relation is also part of the long-tail distribution, then learning
about such relation labels gets even more difficult. For example, relation COUNT RY _OF_DEAT H
has only 5 training instances, whereas the relation COUNT RIES_OF_RESIDENCES has
382 training instances. As a result, all the COUNT RY _OF_DEAT H test and dev instances
are classified as COUNT RIES_OF_RESIDENCES.

To tackle the above-mentioned problems, we leverage relation between relations from
relation hierarchy. We merge the finer relations from relation hierarchy into coarser rela-
tions (Table 3.6). For example, relations CITY _OF_BIRT H, COUNT RY _OF_BIRT H, and
STAT E_OR_PROV INCE_OF_BIRT H are fine-grained for relation LOCAT ION_OF_BIRT H.
Thus instances of all 3 relations are merged into one. Although this decreases the granularity

https://nlp.stanford.edu/projects/tacred/


Sentences Entity Pair Relation Other Valid Relation
Steve Jobs was born and raised in
California, US, where he later
passed away aged 56.

Steve Jobs, California STATE_OF_RESIDENCE
STATE_OF_BIRTH,
STATE_OF_DEATH

Albert Einstein was born in Ulm,
Germany. Albert Einstein, Ulm CITY_OF_BIRTH CITY_OF_RESIDENCE

Albert attended Catholic Elementary
School in Munich. Albert, Munich CITY_OF_RESIDENCE -

Einstein accepted an earlier offer from
the Institute for Advanced Study,
in Princeton, New Jersey, to become
a resident scholar.

Einstein, New Jersey CITY_OF_RESIDENCE -

Albert Einstein died aged 76 in Princeton,
New Jersey, US. Albert Einstein, New Jersey CITY_OF_DEATH CITY_OF_RESIDENCE

Table 3.5 Examples illustrating certain relations such as LOCATION_OF_BIRTH,
LOCATIONS_OF_RESIDENCES, and LOCATION_OF_DEATH can be

derived from a similar context.

it helps in increasing the number of instances for a similar relation concept, thus helping
the models learn relation boundaries efficiently. Once the coarser relation is learned, a finer
relation label can be learned by modifying the objective as multi-label classification [66] or
using hierarchy aware models [67].

Old Relation Count New Relation Count
Train Dev Test Train Dev Test

ORG:CITY_OF_HEADQUARTERS 382 109 82
ORG:LOCATION_OF_HEADQUARTERS 1079 (1.6%) 356 (1.6%) 241 (1.6%)ORG:COUNTRY_OF_HEADQUARTERS 468 177 108

ORG:STATEORPROVINCE_OF_HEADQUARTERS 229 70 51
PER:CITY_OF_BIRTH 65 33 5

PER:LOCATION_OF_BIRTH 130 (0.2 %) 77 (0.3%) 17 (0.1%)PER:COUNTRY_OF_BIRTH 27 18 4
PER:STATEORPROVINCE_OF_BIRTH 38 26 8

PER:CITY_OF_DEATH 81 118 28
PER:LOCATION_OF_DEATH 135 (0.2%) 202 (0.9%) 41 (0.3%)PER:COUNTRY_OF_DEATH 5 43 9

PER:STATEORPROVINCE_OF_DEATH 49 41 14
PER:CITIES_OF_RESIDENCES 374 179 189

PER:LOCATIONS_OF_RESIDENCES 1087 (1.6%) 448 (2%) 405 (2.6%)PER:COUNTRIES_OF_RESIDENCES 382 197 135
PER:STATESORPROVINCES_OF_RESIDENCES 331 72 81

PER:CHILDREN 211 99 37

PER:FAMILY 965 (1.4%) 424 (1.9%) 306 (2%)
PER:OTHER_FAMILY 179 80 60

PER:PARENTS 152 56 88
PER:SIBLINGS 165 30 55
PER:SPOUSE 258 159 66

Table 3.6 Relations with the number of instances in TACRED train, dev, and test datasets
before and after merging following relation hierarchy. Total number of instances

in train:68124, dev:22631, and test:15509

3.4.4 Hierarchical Distance Scaled Cross-Entropy Loss

Cross-Entropy Loss estimates the negative log-likelihood of a class label ti under a categorical
distribution y (Equation (1)).

J =−
nr

∑
i=1

tilog(yi) (1)



Here, nr is number of relation labels, t ∈Rnr is one-hot encoding to represent the ground-truth,
and y ∈ Rnr is the estimated probability for each relation label by softmax classifier.

CE loss does provide a good estimate of how far model is off in predicting the correct
label. But how far is prediction from the ground-truth is not efficiently captured. Moreover,
[68] have shown that cross-entropy loss function is not robust for multi-class classification
with noisy labels.

We introduce hierarchical scaling of cross-entropy loss in this work, considering class
labels can be organized in a label hierarchy. We refer to the proposed loss as a Hierarchical
distance scaled CE (HCE) loss. We modify the CE loss function by scaling it with the
hierarchical distance between the ground-truth and predicted label dy∗,ŷ as follows:

J∗ = dy∗,ŷ ∗ J (2)

where, J is cross-entropy loss calculated as in Equation (1), y∗ is the ground-truth and ŷ is
the predicted relation label.

This modification ensures that when the distance between the ground-truth and predicted
label is high in the hierarchical tree, it is penalized higher compared to when the distance
is smaller. For example, in the case of relation classification, if the actual relation between
a pair of entities mentioned in a sentence is PER : CIT IES_OF_RESIDENCES and the
predicted relation is ORG : CITY _OF_HEADQUART ERS the loss value is multiplied by
a higher constant than when the predicted label is PER : CITY _OF_BIRT H following the
relation hierarchy.

As the HCE loss function involves the multiplication of constants to the CE loss function,
the gradient is propagated backward by scaling it with the same factor.

3.5 Experiment Setup

In this section, we discuss empirical setup along with baselines and evaluation metrics for our
proposed strategies filtering, relabeling, and HCE Loss on large-scale RC dataset TACRED.



3.5.1 Baseline Models for Dataset Evaluaion

We have used some the state-of-the-art RC model for the dataset evaluation. Brief description
of each of them is as follows:

PALSTM [7]: To efficiently encode the contribution of each word and the position of
entities in the sentence representation, authors have included position-aware attention on
top of the neural sequence model (LSTM [15]). A simple LSTM produces a sequence of
hidden states {ht}t=1...T , where T is the length of input sequence. The final representation is
obtained by taking the dot product of the attention weights at with ht , which is then fed to
the fully connected layer followed by a softmax layer for relation classification.

SpanBERT [9]: SpanBERT extends BERT model [24] by pre-training with masking a
contiguous random span and training the span boundary representation to predict the entire
content of the marked span. For RC, they consider the subject and object entity as two spans
and predict the relation between them. In the final layer, they add a softmax layer on the
[CLS] token to predict the relation label. We have used SpanBERT-base-cased model for
all our experiments.

BERT and RoBERTA [50]: We follow [50] to obtain baseline results of BERT [24] and
RoBERTA [25] models for the RC task. The authors in [50] highlighted the entity informa-
tion such as mention and type using special markers and used the concatenation of entity
representation for relation classification. Their approach using RoBERTA achieved the best
performance on TACRED (F1: 74.2) and ReTACRED (F1: 91.3) beating all other baselines
in our re-implementation. We have used BERT-base-cased and RoBERTA-large-cased
models for all our experiments.

We trained all our TACRED-based models using the hyper-parameters reported in their
respective contribution.

3.5.2 Experimental Setup and Baseline for Proposed Loss Function

The CE loss function is the most commonly used loss function for multi-class classification
problems. Hence, we evaluate the performance of our proposed HCE Loss by considering
CE loss as the baseline. For all our HCE loss experimentation, we fine-tuned the hyper-
parameters of the SOTA model SpanBERT[9]. With relevant fine-tuning, similar results can
be obtained for other models as well.



Since NO_RELAT ION is not part of the relation set, there must be an appropriate penalty
associated with it. Thus, we did some experiments to determine the penalty to impose when
the true label is a RELAT ION and the prediction is NO_RELAT ION and vice-versa. We
observe the best performance corresponds to the case when we penalize the model with twice
the maximum distance if the label is a relation and the prediction is NO_RELAT ION and
1.75 times the maximum distance for the reverse misclassification.

3.5.3 Evaluation Metric

For all our experiments, we consider macro-averaged Precision (P), Recall (R), and F1-
Score (F1). We compute the metric independently for each relation class r and then take the
average. P, R, and F1 are defined by the equations Eq 6, Eq 7 and Eq 8 respectively.

Precision(P) =
Number o f instances correctly classi f ied as relation r

Total number o f instances predicted as relation r
(6)

Recall(R) =
Number o f instances correctly classi f ied as relation r

Actual number o f instances with relation r
(7)

F1 Score(F1) =
2PR

P + R
(8)

We also consider positive accuracy, i.e. how efficient a model is at correctly classifying
positive relations for evaluation. This is equivalent to a macro-averaged recall.

All the above-mentioned metrics efficiently provide overall information on how well the
model is performing. Even though these metrics are efficient at judging the correctness of
predictions made by the RC models, they fail to provide any information on the severity of
error while evaluating the RC models. Hence, we have proposed prediction at distance d to
measure the performance of the model with fine-grained details.

Prediction at distance d shows the fine-grained analysis of model errors. For each test
data instance, we will have the Annotation Label (AL) from the dataset and the Predicted
Label (PL) from the model. We locate both AL and PL in our relation hierarchy and compute
the shortest distance path between them. The greater the distance between PL and AL, the
more severe the error in model prediction.



Relation
Count

Relation
@d = 3

Relation
@d = 4

Relation
@d = 5

H 623 357 247 19
Hi 351 177 168 6
Hd 282 162 110 10
Hw 267 209 52 6

Table 3.7 Relation Count of hierarchies and number of relations at various depths
(Relation @ d =).

Person Organization Location
B A B A B A

Infobox 660 154 228 165 183 84
Dbpedia 94 92 103 99 91 86
Wikidata 71 71 73 72 98 97

Table 3.8 Relation counts before (B) and after (A) canonicalization.

3.6 Results & Discussion

3.6.1 Relation hierarchy

The basic statistics of three individual hierarchies Hi, Hd, Hw, and the common hierarchy
H are presented in Table 3.7. All hierarchies have a maximum depth of 5 (6 levels). All
relations from the filtered lists are distributed at depths of 3, 4, and 5. The distribution
of relations at depths 4 and 5 gives more fine-grained information about relations shared
between two entities. In the common hierarchy, loc-loc bucket has the highest number of
relations (113), whereas org-loc bucket has the least number (24).

Effects of canonicalization: Relation name canonicalization has played an important
role in eliminating redundant relations from Li (Table 3.8). This, in turn, helped in finding
common relations among the resources. Since DBpedia and Wikidata are structured at their
core, canonicalization has not affected much.

Complementarity of resources: The contribution of resources to relation buckets is
depicted in Figure 3.7. Manually collected relations from Wikipedia Infobox dominate 7 out
of the 9 buckets. The contributions of DBpedia and Wikidata towards each bucket is almost
similar. Figure 3.6 shows the contribution of each resource towards the common hierarchy.



Fig. 3.6 Contribution of resources towards common hierarchy.

Fig. 3.7 Distribution of relations from different resources in each of the 9 buckets.

Only about 10% relations are common among the three resources. This analysis indicates
the complementarity of the resources.

Comparison with relation list of RC datasets: The main objective behind this study
was to highlight the major bottlenecks in RC datasets (Sec 3.1). Table 3.9 briefly shows
how relations from RC datasets get subsumed in our relation hierarchy. Our hierarchy
covers an average of 62% of relations when all the relations in a dataset are considered
and 85.35% of relations when the relation’s subject and object entity types are restricted to
person, organization, and location types.



RC
Dataset

relation
count

depth relation
subsumed

ACE 2004 24 (17) 1 11
NYT2010
Dataset

51 (47) 0 35

TACRED 41 (29) 0 27
Relation
Hierarchy

623 5
(3.42)

-

Table 3.9 RE Datasets with relation count(relation with subject and object entity of type
person, organization, and location), hierarchy depth, and numbers of relation

subsumed in Relation Hierarchy

3.6.2 Model Performance on TACRED and variants

3.6.2.1 Effects of Filtering:

TACRED is a large crowd-sourced dataset containing more than 100 thousand sentences in
total. And like any other large dataset, it is no exception to label noise. Recent studies [6, 8]
have shed some light on the noisiness of the TACRED. On top of that, they have also cleaned
TACRED by reannotation and have shown performance improvement in their respective new
variants. In this work, we have proposed a heuristic utilizing relation hierarchy to clean the
noisy positive instances from the dataset. We generated TACRED-F by filtering out instances
where subject and object entity types do not align with the relation label. Table 3.10 presents
the results of our filtering strategy. Almost all the models have shown improved performance,
although not very significant since the number of filtered out instances is relatively small.
This heuristic can be further improved by considering fine-grained entity type information,
but that part is left for future experimentation as of now.

3.6.2.2 Effects of Relabeling

The main motivation behind relabeling instances with their coarser labels is to mitigate
the effects of relation labels with fewer instances sharing context with other relation labels.
As previously discussed, instances of relation labels in the per-loc bucket are similar to
one another. For example, it is often the case that PER : CITY _OF_BIRT H or PER :
CITY _OF_DEAT H is often the same as PER : CIT IES_OF_RESIDENCES. And relation
labels with fewer instances often get classified with the other relation labels. Combining
relation labels with similar information improves the training set for individual relation labels.



Model Metric TACRED TACRev
Original TACRED-F Original TACRev-F

PARNN[7]
Precision 66.5 63.8 71.1 68.5

Recall 65.7 68.6 74.7 78.2
F1 66.1 66.1 72.9 73

SpanBERT[9]
Precision 66.4 67.8 71.3 72.7

Recall 66.1 65.7 65.6 74.8
F1 66.3 66.7 73.4 73.8

BERT[50]
Precision 71.1 72.6 75.9 78.1

Recall 71.4 70.8 81.1 80.9
F1 71.2 71.7 78.4 79.5

RoBERTA[50]
Precision 75.4 75.3 81.4 81.4

Recall 73.1 74.3 84.1 85.4
F1 74.2 74.8 82.7 83.4

Table 3.10 Evaluation results of dataset filtering on TACRED and TACRev following four
baseline models.

The table shows the performance of the model when trained and evaluated on the new dataset
TACRED-FR. It can be seen that all the models show decent performance improvement.

Alt et al. [6] have discussed in their paper that TACRED relations under the bucket
per− loc and per− per are affecting the model performance. We observed performance
improvement in all coarser relations except PER : LOCAT IONS_OF_RESIDENCES after
relabeling those instances with their coarser relation labels (Table 3.12).

3.6.3 Performance of Proposed Loss Function on TACRED

To better understand the learning with HCE loss, we tracked the F1-score and accuracy of
positive instances on the validation set during the training (Figure 3.8). Even though the
model using HCE loss is relatively slow to converge, the model gets better at predicting the
positive instances (Figure 3.8b). This shows that scaling with the distance between prediction
and ground truth improves learning.

One of the main objectives behind scaling the CE loss using RH was to reduce the number
of predictions at larger distances. For example, instances with AL belonging to per relation
bucket getting PL from org relation bucket. And, it is evident from Prediction at distance
d results from Table 3.13 that our proposed heuristic is very close to the objective. All
the relations inside sub j− entity bucket (per or org) in the TACRED TRH (Figure 3.3) are



Model Metric TACRED TACRev
Original TACRED-FR Original TACRev-FR

PARNN[7]
Precision 66.5 68.1 71.1 73.8

Recall 65.7 65.7 74.7 75.7
F1 66.1 66.9 72.9 74.7

SpanBERT[9]
Precision 66.4 70.7 71.3 76.7

Recall 66.1 65.5 75.6 75.5
F1 66.3 68 73.4 76.1

BERT[50]
Precision 71.1 73.1 75.9 78.3

Recall 71.4 71.4 81.1 81.3
F1 71.2 72.2 78.4 79.8

RoBERTA[50]
Precision 75.4 75.2 81.4 81

Recall 73.1 74.5 84.1 85.2
F1 74.2 74.9 82.7 83.1

Table 3.11 Evaluation results of dataset relabeling followed by filtering on TACRED and
TACRev following four baseline models.

Relation #Test Instances % Correct TACRED Prediction % Correct TACRED-FR Prediction
PER:FAMILY 306 45.75 72.22

PER:LOCATION_OF_BIRTH 18 27.78 33.33
PER:LOCATION_OF_DEATH 51 15.69 31.37

PER:LOCATIONS_OF_RESIDENCES 418 52.39 51.91

Table 3.12 Comparison of SpanBERT performance for challenging relations group on
TACRED and TACRED-FR. % Correct TACRED Prediction is the percentage

of relation-label instance with correct prediction when trained on TACRED
dataset. % Correct TACRED-FR Prediction is the percentage of relation-label

instance with correct prediction when trained on TACRED-FR dataset.

Fig. 3.8 Dev set performance at different epoch for SpanBERT model.

(a) Dev F1 (b) Dev Positive Accuracy



Dataset Methods P R F1 Prediction at distance d=x
d=0 d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=16

TACRED CE Loss 66.4 66.1 66.3 2199 53 28 18 43 36 39 5 904
HCE Loss 68.9 69.2 69.1 2302 89 25 29 3 0 0 0 877

TACRED-FR CE Loss 70.7 65.5 68 2171 31 0 3 30 25 32 6 1015
HCE Loss 68.4 68.2 68.3 2259 24 0 0 21 9 31 0 969

Table 3.13 Test Performance of different methods on TACRED dataset using SOTA model
SpanBERT. All the results are based on our implementation of original code

provided by the author.

at maximum distance of 5, and the entries for distances 6, 7, and 8 in the Table 3.13 are
significantly reduced for HCE loss.

Table 3.13 presents the performance of the SpanBERT model using the proposed
loss and baseline CE loss functions. The model using HCE loss shows an improve-
ment of 2.8% over the baseline. On further analyzing the prediction made by the model,
we observe that (i) there is a significant increase in prediction as one of the relation in-
stead of NO_RELAT ION, (ii) earlier some of the instances with relation label PER :
COUNT RIES_OF_RESIDENCES and PER : CIT IES_OF_RESIDENCES were predicted
as ORG : COUNT RY _OF_HEADQUART ERS and ORG : CITY _OF_HEADQUART ERS
respectively, but with HCE Loss that got reduced.

The qualitative error analysis of the propose loss function, HCELoss, is presented in the
Table 3.14. It can be observed from the selected samples that,

1. Examples 1, 3, and 4 show improvement in models’ confusion between highly similar
contexts.

2. Example 2 shows correction in longer distance prediction.

Both these observation supports our intuition behind using the hierarchical distance
between class labels for scaling the cross entropy loss function.

3.7 Chapter Summary

This work builds upon the creation of a taxonomical relation hierarchy (TRH) of 623 relation
labels, exploring more than 1500 properties and attributes from multiple knowledge bases,
and shows a few important impacts on the large-scale relation classification task. It first
discusses how flat labels of any existing relation classification dataset can be converted into a



Sentence Gold Label CELoss Prediction HCELoss Prediction
Although her family was from Arkansas, she was born in Washington state,

where her father was working on a construction project. per:stateorprovince_of_birth per:stateorprovinces_of_residence per:stateorprovince_of_birth

“ I learn from students and I challenge them,” says Heloise, 58,
who took over the family hints business when her mother, also named Heloise,

died in 1977.
per:parents per:other_family per:parents

Wen’s wife Zhou Xiaoya and three senior Chongqing police officers -
Huang Daiqiang, Zhao Liming, and Chen Tao - will also receive their verdicts

at the same court Wednesday afternoon .
per:cities_of_residence org:city_of_headquarters per:cities_of_residence

American International Group said it had transferred ownership to the
Federal Reserve Bank of New York parts of two international subsidiaries:

American Life Insurance Company (ALICO) and
American International Assurance Company (AIA).

org:parents org:subsidiaries org:parents

Table 3.14 Qualitative Analysis of sample test instances for Hierarchical Loss Function.
The subject entity is highlighted in red color and the object entity in green

color.

TRH. Second, it shows the use of TRH in efficient learning from the noisy and imbalanced
RC dataset TACRED by filtering and relabeling the challenging instances. And, finally, this
work shows the use of scaled CE loss using the TRH can further improve the performance of
the models.

Our proposed approach could improve the model’s performance by 1% to 3%, whereas
there are few works involving experts [6] and crowd-sourced reannotation [8] improving the
performance by 8% to 13%. This implies that there are still challenges in TACRED that need
to be explored. Furthermore, because our proposed heuristics are built upon the basic relation
definition of subject_entity and object_enity, it is difficult to address any issues associated
with NO_RELAT ION instances, which alt et al.[6] have shown to be noisy.

This highlights the need for a low-cost, thorough evaluation of both positive and negative
instances. We will work in this direction in Chapter 4. We have also discussed some of the
future works at the end in the Chapter 6.





Chapter 4

Model-based Characterization and
Reduction of noisy instances from RC
dataset

Chapter Highlights

• Existing Works have shown that TACARED is a noisy dataset.

• In our previous chapter, we have proposed relation hierarchy based heuristic to filter-out
the noisy instances. However, we could only filter a few positive instances.

• The underlying reason for the noise in TACRED is still largely unexplored.

• In this chapter, we first propose a model-based characterization of noise in the TACRED
dataset.

• We thoroughly analyzed baseline models’ prediction and performance.

• Our analysis indicates that the negative examples, i.e. examples labeled with NO_RELAT ION
are the main source of noise in the dataset.

• We explore two semi-automated nearest-neighbour strategies to reduce noise from the
TACRED by elimination and reannotation.

• The first strategy, Intrinsic Strategy (IS) is based on finding the noisy nearest neighbours
of instances with false negative predictions.

• The second strategy, Extrinsic Strategy (ES) is based on finding the noisy nearest
neighbours of a clean subset of instances.



• Our empirical analysis of both the strategies suggests that elimination and reannotation
following ES provide better results.

• This chapter is based on the paper “Noise in Relation Classification Dataset TACRED:
Characterization and Reduction” submitted to the ACM Transactions on Knowledge
Discovery from Data (ACM TKDD).

Abstract

In the previous chapter, we addressed the first four RC challenges, highlighted in Chapter
1, using taxonomical relation hierarchy-based heuristics. Our empirical observations and
earlier studies suggest that label noise in the TACRED is far more prominent than any
other challenge, considering the improvement in models’ performance when reannotating
or filtering some of these noisy instances. All these approaches entirely focus on finding
noisy instances by following experts, heuristics, or crowd efforts. Consequently, the nature of
noise in the dataset remains largely unexplored. Therefore, in this chapter, we first, explore
model-based approaches to characterize the primary cause of the noise in TACRED. Then,
we identify the potentially noisy instances.

To achieve the first goal, we examine the predictions and performance of state-of-the-art
(SOTA) models to identify the source of the noise in the dataset. Our analysis of TACRED
shows that the majority of the noise in the dataset originates from the instances labelled
as no_relation which are negative examples. For the second objective, we explore two
nearest-neighbor-based strategies to automatically identify potentially noisy examples for
elimination and reannotation. Our first strategy, referred to as Intrinsic Strategy (IS), is
based on the assumption that positive examples are clean. Thus, we have used false-negative
predictions to identify noisy negative examples. Whereas, our second approach, referred to
as Extrinsic Strategy, is based on using a clean subset of the dataset to identify potentially
noisy negative examples.

Finally, we retrained the SOTA models on the eliminated and reannotated datasets. Our
empirical results based on two SOTA models trained on TACRED-E following the IS show
an average 4% F1-score improvement, whereas reannotation (TACRED-R) does not improve
the original results. However, following ES, SOTA models show the average F1-score
improvement of 3.8% and 4.4% when trained on respective eliminated (TACRED-EN) and
reannotated (TACRED-RN) datasets. We further extended the ES for cleaning positive



examples as well, which resulted in an average performance improvement of 5.8% and 5.6%
for the eliminated (TACRED-ENP) and reannotated (TACRED-RNP) datasets respectively.

4.1 Introduction

Recent studies [6, 8] have shown that the crowd-sourced TACRED contains significant
annotation errors. Both these studies primarily rely on manual intervention in reannotating
the partial or complete TACRED. Although [6] did use multiple models to identify the most
challenging or error-causing instances from test and dev sets of TACRED, a subset of the
identified instances was manually reannotated. On the other hand, [8] comprehensively
analyzed the TACRED instances manually and modified the annotation guidelines for crowd-
sourced reannotation. Both studies have shown significant performance improvement on the
respective revised test sets. Even though the impact of these studies is significant, primary
dependence on manual intervention is a limiting factor due to the associated high cost of
time and money. This motivated us to ask a few questions: (i) Can we identify the noisy
examples at a reasonable cost? (ii) Can we perform automated reannotation with minimal
human intervention?

Based on the above discussions and with the motivation to answer the above two questions,
in the previous chapter, we resorted to relation hierarchy to identify the noisy instances
without any human effort. However, despite the small performance gain, the approach
was limited to a few noisy positive examples only. Furthermore, the characteristics of
noisy instances remained unexamined. Therefore, in this work, we aim at (i) systematically
studying and identifying noise present in the dataset using RC models only, (ii) exploring
model-based strategies to identify noisy instances for elimination and reannotation, and (iii)
performing comparative analyses on these strategies.

To achieve the first objective, we deploy standard exploratory data analysis and machine
learning tools to identify the noise present in TACRED. Confusion matrix analysis on the
test set to generate a hypothesis on the characteristics of misclassified instances. Positive
Relation Classification Analysis to identify the strength of the baseline models. Another set of
analyses includes downsampling and binary classification between relation and no_relation
to differentiate between the impact of imbalanced and the noisy nature of data. Lastly, t-SNE
plot on a sample of test instances and top-k evaluation to analyze the nature of negative
examples in the dataset and models’ prediction. All this analysis ensures an automated
approach to identifying the cause of noise in the dataset. Moreover, all this analysis can



Fig. 4.1 Pipeline for identifying noisy examples. The two strategies differs in seed set used
for identifying noisy examples. Intrinsic Strategy: Orange (highlighted) represents using
model’s false negative prediction. Extrinsic Strategy: Purple (highlighted) represents using
clean subset of TACRED.
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be done for any classification task, thus making our approach generalized for any task or
domain.

Once the impact of the noisy nature of data on the model performance is established, the
next obvious questions are what to do and how to improve the dataset quality. "Elimination
and "reannotation" of noisy instances are two possible answers to the what question. For the
how question, we chose a model-based approach over manual intervention primarily due
to its cost-, time-, labor-effectiveness, and generalizability across datasets and tasks. We
explore two different strategies using the nearest-neighbor-based approach to automatically
identify potential noisy examples for elimination and reannotation. Figure 4.1 illustrates the
general framework adopted in this study.

The first strategy, Intrinsic Strategy (IS), assumes that the instances with positive relation
labels are clean and noise is present in instances labeled with no_relation, i.e., negative
labeled instances are potentially noisy. The assumption is based on the conclusion of the
above-mentioned analyses. With this assumption, the first strategy uses positive labeled
instances misclassified to no_relation class as a seed set to identify noisy negative examples.
The second strategy, Extrinsic Strategy (ES), uses a clean subset of TACRED instances to
identify noisy samples. In the absence of a budget for manual reannotation, we assume the
ReTACRED test set is clean. A subset of it is chosen as clean data to identify noisy instances
in the TACRED.



Extensive experimental analysis is done using two basic baseline models PALSTM [7]
and CGCN [57]. These two models are chosen mainly due to the following reasons: (i) If
relatively simple, yet competitive models can show performance improvement, then complex
models are more likely to show improvement, and (ii) limited computing resources are
required for these models. Empirical results show that eliminating or reannotating a small
set of examples using a subset of a clean dataset can significantly improve the process
of finding noisy instances. Our proposed strategy ES has shown an impressive average
improvement of 3.8% and 4.4% when trained on eliminated (TACRED-EN) and reannotated
(TACRED-RN) datasets respectively and an average improvement of 5.8% and 5.6% for
the eliminated (TACRED-ENP) and reannotated (TACRED-RNP) datasets respectively.
Furthermore, manual analysis of 100 instances from TACRED-EN and TACRED-RN shows
that the error rate is around 15% only.

Contribution of this chapter can be summarized as follows:

1. Automatic or model-based characterization of noise in the TACRED dataset.

2. Exploring automated elimination and reannotation strategies of a noisy dataset.

The rest of the chapter is organized as follows: in Section 4.2 we have discussed the related
works under two sub-sections: dataset evaluation and analysis and dataset reannotation. In
Section 4.3, we will show our analysis of the baseline models’ performance on TACRED to
identify the cause of the noise in the dataset. In Section 4.4, we have detailed our proposed
methods for handling noisy instances in the dataset. In sections 4.5 and 4.6, we have discussed
experiment design and results, covering the limitations of our work. Finally, in the last section
(Section 4.7), we have presented the conclusion of this work and future research directions.

4.2 Literature Review

4.2.1 Relation Classification from Noisy and Imbalanced Dataset

Given TACRED’s noisy and imbalanced nature, a few works have been proposed recently
to address these challenges. Song et al. [69] proposed a "classifier-adaptation knowledge
distillation framework (CAKD)" for relation extraction and event detection to learn from
highly imbalanced datasets. Their work is motivated by the large difference in the number
of positive and negative samples in the dataset. The CAKD approach led to a significant
performance improvement for all the underlying models. Park et al. [70] proposed a



curriculum learning-based framework based on cross-review method [71]. They have used
pre-trained RoBERTA [50], and have achieved the state-of-the-art performance on TACRED.

4.2.2 Dataset Evaluation and Analysis

Despite the use of the leading language models pre-trained on massive corpora, the perfor-
mance on relation classification is restricted to around 75% F1-Score1 [6]. This motivated
the research community to evaluate TACRED dataset. Alt et al.[6] in their work, trained
49 different RE models, and ranked the test and dev examples following the number of
misclassification. They selected 5000 most misclassified examples for further evaluation
from linguistic experts. They identified several types of annotation errors and corrected 50%
of those examples, which leads to performance improvement of an average of 8% in F1-Score.
Model predictions for evaluating datasets have been used earlier, for reading comprehension
[72] and sentiment analysis [73] tasks.

In this work, we use models’ predictions for TACRED analysis, but in contrast to the
earlier studies, (i) it does not involve any human expert, (ii) it complements model predictions
with several additional experiments for in-depth analysis of a dataset.

4.2.3 Dataset Reannotation

While Alt et al. [6] has highlighted the flaws in the dataset, their analysis is subjected to
selected samples of test and dev sets only. So, when the supervised datasets have several
annotation flaws, an obvious solution is to either detect mislabeled examples or reannotate the
entire dataset. ReTACRED [8] did a comprehensive evaluation of TACRED and employed
the cost-efficient and improved annotation guidelines for crowd-sourced reannotation of
TACRED. After reannotation, 22.1% of labels differed from the original dataset, and the
F1-score on the new dataset improved on average by 13%.

The majority of the earlier work, using the model’s prediction for detecting noisy in-
stances, focused on eliminating misclassified instances [74]. In contrast to the existing
studies, this work focuses on the automated reannotation of the RC dataset TACRED as well.
To the best of our knowledge, this is the first work addressing the automated reannotation of
the RC dataset TACRED.

1https://paperswithcode.com/sota/relation-extraction-on-tacred

https://paperswithcode.com/sota/relation-extraction-on-tacred


Data Split # Positive #Negative # Total
Train 13012 55112 68124
Dev 5436 17195 22631
Test 3325 12184 15509

Table 4.1 Number of instances across different splits of TACRED.

Model Precision Recall F1-score Pos Acc Neg Acc Neg-Pos Accuracy
PALSTM 67.8 64.6 66.2 64.6 92.6 28

LSTM 65.4 61.6 63.4 61.6 92.6 31
BiLSTM 65.2 60.4 62.7 60.4 92.8 32.4
CGCN 71.2 62.6 66.7 62.6 94.2 31.6
GCN 69.2 60.3 64.5 60.3 93.8 33.5

Table 4.2 Baseline Model performance on TACRED. Pos Accuracy and Neg Accuracy are
model’s accuracy on predicting positive and negative examples respectively.

4.3 TACRED Analysis

TACRED is a sentence-level dataset where each example contains a sentence and a pair of
entities. One entity represent the subject entity and the other represents the object entity.
Each example is labelled with one of the 41 relation labels (positive classes) or no_relation
(negative class). Table 4.1 gives the summary statistics of TACRED across the three splits of
training, dev, and test sets. We can observe that the negative class accounts for almost 80%
of the entire dataset.

Since its introduction 4 years ago, numerous deep learning models based on LSTM [7],
graph convolutional neural network [57, 75], and language models [9, 49, 51] have been
proposed and benchmarked on it. Despite the models’ increasing complexity, performance
on TACRED has been restricted to around 75% F1 score. In recent years, some of the works
[6] and [8] have attempted to manually analyze and re-annotate TACRED and have achieved
significant improvements in the respective updated datasets.

We first analyze the performance of a few baseline models, including PALSTM [7]
and CGCN [57], and observe that model’s accuracy in predicting negatively labeled data
is significantly higher in comparison to positively labeled datasets (Table 4.2), a common
phenomenon on TACRED for other models [9, 51] as well. This makes us question, "Where
do models go wrong in accurately predicting positive examples?"

To better understand the model’s predictions in an attempt to answer the above question,
we examine the prediction results using a confusion matrix. Confusion matrix is a 2-d grid,
where each row represents the predicted labels’ distribution for examples belonging to a



relation class, for example, in Figure 4.3, row associating relation per:title shows that
18.2% of examples with ground truth per:title in the test set is predicted as no_relation
by the CGCN model and remaining 81.8% are predicted correctly. In both the confusion
matrices in Figures 4.2 and 4.3, we observe that for the considerable number of relations
(20 for PALSTM and 21 for CGCN), no_relation is predicted for more than 40% of its
example (entries in the first column above 40%), which indicates either of the following:

1. The chosen models are weak and could not learn to differentiate between different
classes

2. Model’s incompetence to learn due to high imbalance in the dataset.

3. There are a significant overlap between positively labeled (one of the 41 relation
classes) examples with negative examples. In other words, instances are correctly
labeled but the context is very similar.

4. There are substantial relation examples incorrectly annotated as no_relation.

We perform further analyses to establish which among the above hypotheses are likely to
be correct or have a significant impact on performance.

4.3.1 Positive Relation Classification Analysis

We trained the baseline models, excluding no_relation examples, and generated a con-
fusion matrix to comprehend the models’ relation learning potential. We observe that the
majority of diagonal elements (correct prediction; 29 and 31 relations for PALSTM and
CGCN respectively) in the Figures 4.4 and 4.5 are equal to or above 50%. The overall
performance results are shown in Table 4.3. Contrasting these results with the results
(Table 4.2 and Figures 4.2 and 4.3) of the models’ performance using the entire dataset indi-
cates that the models are capable of learning relations despite fewer training examples and
hence confirm the models’ competence. There is confusion among a few (positive) relation
classes, like per:city_of_birth and per:cities_of_residences; org:founded_by
and org:top_members/employee, but they are expected as one of the relations is a subset
of the other relation.

Based on the above discussion, we can claim that even simpler models such as PALSTM
and CGCN are capable of learning relation boundaries if the dataset is relatively clean and
has a balanced set of examples for all the classes. Another set of analyses further examines
the reason behind the low performance in the following subsections.



Fig. 4.2 Confusion Matrices for PALSTM and model; number indicates the percentage. Rows
represent the ground-truth labels and columns represent predicted labels.

4.3.2 Downsampling

In the previous subsection, we have seen that models are capable of learning relation bound-
aries among positively labeled instances in the absence of negative examples. This rules out
the models’ incompetence to learn efficiently. To further assess models’ capabilities to learn
precisely from imbalanced data, we explore downsampling the number of negative examples.
We experiment by randomly removing a portion of the negative samples from the training
and development set and not modifying the evaluation dataset. If the sampling ratio is 3:5,
that implies that out of every five no_relation examples parsed, three are taken into the
training/development set. As we move from sampling all the negative examples (ratio of 5:5)
to none of the examples (0:5), the accuracy of predicting positive examples (recall) increases
dramatically (Figure 4.6) for all the models.

On observing the trend from 0:5 to 5:5 across baselines, the effect of the imbalance in
data is quite apparent. However, if we consider a jump of 20% in negative examples (i.e.
1:5 ratio), (i) the number of positive and negative examples is almost proportionate (13012



Fig. 4.3 Confusion Matrices for CGCN and model; number indicates the percentage. Rows
represent the ground-truth labels and columns represent predicted labels.

Model F1-Score
PALSTM 88.2

LSTM 87.2
BiLSTM 86.6
CGCN 88.7
GCN 87.2

Table 4.3 Performance of baseline models on TACRED excluding no_relation
examples. Each number is reported as a percentage.

positive examples and 11022 negative examples) and (ii) the recall falls close to 10% across
all the baseline models. This sharp drop in the model’s potential to learn from positive
examples indicates that introducing negative examples brings in extra challenges apart from
a disproportionate number of samples.

4.3.3 Binary Classification

To further confirm the observations from downsampling, we formulated the RC on TACRED
as a binary classification problem. All the positive relations examples are grouped under
a single label: relation. Table 4.4 shows the performance of all baseline models for
binary classification. We assume that identifying whether a relation exists or not is a simpler



Fig. 4.4 Confusion Matrices for PALSTM models excluding no_relation; number indicates
the percentage. Rows represent the ground-truth labels and columns represent predicted
labels.

classification problem than identifying the exact relation class from 41 relation labels or no
relation.

On average, recall improves by 5.4 percent and F1-score improves by 5.2 percent across
different baseline models (refer to respective columns in Table 4.2 and Table 4.4). This
meagre change in performance hints that (i) class imbalance may not be the prominent reason,
and (ii) there are certain negative examples that either share a similar context with positive
examples or there are a significant number of incorrectly labeled negative examples.

4.3.4 t-SNE Plots

Above discussed analyses indicate that the presence of a disproportionate number of exam-
ples labeled with no_relation in the dataset may not be the prominent reason for the low
performance of models. The low performance can be attributed to the nature of negative
examples in the dataset. Therefore, to carefully study the characteristics of those examples,
we visualize their representation using t-SNE visualization. t-distributed stochastic neighbour



Fig. 4.5 Confusion Matrices for CGCN models excluding no_relation; number indicates the
percentage. Rows represent the ground-truth labels and columns represent predicted labels.

embedding (t-SNE) [76] is a non-linear dimensionality reduction algorithm for visualising
high dimensional data points by mapping them to a lower dimension, preserving the informa-
tion between the points. We use t-SNE plots to project embeddings learned for each relation
from a random batch of 3000 test set examples to a 2-d plane. From Figures 4.7a and 4.7b,
we observe that points (black dots) associating with no_relation are all over the space
which is not the case in Figures 4.8a and 4.8b, where negative examples are excluded. This
shows that embeddings or representations generated by models for negative examples are
quite similar to the embeddings of positive ones. This analysis indicates the likelihood of

Model Precision Recall F1-score
PALSTM 71.6 68.5 70

LSTM 72.5 65.8 69
BiLSTM 73.4 66.1 69.6
CGCN 73.8 68 70.8
GCN 71.4 67.1 69.2

Table 4.4 Performance of baseline models as Binary Classification (relation or no_relation)
on TACRED. Each number is reported as a percentage.



Fig. 4.6 Effect of downsampling no_relation from dataset on positive accuracy (Recall).
1:5 implies, 1 out of 5, i.e. only 20% of negative examples are selected.

Fig. 4.7 t-SNE plots for a batch of 3000 test examples. Black dots represents instances of
no_relation. Different colour represents different relation label.

(a) CGCN with no_relation (b) PALSTM with no_relation

either one or more of the following cases: (i) negative examples share context with examples
from several positive classes, (ii) negative examples do not have any specific bias towards a
particular positive class and (iii) some negative examples are potentially noisy in the sense
that they are incorrectly labeled as no_relation.

4.3.5 Top-k Evaluation

In the previous section, we analyzed inconsistencies in TACRED annotation. We have shown
that models are inefficient in learning from positive samples due to the noisy nature of
negative examples. In this section, we further examine the same from the model’s predictions
by looking at the confidence score assigned to each relation for a test example. We observed
that the difference between the first and second predictions is often minimal, with the second-



Fig. 4.8 t-SNE plots for a batch of 3000 test examples. Different colour represents different
relation label.

(a) CGCN without no_relation (b) PALSTM without no_relation

highest predicted label frequently being the actual ground truth label. This observation
motivated us to inspect the results further, and in most cases, the top two labels contain a
no_relation label. We hypothesized that even when the model correctly predicts a label, it
gets confused by the no_relation label. This observation corroborates the findings from
the confusion matrix.

To further empirically validate our hypothesis, we modified the evaluation criteria. If
the ground truth were present in the model’s top−K predictions for a particular example,
it would be counted as a correct prediction. In case the ground truth was not present in the
top−K predictions, the scorer would count it as a wrong prediction and carry out other
calculations with the highest probability prediction. We re-ran experiments, taking K = 2,3 .
The results of the same have been outlined in Table 4.5 for K = 2 and in Table 4.6 K = 3. We
have also depicted the percentages of examples where the first, second, and third predictions
are correct and the percentage of examples where the ground truth is not present in any of
the guesses under the columns Top1, Top2, Top3, and Wrong respectively.

Based on all the above analyses (Section 4.3.1-4.3.5), we conclude that

1. Even the simplest model such as LSTM are capable of learning relation boundaries
(Section 4.3.1).

2. Apart from disproportionate examples in the dataset, context overlapping and incorrect
labeling of the sample as no_relation are the primary concern (Section 4.3.2-4.3.5,
particularly Section 4.3.4).

3. Models’ performance suffer primarily due to noise originating from the negative
examples in the dataset (Section 4.3.3, 4.3.5).



Model Precision Recall F1-score Top 1 Top 2 Wrong
PALSTM 95.6 89 92.2 86.6 10.7 2.7

LSTM 93.3 88.3 90.8 86 10.9 3.1
BiLSTM 92.6 87.1 89.8 85.9 10.7 3.4
CGCN 96.1 89.8 92.9 87.4 10.2 2.4
GCN 95.7 88.3 91.8 86.6 10.6 2.8

Table 4.5 Performance of baseline modes as top k(k = 2) classifier on TACRED with
percentage of top1, top2, and wrong guesses. Each number is reported as a

percentage.

Model Precision Recall F1-score Top1 Top 2 Top3 Wrong
PALSTM 98.4 94.9 96.6 86.6 10.7 1.5 1.2

LSTM 96.9 94.2 95.6 86 10.9 1.6 1.4
BiLSTM 96.9 93.7 95.3 85.9 10.7 1.8 1.6
CGCN 99 95.3 97.1 87.4 10.2 1.4 1
GCN 98.9 94.9 96.9 86.6 10.6 1.6 1.2

Table 4.6 Performance of baseline modes as top k(k = 3) classifier on TACRED with
percentage of top1, top2, top3, and wrong guesses. Each number is reported as a

percentage.

4.4 Methodology: Handling Noisy Instances

Analyses in the previous section indicate that noisy instances are primarily present in the
no_relation or negative relation class. While some of the noisy instances are likely to have a
similar context as one or more instances from one of the positive relation classes, the others
are incorrectly labeled. This section proposes two different methodologies for identifying
noisy instances. For both the methodologies, we explore elimination and reannotation with
appropriate labels to evaluate their impact on model performance. We discuss the two
strategies below.

4.4.1 Intrinsic Strategy (IS)

We refer to the first strategy as intrinsic strategy (IS), as it utilizes only the given data and
model. This strategy does not depend on the external data or the results from other models.

The intrinsic strategy assumes that substantial majority of positive samples, i.e., samples
belonging to any one of the positive relation classes, are clean. The assumption is based on
our observations that (i) a significant number of predictions for instances from the majority



of positive relation classes is no_relation, and (ii) models are capable of learning relation
boundary for a majority of the positive relations if trained without no_relation class. With this
assumption, when a model M makes a false-negative prediction, i.e., predicts no_relation
for a positive labeled sample pi with label li, it implies that there are considerable number of
negative training samples ntr1, ...,ntrk ∈Ntr that either share similar context or are incorrectly
labeled with no_relation.

Once the model is trained, we pass the target data for evaluation and collect all the
instances with false-negative predictions. We refer to this collection as seed set S. We pass
this set S to the Algorithm 2, which uses cosine similarity for finding the k-nearest-neighbour
from negative set Ntr. Once we have k most similar negative examples ntr1, ...,ntrk ∈ Ntr

for each seed examples si ∈ S, we add them to elimination list eliminate_sids if they have
been not already included. Similarly, we add those examples as keys to the relabel dictionary
relabel_sids with ground_truth label li of si as value (relation to be reannotated with). In
case, if ntr j is already present in relabel_sids, we assign the label with the highest similarity
score.

4.4.2 Extrinsic Strategy (ES)

Our first strategy of using TACRED to identify the noisy examples was based on a hypothesis
that the majority of positive examples are clean. In the second strategy, we took the clean
set of sentences to obtain a list of noisy examples from the TACRED. A clean subset of
TACRED can be obtained by appointing some experts at a small cost. However, we took the
clean set from the ReTACRED [8] test data. As this strategy depends on the external data,
we refer to this strategy as an extrinsic strategy (ES).

4.4.2.1 Clean Subset of TACRED

For reannotating TACRED, Stoica et al. [8] have reformulated some of the relations’ defi-
nitions. Therefore, to avoid any ambiguities, we consider only those relations that can be
directly mapped with the original TACRED dataset. The clean set contains 7770 negative
examples and 2707 positive examples spanning 24 relation labels. Refer to the original paper
for the list of relations with updated guidelines.



Algorithm 2 Algorithm for finding noisy examples for elimination and reannotation using IS
Input: Seed Set S
Parameter: k, Ntr, M
Output: relabel_sids, eliminate_sids

1: Let t = 0.
2: Let eliminate_sids = list().
3: Let relabel_sids = dict().
4: while t < len(S) do
5: rel = ground_truth(St)
6: pred = M(St)
7: sids = k_similar_negative_examples(St ,Ntr,k).
8: Let v = 0.
9: while v < k do

10: if sids[v] ̸∈ eliminate_sids then
11: eliminate_sids.append(sids[v]).
12: relabel_sids[sids[v]] = rel.
13: else
14: if similarity_score(sids[v],St)> similarity_score(sids[v],Scurrent_high) then
15: relabel_sids[sids[v]] = rel.
16: end if
17: end if
18: v = v+1.
19: end while
20: t = t +1.
21: end while
22: return relabel_sids,eliminate_sids

We use separate algorithms for finding noisy examples for elimination and reannotation.
In both cases, we use the representation obtained from the model trained on the TACRED
training set. They are described next.

4.4.2.2 Finding noisy examples for elimination

We use Algorithm 3 for finding noisy examples for elimination. This algorithm takes the
entire TACRED dataset (training, dev, and test sets) T as an input. It iterates over each
example ti ∈ T and finds k-nearest-neighbour from clean set C using cosine similarity.
Assuming the example ti has label li, the algorithm checks if none of those k examples
c1,c2, ...,ck ∈C has the same label as li, it adds the example ti to the list of noisy examples
for elimination eliminate_sids. In other words, if label li given in TACRED does not match



Algorithm 3 Algorithm for finding noisy examples using ES for elimination.
Input: TACRED Examples T
Parameter: k, C
Output: eliminate_sids

1: Let t = 0.
2: Let eliminate_sids = list().
3: while t < len(T ) do
4: rel = ground_truth(Tt)
5: sids = k_similar_clean_examples(Tt ,C,k).
6: Let v = 0.
7: Let count = 0.
8: while v < k do
9: if ground_truth(sids[v]) == rel then

10: count = count +1.
11: end if
12: v = v+1.
13: end while
14: if count == 0 then
15: eliminate_sids.append(Tt).
16: end if
17: t = t +1.
18: end while
19: return eliminate_sids

with even a single k nearest-neighbors from the clean set, then it is likely that li may not be
the correct label.

4.4.2.3 Finding noisy examples for reannotation

We use Algorithm 4 for finding noisy examples for reannotation. This algorithm takes
TACRED dataset (training, dev and test sets) T as an input. It iterates over each example
ti ∈ T and find k-nearest neighbour from clean set C using cosine similarity. Assume the
example ti has label li and its k-nearest-neighbours from the clean set C are c1,c2, ...,ck. The
algorithm considers ti as a noisy instance if the following conditions are met: ∀ j ∈ {1, . . . ,k},
label of c j = l, and l ̸= li. In other words, an instance ti is potentially noisy if all of its nearest
neighbours belong to the same class but does not match with the class of ti. We add ti to the
dictionary of noisy examples for reannotation relabel_sids, where key is sentence id of ti
and value is l, the label of nearest-neighbours.



Algorithm 4 Algorithm for finding noisy examples using ES for reannotation.
Input: TACRED Examples T
Parameter: k, C
Output: relabel_sids

1: Let t = 0.
2: Let relabel_sids = list().
3: while t < len(T ) do
4: rel = ground_truth(Tt)
5: sids = k_similar_clean_examples(Tt ,C,k).
6: Let v = 0.
7: Let rel_lst = list().
8: while v < k do
9: if ground_truth(sids[v]) ̸= rel then

10: rel_lst.append(ground_truth(sids[v])).
11: end if
12: v = v+1.
13: end while
14: if check_all_relations_are_same(rel_lst) then
15: relabel_sids[Tt ] = rel_lst[0].
16: end if
17: t = t +1.
18: end while
19: return relabel_sids

4.5 Experiments

Following the first approach discussed in subsection 4.4.1, we conduct two sets of experi-
ments, (i) we find noisy training examples only and eliminate/reannotate them, (ii) we find
noisy examples from all three sets (train, dev, test) for elimination/reannotation. In the second
set of experiments, the model is always trained using training data only.

4.5.1 Baseline Models and Hyper-parameters

All our analysis are based on the following baseline models: PALSTM [7], CGCN [57],
LSTM, BiLSTM, and GCN. All the input word vectors are initialized using pre-trained
GloVe vectors [12]. We consider 300-dimensional vectors for CGCN and GCN and 200-
dimensional vectors for LSTM, BiLSTM, and PALSTM. For other tags such as POS and
NER, 30-dimensional vector representations are considered.



For training GCN and CGCN, we use the same set of hyper-parameters as in [57]. We use
200 nodes in LSTM and feedforward hidden layers. We use 2 GCN layers and 2 feedforward
layers, SGD as an optimizer, with an initial learning rate of 1.0 which is reduced by a factor
of 0.9 after epoch 5. We train the model for 100 epochs. We use word dropout probability
0.04 and dropout probability of 0.5 for LSTM layers.

For training PALSTM, LSTM, and BiLSTM, we follow [7] for hyper-parameters. We
have used 2 layered stacked LSTM layers for all the models with the hidden size of 200. We
use AdaGrad with a learning rate of 1.0 which is reduced by a factor of 0.9 after the 20th
epoch. We have trained the model for 30 epochs. We use word dropout probability 0.04 and
dropout probability of 0.5 for LSTM layers.

4.5.2 Evaluation Models

Apart from the two SOTA models (PALSTM and CGCN) among baselines, we use two
recent SOTA RE models based on pre-trained large-scale language models for evaluation of
elimination and reannotation using ES.

As recent SOTA RE models, we use SpanBERT [9], which employs a bi-directional
language model similar to BERT [24] pre-trained on span-level, and a recent model [50]
that uses pre-trained BERT along with typed entity marker to better highlight the entity
information for RE. For both the methods we use base-cased version along with the set of
hyper-parameters as used in the respective works [9, 50].

4.5.3 TACRED Variant for Evaluation

Other than TACRED, we have also shown evaluation results on TACRev [6] eval data. [6]
trained 49 different RE models to identify the most challenging examples from dev and test
sets. They identified 1923 examples as challenging. 960 from that set were later reannotated
by linguistic experts. This cleaner version of TACRED is referred to as TACRev by [6].

4.6 Results and Discussion

In the following subsections, we discuss performance of models under different experiment
settings.



4.6.1 Performance Evaluation

Intrinsic Strategy (IS) on TACRED test set: Results for all considered models, trained
after both elimination and reannotation, on the TACRED test set are presented in row 2 of
each model block in Table 4.7 and Table 4.8 respectively. We observe that recall gets boosted
significantly but at the cost of precision. This reflects that both elimination and reannotation
make the model better at predicting examples from positive relation classes.

IS on the cleaned TACRED test set: In the above analysis, evaluation was done on the
original TACRED evaluation set. Since studies have indicated that this set is also noisy. Any
evaluation of such a noisy set may not give us a true picture. To evaluate both our elimination
and reannotation strategies on cleaner evaluation datasets, we performed another experiment
by passing dev and test sets to the same algorithm (Algorithm 2). Instead of negative training
samples, negative dev and test samples were used to identify noisy examples from the two
sets respectively. As discussed earlier, the model is trained using training data only. Dev and
test set samples are fed to the model to obtain corresponding representations.

Performance of SOTA models trained after elimination and reannotation on cleaned
TACRED, TACRED-E, and TACRED-R for elimination and reannotation respectively are
presented in Tables 4.7 and 4.8 respectively. Third row of each model block contain results
on original TACRED test set and fourth row contain results on new TACRED-E (Table 4.7)
or TACRED-R (Table 4.8) test set. The performance of the model went down significantly
after training on reannotated TACRED. However, the model performance shows significant
improvement in F1-score after training on eliminated TACRED. Based on the result, we
hypothesize that our approach of finding noisy examples using nearest neighbors of false-
negative model prediction can identify noisy examples. But, reannotated labels may not be
correct and hence, the model is unable to take advantage of them.

Extrinsic Strategy(ES) on TACRED test set: In our second strategy, we use subset of
ReTACRED [8] test set as clean dataset for identifying noisy instances using different
algorithms for elimination (Algorithm 3) and reannotation (Algorithm 4). Performance
of all the models trained on eliminated and reannotated negative examples of TACRED
are presented in Tables 4.9 and 4.10 respectively. The second row of each model block
contains results on the original TACRED test set and the third row contain results on new
TACRED-EN and TACRED-RN test sets. On both the datasets, models have shown improved
performance in recall and F1-score, despite a very small fraction of updates in the TACRED.



Model # Elimination Evaluation Data Precision Recall F1-Score

PALSTM

baseline TACRED 67.8 64.6 66.2
5334, 0, 0 TACRED 63.6 65.7 64.7

5334, 3092, 0 TACRED 62.8 66.2 64.4
5334, 3092, 2038 TACRED-E 71.9 66.2 68.9

CGCN

baseline TACRED 71.2 62.6 66.7
5321, 0, 0 TACRED 66.6 67.4 67

5321, 3133, 0 TACRED 63 70.8 66.7
5321, 3133, 2043 TACRED-E 73.1 70.8 71.9

Table 4.7 Performance of SOTA models after elimination of noisy negative examples
identified using Algorithm 2 following IS on TACRED evaluation data.

TACRED-E represents TACRED after the elimination of noisy examples.
Except for baseline results, all the models are trained on the TACRED-E train
set. # Elimination represents the number of examples eliminated from (train,

dev, test).

Model # Reannotation Evaluation Data Precision Recall F1-Score

PALSTM

baseline TACRED 67.8 64.6 66.2
5334, 0, 0 TACRED 56.7 68.8 62.2

5334, 3092, 0 TACRED 52.8 73 61.3
5334, 3092, 2038 TACRED-R 66.7 57.2 61.6

CGCN

baseline TACRED 71.2 62.6 66.7
5321, 0, 0 TACRED 59.4 71.2 64.8

5321, 3133, 0 TACRED 55.4 73.4 63.1
5321, 3133, 2043 TACRED-R 68.8 56.5 62

Table 4.8 Performance of SOTA models after reannotation of noisy negative examples
identified using Algorithm 2 following IS on TACRED evaluation data.

TACRED-R represents TACRED after the reannotation of noisy examples.
Except for baseline results, all the models are trained on the TACRED-R train

set. # Reannotation represents the number of examples reannotated from (train,
dev, test).



Model Train Data # Elimination Evaluation Data Precision Recall F1-Score

PALSTM

TACRED baseline TACRED 67.8 64.6 66.2
TACRED-EN 1568, 852, 0 TACRED 67.1 66.8 67
TACRED-EN 1568, 852, 481 TACRED-EN 73.4 66.8 69.9

TACRED-ENP 2669, 1543, 0 TACRED 68 63.9 65.9
TACRED-ENP 2669, 1543, 741 TACRED-ENP 74.9 68.3 71.5

CGCN

TACRED baseline TACRED 71.2 62.6 66.7
TACRED-EN 1878, 961, 0 TACRED 67.8 67 67.4
TACRED-EN 1878, 961, 466 TACRED-EN 74.4 67 70.5

TACRED-ENP 2997, 1610, 0 TACRED 68.2 66.8 67.5
TACRED-ENP 2997, 1610, 721 TACRED-ENP 75.2 70.7 72.9

Table 4.9 Performance of SOTA models trained after eliminating noisy examples
following Algorithm 3. TACRED-EN represents TACRED after the elimination

of noisy negative examples. TACRED-ENP represents TACRED after the
elimination of noisy negative and positive examples. # Elimination represents

the number of examples eliminated from (train, dev, test).

We further evaluated this strategy by finding noisy positive examples as well using the
same algorithms. After eliminating and reannotating such examples from TACRED, the
models performance improved further (Tables 4.9 and 4.10). The fourth row contains results
on the original TACRED test set and the fifth row contain results on the new TACRED-ENP
and TACRED-RNP test sets.

ES on cleaned TACRED test set: As discussed earlier, cleaning only the training set will
not give us a true picture if the evaluation data is still noisy [77]. Thus, we have used
cleaned evaluation data for reporting model performances. Here, we have also included
two models based on pre-trained large-scale language models. Table 4.11 presents the
performance of the four SOTA models for TACRED and TACRev. Our proposed strategy
ES for eliminating/reannotating noisy examples using the clean subset of the dataset has
shown improvement in F1-score across all the variants for all 4 models. We observe an
average performance improvement of around 4% for elimination and reannotation of only
negatively labeled data on TACRED and 2.6% and 1% for elimination and reannotation
of only negatively labeled TACRev data. While eliminating and reannotaing both positive
and negative labeled noisy examples, we have an average improvement of 7.2% and 6% for
elimination and reannotation respectively on TACRED and 4.2% and 1.7% for elimination
and reannotation respectively on TACRev. All the models got significant performance
improvement, sometimes even more than 6%, across all variants of the modified evaluation
data following our proposed strategies. BERT model remained the best performing model
even on modified evaluation data.



Model Train Data # Reannotation Evaluation Data Precision Recall F1-Score

PALSTM

TACRED baseline TACRED 67.8 64.6 66.2
TACRED-RN 1354, 768, 0 TACRED 65.8 66.8 66.3
TACRED-RN 1354, 768, 409 TACRED-RN 74.1 67 70.3

TACRED-RNP 2284, 1351, 0 TACRED 67.7 64.9 66.3
TACRED-RNP 2284, 1351, 634 TACRED-RNP 75.6 68.3 71.8

CGCN

TACRED baseline TACRED 71.2 62.6 66.7
TACRED-RN 1642, 843, 0 TACRED 67.9 66.9 67.4
TACRED-RN 1642, 843, 389 TACRED-RN 76 67.1 71.3

TACRED-RNP 2540, 1323, 0 TACRED 69.2 65.2 67.1
TACRED-RNP 2540, 1323, 573 TACRED-RNP 77.1 68 72.3

Table 4.10 Performance of SOTA models trained after reannotating noisy examples
following Algorithm 4. TACRED-RN represents TACRED after the

reannotation of noisy negative examples. TACRED-RNP represents TACRED
after the reannotation of noisy negative and positive examples. # Reannotation

represents the number of examples reannotated from (train, dev, test).

PALSTM CGCN SpanBERT BERT
Datset Variant Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

TACRED

Original 67.8 64.6 66.2 71.2 62.6 66.7 66.4 66.1 66.3 71.1 71.4 71.2
Eliminate-Neg 73.4 66.8 69.9 (+3.7) 74.4 67 70.5 (+3.8) 77.2 65.5 70.9 (+4.6) 79.6 71.3 75.2 (+4)

Eliminate-Neg&Pos 74.9 68.3 71.5 (+5.3) 75.2 70.7 72.9 (+6.2) 80.5 72.5 76.3 (+10) 84.5 73 78.3 (+7.1)
Reannotate-Neg 74.1 67 70.3 (+4.1) 76 67.1 71.3 (+4.6) 76.8 64.5 70.1 (+3.8) 79 71.7 75.2 (+4)

Reannotate-Neg&Pos 75.6 68.3 71.8 (+5.6) 77.1 68 72.3 (+5.6) 76.5 68.8 72.5 (+6.2) 78.5 76.9 77.7 (+6.5)

TACRev

Original 73.7 74.8 74.3 77.5 72.6 75 71.3 75.6 73.4 75.9 81.1 78.4
Eliminate-Neg 75.4 76.9 76.1 (+1.8) 75.9 76.9 76.4 (+1.4) 79.3 75.7 77.5 (+4.1) 81.1 81.7 81.4 (+3)

Eliminate-Neg&Pos 76.7 75.3 76 (+1.7) 77 78.7 77.9 (+2.9) 81.9 78.9 80.4 (+7) 86.3 80.7 83.4 (+5)
Reannotate-Neg 74.7 74.6 74.7 (+0.4) 76.9 75.2 76 (+1) 77.7 71.5 74.5 (+1.1) 79.8 80 79.9 (+1.5)

Reannotate-Neg&Pos 76.8 73.9 75.4 (+1.1) 78.4 74.5 76.4 (+1.4) 77.2 73.2 75.2 (+1.8) 79.2 82.5 80.8 (+2.4)

Table 4.11 Evaluation of our proposed dataset elimination/reannotation strategy based on
4 SOTA models.



Model Classifier Precision Recall F1-Score Positive Accuracy Negative Accuracy Accuracy

PALSTM
Linear 66.5 65.7 66.1 65.7 92.2 86.5

Bayesian
Linear 68.3 62.9 65.5 62.9 93.2 86.7

CGCN
Linear 71.6 60.8 65.8 60.8 94.5 87.3

Bayesian
Linear 70.6 63.5 66.8 63.5 93.8 87.3

Table 4.12 Baseline models’ performance comparison. For each model, “Linear" and
“Bayesian Linear" indicate the final layers as Linear and Bayesian Classifier

respectively.

Qualitative Comparison of IS and ES: Our analysis in section 4.3 indicates that negative
examples are the main source of noise in the dataset. So, we assumed that majority of the
positive instances are clean for the IS, whereas no such assumptions were made for the ES.
IS relies only on the model’s prediction, whereas ES involves external help in obtaining the
clean subset. As a result, IS guarantees cost-efficiency whereas ES ensures higher accuracy.
Furthermore, using IS, the same algorithm can be used for finding instances for elimination
and reannotation. Whereas for ES, we have separate algorithms for finding instances for
elimination and reannotation.

4.6.2 Analysis of Noisy Sample

Uncertainty Analysis: To account for the uncertainty of deep learning models, we exper-
imented by replacing a linear classifier layer with a Bayesian classifier layer. The results
from using the two baseline models are shown in Table 4.12. As it can be seen, the two
models gave different results. The performance of the PALSTM model deteriorated, while the
CGCN model improved its performance in terms of F1-score by almost 1%. One plausible
explanation could be that the inconsistency in the results of the two models is due to aleatoric
uncertainty, i.e., uncertainty in the data [78]. Data uncertainty is considered irreducible, as
it corresponds to the inherent property of the dataset [78]. Of course, this warrants further
detailed analysis, which is beyond the scope of this work.

Furthermore, we also performed a simple analysis on the probability score assigned
to the predicted relation label by the Bayesian classifier. The reported result is for the
CGCN-Bayesian model (CGCN with Bayesian Linear final layer). However, similar results
were observed for the PALSTM-Bayesian model (PALSTM with Bayesian Linear final
layer). The probability score across all test instances ranges from 0.2 to 0.99. We consider
examples with a probability score for the predicted class of less than 0.8 to be the ones with



higher uncertainty. Such examples can be considered "noisy instances". We compared those
instances with noisy instances selected either for elimination or reannotation by the two
proposed strategies. We found more than 40% overlap of the noisy instances selected by
either of the strategies with the uncertain examples detected by the CGCN-Bayesian model.
This analysis indicates that future work can consider combining the uncertainty measures
and heuristics to obtain noisy instances of data.

Manual Analysis: To evaluate the quality of examples shortlisted as noisy for elimination
or reannotation following the extrinsic strategy, we randomly sampled a hundred examples
that are common in identified potentially noisy examples by the PALSTM and CGCN models.
We analysed those sentences based on the following error categories: (i) Falsely labeled as
no_relation, (ii) Incorrect Span: Entities span is not properly marked/identified, and (iii)
Wrong Entity Type: Entity type for one of the argument entities is incorrect.

Out of 100 sampled examples for reannotation, 68 examples labeled with no_relation are
incorrectly labeled and they should be labeled with one of the 41 relation labels. 17 examples
are falsely identified as noisy. And the remaining can be attributed to the other two error
categories: incorrect span and wrong entity type.

Out of 100 sampled for elimination, 62 examples labeled with no_relation are incorrectly
labeled. 15 examples are falsely identified as noisy and the remaining can be attributed to
error categories such as incorrect span and wrong entity types.

Despite falsely identifying a small percentage as noisy, our approach is capable of
providing substantial noisy instances (68 out of 100). Thus, it can be easily scaled for any
large dataset.

4.6.3 Robustness of our Approach

All the results discussed in the previous section are based on a single run of a model. Thus,
to verify whether those results are not biased by the model parameters, we performed a
small experiment. We trained PALSTM another four times with distinct initialization. For
each distinct run, we generated corresponding sets of noisy instances for elimination and
reannotation. In the comparison of these sets, we observed, (i) the number of instances
generated for elimination and reannotation is in the range of 453 to 481 and 373 to 409
respectively. (ii) more than 50% of instances are common across all the sets for both
reannotation and elimination, and (ii) more than 70% instances are identified as noisy by
more than 3 different models.



The above discussion indicates that the proposed strategies are robust to multiple runs of
a single model. Further, modifying the strategies to consider potential noisy instances based
on multiple runs is likely to improve the model performance.

4.6.4 Impact on different Relation Labels

The statistical impact of eliminating and reannotating noisy instances using clean data on the
relation label set is presented in Table 4.13. All the reported numbers are the intersection of
two baseline models CGCN [57] and PALSTM [7]. 11 relations have shown performance
improvement and for 4 relation labels performance did not change across all the strategies.
There is no common relation with declining performance across all 4 strategies.

4.6.4.1 Impact of eliminating noisy instances:

In our dataset analysis, we have shown that negative instances are the main source of noise
in the dataset, and eliminating them has shown performance improvement across both our
strategies (Tables 4.7, 4.9). On evaluating the impact of removing negative noisy instances
following our best strategy (ES), i.e. using a clean set, 20 relation labels shows improved
performance. Moreover, by eliminating noisy positive instances as well, the number of
relation labels rises to 23. However, 17 relation labels are common to both the elimination
strategies.

4.6.4.2 Impact of reannotating noisy instances:

Although reannotating noisy instances have not shown performance improvement across
both our strategies (Tables 4.8, 4.10), using a clean dataset, the performance improvement is
significant. On evaluating the impact of reannotating negative noisy instances following our
best strategy, i.e. using a clean set, 18 relation labels show improved performance. Moreover,
by eliminating noisy positive instances as well, the number of relation labels rises to 19.
However, 15 relation labels are common to both the reannotation strategies.

Out of 24 relation labels considered in a clean set other than no_relation, on reannotating
only negative instances, performance for 14 relations improved for both the models and
for 7 relations, it improved for at least one model. While reannotating both positive and
negative instances, for 17 relations performance of both the models improved, and for 4



Strategy #Rel Performance
Improved

#Rel Performance
Declined

#Rel Performance
Remained Same

Eliminating Negative 20 1 7
Reannotating Negative 18 4 5
Eliminating Neagative

& Positive 23 3 6

Reannotating Negative
& Positive 19 5 6

Table 4.13 Impact of different strategies on performace of different relation labels. Each
number represents intersection of PALSTM and CGCN models.

relations performance improved for at least one model. The above observations establish
that including unambiguous instances for relations not covered in the clean set can further
improve the model performance.

4.6.5 Limitations

In the extrinsic strategy, we have used the ReTACRED test set as clean data to avoid any form
of human intervention. However, to adopt our proposed method, one needs to employ expert
annotators to obtain a high-quality clean subset of data. The clean subset can also be obtained
by considering high-confidence examples from multiple baseline models. Nevertheless, the
quality of the data can be questionable, thus it is left for investigation in future work.

Further, the proposed strategies can overclean the dataset as we have earlier shown that
17 out of 100 examples are falsely identified as noisy. However, we can control this to some
extent by taking only the most confident noisy instances across multiple runs of a model.
The use of quantitative uncertainty models can be an alternative way to control this as the
uncertainty analysis in the section 4.6.2 indicates.

4.7 Chapter Summary

This work presented a model-based characterization of the noise present in the TACRED
dataset and two strategies to handle potentially noisy instances. To the best of our knowledge,
this is the first work that uses models’ prediction and performance to characterize the noisy
nature of the RC dataset. Moreover, this work can be easily automated and generalized for any
other classification task. Analyses of the models’ prediction results indicate that the incorrect



labeling of instances as no_relation class or negative relation contributes significantly to
the noise in the data. Hence, this work proposes two different strategies for identifying
potentially noisy negative relation instances for elimination and reannotation. The first
strategy, the intrinsic strategy, is based on finding the nearest neighbor to the model’s false
negative prediction. Whereas, the second strategy, the extrinsic strategy, requires a subset of
clean TACRED instances. Models trained on a dataset with elimination based on the intrinsic
strategy show improvement when models are evaluated on the cleaner version of the test set.
The performance of the models significantly improved with the extrinsic strategy for both
the eliminated and reannotated datasets. Furthermore, identifying noisy instances among
positive relation classes using the extrinsic strategy shows more improvement in models’
performance.

In the previous chapter, we scanned through the entire dataset and identified a few
hundred instances for reannotation. Whereas, in this chapter, the number rose to a few
thousand i.e., around 4% - 10% of the dataset. The computation involved in identifying such
a small percentage could be very expensive, crossing the reannotation budget, when the size
of the dataset becomes large. This demands the need for a flexible-budget framework for
reannotation. In the next chapter (Chapter 5), we work in this direction.





Chapter 5

Budget-Sensitive Reannotation of noisy
RC dataset

Chapter Highlights

• We observe that the majority of the reannotation tasks, including the ones we proposed
in previous chapters, consider a fixed set of instances for reannotation, i.e., either the
entire dataset or a small subset based on heuristics or experts’ suggestions.

• As a result, these approaches lack flexibility in the number of instances they reannotate.

• We propose the concept of a reannotation budget to incorporate flexibility in the
number of instances to reannotate.

• We further explore four different strategies to identify the most noisy instances within
a given reannotation budget.

• Our empirical results suggest that baseline models’ performance on TACRED is
inflated.

• We also observe improvement in models’ performance when reannotating only a part
of the training data.

• This chapter is based on the paper "Relation Classification Model Performance as a
Function of Dataset Label Noise" submitted to ACM Journal of Data and Information
Quality (ACM JDIQ).



Abstract

In the previous chapters, we have seen that the large datasets for relation classification are
known to have data points with incorrect annotations, resulting in label noise. We have also
shown that the performance of RC models improves with the reannotation or elimination of
noisy instances from the dataset TACRED. This is also evident from the results of TACRev
and ReTACRED, two cleaner variants of TACRED. All of these works, however, either re-
annotate a small fixed portion of the data or the entire dataset. They don’t have the freedom
to choose how much data to reannotate and which instance to reannotate. To overcome these
limitations, we address the last RC challenge highlighted in Chapter 1 and introduce the
concept of a reannotation budget. This enables us to analyze the RC model’s performance as
a function of label noise.

The immediate follow-up question is: given a specific reannotation budget, which subset
of data should we reannotate? For example, an incorrectly annotated instance from TACRED
like Ezra Randle, Oklahoma overseer for the Christ Holy Sanctified Church, said Daniels
had been traveling to Anadarko for four or five years and 85 percent of the time, she made
the trip alone. labeled with relation per:Age between entities Daniel and four should be
considered with high priority than correctly annotated instance like The governor of Punjab
province, Salmaan Taseer, where Bibi has been held in jail for more than a year, said he had
forwarded a petition presenting the facts of the case to President Asif Ali Zardari on Monday.
labeled with no_relation between Bibi and more than a year. We explore four strategies
to select data points for a given reannotation budget. Two of these strategies rely on the
graph distance between actual and predicted relation labels, whereas, of the other two, one is
random picking and the other is based on models’ confidence score.

We design our experiments to answer three specific research questions. First, does our
strategy select novel candidates for reannotation? Second, for a given reannotation budget,
is our reannotation strategy more efficient at catching annotation errors? Third, what is the
impact of data reannotation on RC model performance measurement? Our experimental
results show that the reported performance of supervised models on noisy TACRED data is
inflated. We also show that model performance improvement can be achieved by reannotating
only a part of the training data. To the best of our knowledge, this is the first work that
analyzes the relation between RC model performance improvement and the amount of data
reannotation required for it.



5.1 Introduction

In the literature, the problem of learning from noisy datasets is widely popular, especially
for computer vision related tasks. The proposed works can be broadly categorised as robust
architecture [79], robust regularization [80], robust loss design [81], and sample selection
[82]. These approaches can only improve the model performance to an extent where the
model efficiently learns from clean data, ignoring or reducing the impact of noisy datasets.
Thus, the underlying dataset is still noisy and will continue to contribute to the model’s
learning. This is probably one of the reasons for the RC model’s performance being throttled
in the range of 75% to 80%.

The central question that this chapter address is: how does the performance of a supervised
model vary with respect to the label noise in the training dataset? Answering this question is
crucial for many real-world applications for two main reasons. First, most of the datasets
used for training large supervised models such as Deep Neural Networks (DNNs) are crowd-
sourced. Such datasets are known to have significant label noise due to multiple factors,
such as the complexity of the annotation task and low wages for crowd-sourced annotators.
Second, these crowd-sourced datasets are large. Reannotating such large datasets is a time-
consuming and costly process. Our work aims to understand the relationship between the
cost of data reannotation and the performance of supervised models. Understanding this
relationship can be helpful while planning for data reannotation.

Existing methods for RC dataset reannotation follow two extremes. They either select
only a tiny fraction for reannotation [6] or go for reannotation of the complete data [8]. Both
these processes are extremely time-consuming and costly. In contrast, our approach provides
flexibility in terms of the reannotation budget (Figure 5.1), which is the number of sentences
we can afford to reannotate. Given a large, noisy, labeled dataset and a limited budget for
reannotation, which data points should we prioritize for reannotation? If our reannotation
budget permits us to reannotate a significant part of the data, then the strategy for selecting
data points for reannotation does not matter. However, in the real world, the reannotation
budget is far smaller as compared to the dataset size for two reasons. First, reannotation is
a costly and time-consuming task. Second, avoid making redundant efforts to reannotate a
correctly labeled data point.

In the context of the RC task, this chapter proposes two strategies for selecting instances
for reannotation. Our approach capitalizes on the taxonomic hierarchy of relation labels,
which is largely an ignored aspect of the RC datasets. For each instance, we compute the
graph distance between the actual label provided in the dataset and the predicted label using



Fig. 5.1 A dataset with noisy labels is sorted to prioritise clearly mislabelled samples,
maximising the number of corrected samples given a fixed relabelling budget.

Fig. 5.2 Overview of our work

an ensemble of RC models. Data points with a higher value for this distance are given higher
priority for the reannotation task. We experimentally evaluate our reannotation strategies
on the well-known TACRED dataset[7] along with confidence-based selection and random
selection strategies. An overview of our work is presented in Figure 5.2.

Our research contributions in this work can be summarized as follows:

• We introduce the concept of reannotation budget to provide flexibility about what
fraction of dataset to reannotate.

• This is the first work that uses relation label hierarchy while selecting data points for
reannotation for the RC task.

• We perform extensive experiments using the popular RC dataset TACRED. We show
that our reannotation strategies are novel and more efficient when compared with the
existing approaches.



• Our experiments suggest that the reported performance of existing RC models on
the noisy dataset is inflated. The F1 score of these models drops from the range of
60%-70% to as low as below 50% when tested on clean test data generated using our
reannotation strategy.

• We also observe that significant improvement can be achieved in the RC model
performance by reannotating only a part of training data.

All the experimental results are specific to the RC task. However, our reannotation
strategy can be applied to any task and dataset where the label hierarchy is available. The
rest of the chapter is organized as follows. We review the related work in Section 5.2. Our
reannotation approach along with experimental results is presented in Section 5.3. In Section
5.4, we have discussed impact of our work on baseline models’ performance. Limitations of
our work are discussed in Section 5.5. Finally, we conclude in the Section 5.6.

5.2 Related Works

Some of the earliest methods for the RC task were based on pattern extraction. They [83, 84]
use syntactic patterns to construct rules for extracting relational facts from texts. To reduce
the human effort in identifying relation facts, statistical relational relation extraction has
been extensively explored in two directions, namely, feature-based methods [40, 33, 34] and
kernel-based methods [36–39]. Following the success of embedding models in other NLP
challenges, low-dimensional textual embeddings are also used for the RC task.

Neural Relation Extraction models introduce neural networks for capturing relational
facts within text, such as recursive neural networks [41, 85], convolutional neural networks
(CNN) [42, 43, 18], recurrent neural networks (RNN) [7, 44], and attention-based neural
networks [45, 46]. Recently, Transformer [19] and pre-trained language models [24] have
also been explored for relation extraction [48, 58, 9, 49, 51, 50] and have achieved new
state-of-the-arts performance.

Out of all the RC datasets [27, 29, 26, 7, 56], TACRED [7] is the largest and most widely
used dataset. It contains more than 100 thousand sentences for 42 relation classes (Train:
68124 sentences, Dev: 22631 sentences, and Test: 15509 sentences). Each sentence contains
a pair of real-world entities representing subject and object entities and is annotated with
either one of the 41 relations or no_relation. Sentences are manually annotated with
relation labels using the Amazon Mechanical Turk crowdsourcing platform, where each



annotator is provided with a sentence, subject and object entities, and a set of relations to
choose from.

A recent study by Alt et. al. (referred to as TACRev) trained 49 different RC models
and selected the 5000 most miss-classified instances from TEST and DEV partitions for
reannotation [6]. With the help of their expert annotators (trained linguists), they ended
up modifying 960 out of 1923 sentences from TEST and 1610 out of 3088 sentences from
DEV. The revised dataset resulted in an average 8% improvement in the F1-score, suggesting
the noisy nature of the TACRED dataset. However, their work has two main bottlenecks.
First, their method has a fixed set of sentences to reannotate. Second, they use only model
confidence to select sentences for reannotation. We compare our strategies against TACRev
by extending their method for the reannotation budget. To simulate the TACRev reannotation
strategy for a given reannotation budget, we select the top sentences from the dataset where
RC models have the highest confidence.

Another recent study by Stoica et. al. (referred to as ReTACRED) reannotated the com-
plete TACRED dataset using crowd-sourcing [8]. For more effective crowd-sourcing, they
have made slight modifications to the original TACRED relation list. They corrected 3936,
5326, and 13923 annotation errors in the TEST, DEV, and TRAIN partitions, respectively.
They have also eliminated 2091, 3047, and 9659 sentences from the TEST, DEV, and TRAIN
sets, respectively, for various reasons. We use the data from their reannotation experiment to
simulate our reannotation strategies. Our work cannot be directly compared against ReTA-
CRED as they simply use the brute-force method of complete reannotation. However, for a
meaningful comparison with ReTACRED, we extend their approach by selecting a random
set of sentences for a given reannotation budget.

The main takeaway points from the existing work can be summarized as follows:

• Deep Learning is the paradigm of SOTA RC models. Hence, we will focus only on
Deep Learning based models for our work. Even though we have used simpler models
for this work due to resource constraint, similar results can be achieved using complex
neural models.

• TACRED is the RC dataset used by SOTA models. Also, the reannotation data for
the complete TACRED dataset is available. Hence, for our experiments we use the
TACRED dataset.

• Both the existing works on RC dataset reannotation are rigid. They fail to provide
flexibility about how much data to reannotate. Hence, we introduce the concept of
reannotation budget to overcome this limitation.



• The concept of taxonomic hierarchy of relation labels is not yet used for the RC dataset
reannotation. In this work, we use taxonomical relation hierarchy for TACRED relation
labels (from Chapter 3) for calculating the shortest-path distance between ground-truth
and prediction.

5.3 Proposed Work

Considering the insights from related work, our goal is to progressively reduce the label noise
through the budget-sensitive reannotation method and observe its effect on the TACRED
dataset and deep learning models. Consider an RC dataset D. Let N be the set of noisy
or mislabeled sentences in D. As N is a subset of D, |N| ≤ |D|. Let R represent the set of
sentences that we are going to reannotate from D. Our reannotation budget is |R|. In other
words, we can afford to reannotate only |R| sentences out of |D|. The goal of any reannotation
method should be to maximize the |N ∩R|. In the ideal case, N and R should be identical
sets.

Given a reannotation budget |R|, the immediate follow-up problem is: what subset of the
data should we reannotate? If our reannotation budget permits us to reannotate a significant
part of the data (|R| ≈ |D|) then the strategy for selecting data points for reannotation does
not matter. However, in the real world, the reannotation budget is far smaller compared to the
dataset size (|R| ≪ |D|) for two reasons. First, reannotation is a costly and time-consuming
task. Second, redundant efforts in reannotating a correctly labeled data point should be
avoided. In the context of the RC task, this work proposes two strategies for selecting data
points for reannotation. Our approach capitalizes on the taxonomic hierarchy of relation
labels, which is largely an ignored aspect of the RC datasets. For each data point, we compute
the average shortest-path distance between the actual label provided in the dataset and the
predicted label using an ensemble of RC models. Data points with a higher value for this
distance are given higher priority for the reannotation task. An overview of our work is
presented in Figure 5.2. Our work is divided into three steps: model training, reannotation,
and evaluation. These steps are described in the following subsections.

5.3.1 Model Training

The first step trains multiple RC models using the original TACRED dataset. However, we
transform the relation labels to match the ReTACRED labels. This transformation is necessary
as we have the reannotation data available from ReTACRED only. For our experiments



Model TACRED TACRev ReTACRED
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

PALSTM 67.8 64.6 66.2 73.7 74.8 74.3 78.8 80.1 79.4
LSTM 65.4 61.6 63.4 70.9 71.1 71 80.3 76.3 78.2

BiLSTM 65.2 60.4 62.7 70.1 69.2 69.6 78.9 77.4 78.1
CGCN 71.2 62.6 66.7 77.5 72.6 75 80.5 80 80.2
GCN 69.2 60.3 64.5 73.8 68.5 71 79.7 76.9 78.3
CNN 64.3 59.7 61.9 69.5 68.8 69.1 75.4 77.6 76.5

Table 5.1 Baseline model performance on TACRED, TACRev, and ReTACRED. All the
reported results are based on our implementation of the available code.

we have selected following six Deep Learning based RC models: PALSTM, LSTM, and
Bi-LSTM following [7]1, CGCN, and GCN following [57]2, and CNN following [18]3. We
have trained these models using the same set of hyper-parameters as mentioned in their
original papers (model performance of our implementation on all three datasets are reported
in Table 5.1). This step can be further improved by training more RC models. However, we
were limited by the available computing infrastructure.

All the input word vectors are initialised using pre-trained Glove vectors [12]. For training
GCN and CGCN, we used the hyper-parameters following [57]. We used LSTM hidden size
and feedforward hidden size as 200. We used two GCN layers and two feedforward layers,
SGD as an optimizer, initial learning rate of 1.0 which is reduced by a factor of 0.9 after
epoch five every time dev set performance plateaus. We trained the model for 100 epochs.
We used word dropout of 0.04 and dropout of 0.5 to LSTM layers. All other embeddings
(such as NER, POS) size is fixed as 30.

For training PALSTM, LSTM, and BiLSTM, we followed [7] for hyper-parameters. We
have used two-layer stacked LSTM layers for all the models with a hidden size of 200. We
used AdaGrad with a learning rate of 1.0 which is reduced by a factor of 0.9 after the 20th
epoch. We have trained the model for 30 epochs. We used word dropout of 0.04 and dropout
of 0.5 to LSTM layers. All other embeddings (such as NER, POS) size is fixed as 30.

For training CNN also, we used parameters used by [7]. We used AdaGrad with learning
rate of 0.1 and trained model for 50 epochs. For CNN, we use 500 filters of sizes [2,3,4,5]
and apply l2-regularization with a co-efficient of 0.001 to all filter weights.

1https://github.com/yuhaozhang/tacred-relation
2https://github.com/qipeng/gcn-over-pruned-trees
3https://github.com/roomylee/cnn-relation-extraction



5.3.2 Reannotation

The second step simulates the reannotation process by creating a specific permutation of
the data points in the reannotation pool. We have divided our experiments into two phases.
For Phase 1, we have considered the TEST and DEV partitions of the TACRED dataset as
the reannotation pools. For Phase 2, we have considered TRAIN partition for reannotation.
For Phase 2, we assume that the TEST and DEV partitions are already reannotated. In our
simulation, the crowd-sourced workers will reannotate only a subset of data points from the
reannotation pool, depending on the reannotation budget. We have experimented with four
reannotation strategies: two from the literature (TACRev[6] and ReTACRED[8]) and our
own proposed two strategies. Given a particular budget for reannotation, we have to select a
set of sentences from the reannotation pool to perform the reannotation task. A reannotation
strategy creates a ranked list of the reannotation pool. The goal of a reannotation strategy
is to ensure that sentences with annotation errors appear at the top of the ranked list. Such
a ranking is expected to use a given reannotation budget effectively. Reannotating all the
sentences in the reannotation pool will require a large number of resources. In the real world,
we can typically afford to reannotate only a fraction of the reannotation pool. We expect that
a good reannotation strategy should be able to catch most of the annotation errors with a
relatively small reannotation budget.

A trained RC model, when presented with a data point for relation classification, assigns
a relation label along with the confidence score. This score indicates how confident the
model is while assigning the relation label. The TACRev strategy uses multiple RC models
for ranking the data points based on the confidence of the RC models. In our experiments, we
used six RC models mentioned in the subsection 5.3.1. The ReTACRED method does not
have the concept of ranking data points. It is a brute-force strategy that simply reannotates the
whole reannotation pool. To simulate the ReTACRED strategy with the reannotation budget,
we simply pick up random sentences from the reannotation pool to perform the reannotation
task.

Our reannotation strategy is based on the taxonomic-hierarchy prepared by Parekh et
al. [10]. Following their work, we arranged all relations from the TACRED dataset into a
taxonomic hierarchy. The relation labels are arranged as a tree. Each relation label has a
parent and multiple or zero children. Please refer to Chapter 3.4 for the TACRED relation
hierarchy. With such a hierarchy, it becomes feasible to measure the error in the model’s
prediction. Both our reannotation strategies utilize this hierarchy for selecting candidates for
reannotation.



5.3.2.1 Graph Distance Strategy

Consider the following sentence, S, which has its relation label annotated in the dataset as
AR(S). AR stands for Actual Relation. We have a list of K different RC models: M1 to
MK . Each model Mi assigns the sentence S a relation label PRi(S). PR stands for "Predicted
Relation." Both AR(S) and PRi(S) can be located as nodes in the relation hierarchy tree. Our
first reannotation strategy measures the length of the path between these two nodes in the
tree. We refer to this strategy as the "Graph Distance" (GD) strategy. For each sentence S,
we compute the following score:

GD(S) = (∑K
i=1 fi(S))/K,where

fi(S) = Distance(AR(S),PRi(S))

The Distance function computes the length of the shortest path between two tree nodes.
This is a fundamental problem in graph algorithms, and it can be solved in O(h) time, where
h is the height of the tree.Assume that AR(S)vis per : parent and PR(S) is per : age for a
given sentence S.In this case, the shortest path between these two labels is (per : parent,
per : f amily, per− per, per, per−misc, per : age) with the Distance of five edges. The
function fi(S) measures the disagreement between the prediction of model Mi and the label
given in the dataset. A high fi(s) value indicates a high level of disagreement between the
model Mi and the currently assigned label in the dataset. The GD(S) score is the average
of all K models. Our Graph Distance reannotation strategy considers sentences with a high
GD score as preferred candidates for reannotation. Intuitively, we are selecting sentences
where multiple RC models have strong disagreement with the currently assigned label in the
dataset.

5.3.2.2 LCA Distance Startegy

Our second strategy involves fine-tuning the computation of disagreement between model
prediction and currently assigned labels in the dataset. We locate both AR(S) and PRi(S) in
the relation hierarchy and find their Lowest Common Ancestor (LCA). The LCA computation
in the tree is also a basic graph problem that can be solved in time complexity O(h), where h
is the height of the tree. Consider the same example with AR(s) as per : parent and PR(S) as
per : age. In this case, the LCA of these two labels is the node per. Consider the path from
the root of the relation hierarchy to the node AR(S). The LCA node is the point at which the
model prediction starts to differ from the currently assigned label in the dataset. We compute
the following score for each sentence S:



Fig. 5.3 Similarity of a reannotation strategy with TACRev.

LD(S) = (∑K
i=1 gi(S))/K,where

gi(S) = Distance(AR(S),LCA(AR(S),PRi(S)))

The function gi(S) fine-tunes the definition of disagreement. Instead of considering the
complete path between AR(S) and PRi(S), we are now considering only the part up to the
LCA of these two nodes. We call this reannotation strategy as LCA Distance (LD) strategy.
Each reannotation strategy creates a permutation of the reannotation pool by sorting sentences
in the descending order of the corresponding scores.

5.3.3 Evaluation

After step 2, each reannotation strategy will create its own permutation of the reannotation
pool. Based on the reannotation budget |R|, we will select the top |R| data points from each
permutation. While comparing our strategies with those of TACRev and ReTACRED, we
need to answer three important questions. First about novelty: do our strategies provide
novel candidates for reannotation? Second about efficiency: do our strategies catch more
annotation errors for a given reannotation budget? And third about impact: what is the effect
of reannotation on the model performance?

5.3.3.1 Novelty in Candidate Selection

The novelty of GD and LD against ReTACRED is trivial because ReTACRED selects random
data points for reannotation. Please refer to Figure 5.3 for the analysis of novelty against
TACRev. The X-axis indicates the reannotation budget. The Y-axis indicates the Jaccard
similarity, that is the size of the intersection divided by the size of the union. TACRev’s



similarity to itself is always 100%. We can observe that for a low reannotation budget,
the similarity score grows quickly and approaches 100%. This indicates that initially,
all strategies choose similar candidates for reannotation. For medium budget values, the
similarity falls significantly. This indicates that our strategies differ significantly from
TACRev for medium-budget value. For a higher reannotation budget, the similarity score
again approaches 100% as expected. When the reannotation budget is high, we will reannotate
almost the entire dataset. In such a scenario, there is hardly any chance for novel candidate
selection.

The qualitative analysis of novelty provided by all three strategies is presented in the
Table 5.2. It can be observed that all the strategies selects different samples.

S.no TACRev based Selection GD based Selection LD based Selection
Sentence Avg. confidence Sentence Avg. GD Sentence Avg. LD

1

Ezra Randle, Oklahoma overseer for the Christ Holy Sanctified Church,
said Daniels had been traveling to Anadarko for four or five years and
85 percent of the time, she made the trip alone.
relation - per:age

0.999167

The ADF is a Muslim rebel group that claimed to fight for equal
rights for Muslims in Uganda but was driven out of the country in
2001 and has since been based in eastern Democratic Republic of
Congo.
relation - org:country_of_headquarter

6

Supporters like Ble Goude have branded the Golf Hotel a rebel base,
and both FDS troops and civilian protesters have begun to harass UN
patrols in Abidjan, which is still firmly under the control of
Gbagbo’s forces.
relation - per:cities_of_residences

5

2

He formed his own company, TAU, for a while, sold part to Trimble,
left Trimble to start a GPS business line at Motorola
(where he was also a VP), from there to Rand McNally in Chicago,
and more recently to NavTeq.
relation - per:sibbling

0.997833
Then in May, Samudio went back to Rio to find Souza, presumably,
the police said, to prove to him the baby was his.
relation - per:cities_of_residences

6
“The United States would view favorably the release of Alan Gross
so that he can return to his family,” she added.
relation - per:countries_of_residence

5

3
The next day, Halliburton told her that if she left Iraq to get medical
treatment, she could lose her job.
relation - per:other_family

0.997833
In October, she filed a complaint with the police in Rio saying he had
kidnapped her and tried to threaten her into having an abortion.
relation - per:other_family

6
Jamie Leigh Jones is testifying on Capitol Hill this afternoon.
relation - per:cities_of_residence 5

4

The market traded nervously, jerking the Dow Jones industrial average
above and below the 13,000 mark throughout the day as investors
wrestled with reports about potential trouble at Countrywide
Financial Corp. and KKR Financial Holdings LLC.
relation - org:alternate_names

0.997667

Gaunt and haggard, freed Italian aid worker Eugenio Vagni says his
release after being held for six months by armed Islamic militants
in the Philippines was a day he thought might never come.
relation - per:countries_of_residences

6

Last month, Norris Mailer published her memoir, “A Ticket to the Circus,”
in which she recounted the ultimatum she gave to her husband in 1991
after finding notes from Mallory and other girlfriends in the author ’s studio.
relation - per:spouse

5

Table 5.2 First four sample instances selected by three different strategies. Avg. is the
average of score returned by all models used. Samples are selected from the list

of sentences. subject entity is in red color and object entity is in green color.

5.3.3.2 Efficiency

ReTACRED performed a complete reannotation of TACRED data [8]. They observed that the
set of noisy data points (N) in TACRED are: 5326 sentences from DEV, 3936 sentences from
TEST, and 13923 sentences from TRAIN. To evaluate the performance of our reannotation
strategies, the obvious way is to carry out the reannotation task again on our own. However,
we chose to simulate the performance of our reannotation strategies using the set N for two
main reasons. First, the set N is meticulously prepared by the ReTACRED authors, who
devised a large-scale, multi-stage crowdsourcing experiment.Second, we did not have the
financial budget available to carry out the large-scale reannotation task on our own. We took
the labels from ReTACRED as the gold standard labels.

Please refer to Figure 5.4. The X-axis indicates the reannotation budget. The Y-axis
depicts the percentage of sentences from the set N that we can find in the given budget using
a particular reannotation strategy. For example, when we reannotate the top 1000 sentences



Fig. 5.4 Annotation errors corrected by various reannotation strategies.

from the TEST partition using the LD strategy, it contains 566 sentences, around 14.4 percent
of the set N. We can observe that for a low reannotation budget, GD, LD, and TACRev
have the same efficiency. This is expected as their similarity was close to 100% for the low
reannotation budget. However, for the medium reannotation budget, our strategies outperform
TACRev for the TEST and DEV partitions. While reannotating the TRAIN partition, for
medium budgets, there are two distinct trends. Initially, for the reannotation budget range of
10,000 to 35,000 sentences, TACRev outperforms both GD and LD. However, later, for the
range of 35,000 to 55,000 sentence reannotation budget, GD and LD perform slightly better
than TACRev. For the very high value of the reannotation budget, TACRev performs slightly
better than our strategies for all three partitions of the data. The efficiency of GD and LD
strategies is almost the same as their lines are overlapping in the figure. The efficiency of
ReTACRED grows linearly as it chooses random sentences for reannotation.

5.4 Impact on Model Performance Measurement

While measuring the impact of data reannotation on the model performance, we will analyze
the two phases separately. For Phase 1, we train our models only once, as we are not
reannotating our TRAIN partition during this phase. For Phase 2, after each reannotation
budget, we have to retrain our models to evaluate the effect of a partial reduction in the label
noise in the TRAIN partition.



5.4.1 Phase 1

Please refer to Figure 5.5. The X-axis indicates the reannotation budget. The Y-axis indicates
the F1 score of each model. Please note that we are only reannotating the TEST data
here. The models are trained on the noisy TACRED dataset. We can observe that for three
reannotation strategies (TACRev, GD, and LD), initially, the model performance improves
with reannotation. This indicates that RC models agree with the initial reannotation. However,
the performance of all models falls significantly with a higher reannotation budget. The test
dataset is the cleanest when the reannotation budget is set to maximum. The F1 score for all
models at this point indicates that the original performance reported in the literature for these
models was inflated. The main reason for this inflated value is the significant noise in the
TEST partition of the TACRED dataset.

None of the previous works could catch this trend for the following reason. We have
conducted experiments here with noisy training data and varying degrees of noise reduction
in the test data. However, previous works can be classified into the following categories:

Noisy training and noisy test data: Several works that directly used TACRED data are
training their RC models on TACRED’s noisy TRAIN partition [57]. They are also testing
their RC models on noisy TEST data. As a result, their reported F1 score is in the range of
60% to 70%. This corresponds to reannotation budget zero in Figure 5.5.

Noisy training and partially clean test data: The TACRev study reported an average
improvement of 8% in the F1 score with the reannotation budget of about 2300 sentences
from the TEST partition [6]. Our results for TACRev in Figure 5.5 are consistent with their
reported numbers. We can observe that while using the TACRev reannotation strategy, the
performance of all models peaks with a reannotation budget of around 2300. However, their
results are a special case of our experiments with a fixed reannotation budget of 2300. We
can observe a similar trend for our reannotation strategies GD and LD in Figure 5.5. Further
cleaning of the TEST dataset beyond the budget of 2300 actually results in a performance
drop for all RC models and all reannotation strategies.

Completely clean training and completely clean test data: ReTACRED performed a
complete reannotation of all three partitions of the TACRED dataset [8]. As a result, they
report at least a 10% increase in F1 scores for various RC models when compared to previous
work.This case cannot be captured in Figure 5.5 because we are not making any changes to
the TRAIN partition of the TACRED dataset.



In Figure 5.5, we can observe that for the ReTACRED strategy, the model performance
goes on monotonically decreasing with the reannotation budget. This is expected as the order
of the sentences for reannotation is random. From the other three reannotation strategies,
we can observe that reannotation of only about the top 2500 sentences helps RC models
boost their performance. All these 2500 sentences are ordered randomly in the ReTACRED
strategy. Reannotation of the rest of the sentences from the TEST partition does not agree
with the RC model prediction and brings down the model performance.

5.4.2 Phase 2

Please refer to Figure 5.6. The X-axis indicates the reannotation budget. The Y-axis indicates
the F1 score of each model. For Phase 2, we start with a clean TEST and a noisy TRAIN.
We will progressively go on reducing the label noise by increasing the reannotation budget.
We can observe that for all reannotation strategies, the initial improvement in the model
performance is slow. However, after a certain threshold, there is a quick improvement in
the model performance within a short range of the reannotation budget. This threshold is
different for various strategies (GD:40%, LD:40%, TACRev:60%, and ReTACRED:25%).
For all models, the final F1 score with complete reannotation is in the range of 75% to 80%.
However, most of the model performance improvements can be achieved by reannotating
only a fraction of the TRAIN partition. For example, RC model performance improves from
the range of 50%-55% to the range of 70%-75% with reannotation of about only 60%-70%
of the TRAIN partition.

5.5 Limitations of Our Work

The first limitation of our work is that we trust the annotations from ReTACRED as the
ground truth. In reality, the ReTACRED annotations are also done using crowd-sourcing.
However, as compared to the original TACRED dataset, they have taken more precautions
to avoid annotation errors. For example, they have rearranged the relation labels to avoid
confusion in labeling. They have also created better instructions for the crowd-sourced
workers. One way to further reduce the possibility of errors in the data is to get annotations
from domain experts. However, considering the scale of the dataset, it is a challenging task.



The second limitation of our work is that it requires a taxonomic hierarchy of relation
labels. We have created the relation hierarchy manually for the TACRED dataset. It would
be helpful if such a hierarchy could be created automatically from the RC dataset.

5.6 Chapter Summary

In this work, we analyzed the RC model performance as a function of label noise in the
dataset. The reported F1 score of various RC models in the literature is in the range of 60%
to 70%. These works report the inflated performance of RC models due to label noise in
the TEST partition. However, at the end of Phase 1 evaluation, we realize that their actual
F1 score is in the range of 45% to 55%. This performance can be improved by reducing
the label noise in the TRAIN partition. Based on the Phase 2 evaluation, we can achieve
significant model performance improvements by reannotating only a portion of the data.

We also introduced the concept of a reannotation budget to provide flexibility about
how much data to reannotate. In this chapter, we proposed two reannotation strategies and
compared them against two existing reannotation strategies. Our reannotation strategies (GD
and LD) are novel and efficient.

A high rate of reannotation indicates that crowd-sourced labels are not trustworthy,
especially for complex NLP tasks such as relation classification. Hence, data annotation
should not be considered a one-time task. Rather, it should be treated as a budget-sensitive
and iterative process where data is labeled in multiple iterations.



Fig. 5.5 Performance of RC models trained on noisy training set after reannotation of test
data at different reannotation budget.



Fig. 5.6 Performance of RC models after reannotation of training data at different reannotation
budget on clean test data.



Chapter 6

Conclusions and Future Work

In this thesis, we proposed heuristics and strategies to address the challenges associated
with the large RC dataset. We performed all our experiments using TACRED. We addressed
three major issues: a lack of relation labels, a lack of relation hierarchy, and a noisy and
imbalanced dataset. We addressed all these challenges, mainly focusing on reducing noise
from the RC dataset with time-efficient and cost-effective approaches.

In Chapter 3, exploring Multiple KBs, we curated a list of 623 relations and arranged them
in a taxonomical relation hierarchy. Further, we used that relation hierarchy as a template
for creating a similar relation hierarchy for TACRED relation labels. We used the generated
TRH to eliminate ambiguous instances, as well as to deal with the long-tail distribution
of relation labels and ambiguity in relation boundaries, we relabeled some finer relations
with their coarser relation labels following relation hierarchy. Finally, we used hierarchical
distance to scale cross-entropy loss (CE Loss) and proposed hierarchical distance scaled
cross-entropy loss (HCE Loss).

Following TRH in our previous chapter (Chapter 3), we could only eliminate a few noisy
positive instances. Consequently, the true picture of noise in the TACRED dataset was still
unclear. Therefore, in Chapter 4, we explored the model-based characterization of noise
present in the TACRED dataset and two strategies to handle potentially noisy instances.
Analyses of model prediction results indicated that the incorrect labeling of instances as
NO_RELAT ION class or "negative relation" is predominantly responsible for the noise in the
data. Hence, we proposed two different strategies for identifying potentially noisy negative
relation instances for elimination and reannotation. The first strategy, intrinsic strategy,
is based on finding the nearest neighbor to the model’s false negative prediction. Whereas,



the second strategy, extrinsic strategy, requires a subset of clean TACRED instances. Our
experimental results show that elimination and reannotation based on an extrinsic strategy
give better datasets in comparison to the intrinsic strategy. Model performance improved
further when we reduced noisy positive instances, also using an extrinsic strategy.

In Chapter 5, we introduced the concept of a reannotation budget to provide flexibility
about how much data to reannotate. We also proposed two strategies based on the taxonomic
hierarchy of relation labels (from our earlier work, Chapter 3) for selecting data points for
reannotation. We have shown that our reannotation strategies are novel and more efficient
when compared with the existing approaches. Our experiments suggest that the reported
performance of existing RC models on the noisy dataset TACRED is inflated. Furthermore,
we show that significant model performance improvement can be achieved by reannotating
only a part of the training data.

Future Work Directions

While the dissertation has made significant progress in the advancement of relation classifica-
tion and learning from noisy RC dataset, there are still several open problems that remain
unaddressed. Many of which are worth pursuing as future work, as discussed:

Automated Expansion of Taxonomcal Relation Hierarchy for multiple
knowledge bases:

Nakashole et al. [84] created a hierarchy for OpenIE relational phrases. Adapting such
strategies along with efficient hypernymy detection algorithms and ontology alignment
approaches can become the starting point of research in this direction. Moreover, in this
work we considered only person, organization, and location entity types for the construction
of TRH. However, this can be extended to any number of entity types. For example, by
including date, relations such as dateOfBirth, foundedinYear can be included.

Efficiently Generating a large RE/RC Dataset:

RE/RC datasets are restricted because of limited number of relation labels considered in the
benchmark datasets. This work provides a comprehensive list of 623 relations. This list,



along with the relation hierarchy, can further be used as a set of model relations for creating
a sizeable sentence-level dataset for RE. On the other hand, using relation hierarchy, relation
templates, and instances of relation triples from KBs, existing datasets can be improved with
high confidence statements using generative models.

Learning from Noisy Datasets:

Even though the proposed methodologies led to a performance improvement, they were able
to identify only a small subset of noisy instances. Moreover, identifying all noisy instances
without manual intervention is challenging. Therefore, this work can further be extended
by exploring approaches such as curriculum learning [70], multi-network learning [86], and
label refurbishment [87]. Another interesting future direction could be to explore the idea of
using uncertainty quantification methods [78] to identify potential noisy instances and utilize
them for reannotation.

Resources and Github Repositories from this Thesis

Taxonomical Relation Hierarchy

Pre-pocessed 5 Million DBpedia Triples

Pre-pocessed 15 Million Wikidata Triples

Noise in TACRED: Characterization & Reduction (Github repository)

Budget-Sensitive reannotation (Github repository)

https://www.iitg.ac.in/cseweb/fgrel/index.html
http://172.16.112.180/~akshay/DBpedia-tuples.zip
http://172.16.112.180/~akshay/wikidata-tuples.zip
https://github.com/akshayparakh25/crt
https://github.com/akshayparakh25/budget-sensitive-reannotation
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[2] D. Vrandečić and M. Krötzsch, “Wikidata: a free collaborative knowledge base,” 2014.

[3] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A large ontology from wikipedia
and wordnet,” Journal of Web Semantics, vol. 6, no. 3, pp. 203–217, 2008.

[4] V. Yadav and S. Bethard, “A survey on recent advances in named entity recognition
from deep learning models,” in Proceedings of the 27th International Conference on
Computational Linguistics, 2018, pp. 2145–2158.

[5] S. Pawar, G. K. Palshikar, and P. Bhattacharyya, “Relation extraction: A survey,” arXiv
preprint arXiv:1712.05191, 2017.

[6] C. Alt, A. Gabryszak, and L. Hennig, “TACRED revisited: A thorough
evaluation of the TACRED relation extraction task,” in Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics. Association
for Computational Linguistics, 2020, pp. 1558–1569. [Online]. Available:
https://www.aclweb.org/anthology/2020.acl-main.142

[7] Y. Zhang, V. Zhong, D. Chen, G. Angeli, and C. D. Manning, “Position-aware
attention and supervised data improve slot filling,” in Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing (EMNLP 2017).
Association for Computational Linguistics, 2017, pp. 35–45. [Online]. Available:
https://nlp.stanford.edu/pubs/zhang2017tacred.pdf

[8] G. Stoica, E. A. Platanios, and B. Poczos, “Re-tacred: Addressing shortcomings of
the tacred dataset,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, 2021, pp. 13 843–13 850.

[9] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy, “Spanbert:
Improving pre-training by representing and predicting spans,” Transactions of the
Association for Computational Linguistics, vol. 8, pp. 64–77, 2020.

[10] A. Parekh, A. Anand, and A. Awekar, “Taxonomical hierarchy of canonicalized relations
from multiple knowledge bases,” in Proceedings of the 7th ACM IKDD CoDS and 25th
COMAD, 2020, p. 200–203.

https://www.aclweb.org/anthology/2020.acl-main.142
https://nlp.stanford.edu/pubs/zhang2017tacred.pdf


[11] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word represen-
tations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[12] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word rep-
resentation,” in Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), 2014, pp. 1532–1543.

[13] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with
subword information,” Transactions of the association for computational linguistics,
vol. 5, pp. 135–146, 2017.

[14] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14, no. 2, pp. 179–211,
1990.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[17] Y. Kim, “Convolutional neural networks for sentence classification,” in Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguistics, Oct. 2014, pp. 1746–1751.
[Online]. Available: https://aclanthology.org/D14-1181

[18] T. H. Nguyen and R. Grishman, “Relation extraction: Perspective from convolutional
neural networks,” in Proceedings of the 1st workshop on vector space modeling for
natural language processing, 2015, pp. 39–48.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” vol. 30, 2017.

[20] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning
to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 770–778.

[22] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint
arXiv:1607.06450, 2016.

[23] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language
understanding by generative pre-training,” 2018.

[24] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirec-
tional transformers for language understanding,” in Proceedings of the NAACL:HLT
2019, Volume 1 (Long and Short Papers), 2019, pp. 4171–4186.

[25] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov, “Roberta: A robustly optimized bert pretraining approach,” 2019.

https://aclanthology.org/D14-1181


[26] I. Hendrickx, S. N. Kim, Z. Kozareva, P. Nakov, D. Ó Séaghdha, S. Padó, M. Pennac-
chiotti, L. Romano, and S. Szpakowicz, “Semeval-2010 task 8: Multi-way classification
of semantic relations between pairs of nominals,” in Proceedings of the Workshop on
Semantic Evaluations: Recent Achievements and Future Directions, 2009, pp. 94–99.

[27] A. Mitchell, S. Strassel, S. Huang, and R. Zakhary, “Ace 2004 multilingual training
corpus,” Linguistic Data Consortium, Philadelphia, vol. 1, pp. 1–1, 2005.

[28] M. Mintz, S. Bills, R. Snow, and D. Jurafsky, “Distant supervision for relation extraction
without labeled data,” in Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural Language Processing
of the AFNLP: Volume 2-Volume 2. Association for Computational Linguistics, 2009,
pp. 1003–1011.

[29] S. Riedel, L. Yao, and A. McCallum, “Modeling relations and their mentions without
labeled text,” in Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 2010, pp. 148–163.

[30] R. Yangarber and R. Grishman, “Nyu: Description of the proteus/pet system as used
for muc-7 st,” in Seventh Message Understanding Conference (MUC-7): Proceedings
of a Conference Held in Fairfax, Virginia, April 29-May 1, 1998, 1998.

[31] F. Xu, H. Uszkoreit, and H. Li, “A seed-driven bottom-up machine learning framework
for extracting relations of various complexity,” in Proceedings of the 45th annual
meeting of the Association of Computational Linguistics, 2007, pp. 584–591.

[32] S. Kim, M. Jeong, and G. G. Lee, “A local tree alignment approach to relation extraction
of multiple arguments,” Information processing & management, vol. 47, no. 4, pp. 593–
605, 2011.

[33] G. Zhou, J. Su, J. Zhang, and M. Zhang, “Exploring various knowledge in relation
extraction,” in Proceedings of the 43rd annual meeting of the association for computa-
tional linguistics (ACL’05), 2005, pp. 427–434.

[34] D. P. Nguyen, Y. Matsuo, and M. Ishizuka, “Relation extraction from wikipedia using
subtree mining,” in Proceedings of the National Conference on Artificial Intelligence,
vol. 22, 2007, p. 1414.

[35] B. Rink and S. Harabagiu, “Utd: Classifying semantic relations by combining lexical
and semantic resources,” in Proceedings of the 5th International Workshop on Semantic
Evaluation. Association for Computational Linguistics, 2010, pp. 256–259.

[36] A. Culotta and J. Sorensen, “Dependency tree kernels for relation extraction,” in Pro-
ceedings of the 42nd Annual Meeting of the Association for Computational Linguistics
(ACL-04), 2004, pp. 423–429.

[37] R. Bunescu and R. Mooney, “A shortest path dependency kernel for relation extrac-
tion,” in Proceedings of Human Language Technology Conference and Conference on
Empirical Methods in Natural Language Processing, 2005, pp. 724–731.

[38] R. Mooney and R. Bunescu, “Subsequence kernels for relation extraction,” in Advances
in Neural Information Processing Systems, vol. 18, 2005.



[39] M. Wang, “A re-examination of dependency path kernels for relation extraction,” in Pro-
ceedings of the Third International Joint Conference on Natural Language Processing:
Volume-II, 2008.

[40] N. Kambhatla, “Combining lexical, syntactic, and semantic features with maximum
entropy models for information extraction,” in Proceedings of the ACL Interactive
Poster and Demonstration Sessions, 2004, pp. 178–181.

[41] R. Socher, B. Huval, C. D. Manning, and A. Y. Ng, “Semantic compositionality
through recursive matrix-vector spaces,” in Proceedings of the 2012 joint conference on
empirical methods in natural language processing and computational natural language
learning, 2012, pp. 1201–1211.

[42] C. Liu, W. Sun, W. Chao, and W. Che, “Convolution neural network for relation
extraction,” in International Conference on Advanced Data Mining and Applications,
2013, pp. 231–242.

[43] D. Zeng, K. Liu, S. Lai, G. Zhou, and J. Zhao, “Relation classification via convolutional
deep neural network,” in Proceedings of COLING 2014, the 25th International Confer-
ence on Computational Linguistics: Technical Papers. Association for Computational
Linguistics, 2014, pp. 2335–2344.

[44] S. Zhang, D. Zheng, X. Hu, and M. Yang, “Bidirectional long short-term memory
networks for relation classification,” in Proceedings of the 29th Pacific Asia conference
on language, information and computation, 2015, pp. 73–78.

[45] P. Zhou, W. Shi, J. Tian, Z. Qi, B. Li, H. Hao, and B. Xu, “Attention-based bidirectional
long short-term memory networks for relation classification,” in Proceedings of 54th
Annual Meeting of the Association for Computational Linguistics, ACL 2016, 2016, pp.
207–212.

[46] L. Wang, Z. Cao, G. De Melo, and Z. Liu, “Relation classification via multi-level
attention cnns,” in Proceedings of the 54th Annual Meeting of the ACL (Volume 1: Long
Papers), 2016, pp. 1298–1307.

[47] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” arXiv preprint arXiv:1609.02907, 2016.

[48] C. Alt, M. Hübner, and L. Hennig, “Improving relation extraction by pre-trained
language representations,” in Automated Knowledge Base Construction (AKBC), 2019.

[49] M. E. Peters, M. Neumann, R. Logan, R. Schwartz, V. Joshi, S. Singh, and N. A.
Smith, “Knowledge enhanced contextual word representations,” in Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
2019, pp. 43–54.

[50] W. Zhou and M. Chen, “An improved baseline for sentence-level relation extraction,”
arXiv preprint arXiv:2102.01373, 2021.



[51] I. Yamada, A. Asai, H. Shindo, H. Takeda, and Y. Matsumoto, “Luke: Deep contextual-
ized entity representations with entity-aware self-attention,” in Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020,
pp. 6442–6454.

[52] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation embeddings
for knowledge graph completion,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 29, 2015.

[53] C. Xiong, R. Power, and J. Callan, “Explicit semantic ranking for academic search via
knowledge graph embedding,” in Proceedings of the 26th International Conference on
World Wide Web, 2017, pp. 1271–1279.

[54] B. Y. Lin, X. Chen, J. Chen, and X. Ren, “Kagnet: Knowledge-aware graph networks
for commonsense reasoning,” in Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 2829–2839.

[55] W. Cui, Y. Xiao, H. Wang, Y. Song, S.-w. Hwang, and W. Wang, “Kbqa: learning ques-
tion answering over qa corpora and knowledge bases,” arXiv preprint arXiv:1903.02419,
2019.

[56] X. Han, H. Zhu, P. Yu, Z. Wang, Y. Yao, Z. Liu, and M. Sun, “Fewrel: A large-
scale supervised few-shot relation classification dataset with state-of-the-art evaluation,”
in Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, 2018, pp. 4803–4809.

[57] Y. Zhang, P. Qi, and C. D. Manning, “Graph convolution over pruned dependency trees
improves relation extraction,” in Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, 2018, pp. 2205–2215.

[58] L. B. Soares, N. Fitzgerald, J. Ling, and T. Kwiatkowski, “Matching the blanks:
Distributional similarity for relation learning,” in Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, 2019, pp. 2895–2905.

[59] Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu, “Ernie: Enhanced language
representation with informative entities,” in Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, 2019, pp. 1441–1451.

[60] X. Han, P. Yu, Z. Liu, M. Sun, and P. Li, “Hierarchical relation extraction with coarse-
to-fine grained attention,” in Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, 2018, pp. 2236–2245.

[61] R. Takanobu, T. Zhang, J. Liu, and M. Huang, “A hierarchical framework for relation
extraction with reinforcement learning,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, 2019, pp. 7072–7079.

[62] T. Wang, Y. Li, K. Bontcheva, H. Cunningham, and J. Wang, “Automatic extraction
of hierarchical relations from text,” in European Semantic Web Conference, 2006, pp.
215–229.



[63] J. Chen, L. Liu, J. Xu, and B. Hui, “Hierarchical relation extraction based on bidirec-
tional long short-term memory networks,” in Proceedings of the 2019 International
Conference on Data Mining and Machine Learning, 2019, p. 110–113.

[64] P. Jain, P. Kumar, S. Chakrabarti et al., “Type-sensitive knowledge base inference
without explicit type supervision,” in Proceedings of the 56th Annual Meeting of the
ACL (Volume 2: Short Papers), 2018, pp. 75–80.

[65] H. Peng, T. Gao, X. Han, Y. Lin, P. Li, Z. Liu, M. Sun, and J. Zhou, “Learning from
context or names? an empirical study on neural relation extraction,” in Proceedings of
the EMNLP 2020, 2020, pp. 3661–3672.

[66] J. Wehrmann, R. Cerri, and R. Barros, “Hierarchical multi-label classification networks,”
in International Conference on Machine Learning. PMLR, 2018, pp. 5075–5084.

[67] D. Mekala, V. Gangal, and J. Shang, “Coarse2fine: Fine-grained text classification on
coarsely-grained annotated data,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, 2021, pp. 583–594.

[68] A. Ghosh, H. Kumar, and P. Sastry, “Robust loss functions under label noise for deep
neural networks,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 31, 2017.

[69] D. Song, J. Xu, J. Pang, and H. Huang, “Classifier-adaptation knowledge distillation
framework for relation extraction and event detection with imbalanced data,” Informa-
tion Sciences, vol. 573, pp. 222–238, 2021.

[70] S. Park and H. Kim, “Improving sentence-level relation extraction through curriculum
learning,” arXiv e-prints, pp. arXiv–2107, 2021.

[71] B. Xu, L. Zhang, Z. Mao, Q. Wang, H. Xie, and Y. Zhang, “Curriculum learning for
natural language understanding,” in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, 2020, pp. 6095–6104.

[72] D. Chen, J. Bolton, and C. D. Manning, “A thorough examination of the cnn/daily mail
reading comprehension task,” in Proceedings of 54th Annual Meeting of the Association
for Computational Linguistics, ACL 2016, 2016, pp. 2358–2367.

[73] J. Barnes, L. Øvrelid, and E. Velldal, “Sentiment analysis is not solved! assessing
and probing sentiment classification,” in Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, 2019, pp. 12–23.

[74] B. Frénay and M. Verleysen, “Classification in the presence of label noise: a survey,”
IEEE transactions on neural networks and learning systems, vol. 25, no. 5, pp. 845–869,
2013.

[75] Z. Guo, Y. Zhang, and W. Lu, “Attention guided graph convolutional networks for
relation extraction,” in Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019, pp. 241–251.

[76] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of machine
learning research, vol. 9, no. 11, 2008.



[77] C. E. Brodley and M. A. Friedl, “Identifying mislabeled training data,” Journal of
artificial intelligence research, vol. 11, pp. 131–167, 1999.

[78] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh,
P. Fieguth, X. Cao, A. Khosravi, U. R. Acharya et al., “A review of uncertainty
quantification in deep learning: Techniques, applications and challenges,” Information
Fusion, vol. 76, pp. 243–297, 2021.

[79] K. Lee, S. Yun, K. Lee, H. Lee, B. Li, and J. Shin, “Robust inference via generative
classifiers for handling noisy labels,” in International Conference on Machine Learning.
PMLR, 2019, pp. 3763–3772.

[80] H. Wei, L. Tao, R. Xie, and B. An, “Open-set label noise can improve robustness against
inherent label noise,” in Advances in Neural Information Processing Systems, vol. 34,
2021.

[81] Q. Wang, B. Han, T. Liu, G. Niu, J. Yang, and C. Gong, “Tackling instance-dependent
label noise via a universal probabilistic model,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 35, 2021, pp. 10 183–10 191.

[82] Y. Bai, E. Yang, B. Han, Y. Yang, J. Li, Y. Mao, G. Niu, and T. Liu, “Understanding
and improving early stopping for learning with noisy labels,” in Advances in Neural
Information Processing Systems, vol. 34, 2021.

[83] S. B. Huffman, “Learning information extraction patterns from examples,” in Interna-
tional Joint Conference on Artificial Intelligence. Springer, 1995, pp. 246–260.

[84] N. Nakashole, G. Weikum, and F. Suchanek, “Patty: A taxonomy of relational patterns
with semantic types,” in Proceedings of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computational Natural Language Learning,
2012, pp. 1135–1145.

[85] M. Miwa and M. Bansal, “End-to-end relation extraction using lstms on sequences
and tree structures,” in Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, 2016, pp. 1105–1116.

[86] Y. Yao, Z. Sun, C. Zhang, F. Shen, Q. Wu, J. Zhang, and Z. Tang, “Jo-src: A contrastive
approach for combating noisy labels,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 5192–5201.

[87] P. Chen, J. Ye, G. Chen, J. Zhao, and P.-A. Heng, “Beyond class-conditional assumption:
A primary attempt to combat instance-dependent label noise,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 35, 2021, pp. 11 442–11 450.




	Table of Contents
	List of Figures
	List of Tables
	 List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.3 Problem Description
	1.4 Contribution
	1.4.1 Contribution 1: Taxonomical Relation Hierarchy and it’s application in Relation Classification
	1.4.2 Contribution 2: Model-based Characterization and Reduction of noisy instances from RC dataset 
	1.4.3 Contribution 3: Budget-Sensitive Reannotation of noisy RC dataset 

	1.5 Thesis Outline

	2 Background
	2.1 Modelling Approaches
	2.2 Natural Language Processing
	2.3 Knowledge Bases
	2.4 Relation Extraction & Classification
	2.4.1 Datasets
	2.4.2 Methods
	2.4.2.1 Rule-based Methods
	2.4.2.2 Statistical & Machine Learning Methods
	2.4.2.3 Deep Neural Methods



	3 Taxonomical Relation Hierarchy and it’s application in Relation Classification
	3.1 Introduction
	3.2 Literature Review
	3.2.1 RE Datasets
	3.2.2 Relation Classification Models and Relation Hierarchy

	3.3 Relation Hierarchy
	3.3.1 Getting relation list
	3.3.2 Name canonicalization
	3.3.3 Filtering
	3.3.4 Hierarchy creation
	3.3.5 Hierarchy merging

	3.4 Application of Relation Hierarchy: Case study on TACRED
	3.4.1 TACRED and corresponding relation hierarchy
	3.4.2 Filtering Ambiguous Instances
	3.4.3 Fine to Coarse Re-Labeling
	3.4.4 Hierarchical Distance Scaled Cross-Entropy Loss

	3.5 Experiment Setup
	3.5.1 Baseline Models for Dataset Evaluaion
	3.5.2 Experimental Setup and Baseline for Proposed Loss Function
	3.5.3 Evaluation Metric

	3.6 Results & Discussion
	3.6.1 Relation hierarchy
	3.6.2 Model Performance on TACRED and variants
	3.6.2.1 Effects of Filtering: 
	3.6.2.2 Effects of Relabeling

	3.6.3 Performance of Proposed Loss Function on TACRED

	3.7 Chapter Summary

	4 Model-based Characterization and Reduction of noisy instances from RC dataset
	4.1 Introduction
	4.2 Literature Review
	4.2.1 Relation Classification from Noisy and Imbalanced Dataset
	4.2.2 Dataset Evaluation and Analysis
	4.2.3 Dataset Reannotation

	4.3 TACRED Analysis
	4.3.1 Positive Relation Classification Analysis
	4.3.2 Downsampling
	4.3.3 Binary Classification
	4.3.4 t-SNE Plots
	4.3.5 Top-k Evaluation

	4.4 Methodology: Handling Noisy Instances
	4.4.1 Intrinsic Strategy (IS)
	4.4.2 Extrinsic Strategy (ES)
	4.4.2.1 Clean Subset of TACRED
	4.4.2.2 Finding noisy examples for elimination
	4.4.2.3 Finding noisy examples for reannotation


	4.5 Experiments
	4.5.1 Baseline Models and Hyper-parameters
	4.5.2 Evaluation Models
	4.5.3 TACRED Variant for Evaluation

	4.6 Results and Discussion
	4.6.1 Performance Evaluation
	4.6.2 Analysis of Noisy Sample
	4.6.3 Robustness of our Approach
	4.6.4 Impact on different Relation Labels
	4.6.4.1 Impact of eliminating noisy instances:
	4.6.4.2 Impact of reannotating noisy instances:

	4.6.5 Limitations

	4.7 Chapter Summary

	5 Budget-Sensitive Reannotation of noisy RC dataset
	5.1 Introduction
	5.2 Related Works
	5.3 Proposed Work
	5.3.1 Model Training
	5.3.2 Reannotation
	5.3.2.1 Graph Distance Strategy
	5.3.2.2 LCA Distance Startegy

	5.3.3 Evaluation
	5.3.3.1 Novelty in Candidate Selection
	5.3.3.2 Efficiency


	5.4 Impact on Model Performance Measurement
	5.4.1 Phase 1
	5.4.2 Phase 2

	5.5 Limitations of Our Work
	5.6 Chapter Summary

	6 Conclusions and Future Work
	References

