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Abstract

High-level synthesis (HLS) is the process of translating an abstract behavioral specifica-

tion (usually written in C, C++) into a register transfer level (RTL) that realizes the given

behaviour. The HLS is widely used in the semiconductor industries due to advantages like

shorter design cycles, efficient design space exploration, and easy writing specifications at a

higher abstraction level. In the context of the quick development of hardware accelerators,

the use of HLS is also crucial. In this work, we explore if we can reverse engineer the HLS,

i.e., extracting a C code from the HLS generated RTL. The answer is yes as identified in

this thesis. Specifically, we take the advantage of the special structure of the HLS generated

RTL which consists of the separate datapath and controller finite state machine and auto-

matically generate a concise, cycle accurate, and debug friendly C code called RTL-C from

the RTL. We then show several applications of the RTL-C in the context of verification and

security of HLS.

At present, the RTL co-simulation is the primary platform used for HLS design verifica-

tion. Although most of the state-of-art RTL simulators provide an abstracted user friendly

platform for verification, they are undesirably slow and sometimes incomprehensible to non-

FPGA experts to debug. In the first application, we show that the RTL-C can be used for

faster simulation based verification of the HLS. In this thesis, we introduce an automatic

cycle accurate simulation tool FastSim for the same. Our simulation tool ensures RTL

correctness, provides cycle accuracy, accurate performance estimation and renders on an

average around 300 times faster simulation compared to RTL simulators and comparable

performance to that of software C simulators. Experiments on various HLS benchmarks

demonstrate the efficiency and scalability of our simulation tool.

The formal verification of the HLS is still an open problem and the HLS tools are not

bug free. The primary challenge of the formal verification is the abstraction gap between the

input C and its corresponding RTL. As a second application, we show that RTL-C is helpful

in reducing this abstraction gap. Specifically, we develop a formal verification tool DEEQ for

checking equivalence between the C code against the RTL-C. We have taken a data-driven

approach to find the correspondence of traces between two behaviours. We also merge

compatible traces within a behaviour to reduce the verification complexity. Finally, the

equivalence of traces is shown with help of an SMT solver. Experimental results show that

our proposed method can prove the end-to-end equivalence for small to medium benchmark

vii



designs for a commercial HLS tool.

The variables of a high-level behaviour are mapped to hardware registers during the

register allocation (RA) step of HLS. Due to possible many-to-many relations between the

variables in C and the registers in the RTL, it is not straightforward to identify this mapping

automatically. As a third application, we have shown that the RTL-C can be utilized to

identify this mapping automatically. Specifically, we have taken the input C/scheduled C

code and RTL-C and we come up with two methods through which we can automatically

extract this mapping information. In the first approach, the scheduled C code and the

RTL-C are combined state-wise and an invariant generator tool Daikon is used to identify

the mapping information. In the second approach, we formulate the mapping problem as a

Satisfiability (SAT) problem and use Satisfiability Modulo Theory (SMT) solver to obtain

the register to variable mapping information. The frameworks are implemented and tested

on a commercial HLS tool for several benchmark designs.

A hardware Trojan (HT) is a malicious modification of the design done by a rogue

employee or a malicious foundry to leak secret information, create a backdoor for attackers,

alter functionality, degrade performance and even halt the system. Recently, a possibility

of HTs - specifically, battery exhaustion attack, degradation attack, and downgrade attack

insertion, are shown in a compromised HLS tool. As a fourth application, we utilize our

RTL-C to detect HTs inserted by HLS tool. Specifically, we have identified a battery

exhaustion attack during generation of RTL-C. The degradation attack and the downgrade

attack are detected during the C to RTL-C equivalence checking. The experimental results

confirm the detection of HTs of the black-hat HLS tool.

Overall, this thesis proposes an automatic way to extract a C code from the RTL gen-

erated by the HLS tool and show various important applications of this reverse engineering

process.

Keywords- High-level Synthesis, Cycle accurate simulation, Reverse engineering, RTL

verification, C to RTL equivalence checking, SMT Solver, Hardware Trojan, Black-hat HLS.
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1
Introduction

As system-on-a-chip (SoC) designs complexity increase, designers shift toward system level

modeling by facilitating higher abstract design description (e.g., C/ C++) to generate low

level descriptions (e.g., Register transfer level (RTL) models) automatically using high-level

synthesis (HLS). The HLS is the process of translating an abstract behavioral specification

(usually in C/C++) into an RTL structure that realizes the given behaviour [98]. The

synthesis process passes through several mutually dependent sub-tasks such as preprocess-

ing, scheduling, allocation and binding, and datapath and controller generation [20], [57].

Fig.1.1 shows the flow of a typical high-level synthesis tool [65]. It accepts a high-level de-

sign written in high-level languages, constructs an intermediate representation (IR) through

its compiler front-end, applies a sequence of transformations like compiler optimizations,

scheduling, allocation, binding, and generates targeted RTL code. Compiler optimization

includes generic compiler optimizations like dead code elimination, common sub-expression

elimination, copy and constant propagation, loop unrolling, etc.. The HLS tools are an

attractive choice for the design houses because of their following advantages: (i) Design at

a higher abstraction level means a shorter design cycle. (ii) Specification is simpler to write

and less error-prone at a higher abstraction level. The user does not need to think about all

the details of hardware circuits like clocks and reset/set of sequential elements. In general

specification in C/C++ reduces the complexity of design 10x compared to RTL design. (iii)
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It is easy to explore design space with HLS. Various RTLs can be generated within sec-

onds from the same C/C++ specification just by tuning certain constraints/optimization

parameters during HLS, and (iv) a shorter verification cycle.

C code

Preprocessing

Scheduling

Allocation and Binding

Datapath and Control path generation

RTL code

Figure 1.1: High-level Synthesis flow

1.1 High-Level Synthesis Flow

Starting from the high-level description of an application and specific design constraints, an

HLS tool performs the following tasks:

1. Preprocess the input behaviours to generate IR.

2. Schedules the operations to clock cycles.

3. Allocates hardware resources (functional units, storage components, buses, etc.).

4. Binds the operations to functional units, variables to storage elements.

5. Generates datapath and controller finite state machine (FSM) in the RTL.
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Diffeq : (x, dx, u, a, clock, y)

input: x, dx, u, a, clock;

output: y

while(x < a)

u1 = u-(3*x*u*dx)-(3*y*dx)

y1 = y+(u*dx)

x1 = x+dx

x = x1; u = u1; y = y1

end

Figure 1.2: Example of 2nd order differential equation solver (DIFFEQ)

1.1.1 Preprocessing

The HLS process begins with the prepossessing of the input specification. This first step

transforms the input specification into an internal representation (IR). Since the input speci-

fication is written in higher abstraction for human readability and is not for direct translation

into hardware, it is desirable to do some initial optimization of the internal representation.

The HLS mostly uses the front-end of most known C/C++ compilers like GCC or LLVM

to generate the IR. Since the modern compilers are loaded with various optimizations, HLS

took advantage of such optimization to generate an efficient application-specific hardware

accelerator. The HLS tool discards the register allocation and machine instruction gener-

ation part of LLVM/GCC. Rather it takes the highly optimized IR of LLVM/GCC and

generates application-specific hardware accelerators from that.

B1
V1 : t1 = u * dx
V2 : t2 = 3 * x 
V3 : t3 = 3 * y
V4 : t4 = u * dx 
V5 : t5 = t1 * t2 
V6 : t6 = t3 * dx 
V7 : t7 = u - t5
V8 : u = t7 - t6 
V9 : y = y + t4 
V10 : x = x + dx 
V11 : c = x < a

(a)

(b)(c)

I
Read(p1, dx)
Read(p2, x)
Read(p3, a)
Read(p1,y)
Read(p2, u)
c = x < a

B2
Write(p1, y)

Figure 1.3: Basic Blocks with 3-address codes for DIFFEQ

The model produced by the compilation process from the input design shows the data
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and control dependencies between the operations. Data and control dependencies can be

represented with the control and data flow graph (CDFG) [103]. A CDFG is a directed

graph in which the edges represent the control flow. The nodes in a CDFG are commonly

referred to as basic blocks and are defined as a straight-line sequence of statements that

contain no branches or internal entrance or exit points. A CDFG exhibits data dependencies

inside basic blocks and captures the control flow between those basic blocks.

(a) (b)

u dx x3 y dx

*

-

*

*

-

*

*

*

<

+

+

c

V1 V2

V5

V8

V10

V11V6

V9V3

V4

V7

t1

t3t5

t8

t6t7

t2 t4

Figure 1.4: (a) Data dependency graph, (b) Control and Dataflow graph

Example 1. Consider the 2nd order differential equation solver (DIFFEQ) behaviour as

shown in Fig.1.2. The preprocessing steps identify all the basic blocks in the given behaviour

and break the operations into three address formats. We have 3 blocks I, B1 and B2, as

show in Fig.1.3(a), Fig.1.3(b) and Fig.1.3(c), respectively. In the I block, all the inputs

are read from the port and are assigned to temporary variables. In block B1, all operations

are converted into three address formats, and in block B2, the final result is written into the

output port. This process also analyzes data dependencies among the operations in the block.

The data dependencies among the operations within a basic block are usually represented by

a data dependency graph (DDG). The DDG of the basic block B1 and the CDFG of DIFFEQ

are shown in Fig.1.4(a) and Fig.1.4(b), respectively. l
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1.1.2 Scheduling

Scheduling assigns the operations to so-called control steps without violating data depen-

dencies among operations. A control step is the fundamental sequencing unit in synchronous

systems; it corresponds to a clock cycle. For untimed C/C++ designs, this step adds time

to the design and determines the time step or the clock cycle in which each operation of the

design executes. The aim of scheduling is to minimize the amount of time or the number

of control steps needed for completion of the program, given certain limits on the available

hardware resources.

(a) (b)
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*
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t2

t4

S1
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-

*
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-

*

*
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+

+

c
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(c) (d)

Figure 1.5: (a) ASAP, (b) ALAP, (c) List, (D) Force directed scheduling of DIFFEQ example
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1.1.2.1 Scheduling Algorithms in HLS

Over the last few decades, many scheduling algorithms for high-level synthesis have been

proposed. Scheduling problems can be of four types namely, unconstrained scheduling,

time-constrained scheduling, resource-constrained scheduling, and time-resource constrained

scheduling [43]. Resource and time constraint scheduling for generic DDG is in general NP-

complete problem [93]. Therefore both exact and heuristic based algorithms are proposed

for scheduling [123].

Exact algorithms like integer linear programming for scheduling [34], provide the optimal

schedule but consume a high amount of processing time. To address the execution time issue,

several heuristic based algorithms based on greedy strategies have been developed to achieve

fast and near-optimal schedules [118]. Some well-known heuristic algorithms for scheduling

in HLS are As Soon As Possible (ASAP), As Late As Possible (ALAP), List Scheduling

(LS) and Force Directed Scheduling (FDS) [98]. In the ASAP scheduling algorithm, the

operations in the DDG are scheduled step by step from the first control step to the last, i.e.,

an operation is scheduled if and only if all its predecessors are scheduled in earlier control

steps. The ALAP schedules the operations from the last control step toward the first, i.e.,

an operation is scheduled if and only if all its successors are scheduled in the latter control

steps.

In heuristic based algorithms, a priority function (priority list) is used to define the

priority of the operations in DDG. The operation with higher priority will be selected in

case of conflict. For example in list scheduling [65], the distance of a node from the sink

nodes is used as a priority list. Scheduling under resource and timing constraints can be

handled by list scheduling. In force directed scheduling [104], the force determines the

priority of operations. Forces attract (repel) operations into (from) specific schedule steps.

The main policy of this algorithm is to reduce the number of functional units, registers

and buses required, by balancing the concurrency of the operations assigned to them, but

without lengthening the total execution. In recent times, high-quality schedules for FPGA

HLS [116, 119], power-aware [125, 59, 130], dynamically schedule in HLS [76], combining

dynamic and static scheduling in HLS [40], time-aware [99, 42, 48], reliability-aware [38],

area-optimization [117, 133], security-aware [115], etc. scheduling algorithms have been

proposed.

Example 2. Let us consider the ASAP and ALAP scheduling of the DIFFEQ as shown in
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Fig.1.5(a) and Fig.1.5(b), respectively. In the case of ASAP scheduling, it may be noted that

operations V1, V2, V3, V4, and V10 do not have any direct predecessors, i.e., they depend on

input values. So these operations are scheduled in step S1. Operations V5 has V1 and V2 as

predecessors. So, control step(V5) = maximum (control step(V1),control step(V2))+1=2.

All other control step of the operations can be found out in a similar manner. This schedule

is complete within 4 control steps and four multipliers, one adder, one subtractor, and one

comparator resources are required to make it successful. But, in the case of ALAP schedul-

ing, it may be noted that operations V8 and V9 do not have any direct successors. So these

operations have the control step as S4. Operation V7 is the immediate successor of V8, so,

control step(V7) = control step(V8)-1=3. Similarly, control step assignment for all opera-

tions can be explained. The resource requirements for ALAP scheduling are two multipliers,

one adder, one subtractor, and one comparator. Compared to ASAP scheduling, ALAP

scheduling requires two less multipliers to make the schedule successful. Also, the example

of list scheduling with 2 multipliers (delay equal to 1) and one ALU (delay equal to 1), a

latency of 4 units, and force directed scheduling under resource constraints are shown in

Fig.1.5(c) and Fig.1.5(d), respectively. l

1.1.3 Allocation and Binding

Allocation determines the selection of the types of hardware components (for instance,

functional units and storage) and the number for each type to be included in the final

implementation to satisfy the design constraints. Binding assigns operations and variables

onto the allocated functional units and storage elements (registers or memory blocks), re-

spectively. The selection of the type and the number of resources during the allocation and

binding step is usually formulated as an optimization problem. The main goal is to find the

minimum number of hardware resources while fulfilling given area/time constraints. Two

operations can be mapped to a FU if they schedule in different time steps. Similarly, two

variables can be mapped to a single register if their lifetimes do not overlap. Since binding

is a non-deterministic polynomial-time hard (NP-hard) problem, the degree of success of

such solutions is restricted. Allocation and binding can be defined as graph problems. They

can be formulated either as the problem of finding cliques in a compatibility graph or that

of coloring vertices in a conflict graph [98].

7



Introduction

R1: t1, t3, t6

R2: t2, t5, t7

R3: t4

R4: t8

R5: u

R6: x

R7: dx

R8: y

R9: c

R10: 3

R11: a

Var

t1

t8

t7

t6

t5

t4

t3

t2

u

x

dx

y

c

3

a

S1 S4S3S2
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R1
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R1
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R1
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R10
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R5

R4

(a) (b)

V1

V6

V5

V4

V3

V2

M1

M2

M3

M2

M1

M3

S1 S4S3S2

MULT: M1: V1, V5

MULT: M2: V2, V3

MULT: M3: V4, V6

Figure 1.6: (a) Registers allocation and binding , (b) Multiplier allocation and binding of DIFFEQ
example

Example 3. Let us consider register and multiplier allocation and binding for the DIFFEQ

example for the schedule in Fig.1.5(d) as shown in Fig.1.6(a) and Fig.1.6(b), respectively. In

the case of register binding, it may be noted that t1, t3, and t6 are bound to R1. Similarly,

t2, t5, and t7 are bound to R2. For all other input and intermediate variables, register

binding can be found in a similar manner. In the case of multiplier binding, we need three

multipliers. It may be noted that operations V1 and V5 are bound to M1, operations V2 and

V3 are bound to M2, and operations V4 and V6 are bound to M3. Multiplexers at inputs of

both the multipliers are required. Similarly, adders allocation and binding for all operations

can be explained. l
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(a) (b)

Figure 1.7: RTL: (a) Datapath unit, (b) Controller unit

1.1.4 Datapath and Controller Generation

In the datapath and controller generation step, the interconnections among the FUs and

registers are determined. More than one data transfer between two units can share an

interconnection bus if they are mutually exclusive. The datapath consists of a set of storage

elements (such as registers, register files, and memories), a set of functional units (such as

ALUs, multipliers, shifters, and other custom functions), and interconnect elements (such

as tristate drivers, multiplexers, and buses). All these register-transfer components can be

allocated in different quantities and types and connected arbitrarily through buses. Each

component can take one or more clock cycles to execute, can be pipelined, and can have

input or output registers. Finally, a finite state machine (FSM) is generated for the control

circuit to control the execution of operations in the RTL design. This control unit generates

control signals that control the flow of data through the datapath. The final RTL structure

(i.e., datapath and controller) of the DIFFEQ example for the schedule in Fig.1.5(d) and

the allocation and binding in Fig.1.6 is shown in Fig. 1.7.
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1.2 Advances in High-Level Synthesis

High-level synthesis has been the subject of continuous research since the 1970s and getting

a chance to shine with contributions from many in the field of electronic design automa-

tion [97], but these efforts were not notably successful until the early 2000s. In the early

1970s, some research work in high-level synthesis was offered by companies such as Calma

and Applicon. In this era, most researchers focused on design specification, simulation, and

synthesis at both the RTL and algorithmic levels. Even though the work was groundbreaking

research, its acceptance had limited and had very little impact on industrial design. From

the 1980s to the early 1990s, many ideas and concepts of the early era of HLS were explored

that had a strong impact on HLS development. Also, domain-specific and DSP-oriented

research projects were done by some researchers. Although many ideas and concepts were

explored, this HLS generation era also failed the commercial due to input languages, qual-

ity of results, and domain specialization. The mid-1990s – early 2000s was the period in

which major computer-aided design (CAD) companies like Synopsys, Cadence, and Mentor

Graphics were present in the market. Finally, the current generation of HLS tools includes

those that have been offered by several vendors since the early 2000s. This era of tools

focuses on the domain of application algorithms, and system designers with the right input

languages, which offers improved performance, quality of results, and user interface, leading

to a significant reduction in the design times. For general information (e.g. company, tar-

get, input, output, etc.), a classification of the electronic design automation (EDA) tools for

HLS presented on Table 1.1. Currently, a large majority of computer vision, data mining,

edge compute applications and industrial control algorithms are developed in C/C++ by

developers with little or no knowledge of underlying FPGA hardware. Recently, there is

significant work in approaches to express the application in a high-level language that is

more amenable for diverse applications. In [41], HLS tools with dynamic scheduling, in

which an operation’s clock cycle is only determined at runtime have been explained. They

introduce elastic components like FIFOs to enable a dataflow-style execution, which could

potentially be utilized by RapidStream in the future. The paper [53] demonstrates ma-

chine learning models to enable fast and accurate resource and timing estimations for HLS

designs to effectively and efficiently bridge the accuracy gap. HLS-based FPGA implemen-

tation of convolutional deep belief network for signal modulation recognition is presented

in [132]. The authors propose a system to optimize deep confidence network (CDBN)
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by loops pipelining and unroll, memory buffering and partitioning, and implementing an

energy-efficient HLS-based FPGA convolutional CDBN accelerator for signal modulation

recognition (SMR). Performance predictability is important in a design flow. A method-

ology to assemble and characterize virtually reconfigurable accelerators based on dataflow

and functional programming principles has been proposed in [111]. The proposed method

combines a dataflow compiler for generating C-based HLS descriptions from a dataflow

description and a C-to-gate synthesizer for generating RTL descriptions. This work also

proposes a new interface synthesis approach by using a shared memory that behaves like

a circular buffer. The Rathlin Image Processing Language (RIPL) [120] is a stand-alone

high-level image processing domain-specific language for developing memory-efficient image

processing applications on FPGAs. The work in [74] presents domain-specific architectures

(DSAs) for accelerating sparse matrix vector multiplication on FPGAs. In DSA, memory

hierarchy and communication are customized to boost performance and energy efficiency

and compute logic to suit the needs of the application. Other recent areas of applications

on HLS include secure hardware performing logic lock at the RTL [108] [128] and the C

level [22], HLS for machine learning application [60] are gaining popularity.

Table 1.1: Overview of EDA Tools for High-Level Synthesis

Company Tool Year Target Input Output

Binachip, Inc. Binachip-FPGA 2006 FPGA
C, C++, MATLAB,

Java
VHDL/Verilog RTL

Cadence Design
Systems, Inc

C to Silicon 2008
FPGA/
ASIC

C/C++/SystemC
Verilog RTL/

Wrap RTL

AutoESL AutoPilot 2009 FPGA C/C++/SystemC
Verilog/ SystemC/

VHDL RTL

Synopsys, Inc. Synphony 2009
FPGA/
ASIC

M-language and
Synphony IP blocks

RTL and C

Mentor Graphics
Corporation

Catapult C
Synthesis

2010
FPGA/
ASIC

C++ or
SystemC

RTL netlist

LegUp U. Toronto 2011 FPGA C Verilog RTL

Bambu PoliMi 2012
FPGA/
ASIC

C Verilog RTL

Vivado HLS Xilinx 2013
FPGA/
ASIC

C/C++/SystemC
Verilog/ VHDL/

SystemC
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1.3 Motivations and Objectives

In this section, we have identified several motivations for our work.

1.3.1 HLS tool Usage

The HLS has the potential to bridge the knowledge gap in hardware design, pushing design

to a system-level requiring only software, or less hardware knowledge. Although HLS comes

with huge advantages, the real use of HLS in commercial design houses is still challenging.

Who are the target users of the HLS tools - the RTL developers or the algorithm developers?

The RTL developers are reluctant to use HLS because the RTL generated by an HLS tool

is not as optimal as compared to the RTL they develop manually in many scenarios. On

the other hand, the algorithm developers do not understand the RTL well. The algorithm

developers pose questions like how the behaviour is implemented in hardware, what is the

problem in case of errors, what is the impact of specific optimization, how to write hardware

friendly C/C++ specifications, etc. The quality of the RTL generated by the HLS tools

greatly depends on the way one has written the C/C++ code. Moreover, they do not

understand the real effects of all the hardware related optimization parameters of the HLS

tools. As a result, it is difficult for them to write HLS friendly C/C++ code and also

choose the right set of optimization parameters during HLS to generate an RTL that meets

the target design constraints. A C equivalent of the RTL hardware would be helpful for the

algorithm developers to understand/analyze the output RTL of an HLS tool and hence use

the HLS tool meaningfully.

1.3.2 Slower RTL Simulation

Since the input high-level behaviour goes through several complex transformations before

being translated into RTL in HLS, ensuring the correctness of the HLS translation is im-

portant for the wide adoption of the HLS tool in the VLSI Design flow. Due to the lack of

formal verification support, the HLS designers still rely on low level RTL simulators (e.g.

Xsim, Modelsim, or VCS) or on-board emulators (e.g., Zebu) for verification. The RTL sim-

ulators incur undesirable time overhead and the hardware detailed cycle accurate simulation

of the RTL are not intelligible to non-FPGA experts. The state-of-the-art commercial HLS
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tools provide software-based simulators. For instance, in Xilinx Vivado HLS [10], there are

two simulation frameworks for behavioural and functional design verification [110]: (i) Pre-

synthesis (C-simulation): where a C test-bench is used to validate the functional correctness

of the algorithm against the behavioural specifications before synthesis. (ii) Post-synthesis

(RTL co-simulation): The same C test-bench is used to verify the functional correctness of

the synthesized RTL by co-simulating the behavioural model/golden output against a cycle-

accurate simulation of the RTL. Although both C simulation, as well as RTL co-simulation

environments, are made user friendly, the RTL co-simulation incurs excessive time overhead

over C-simulation. The RTL co-simulation is the primary way to verify the correctness of

the generated RTL of an HLS tool. Even if RTL simulation relatively accelerates the process

of verification and is good at quickly finding errors, it cannot guarantee the complete cor-

rectness of generated RTL. The C-simulation is faster than the RTL simulation. Therefore,

generating an equivalent C code from the RTL would greatly reduce the verification time of

the HLS.

1.3.3 Lack of Formal Verification Support

Recent years have seen VLSI systems become more and more complex resulting from

progress in VLSI technology as well as growing demands on performance imposed by modern

applications. Such complexities, in addition to severe time-to-market requirements, make it

challenging to develop reliable, high-quality systems through Register Transfer Level (RTL)

implementations. This underlines the need for modeling, synthesis, and validation of hard-

ware at higher levels of abstraction. Since the HLS tool passes a very complex translation

process, its correctness becomes a major barrier to its wide adaptation. The tools are not

free from logical and implementation errors [72]. However, the verification of the synthesized

model is still primarily carried out by time-consuming RTL simulations. Even after rigorous

testing, bugs in HLS tools may be undetected. The impact of bugs in HLS tools includes

economic damage and serious consequence in safety-critical applications. Therefore, the de-

tection of bugs and the correctness of HLS has always been an important concern. Although

phase-wise translation validation of HLS, such as scheduling verification [46], allocation and

binding verification [82], and datapath and controller verification [79], are mostly explored

by the researchers, a monolithic end-to-end formal verification of HLS is not yet available
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due to the large semantic gap between the input C/C++ and the generated RTL. It is

difficult to correlate the RTL with input C. Therefore, to developing an end-to-end formal

verification method to ensure the correctness of the HLS generated RTL with respect to its

input C code behavioural is a critical issue to be considered to bring behavioural synthesis

into practice.

1.3.4 Threat of Hardware Trojan in HLS

The enormous complexity of ICs necessitates the use of highly-specialized foundries that

cost beyond 10 billion. As a result, most semiconductor companies operate fab-less and

they outsource IC fabrication and other services to third-party vendors. Due to the global

distribution of ICs manufacturing foundries, ICs come from different manufacturers. As a

result, ICs security has become a new concern in the system design, regarding potential

malicious modification of the ICs during the fabrication process. Such modification of ICs

referred to as Hardware Trojan (HT). A hardware Trojan is a malicious modification of the

design done by a rogue employee or a malicious foundry to leak secret information, create

a backdoor for attackers, alter functionality, degrade performance, halt the system, etc.

These hardware Trojans are usually triggered under extremely rare input sequences. As a

result, they are very hard to detect by usual simulation-based verification. One approach to

detect HTs is a side-channel based HT detection mechanism [17]. In this approach principle

component analysis (PCA) is used as a side-channel fingerprint of the circuit to compare it

with the golden model. However, the characteristics of the physical design can be modified

by other factors and not only by HT. A recent study [106], [26] shows the possibilities of

inserting Trojans by the HLS tool itself. Specifically, Black-hat high-level synthesis [106]

automatically inserts these known HTs: battery exhaustion, degradation, and downgrade

attacks in the HLS generated RTLs. Therefore, addressing HTs detection during HLS is an

important approach to designing and integrating solutions at higher levels of abstraction.

1.3.5 Objectives

With the above motivations, the following objectives were identified:

1. Develop an efficient RTL to C reverse engineering framework to abstract a C code

from an RTL generated by the HLS tool. The reverse engineering framework should
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be able to recover the register to variable mapping as well as for efficient correlation

between C and RTLs.

2. Develop a fast simulation framework for HLS based on the generated C from the RTL.

3. Develop an equivalence checking framework for end-to-end verification of HLS. Specif-

ically, the proposed method will formally prove the equivalence between the input C

and the generated C from the RTL.

4. Develop a formal HLS Hardware Trojan detection framework.

1.4 Contributions

In the following, we outline the contributions of this thesis on each of the objectives identified

above. An overview of the contributions of the Thesis is depicted in Fig. 1.8.
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RTL to C reverse Engineering
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Figure 1.8: Contributions of the Thesis

15



Introduction

1.4.1 FastSim: A Fast Simulation Framework for High-Level Syn-
thesis

This work is primarily motivated by the fact that C-simulation is much faster compared to

RTL-simulation. A fast simulation framework FastSim is developed in this work that manip-

ulates certain unique features of HLS design to extract a concise, well-indented, and debug

friendly C behaviour from the synthesized RTL by the HLS tool. Specifically, we present a

completely automated, fast, and cycle accurate simulation-based verification framework for

HLS generated RTLs. The framework ensures the end-to-end correctness of HLS. It is also

equipped to give accurate design performance estimation. In our approach, the Verilog RTL

is first converted into an abstract syntax tree (AST) format using the PyVerilog [9]. The

AST is then pre-processed, i.e, the C incompatible constructs of Verilog like bit-select and

part-select are replaced with equivalent compatible representations. Next, we identify the

register transfer operations in the datapath concerning the control signals at each control

step of the controller FSM to generate an equivalent finite-state machine with datapaths

(FSMD) code. To generate the equivalent C code, the intermediate FSMD and the variables,

controller state, RT operations, etc. are mapped into appropriate data types, and the equiv-

alent C code called RTL-C is generated. Finally, the input C source code and the RTL-C

code are co-simulated using C compilers like GCC or using C-simulation of HLS tools with

test cases to verify the functional correctness of the generated RTL. The correctness and

cycle accuracy of our tool has been proved. We then compare the simulation time of our

tool with the RTL simulator, software C simulator, and the Verilator. Experimental results

demonstrate that FastSim is on average around 300 times faster simulation compared to

RTL simulators and comparable performance to that of software C simulators.

1.4.2 DEEQ: Data-driven End-to-End Equivalence Checking of
High-Level Synthesis

This work contributes a C to the RTL equivalence checking method to prove the correctness

of the HLS generated RTL with respect to its original C code. In our method, we have

utilized the C-like behaviour, called RTL-C extracted from the RTL in our first work. Our

method identifies all traces of both behaviours C and RTL-C, we identify the compatible

traces (i.e., traces which have the same outputs) within behaviour and merged them into

one. This will improve performance by reducing many-to-many equivalences of traces into
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one-to-one trace equivalence. The method then finds the corresponding traces between two

behaviours using a data-driven approach. Finally, a satisfiability problem is formulated to

prove the equivalence of corresponding traces of both behaviours. The proposed method

does not take any internal information from the HLS tool. Primarily novelty of our method:

(i) use of RTL-C to make C to RTL-C equivalence checking feasible (ii) use data-driven

approach to find the correspondence of traces between two behaviours (iii) finding and

merging compatible traces to reduce complexity. Experimental results show that our pro-

posed method can prove the end-to-end equivalence for a commercial HLS tool for several

benchmark examples.

1.4.3 REVAMP: Reverse Engineering Register to Variable Map-
ping in High-Level Synthesis

The primary motivation of this work is to extract the register to variable mapping in HLS

for efficient correlation between input C/C++ and the corresponding HLS generated RTL.

Specifically, we have developed two register to variable reverse engineering frameworks: one

based on the invariant generator Daikon [4] and the other one using Satisfiability Modulo

Theory (SMT) solver based tool Z3. In the Daikon based framework, the goal is achieved

in three steps. In the first step, we obtain the scheduled C code (SD-C) and high-level

behaviour (RTL-C) from the scheduling information generated by the HLS tool and the

output RTL, respectively. In the second step, we use the invariant generator tool Daikon to

find invariants at each state in a program. Since Daikon finds invariants in a program, we

combine state-wise SD-C and RTL-C. From the outputs of Daikon, we extract the invariants

in which there is an equality relation between a variable of SD-C and a register of RTL-C.

Finally, with this mapping information, we can rewrite the RTL-C in terms of variables and

finally generates an equivalent C-code from the RTL. In SMT based approach, both input

C and the output RTL-C are modeled as FSMDs. Next, both FSMDs are converted into

SSA form. A Satisfiability Modulo Theory (SMT) problem is then formulated to obtain

the register to variable mapping. Finally, the RTL-FSMD is rewritten with this mapping

information to obtain an equivalent C code from the RTL. Our frameworks can be utilized

by the algorithm developers to use HLS tools efficiently. It also can be used for efficient

debugging of non-equivalent scenario that arises in FastSim. The framework is implemented

and tested on a commercial HLS tool for several benchmark designs.
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1.4.4 BLAST: Belling the Black-Hat High-Level Synthesis Tool

We propose a formal detection framework for HLS tool inserted hardware Trojans. In this

work, we show how battery exhaustion, degradation, and downgrade attacks can be detected

using our C to RTL equivalence checking framework. We have utilized two of the previous

works RTL to C reverse engineering method and the equivalence checking framework in this

work to develop the HT detection framework. We have assumed that both the input C code

and the Trojan infected RTL code are available for our analysis. Specifically, our method

extracts an RTL finite-state machine with datapaths (FSMD) from the HLS generated RTL.

During FSMD construction, a battery exhaustion attack can be identified. Our proposed

method then compares the FSMD of the input C code with the FSMD of the RTL to identify

the degradation attack and the downgrade attack. The experimental results confirm the

detection of HTs of the black hat HLS tool [106].

1.5 Organization of the Thesis

The rest of the thesis is organized in the following manner.

Chapter 2 provides a detailed literature survey on existing state-of-the-art on RTL to C

translation and verification of HLS methods. It also presents a survey on Hardware Trojan

(HT) attacks and detection mechanisms. In the process, it identifies the limitations of the

state-of-the-art verification methods and HTs and underlines the objectives of the thesis.

Chapter 3 presents a completely automated, fast and cycle accurate simulation-based ver-

ification framework FastSim for HLS generated RTLs. The chapter provides a detailed pro-

cess (overall flow) of the FastSim framework, and models for various hardware parallelisms

like loop and task-level pipelines. A detailed experimental comparison of our simulation

framework for RTL generated by the Vivado HLS tool with state-of-the-art simulators is

also demonstrated.

Chapter 4 presents a C to RTL equivalence checking framework DEEQ for HLS verification

after identifying the limitation of existing formal verification and end-to-end verification

of HLS. The chapter discusses how to merge compatible traces within a behaviour, and

find corresponding traces between two behaviours using a data-driven approach and the

overall equivalence checking method. The soundness, termination, and complexity of our

method are also discussed. The chapter also provides experimental results for several HLS

benchmarks.
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Chapter 5 discusses Daikon and SMT based framework for reverse engineering of the

register to variable mapping in high-level synthesis. The contribution, the overall approach

of the Daikon based register to variable mapping, and the challenges resolved are discussed

first. Then, the overall approach for SMT based register to variable reverse engineering and

its applications are discussed in detail. The chapter finally provides experimental results for

several benchmark designs.

Chapter 6 presents how the three hardware Trojan attacks can be detected using our C to

RTL equivalence checking framework called BLAST. The attack models and detection mech-

anisms of all three HTs are discussed in detail. The chapter then provides the experimental

results that confirm the detection of HTs of the black hat HLS tool.

Chapter 7 concludes the thesis and discusses potential future research directions of this

work.
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2
Literature Survey

In this Chapter, we overview some important research contributions in the area of RTL to

C/C++ reverse engineering, simulation-based verification of HLS, and formal verification

of HLS. Also, some techniques for detecting HT at different stages of design flow have been

presented in this chapter. The objective of this study is to identify the prominent gaps in

the existing simulation-based and formal-based verification methodologies of HLS, and also

in the HTs detection mechanisms which have been addressed in this thesis.

2.1 RTL to C/C++ Reverse Engineering

The HLS process starts with a behavioural specification and builds a hardware implemen-

tation from it. Understanding the detailed implementation and functionality of a design in

the form of hardware description languages like Verilog is not an easy task for algorithm

developers who intended to use HLS. The C equivalent of the RTL code for circuit design

would be helpful for the algorithm developers to understand the design structure, and the

impact of certain HLS optimizations, analyze the output of the design and hence use the

HLS tool meaningfully. Reverse engineering an equivalent C code from the RTL would

greatly reduce the verification time of the design as well.

The current works in RTL to C/C++ reverse engineering of HLS can be separated into
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two classes.

1. Generic RTL to C/C++ to enable design space exploration through HLS.

2. Generic RTL to C/C++ for fast simulation and verification of the hardware at the C

level.

2.1.1 Generic RTL to C/C++ to enable Design Space Explo-
ration through HLS

There are works that convert generic Verilog models into C code for design space exploration

(DSE) through HLS. Bombieri et al. [31] present a method to abstract RTL IP blocks into

C++ code by abstracting away most of its architectural characteristics while maintaining

its functionality. The goal is to recover the IP block functionality for system-level design

and enable the derivation of optimized implementations through HLS. In this paper, the

methodology relies on three concepts to generate the equivalent C++ code from the RTL: (i)

the scheduling of RTL statements is resolved statically at compile time during the generation

of equivalent C++ code, (ii) the static variables in the generated C++ code are synthesized

into registers at the gate level, and (iii) to generate loops in the C++ code, the methodology

performs loop-rolling transformations on both internal logic and the I/O interface.

Mahapatra [95] presented a method VeriIntel2C to convert RTL behaviours written in

Verilog into C code. This technique is carried out by the use of extended Hardware Petri

Nets to extract the functionality of the RTL designs and generate a CDFG that captures the

different structural forms present in RTL designs. The proposed method currently focuses

on generating C designs with explorable constructs only for single RTL modules. The RTL

to C conversion process is established in two phases: In phase one, the RTL code is converted

into a Control Data Flow Graph (CDFG) and in the second phase, the CDFG is analyzed

to generate the aforementioned loops and arrays. In this paper, the authors introduce rule-

based search and graph matching techniques to identify unrolled, partially unrolled loops,

nested loops, and arrays in the forms of registers, wires, and memories and generate the C

program with explorable constructs optimized for DSE.

The work in [92] proposed a performance prediction model based on machine learning

algorithms to simplify and speed up the design space exploration (DSE) process of gen-

eral purpose processors (GPPs) with reconfigurable hardware accelerators (RAs) by quickly

estimating the performance of applications running on previously untested architectural
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configurations. The method presented in this paper also investigates different algorithms

by comparing their error prediction rate to measure the accuracy of the prediction.

2.1.2 Generic RTL to C Conversion for Fast Simulation

The existing works in RTL to C conversion for fast simulation of HLS can be classified into

two sub-classes: works that guarantee cycle accuracy and those that don’t. The LegUP HLS

simulator [37] and HLS Scope+ simulator [45] do not guarantee cycle accurate simulation.

These works meet specific targets like performance and speedup prediction using synthe-

sis information. Since the LegUp debugging platform is still under development, it does

not support break-points, enabling the debugging of hybrid processor/accelerator applica-

tions and on-chip hardware debugging. Works that guarantee cycle accuracy can be further

classified into automatic and manual simulators. Manual cycle accurate simulators like

[101, 47, 114] would require explicit incorporation of scheduling information at the source

level. This poses a tedious task for non-hardware experts and might not serve the purpose

of hardware-software abstraction guaranteed by HLS tools. Finally, we have the automatic

cycle accurate simulation-based verification frameworks [11, 44, 94]. Mahapatra et al.[94]

presented a technique to use parsed RTL code by abstracting out the core computation of

the HLS generated RTL while maintaining IO timings of iterative segments for fast per-

formance estimation. This technique will not work for data-dependent loop bounds. The

Inspect [35] is another cycle accurate simulation framework integrated with LegUP HLS

[37] that correlates C source with its LLVM IR representation and synthesized Verilog RTL

using an intermediate debug database automatically generated during the LegUP backend

process. This framework is useful to extract the exact source of error once a bug is identi-

fied. Fezzardi et. al [63] proposed a trace-based debugging solution for verification of HLS

designs by collecting hardware and software traces from intermediate source representation

in HLS and performing an automatic discrepancy analysis. This technique could be used to

automatically track design bugs and locate their source in the input C code.

In [66], a methodology called VTOC is proposed to convert synthesizable Verilog into

C. VTOC takes a synthesizable Verilog module as an input and generates a semantically

equivalent ANSI C code section. Parts of the Verilog language such as uncertain values,

temporary bus fights, Verilog meta-language commands, and other simulation-level opera-

tions which are not normally compilable to hardware are not compiled to C by the VTOC
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compiler. The VTOC can handle either a single module or a hierarchy where a top-level

module includes instances of sub-modules. Where a hierarchy of modules is used, the low-

est, leaf modules are implemented only in RTL or behavioural Verilog. VTOC generates a

single ANSI C output file per compilation. A report file is also generated. The methodology

in [100] translates the RTL Verilog behaviour into C code. The objective is to use the C code

for hardware property verification, co-verification to simulation, and equivalence checking.

The Verilator simulator [11] is designed to parse generic Verilog HDL into equivalent

behavioural descriptions in C++ for fast simulation. Although over the years, Verilator has

been incorporated with advanced optimizations to speedup simulations, it disregards the

inherent FSMD framework of the HLS based RTLs. Consequently, the generated C++ code

is complex in terms of comprehension of code behaviour and incurs performance hampering

redundancies. This impacts both simulation performance as well as debugging. R2C [31] is

yet another similar framework that converts generic RTL IPs into compact C++ code with

the primary intention being to design space exploration using HLS. The generated C++

code could be used to verify designs but suffers from the same shortcomings as Verilator.

Recent work is FLASH [44] which uses the input C source and incorporates the scheduling

information to guarantee cycle accuracy. FLASH could overcome several shortcomings of

software C simulation frameworks like data ordering problems, artificial deadlock scenarios,

and feedback problems that are mostly related to FIFO transactions, and also provide

a very fast simulation framework. However, it cannot detect any bug that might occur

during allocation, bindings, and datapath and controller generation phases of HLS. Another

limitation of FLASH is that it cannot simulate stalls from external memory access.

As discussed above, most of the existing works fail to handle the inherent FSMD frame-

work of the HLS based RTLs and fail to detect any bug that might occur during allocation,

bindings, and datapath and controller generation phases of HLS, and simulate stalls from

external memory access. As a result, they degrade the overall simulation time and perfor-

mance. In this thesis, we propose an automatic cycle accurate simulation tool, FastSim,

that manipulates certain unique features of HLS design to extract a concise, well-indented,

and debug friendly C behaviour from the synthesized RTL. Our simulation tool ensures RTL

correctness, provides cycle accuracy, and accurate performance estimation. Since our simu-

lation framework uses a C simulation source directly extracted from the RTL, it addresses

all the hardware issues including faults during resource allocation as well as pipeline stalls.

In this thesis, we also propose a reverse engineering register to variable mapping frameworks
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to reverse engineer an equivalent C code from the HLS generated RTL.

2.2 Verification of High-level Synthesis

The correctness of a design circuit is a major consideration in the design of digital sys-

tems. Recent years have seen VLSI systems become more and more complex, resulting

from progress in VLSI technology as well as growing demands on performance imposed by

modern applications. Such complexities, in addition to severe time-to-market requirements,

make it challenging to develop reliable, high-quality systems through RTL implementations.

This underlines the need for modeling, synthesis, and validation of hardware at higher levels

of abstraction. There has been a lot of research in the field of equivalence checking of two

programs. Considering the equivalence of RTL code generated from C like behavioural code,

the task of equivalence checking is a little tricky. The existing literature on the verification of

HLS can be primarily classified into two categories: simulation-based verification and formal

verification. Simulation based verification of HLS is discussed in detail in subsection 2.1.2.

2.2.1 Formal Verification of HLS

The input C/C++ code of the HLS goes through various transformation phases like pre-

processing, scheduling, allocation, binding, and datapath and controller generations before

being converted into RTL descriptions. Most of the existing formal verification works tar-

get verification of a specific phase of HLS. Formal verification aimed to check that each

translation performed by the HLS tool preserves the functionalities of the input behavior.

The existing works on formal verification of HLS can be classified into two categories: (i)

Phase-wise verification of HLS and (ii) End-to-end verification of HLS.

2.2.1.1 Phase wise Verification of HLS

The large semantic gap between the input behaviour and the RTL design is the primary

challenge for end-to-end verification of HLS. Therefore, the phase-wise verification technique

which can handle the difficulties of each synthesis sub-task separately is targeted by many

researchers for HLS verification. Primarily, the verification of the scheduling phase is ex-

plained by researchers. Few works also target the verification of allocation and binding, and

the datapath and controller generation phase of HLS. In this subsection, we briefly discuss
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the notable works on phase-wise verification of HLS. We can further classify the existing

works on phase-wise verification into two categories: (i) Front-end verification of HLS and

(ii) Back-end verification of HLS.

Front-end verification of HLS:

There has been research work to validate the correctness of compiler transformations

and the scheduling phase in HLS. In [87], a translation validation approach is presented

to validate the initial high-level description against the result of the scheduling behaviour

of the SPARK HLS tool [67]. The method presented in this paper uses a bisimulation

relation approach to automatically validate the implementation against its initial high-level

specification before and after the optimization carried out by the SPARK tool. The method

in [89] presents an efficient approach by redefining the bisimulation relation to validate

the result of HLS against the initial behaviour using the translation validation technique

and can reduce the number of automatic theorem prover (ATP) queries as compared with

the method presented in [87]. Even if the methods presented in [87, 89] are suitable for

structure-preserving transformations, they may not be applicable in the case of path-based

scheduling since the structure may not be preserved in such case.

The work in [126] proposed a scalable verification of compiler transformations applied

in the pre-processing phase based on symbolic simulation together with identification and

inductive verification of loop structures. The method uses a dual-rail symbolic simulation

of the input and transformed output to explore the paths. The method also uses a com-

positional strategy to handle the path explosion and an inductive assertions technique for

handling loops. The Inspect [90] is another novel equivalence checking approach in high-

level synthesis based on translation validation, cut-point, and shared-value graph (SVG)

techniques. In this method, the SVG technique has been used to deal with various lan-

guage structures in a unified way and avoids the “may-not-terminating” problem of existing

methods.

The paper in [86] presented the formal verification of scheduling during HLS. In this

method, FSMD models are used to represent the behavioral specification and the result

of scheduling. The method also introduced cutpoints to construct the path cover for each

FSMD. The functional equivalence between both behaviours is proved based on the equiv-

alence of one path cover with some path of the other path cover. However, the method

presented in this paper assumes that the path structure of the input behaviour is not mod-
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ified during the synthesis process.

In [81], a path-based equivalence checking is proposed for the scheduling phase of HLS.

In this work, a finite state machine with a datapath (FSMD) model has been used to

represent both the given behavioral specification before scheduling and the one produced

by the scheduler. The method consists of introducing cutpoints in one FSMD (the given

behavioral before scheduling) to obtain initial path cover, visualizing its computations as a

concatenation of paths from cutpoints to cutpoints, and identifying equivalent finite path

segments in the other FSMD (produced by the scheduler). The method is applicable even

when the scheduler changes the basic structure of the given behaviour and works only for

uniform code motion techniques. The paper [33] improved the method presented in [81] to

handle both uniform and nonuniform code motions applied during the scheduling phase of

HLS. In this work for nonuniform code motions, some data-flow properties for equivalent

path segments model checking are identified. This work [33] is further extended by in [24]

to handle code motion across loops. In order to discover the mismatch in the values of some

live variables, the method consists in propagating the variable values over a path to the

subsequent paths. Propagating the variable values over the subsequent paths will continue

until the values match or the final path segments are accounted for without finding a match.

The method is also capable of handling control structure modifications along with uniform

and nonuniform code motions.

In [127], a scalable equivalence checking algorithm for validating scheduling transforma-

tions has been presented. The method in [127] accounts for control/data dependency and

addressed various timing modes of scheduling such as cycle-fixed mode, superstate-fixed

mode, and free-Floating mode. However, the techniques presented in [126, 127] can not

compare transformations that modify structures of loops through domain-specific optimiza-

tions. As a result detecting corresponding variables between the two behaviours will not

succeed, causing equivalence checking to fail.

Recently, Chouksey and Karfa [46] presented an equivalence checking method for ver-

ifying of scheduling of conditional behaviours along with a new cutpoint selection scheme

to overcome significant control structure modification that occurs in the scheduling of con-

ditional behaviors. In this method, some scenarios involving path merge/split where the

path-based equivalence checking approaches [81, 24] fail to show the equivalence even though

behaviors that are equivalent are addressed.
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Back-end verification of HLS:

Other works related to verification of allocation and binding phase, and datapath and

controller phase are presented here. Ashar et al. [21] proposed a complete procedure for

verifying register-transfer logic against its scheduled behaviour in a high-level synthesis

environment. In this paper, the algorithm is based on the observation that the state space

explosion in most designs is caused by the datapath registers rather than the number of

control states. In [21], the authors are able to divide the equivalence checking task into the

checking of (i) local properties which are checked on a per control state basis, and (ii) non-

local properties which require a traversal of the control state space. The paper performs

equivalence checking between the schedule specification and the RTL implementation of

designs by model checking.

The work in [96] reported a formal methodology for verifying a synthesized register-

transfer-level design based on symbolic analysis and higher-order logic theorem proving

techniques. In this work, various register allocation/optimization schemes commonly found

in HLS tools are accommodated. The controller extended finite state machine (EFSM)

models the design implementation (the scheduled one and the RTL). In this method, the

equivalence between the scheduled and the RTL behaviours has been shown based on the

critical states, critical variables, and critical paths of two EFSMs. However, one may en-

counter an infinite number of paths from the initial state if loops are presented in the

behaviour while showing the equivalence between two critical states.

Karfa et al. [82] develop techniques for verifying the correctness of register sharing

using a formal method. This framework models the design (behaviour) before and after the

datapath synthesis as FSMDs and the equivalence is shown for the mapping by comparing

the computations for their FSMDs. Finally, the verification is done by using path covers and

cut-point based equivalence checking. For that, the state-wise equivalence of all the paths

forming the path covers is proved. The technique presented in this work is also applicable

for both data-intensive and control-intensive input specifications.

A formal verification method of the datapath and controller generation phase of a high-

level synthesis process is presented in [80]. This paper achieved the verification goal in two

steps: (1) the datapath interconnection and Controller FSM are analyzed using a given

control assertion pattern in each control step to identify the RT operations are executed

in the datapath. It uses a state-based equivalence checking methodology to verify the

correctness of the controller behavior. A rewriting method has been developed for this step
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(2) an equivalence checking method is deployed to establish equivalence between the input

behaviour and the output behaviour of this phase.

As discussed above, most of the existing works target the verification of the scheduling

in HLS since the verification of this phase is the most challenging among all phases of HLS.

These methods need intermediate information from the HLS tools. However, the availability

of such information is limiting the use of phase-wise verification of HLS.

2.2.1.2 End to end Verification of HLS

There are few works that target end-to-end verification to prove the equivalence between

the input (C, C++) program and the RTL output of HLS.

Leung et al. [88] proposed a translation validation technique for C to Verilog by con-

verting them into a common intermediate representation (IR) and then used bisimulation

techniques to prove the two resulting IR programs are equivalent. In this method, the

authors use Daikon [4] to detect the likely invariants at cutpoints. This method, however,

won’t work if the number of traces is not the same in both the bahaviours and the invariants

are not sufficient to prove post-conditions.

The work in [69] proposed a sequential equivalence checking (SEC) framework for be-

havioral synthesis. The paper presented a suite of optimizations for equivalence checking

between electronic system level (ESL) specification and RTL generated through behavioral

synthesis. This method cannot handle the certification of designs between the abstract

clocked control/data flow graph (CCDFG) and the corresponding RTL. This work is fur-

ther extended by in [129] to the presence of optimizations that violate local equivalences

of internal signals. In this method, two key optimizations (operation gating and global

variables) that complicate equivalence checking for high-level synthesis are identified. Sub-

sequently, they developed a method for equivalence checking between system-level design

and HLS generated RTL in the presence of these optimizations.

In [100], the authors developed a tool called v2c that translates synthesizable Verilog to

C. The tool accepts synthesizable Verilog as input and generates a word-level C program as

an output. Equivalence checking is then achievable on the C level with the help of either

static analyzing tools or dynamic execution tools. We found that v2c generates incorrect

C code from the Verilog generated by the Vivado HLS tool. Therefore, using v2c for HLS

functional verification is not a natural solution.

X. Feng and A. Hu [61] presented a way to introduce cutpoints early during the analysis
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of the software model for checking the equivalence of high-level software against RTL of

combinational components. In this paper, the algorithm they developed compares high-

level behaviour given as a control-flow graph (CFG) format with the RTL code. Their

method has used symbolic execution and satisfiability solving to check equivalence between

the two expressions. This paper only focused on combinational equivalence checking and

did not address how to extend the proposed method for sequential equivalence checking.

The semantic gap between the input C/C++ behaviour and corresponding RTL is too

high to compare directly. Therefore, most of these approaches assume various simplifications

regarding transformations during HLS. Therefore, an end-to-end equivalence checker that

can handle the complexities of modern-day HLS tools is still not available. In this thesis, we

propose a C to RTL equivalence checking method, called DEEQ, to verify the correctness

of the HLS generated RTL with respect to its input C code. The proposed method is

completely automated and does not take any internal information from the HLS tool.

2.3 Hardware Trojan Detection

Due to the global distribution of ICs manufacturing foundries, ICs come from different

manufacturers. As a result, ICs security has become a new concern in the system design

due to potential malicious modification of the ICs during the fabrication process. Such

modification of ICs referred to as Hardware Trojan (HT). The HT has two main parts: (i) a

trigger: a circuit (signal) that activates the Trojan and (ii) a payload: a circuit that performs

the malicious function activated by the trigger signal. The HT detection mechanisms vary

depending on the deployment phase (like, specification, RTL, layout, and fabrication) and

the required inputs (like, golden chips, etc.). There are many works that targeted HT

detection. In this section, we briefly summarize the notable works on HT detection.

In [28], optical inspection based HT detection technique is presented. In this method,

the layout of the circuit under test is compared with a picture of the manufactured circuit

under test, obtained by removing the layers one by one. This method requires sophisticated

and highly accurate techniques to obtain and analyze the die photo of the chip under test.

However, the process is expensive and time-consuming to apply.

In [75], the authors propose randomization to compare, in probability, the functionality

of the original design and the final circuit. The proposed method first uses randomization

arguments to construct a unique probabilistic signature of a circuit. Then, it applies a
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hypothesis-testing technique to statistically infer the presence of a Trojan in the circuit under

test (CUT). Tehranipoor et al. [112] presented a technique to increase the probability of

generating a transition in a Trojan and analyze its activation time. In both cases, however,

it is not guaranteed to find the test vectors capable of triggering Trojans, and therefore

detection using this technique is not guaranteed.

Side-channel based HT detection mechanism has been presented in [17]. In this method,

Principle Component Analysis (PCA) is used as a side-channel fingerprint of the circuit to

compare it with the golden model. However, the characteristics of the physical design can be

modified by other factors and not only by HT. As a result, HT detection may not be effective

and time-consuming. In [91], authors replace the requirement of the golden model by using

a golden parametric signature obtained by a trusted simulation model, parameters from the

die, and applying advanced statistical modeling techniques. However, the requirement of a

precise model of the process makes the technique difficult.

In [30], run time detection technique of HTs has been presented. Both hardware and

software have been used to detect HT. An additional circuit (logic) is added to support

security monitoring at run time. But, this technique is expensive in terms of circuit area.

Hicks et al. [73] presented a HT detection method at RTL level. The HT detection problem

is formulated as an unused circuit identification (UCI) problem. However, how to define

unused circuits is not easy and is not quite clear. Therefore, most of these approaches

compared the golden model with the design circuit to detect HT.

Bao et al. [25] proposed a reverse engineering approach to automatically distinguish

the features between HT-free and HT-inserted structures in the ICs. The approach adopts

a well-studied machine learning method, a one-class support vector machine, to classify

ICs as Trojan-free and Trojan-inserted based on features extracted from the IC images

and thus simplifies the process of reverse engineering. However, the approach would not

allow destructive verification of ICs to be either cost-effective or scalable. Therefore, more

advanced detection mechanisms are required to eliminate the requirement of the golden

model.

A method for detecting hardware Trojans in third-party digital IP (3PIPs) cores has been

discussed in [131]. In this paper, first, all functions in the behaviour are defined as prop-

erties. Then a complementary flow is presented to verify the presence of Trojans in 3PIPs

by identifying suspicious signals (SS) with formal verification, coverage analysis, removing

redundant circuits, sequential automatic test pattern generation (ATPG), and equivalence
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theorems. Moreover, a verification approach of system specification and implementation

was also presented to identify extra functionality in hardware designs.

HLS tools are widely used in many critical designs. The tools may contain malicious

codes (HT) which collect valuable data in IPs or disrupt the performance of the design after

a certain time. However, most of the HTs detection approach discussed above compared the

golden model with a design circuit to detect HT. To the best of our knowledge, there are

no techniques that can detect high-level synthesis inserted HTs. The method proposed in

chapter 6 shows how all the three HTs inserted by [106] can be detected using our proposed

approach.

2.4 Conclusion

In this Chapter, we have discussed several state-of-the-art RTL to C reverse engineering

techniques. We have also presented various simulation-based verification, phase-wise verifi-

cation, and end-to-end verification techniques for checking the correctness of the HLS tool.

The state-of-the-art Trojan detection mechanisms are also discussed in this chapter. In this

process, we have identified some limitations of existing reverse engineering, verification, and

hardware Trojan detection methods of HLS. In the subsequent chapters, we present the

Fast Simulation framework, End-to-end Verification of HLS, RTL to C reverse engineer-

ing for faster simulation, and Trojan detection frameworks which overcome the limitations

identified in this chapter.
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3
FastSim: A Fast Simulation Framework for

High-Level Synthesis

3.1 Introduction

The ever-increasing complexity of digital design and the inception of information technology

are driving design methodologies towards the use of high-level behaviour than the register

transfer level (RTL). In this scenario, high-level synthesis (HLS) plays a significant role

by enabling the automatic generation of RTL design starting from high-level descriptions.

Several HLS tools like Vivado HLS [10], Catapult-C [3], Intel OpenCL HLS [6], SCC [13],

etc. from industries and Bambu [107], LegUp [36], etc. from academia have been introduced

both for field-programmable gate array (FPGA) and application specific integrated circuit

(ASIC) hardware designs. The HLS enables the algorithm developers to use the FPGA

targets by abstracting lower level details like clock, target architecture and reconfigurability.

Since its induction, HLS has made significant progress in shortening system design time

by providing flexible and instant optimization opportunities at the behavioural level for

pipelining, loop unrolling, enabling parallel dataflow streams, etc. However, the verification

of the synthesized model is still primarily carried out by time consuming RTL simulations.

Although various phase-wise formal verification methods of HLS are proposed [87, 24, 46],
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a monolithic end-to-end formal verification of HLS is not yet available due to the difference

between high-level programming sets in various computer languages, and the generated

RTL. Consequently, HLS designers still depend on Xilinx RTL simulators (e.g. Xsim, VCS)

or hardware-software power emulators (e.g., Zebu [12]) for verification purposes. Due to

the RTL simulator’s verification time overhead and the non-FPGA experts being unable to

understand the details of the RTL code, the HLS tools come up with software based verifi-

cation. In Vivado HLS design Suite [10], There are two steps to verifying the design [110]:

(i) C-simulation: where, Before synthesis, the behavioral specifications to be synthesized

should be validated with a test bench using C simulation. The test bench is self-checking

and validates that the results from the design to be synthesized are correct. (ii) C/RTL

co-simulation: where the Vivado HLS can verify that the synthesized RTL is functionally

identical to the C source code with the original (same) test bench. Although Vivado HLS

uses both C-simulation and RTL co-simulation to determine the correctness of the design,

C-simulation is faster than the RTL co-simulation.

A comparative analysis of the simulation time (in seconds) for C simulator and RTL

simulators like Vivado RTL co-simulator and ModelSim are presented in Table 3.1 for a few

HLS benchmarks tested for 30k input test cases. From the table, it could be concluded that

C simulation is much faster compared to HLS based RTL co-simulation. The simulation

times for RTL simulators are comparable.

Table 3.1: C simulation vs RTL simulation comparison

Bench C-sim(s) RTL co-Sim(s) Modelsim(s)
des 28.01 34672 36024

mips 0.985 2620 2885
aes enc 12.656 4389 4693
aes dec 14.442 4467 4780

Table 3.1 gives an intuition that a C like behavioural code realized from HLS generated

RTL is likely to simulate faster as compared to traditional RTL simulation. The abstraction

of the high-level model from RTL has been in use in mainstream companies for decades,

for cycle-based simulations in early verification phases. For example, Tenison VTOC [1]

automatically generates C++ or SystemC models from an RTL hardware description. The

emulation of RTL behaviour using a sequential language like C adds up several important

constraints to incorporate the significant features of RTL simulators like cycle accuracy,
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accurate performance estimation, the capability to simulate instruction and task level paral-

lelisms along with proper code readability. Two closest works with these targets are FLASH

[44] and Verilator [11]. FLASH [44] incorporates scheduling information in the source C code

for cycle accurate simulation. Although FLASH guarantees faster simulation of scheduled

C code, it does not consider the design transformations during allocation, binding and the

datapath, and controller generation phases of HLS. Consequently, the correctness of RTL

generated by HLS is not guaranteed by FLASH. On the other hand, Verilator [11] generates

C++ code from any synthesizable Verilog RTL for faster simulation. The C++ code could

be simulated faster than RTL simulation and can verify the functional correctness of RTL

generated by the HLS tool. However, being a generic tool, Verilator disregards the leverages

offered by the finite state machines with datapath (FSMD) oriented nature of HLS gener-

ated RTLs where the datapath and the controller are well separable and the controller is

specified as a well defined finite state machine (FSM). Hence, the generated C++ code is

highly complex and much slower compared to FLASH.

3.1.1 Contributions

In this work, we develop a simulator that overcomes the limitations of both FLASH and

Verilator. Specifically, we propose a framework that converts an HLS generated RTL to

an equivalent C-code similar to Verilator but takes advantage of the structure of the HLS

generated RTL. We extract the register transfer (RT) operation(s) performed in the datapath

in each state of the controller FSM from the control signal assignment of that state. This

way our simulator automatically generates the behavioural FSMD in C code semantics

from the HLS generated Verilog RTL while maintaining the state machine sequence of the

synthesized RTL. Our framework guarantees fast simulation, functional correctness of the

RTL, cycle accuracy, accurate performance estimation, and generates a highly readable

and debug friendly simulation code by preserving all register and port names for easier

correlation with the HLS synthesis report. In addition to typical C programming constructs,

our framework supports advanced HLS constructs like array mapping to external memory

modules, non-inlined function calls, parallel execution frameworks invoked by loop unrolling,

pipelining, etc., and accurate simulation of pipeline stalls during external memory access.

The contribution of this chapter are summarized as follows:

• We demonstrate the efficiency of FSMD aware RTL to C conversion for faster HLS
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design verification.

• We present a completely automated, fast, and cycle accurate simulation based ver-

ification framework FastSim for HLS generated RTLs. The framework ensures the

end-to-end correctness of HLS. It is also equipped to give accurate design performance

estimation.

• FastSim can model various hardware parallelisms like loop and task level pipelines.

Our simulator also generates a well indented and arranged simulation C code for

convenient design debugging.

• We also present a detailed experimental comparison of our simulation framework for

RTL generated by the Vivado HLS tool with state-of-art simulators like Verilator,

ModelSim, Vivado RTL cosimulator (XSIM) etc. on diverse workloads from CHStone

benchmark suite and several other standard programs.

The remainder of this chapter is organized as follows. Section 3.2 presents our proposed

framework and flow diagrams. The RTL to C conversion and its implementation details are

discussed in Section 3.3. Section 3.4 demonstrates the major challenges faced during RTL

to C conversion. In Section 3.5, we elaborate the parallel execution strategy adopted by

FastSim. The debug strategies and design performance estimation are discussed in Section

3.6. Experimental results are presented in Section 3.7. Finally, Section 3.8 concludes the

chapter.

3.2 Our Proposed Framework

The overall flow of the FastSim framework is demonstrated in Fig.3.1. Our tool takes

the HLS generated Verilog RTL as the input and generates a C code from the RTL for

faster simulation. The Verilog RTL is first converted into an abstract syntax tree (AST)

format using the PyVerilog [9] library and further processing is done on AST. The RTL to C

conversion process consists of two phases: Pre-processing and RTL to C reverse engineering.

In phase one, the C incompatible constructs of Verilog like bit-select and part-select are

replaced with equivalent compatible representations. In the second phase, we identify the

register transfer operations in the datapath concerning the control signals at each control

step of the controller FSM to generate an equivalent FSMD code. The FSMD has the same

structure as the controller FSM as it preserves the original state sequence found in Verilog

36



Our Proposed Framework

Figure 3.1: FastSim: Overall flow

RTL. Our simulation model can handle external hardware modules like RAM, ROM, and

instantiated hardware modules. It also supports hardware parallelism like pipelining and

loop unrolling. The intermediate FSMD and the variables, controller state, RT operations,

etc. are mapped into appropriate data types and the equivalent C code, called RTL-C,

is generated. Next, we have the Simulation phase where the behavioural C source and

the RTL-C code are co-simulated using C compilers like GCC or using C-simulation of HLS

tools with test cases to verify the functional correctness of the generated RTL. If the outputs

match, we conclude with successful verification. In case of a mismatch, the RTL-C code can

be used for debugging.
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Figure 3.2: RTL structure generated by HLS
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Figure 3.3: (a) Controller FSM. (b) Datapath. (c) FSMD

3.3 RTL to C Conversion

3.3.1 RTL Structure

The RTL generated by HLS consists of a datapath and a controller FSM as shown in Fig. 3.2.

The datapath consists of registers, external memory units, functional units (FUs) and their

interconnection network. The RTL operations performed in the datapath are controlled by

the controller FSM. In each state, the controller assigns 0/1 value to each control signal. As

a result, a set of RT operations are performed in the datapath. The datapath sends some

status signals (i.e., results of some conditional checks) to the controller. The FSM state

transitions depend on those status signals. We take advantage of this RTL structure during

RTL to C conversion. In each state of the controller FSM, we analyze the datapath using

control signals values in the particular state to identify the RT operation(s) executed in the

datapath. We then replace the control signals in that control state with the corresponding
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RT operations. This way the controller is converted into an equivalent FSMD. The FSMD

is an abstract representation of the RTL. The overall idea of FSMD abstraction from the

RTL is given in Fig. 3.3. We represent this FSMD as C code for faster simulation.

Source: (at 2)

Description: (at 2)

ModuleDef: findmin (at 2)

Paramlist: (at 0)

Portlist: (at 3)

Port: ap_clk, None (at 4)

Port: ap_rst, None (at 4)

Port: ap_start, None (at 4)

Port: ap_done, None (at 4)

Port: ap_idle, None (at 4)

Port: ap_ready, None (at 4)

Decl: (at 22)

Parameter: ap_ST_fsm_state2, False (at 22)

Rvalue: (at 22)

IntConst: 2’d2 (at 22)

Decl: (at 23)

Input: ap_clk, False (at 23)

Always: (at 66)

SensList: (at 66)

Sens: posedge (at 66)

Identifier: ap_clk (at 66)

Block: None (at 66)

IfStatement: (at 67)

Eq: (at 67)

Identifier: ap_rst (at 67)

IntConst: 1’b1 (at 67)

Figure 3.4: AST Code Snippet

3.3.2 AST Representation

An AST is the syntactic representation of the source code written in a programming lan-

guage. We use the AST representation of Verilog generated by the HLS tools as our inter-

mediate representation (IR) in our tool. We use PyVerilog library [9] to generate this AST

representation. Starting with the top module as a root node, the subsequent child nodes

contain HDL constructs like parameters, port list, declarations, etc, which are arranged

systematically and any required construct could be explored by traversing the AST. The

snippet for AST generated for some example is shown in Fig. 3.4.
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As seen clearly in Fig. 3.4, the top node in the representation is ModuleDef in our case it

is “find min”. The child nodes of the module contain items like parameter list(ParamList),

port list (Portlist), declarations(Decl), blocking construct(Block), etc. This provides us with

an organized representation of different parts of RTL and that too in a tree-like manner.

This made the task of finding the items easy and stored in a systematic manner, and hence

AST forms an important part of parser implementation.

3.3.3 Automatic Pre-processing of RTL

Verilog HDL supports direct bit-level manipulation of register arrays like concatenation of

bits, assigning subset of bits of one variable to another. C doesn’t provide support for such

direct manipulation. Consequently, we need to convert these operations into a combination

of supported constructs like bit-wise AND/OR, left/right shift, etc. to mimic an equivalent

operation in C. Our pre-processing wrapper script automatically identifies such unsupported

operations and converts them to an equivalent supported expressions in the AST format of

Verilog RTL. The operations that needed pre-processing are explained as follows:

3.3.3.1 Concat Operation

This operation combines two or more register arrays into a single entity. The objects for

concat operation may be scalar (single bit) or vector (multiple bits). Multiple concatenations

may be performed which is known as replication.

// Concat operation:

reg [WIDTH_A - 1 : 0] reg_A;

reg [WIDTH_B - 1 : 0] reg_B;

reg [WIDTH_C - 1 : 0] reg_C;

assign reg_A = {{reg_B}, {reg_C}};

// After pre-processing:

wire [(WIDTH_A - 1):0] temp_0, temp_1;

assign temp_0 = reg_B << width_C;

assign temp_1 = temp_0 | reg_C;

assign reg_A = temp_1;

Figure 3.5: Example of pre-processing of Concat operation

Example 4. Consider the example shown in Fig. 3.5. The bits of register reg B is con-

catenated with the bits of register reg C and is assigned to the register reg A such that the
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total width is equal to that of reg A. To convert this to an equivalent supported expression,

we first left shift reg B with the width of reg C and store the result in temp 0. The temp 0 is

then ‘OR’ed with reg C and is stored to temp 1. This operation is equivalent to appending

reg C at the LSB end of temp 0. The final value in “temp 1” is assigned to reg A. l

3.3.3.2 Part-select Operation

The part-select operation is used to select a part of a vector, i.e., give access to a set of

contiguous bits in the vector whose range is specified by two digits separated by a colon

(:). The first digit represents the least significant bit (LSB) numbered, and the second

digit represents the most significant bit (MSB) numbered. Both LSB and MSB need to be

constant.

// Part-select operation:

reg [63:0] reg_A, reg_B;

always @ (˚) begin

reg_A[40:0] <= reg_B[51:11];

end

// After pre-processing:

wire [63:0] temp_2, temp_3, temp_4;

always @ (˚) begin

reg_A <= temp4;

end

// width of register reg_A = 64 bit.

assign temp_2 = reg_B & 64’d4503599627368448;

assign temp_3 = reg_A & 64’d18446741874686296064;

assign temp_4 = temp_2 | temp_3;

Figure 3.6: Example of pre-processing part-select operation

Example 5. For part-select operation shown in Fig. 3.6, the bits 0 to 40 of register reg A are

to be replaced with bits 11 to 51 of register reg B. To implement this we first perform Bit-wise

AND on register reg B with a 64 bit masking vector 4503599627368448 pi.e., p241´1q ăă 11q

which extracts bits [51:11] and store the result in temp 2. For register reg A, we perform

Bit-wise AND with 64 bit vector 18446741874686296064 pi.e., p223 ´ 1q ăă 41q to reset the

bits [40:0] and store the result in temp 3. We then perform bit-wise OR between temp 2

and temp 3 to copy the contents [51:11] reg B stored in temp 2 into reg A stored in temp 3.

Finally the result is assigned to LHS register reg A. There are many other versions of concat
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and part-select operations. Our pre-processing script can handle all of them automatically.

l

It may be noted that the concatenation and part-select are supported in Vivado HLS

C-simulation. We still converted them to make our generated RTL-C code tool independent.

3.3.4 RTL to C Conversion

The input to the RTL to C conversion is the AST representation of the Verilog. The overall

flow of the process (parser) is shown in Fig. 3.7 and the steps of the conversion process are

described below.

Figure 3.7: Parser Flow Diagram

3.3.4.1 Extraction of Variables, Controller and State wise Micro-operations

Register declarations, controller FSM, and operations are located at different sections of the

AST. Extraction and storage of this information constitute the first step of the conversion.
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The variables used can be found under Declaration type of the AST. These variables are

categorized as wire, register, inputs, and outputs and are stored accordingly into an ap-

propriate data structure (see Figure 3.8) along with their data-width and sign information.

Data-structure (variables: input, output, registers and wires):

[

"var_name": { "width":value, "signed":true/false },

"var_name": { "width":value, "signed":true/false },

"var_name": { "width":value, "signed":true/false },

...

]

Figure 3.8: Data-structure for storing variables

The controller forms the logical flow of the program and is the driver of the Verilog RTL.

In AST, the controller is identified as type Case Statement. Once extracted, it is stored in a

separate data structure (see Fig. 3.9) with the list of available states. For each state, their

conditions and next states also persisted.

Data-structure (controller):

{

"state1": [{"condition":"next_state"}, {"condition":"next_state1"}, ...]

"state2": [{"condition":"next_state"}, {"condition":"next_state1"}, ...]

"state3": [{"condition":"next_state"}, {"condition":"next_state1"}, ...]

...

}

Figure 3.9: Data-structure for storing Controller

Finally, the micro-operations taking place in the states are extracted. In the datapath,

RT operations are controlled by the control signals. For each datapath component, the

input to output assignments is termed as micro-operations. For example, for a multiplexer

out “ MUXpin1, in2, selq, there are two micro-operations possible, i.e., out Ð in1 and

outÐ in2 and the associated control signal assertions are sel “ 0 and sel “ 1, respectively.

There are many micro-operations possible in the datapath. However, not all of them are

active in a control state. Given a control signal assignment in a control state, we, therefore,

identify the active micro-operations in that state. A micro-operation not associated with
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any control signal is always active. In RTL, each state of the controller has associated with

some “always” block, and each always block has some condition that contains condition

variables and micro-operations. The operations in “always” and “assign” statements are

the active micro-operations in that state. These micro-operations are then stored in a

state-wise manner in a separate data structure (see Fig. 3.10).

Data-structure (RT operations):

{

"condition":"...", "operation": [op1, op2, op3, ...],

"condition":"...", "operation": [op1, op2, op3, ...],

"condition":"...", "operation": [op1, op2, op3, ...],

...

}

Figure 3.10: Data-structure for state-wise Micro-operations with their conditions

Algorithm 1: RTL-FSMD Extraction (RTL)

Input: RTL
Result: RTL-FSMD
/* RTL consists of a Datapath D and a controller FSM F */

1 foreach state S in the controller FSM F do
2 Find the active micro-operations MS for the control signal assignments in S;
3 RS “ Φ; /* Set of RT-operations in S */

4 foreach micro-opn of the form µ : r Ð rin in MS do
/* Rewrite method */

5 do
6 w = Find the left-most wire signal in the RHS exp µe of µ;
7 Find a micro-opn of the form w Ð ew in MS;
8 Replace w with pewq in the µe;

9 while (all signals in RHS exp µe of µ are either Input, Reg or Constant);
10 RS “ RS Y tµu;

11 Replace the control signal assignments in S of F with RS;

12 Return F ; /* FSM F is converted to FSMD F at this point */

3.3.4.2 Rewrite Method

The next task is to identify the RT operations in each state of the controller FSM from the

active micro-operations in that state. We use the rewriting method adapted from [80] for
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this purpose. The rewriting method identifies the spatial sequence of data flow needed for

an RT operation in reverse order. The method consists of rewriting terms one after another

in an expression. The micro-operation of the form r ð rin in which a register occurs on

the left hand side (LHS) is found first. Next, the right hand side (RHS) expression rin is

rewritten by looking for an active micro-operation of the rin Ð s or rin Ð s1 ă op ą s2. In

the next step, s (s1 or s2 in the latter case) are rewritten provided they are not registers or

inputs. The rewriting takes place from left to right in a breadth-first manner. The process

terminates successfully when all signals in the RHS expression are registers or inputs or

constant. The rewriting method is given as Algorithm 1 and is explained with an example

below.

Example 6. Let us consider the datapath and controller FSM shown in Fig. 3.3. All the

control signal names start with CS. Let the order of the control signals be xCS m, CS f1,

CS f2, CS r1, CS r2, CS r3, CS r4, CS cy. Let us consider the control assertion A = x1,

1, 1, 0, 1, 0, 0, 0y of the transition q2 Ñ q3. For this control assertion, the activated micro-

operations are:{r1 outð r1, r2 outð r2, r3 outð r3, r4 outð r4, m outð r3 out, f1 out

ð r1 out + m out, f2 out ð f1 out ˆ r4 out, r2 ð f2 out}. Out of them, r2 ð f2 out is

the micro-operation with register r2 at left hand side. The sequence of rewriting process to

accomplish the corresponding RT-operation are as follows:

r2 ð f2 out

r2 ð f1 out ˆ r4 out [since f2 outð f1 out ˆ r4 out]

r2 ð (r1 out + m out) ˆ r4 out [since f1 outð r1 out + m out]

r2 ð (r1 out + r3 out) ˆ r4 out [since m outðr3 out]

r2 ð (r1 + r3 out) ˆ r4 out [since r1 outðr1]

r2 ð (r1 + r3) ˆ r4 out [since r3 outðr3]

r2 ð (r1 + r3) ˆ r4 [since r4 outðr4]

Since both r1, r3 and r4 are registers, rewriting process stops.

So, the RT-operation r2 ð (r1 + r3) ˆ r4 is executed by the given control assertion A

in the transition q2 Ñ q3. The RT-operation(s) for all other state transitions of the FSM

can be found in a similar manner. The obtained FSMD behaviour is given in Fig. 3.3(c).

l
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Limitation of the existing rewriting method in [80]: The existing rewrite method does not

take data-width for LHS and RHS expressions into consideration. This will create an issue

in C if the data-width mismatch between the RHS and LHS expression. We have enhanced

the rewriting method to overcome this limitation. Specifically, we make sure at each step

of rewriting method that the data-width of the LHS and RHS are matched. We perform

bit-wise AND operation with each micro-operation with a constant value representing the

data-width of the register on the LHS of the micro-operation. In the above example, let

us assume the data-width of r1, r3, r4 are 20 bits each and data-width of r2 is 32 bits.

As a result, the data-width of the RT operation r1 + r3 is 21 bits and the the data-

width of RT operation r2 ð (r1 + r3) ˆ r4 is 41 bits. The final RTL operation would be

r2 ð ppr1` r3qˆ r4q & p232´ 1q. This process is applied in each step of rewriting method

to resolve the limitations of the original rewrite method. The data-width mismatch issue is

explained in detail in the next section.

3.3.4.3 RAM, ROM and Modules

FastSim supports single and dual-port RAM and ROM modules. The RTL contains opera-

tions that set either of the read or write signals to indicate reading or writing is performed

on the RAM/ROM. In RTL-C, the RAM or ROM modules are defined as an array with the

size information collected from their respective module. Whenever the read or write enable

signal is set in a state, the corresponding read/write operation on RAM or ROM block is

placed at that state. The name of the module and the number of ports for RAM/ROM

are taken as input from the user for processing. The tool processes the user inputs and

RAM/ROM modules to identify and store the read/write operations along with other infor-

mation like instance identifier prefix, number of ports, module name, and state-wise signal

flags. A sample of generated C code snippet corresponding to a read operation on a RAM

is shown in Fig 3.11. CE x and WE x depict chip enable and write enable signals, respec-

tively, used to perform read and write operations. The CE x signal is activated at state 5

to perform a read operation to register out A from an address pointed by addr reg.

For a function call in input C, the HLS tool usually creates a separate module with

a datapath and a controller FSM in the RTL. FastSim first creates a function modeling

the FSMD of that module. Similar to the RAM/ROM modules, such modules are also

triggered in RTL by setting the value of a signal corresponding to that module in a particular

state(s). Our tool identifies such calls and stores information like instance identifier prefix,
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if(cur_state == 5){

address_x = addr_reg; CE_x = 1; WE_x = 0;

}

if(CE_x)

out_A = RAM_x[address_x];

if(WE_x)

RAM_x[address_x] = reg_B;

Figure 3.11: RTL-C code snippet for RAM module

state-wise signal information, and a list of parameter variables passed during the module

instantiation in a data structure. This information is then used to place a function call in

the corresponding state while implementing the final C code. The variables are passed as

references to the called function. Multiple functions with no data flow among them can

be scheduled in a state by the HLS tools. In such a case, the function calls are placed

sequentially in the corresponding state. FastSim supports a hierarchy of function calls as

well. We have also taken care of the common input arguments among functions in a state by

sending the “ old” values of them (as discussed in Subsection 3.4.1). Since the top module

waits until the completion of execution of the module it is called, cycle accurate simulation

is achieved by following the states of the respective FSMs. For multiple functions called in

a state, we consider the maximum of their cycles needed for cycle accurate simulation. To

handle functions where dataflow optimizations are applied, we need a different strategy as

discussed in Subsection 3.5.3.

3.3.4.4 Generation of Cycle Accurate RTL-C Code

After the completion of the above steps, the controller FSM is converted into a behavioural

FSMD. This FSMD constitutes state-wise segregated register transfers and is a behavioural

description of the RTL. We generate a C program, called RTL-C, from this FSMD. The

RTL-C looks the same as the controller, and it preserves the original state sequence found

in the RTL. This abstracted RTL-C code ensures cycle accurate simulation of the RTL.

In RTL, everything runs in parallel and is triggered based on appropriate signals and a

clock. Decoding the RTL execution flow, handling data dependencies, and pre-processing

certain bit-level operations and other issues, FastSim generates the equivalent C code RTL-

C, which is sequential in nature. The outline of the RTL-C is given in Fig. 3.12. At the

top of the program the constants are defined, followed by the “two’s complement” function
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#include<stdio.h>

#define CONSTANT

function_prototypes();

int main(){

//variable declaration;

//RAM,ROM declaration;

state1_label:

//copy old_var_value=new_var_value;

//place operations which belong to all states here;

//place operations deciding condition variables here;

//place level-triggered blocks here;

if(condition1){

//operations

...

RAM/ROM blocks(if any)

function_calls(if any)

goto state2_label;

}

if(condition2){

//operations

...

RAM/ROM blocks(if any)

function_calls(if any)

goto state3_label;

}

state2_label:

...

...

end:

return;

}

Figure 3.12: Generated RTL-C code outline

definition which is used for variable-length signed conversions. Then the function prototypes

are placed in case if modules are present in the RTL and finally the top function is declared

with its body. The FSM behaviour is modeled using goto statement in C code, where each

state consists of conditions, operations and goto jumps to the appropriate next state. For

each state, the following operations are added in RTL-C in the given order:

• New values of variables are copied to old value variables.

• Operation which belongs to all states (i.e. always block which does not have any state

variable)
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• All the operations related to conditional variables are identified and placed first.

• Level triggered always blocks are placed next.

• Subsequently, all the pos-edge triggered always block operations are placed along with

their respective conditions.

• For RAM and ROM modules, their operations are placed with the necessary condition

if the corresponding read or write signal is set in that state.

• The function calls are placed next if the corresponding signal is set in that state.

Every variable in the RTL is considered unsigned unless explicitly stated. Every variable

in RTL-C is declared as “unsigned long long” or “long long”. So, FastSim supports bit width

up to 64 bits data width of RTL. To support bit width larger than 64 bits, we can use ap int

library [5]. At the start of the top module function, a local copy of all the passed reference

variables is declared, and at the end of the program, all the reference variables are updated

with the latest value.

3.4 Challenges Resolved in RTL to C Conversion

In this section, we describe major challenges that we need to address in RTL to C conversion

with the solution approaches.

3.4.1 Data Inconsistency

Problem: Different always code blocks in Verilog generate different hardware modules

which work concurrently at a given instance of time. On the contrary, the generated RTL-C

executes in a sequential manner. This highly contradicting execution approach of Verilog

and C might trigger data inconsistency issues.

Example 7. Consider a scenario where a non blocking write and read are performed on a

register at a given clock cycle/state. For instance, refer the example shown in Fig. 3.13. At

state 2, two RT operations are performed. Assume the current status of registers to be r X =

10, r Y = 20, r A = 10, and r M = 30. Using the previously stated rewrite method, the RT

operations executing in this state are r A = r X + r Y and r C = r A + r M. In hardware,

these two operations execute in parallel. Consequently, after execution r A = 10 + 20 =
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reg [31:0] r_A, r_C, r_X, r_Y, r_A, r_M;

wire [31:0] w_B, w_D;

always @(posedge ap_clk) begin

if(state2 == 1’b1) begin

r_A <= w_B;

r_C <= w_D;

end

end

assign w_B = r_X + r_Y;

assign w_D = r_A + r_M;

Figure 3.13: Data inconsistency problem

30 and r C = 10 + 30 = 40. Since the second assignment r C = r A + r M is executed

simultaneously with the first assignment, the old value of r A is used although it updated

at the same instance. Meanwhile, the generated RTL-C executes sequentially. During the

execution, the instruction r C = r A + r M, uses the new value of register r A as it is

already updated in the previous operation. Consequently, final output in this scenarios is

r A = 30 and r C = 60, which is conflicting with the actual output. l

// Resolved RTL-C code

unsigned long long int r_A, r_X, r_C, r_Y, r_M;

unsigned long long int r_A_old, r_X_old, r_C_old, r_Y_old, r_M_old;

r_A_old = r_A; r_X_old = r_X; r_C_old = r_C;

r_Y_old = r_Y; r_M_old = r_M;

if(state2 == 1) {

r_A = r_X_old + r_Y_old; }

if(state2 == 1) {

r_C = r_A_old + r_M_old; }

Figure 3.14: A Solution to Data inconsistency solution

Solution: To distinctively identify the old and new values of registers, we keep two copies

of each register in RTL-C: a normal variable and an old variable. At any given state of

FSM, we first copy the value of the normal variable into the old variable. For any register

transfer operation, we always use the value of old variable on the RHS expression of the

operation (i.e., for read operation) if it is a register. Consequently, the operations in the

RTL-C will be as shown in Fig. 3.14. This eradicates the data inconsistency issue.
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3.4.2 Sign Conversion

Problem: In Verilog, a negative value is stored in the form of two’s complement number

and it uses the keyword signed to represent signed values. Consider the example shown in

Fig. 3.15. It could be observed that $signed is used to represent the signed value. If we use

the RTL code shown in Fig. 3.15 directly in our RTL-C then it becomes: reg A = 117 +

reg B. This is functionally incorrect as the two’s complement of 117 is -11 for a data-width

of 7. We need to get the two’s complement representation of the signed numbers.

// RTL code

reg [6:0] reg_A, reg_B;

always @(posedge ap_clk) begin

reg_A <= ($signed(7’d117)+$signed(reg_B));
end

// Resolved RTL-C code

unsigned long long int reg_B;

long long int reg_A;

reg_A = do_twos_compliment(117,7)+ do_twos_compliment(reg_B, WIDTH_B);

Figure 3.15: Sign conversion issue and solution

Solution: We have created a function that computes the two’s complement value of a

number and whenever $signed occurs while applying the rewrite method we use this function

to compute the value of $signed constant or $signed variable. The function takes two

parameters one is variable or constant, and the other is the bit size of the variable or the

constant. The resolved C code in Fig. 3.15 shows the solution. The function body of two’s

complement function is obvious and omitted here for brevity. So, the two’s complemented

form of -117 (which is -11) will be used in RTL-C.

3.4.3 Data-width Mismatch

Problem: In RTL, the variables declared are of arbitrary bit width as per the need of the

operation. But in C, the data types are of fixed size by default. If the data width in LHS

and RHS are not the same, they are automatically adjusted in Hardware. If RHS bit-width

is more than LHS, the extra bits of RHS are truncated during the assignment. Similarly, if

the bit-width of LHS is more, the remaining LHS bits are automatically zero-padded during

an assignment. A problem arises when we get an assignment constituting two mismatched

51



FastSim: A Fast Simulation Framework for High-Level Synthesis

register arrays. The fixed size of C data types can cause an overflow or underflow issue

during the assignment in C.

// RTL Code

reg [20:0] r_A;

reg [20:0] r_B;

reg [31:0] r_C;

wire [31:0] w_C;

always @ (posedge ap_clk) begin

r_C <= w_C;

end

assign w_C = r_A * r_B;

// Incorrect RTL-C code

unsigned long long int r_A, r_B, r_C;

r_C = r_a * r_B;

// Resolved RTL-C code

unsigned long long int r_A, r_B, r_C;

r_C = (r_A * r_B) & 64d’4294967295;

Figure 3.16: Data-width mismatch and solution

Example 8. As shown in the Fig. 3.16, the register r C will store the 32 bits of the mul-

tiplication r A * r B although the result is 42 bits. On the other hand, the variable r C in

RTL-C will store all 42 bits of the result. Consequently, the behaviours of RTL-C code and

Verilog RTL will not match. l

Solution: To compensate for the variable width of the LHS register during assignments,

we perform the “bitwise AND” operation on RHS with a mask of set bits of width equal to

the width of the LHS register. This operation is performed for every micro-operation and

hence the irrelevant bits in C code variables are zero-padded. Fig.3.16 shows the corrected

C code, where we perform a bitwise AND on RHS with 4294967295 pi.e., 232 ´ 1q so that

the unwanted bits are reset and the RTL-C code will exactly imitate the RTL code.

3.4.4 Level-triggered Operations

Problem: Level-triggered operations are used to execute register transfers when the status

of a sensitive signal changes. When the always block senses a change in the value of a variable

in the sensitivity list, the operations in the block involving those sensitive variables in the

RHS are performed. Generally, when a read as well write operation is performed on the same
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register at the same state, as already discussed in the data-inconsistency issue, we use the

old value of the register for all read operations. This works well for edge sensitive always

blocks, say an always block triggered at posedge of the clock. But in the level-triggered

operation, this idea fails as the level sensitive always blocks could behave like combinational

logic. Consequently, there would not be a distinction between old and new states. During

such a scenario, if a simultaneous read and write to a given register is performed, the write

updated value of the register has to be directly propagated to the LHS of the assignment

where the register is read.

//RTL Code

reg [31:0] a, b; wire [31:0] c;

always(˚) begin

if(cur_state == 1’d2 & reg_X == 1’d1) begin

b <= a;

end end

always(˚) begin

if(cur_state == 1’d2 & reg_X == 1’d1) begin

a <= c;

end end

assign c = a + 5;

Figure 3.17: RTL with level triggered operation

Example 9. Fig. 3.17 shows an example of level-triggered operation and its corresponding

RTL-C is shown in Fig. 3.18. As shown in Fig. 3.17, we have an unconditionally sensitive

always block, which would effectively work like a combinational logic. If both the conditions

on reg X and cur state are satisfied, as per the trivial generated C code as shown in Fig. 3.18,

the old value of a i.e. a old is assigned to b before updating the latest value of a. However,

as per the combinational behaviour of the block, we are supposed to use the updated value of

a which is (a old + 5)) to update b. This leads to an incorrect execution of the block in C.

l

Solution: We modify the perception of always block such that level triggered and edge

triggered always blocks are handled separately. For a level triggered always block, if a

simultaneous read and write are performed to a variable at a given state under the same

condition, all the writes to the variable are performed before reads in the generated RTL-C

code. Secondly, we will use the new value of the variable (instead of the old value as in edge
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triggered) in the RHS expression of the corresponding operations. For the example shown

in Fig. 3.17, a is updated to a old + 5 before being copied to b as shown in the solution

given in Fig. 3.18. This modification ensures the correct execution of the block in C. In

general, a case may arise where a sequence of level triggered operations in a single state

may modify a register. Based on our proposed solution, as we are using the new values for

variables in RHS, the ordering of operations will be important. If such a case arises then a

data flow analysis using a dependency graph needs to be incorporated. There is no such case

found for the benchmark examples that we have considered for experimentation purposes.

However, we will add to support in the future version of the tool.

//Incorrect RTL-C Code

State_2:

b_old = b;

a_old = a;

if(reg_X == 1) {

b = a_old & 4294967295;

}

if(reg_X == 1) {

a = (a_old + 5) & 4294967295;

}

// Resolved RTL-C code

State_2:

b_old = b; a_old = a;

if(reg_X == 1) {

a = (a_old + 5) & 4294967295;

}

if(reg_X == 1) {

b = (a & 4294967295);

}

Figure 3.18: RTL-C Code with level-triggered always block issue and its solution

3.5 Modelling Hardware Parallelism in C

Most of the commercial and academic HLS synthesis tools support three forms of parallelism:

loop unrolling, instruction level pipelining, and task level pipelining. Our simulator is

equipped to support all three forms of parallelism. In this section, we explain the modeling

of different forms of parallelism at the RTL in our generated RTL-C code.

3.5.1 Loop Unrolling

At the FSM level, loops are implemented in the form of an iterating set of states. Loop

unrolling is implemented by executing register transfers of multiple iterations of a loop in a

single iteration of the modified looping state set by considering their dependencies and using

additional resources (duplicate registers and functional units). This effectively reduces the
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number of cycles and subsequently improves the latency of the design. In effect, multiple

iterations of the loop execute in a single state. The unrolled FSM model is similar to the

baseline FSM where the register transfers form the iterations of the loop. Since the overall

structure of FSM remains the same, our simulation model successfully emulates the correct

functionality for a loop unrolled model. FastSim supports partial unrolling of the loop as

well.

void warp (int Img[ROWS][COLS], int Out[ROWS][COLS])

{

// a,b,c,d,e,f,i,j are defined as macros

int x, y, destX, destY;

loop-1.1:for(y = 0; y < 8; y += 1) {

loop-1.2: for(x = 0; x < 8; x += 1) {

#pragma HLS loop_flatten off

#pragma HLS pipeline

destX = (a*x + b*y + c*x*y + d);

destY = (e*x + f*y + i*x*y + j);

Out[destY][destX] = Img[y][x];

}}

}

Figure 3.19: Sample function warp with pipelined loop

3.5.2 Instruction Level Pipelining

In HLS, a pipelined segment of a hardware module may be distributed across multiple

states of the RTL FSM, each designated as different stages of the pipeline [52]. Each

pipeline stage/state of FSM is further subdivided into multiple sub-stages, whose activity

is controlled using specially designated sub-stage activation flags. It is to be noted that no

two stages/states can execute in parallel. However, the sub-stages of the state/stage being

executed may execute in parallel as per the state of their activation flag. For a pipelined

function, the states are such that at a given clock cycle, a sub-stage of a given active stage

x performs the register transfers, meanwhile, the other sub-stages of the same stage/state

simultaneously compute the parameters required for the execution of stage x+1, x+2, etc.

This improves the performance of the design. Similarly for loop pipelining, a sub-stage of a

given active stage executing register transfers of iteration x so that nearly all the iterations
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Figure 3.20: Generated FSM for warp module

could be completed within the specified initiation interval. For instance, Fig. 3.20 depicts

the FSM generated by Vivado HLS for sample function warp demonstrated in Fig. 3.19.

The FSM has a single pipeline stage/state S3, with two sub-stages S3-1 and S3-2. The self

looping transition T3 of state S3 indicates the inner for loop, loop-1.2 of the function warp.

At S3-1, the input matrix Img is read. The x, y, destX and destY for next iteration are also

calculated in S3-1. At sub-stage S3-2, output array out is updated. For the first iteration

sub-stage S3-2 is disabled by resetting its activation flag. For all the subsequent iterations,

both the sub-stages are executed in parallel. Fig. 3.21 shows an abstract of the pipelined

state S3 in the RTL-C. The major difference from conventional states is that, in addition

to regular FSM state variables, there are two additional variables, S3 1 flag and S3 2 flag

that represents the activation flags of sub-stages S3-1 and S3-2, respectively of stage S3.

We have already equipped our simulation model for parallel execution of register transfers

in a single state for cases where there are simultaneous reads and writes to a given register

as explained in Section 3.4.1. Consequently, the simultaneous manipulation of variables like

x, y, destX, destY etc. in the two concurrently executing pipelined sub-stages S3-1 and

S3-2 are automatically taken care. The Img and Out BRAM chip enable (CE) and write

enable (WE) controls in the RTL-C segments are managed as per the state of sub-stage

activation flags as shown in Fig. 3.21. The codes for calculation of S3 1 flag, S3 2 flag and

other part of S3, and other states omitted for brevity. Representative functions addr calc,

Calculate DestX, Calculate DestY are used to calculate external BRAM address, DestX,

DestY, respectively.
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... // Code for other states.

STATE_S3: //pipelined state S3

x_old = x; destX_old = destX; destY_old = destY; S3_1_flag_old = S3_1_flag;

S3_2_flag_old = S3_2_flag;

//Code to update S3_1_flag and S3_2_flag

if(S3_1_flag_old == 1) { // S3-1 code block

Img_CE = 1;

Img_addr = addr_calc(x_old, x_old);

destX = Calculate_DestX (x_old, y_old);

destY = Calculate_DestY (x_old, y_old);

x = x_old + 1;

}

if(S3_2_flag_old == 1) { // S3-2 code block

if(x_old < 8){

out_WE = 1;

out_Addr = addr_calc(destX_old, destY_old);

}

}

// other code in S3

Figure 3.21: A representative code snippet depicting the pipelined state S3 in warp module

3.5.3 Task Level Pipelining

Task level pipelining involves analyzing data flow/stream in a series of distinct non-inlined

functions without feed-backs having producer-consumer relation and inserting first-in-first-

out (FIFO)/Ping-pong (PIPO) buffers between their synthesized hardware modules so that

multiple modules can execute in parallel. If the data is written into an array in producer

module in the same order that is read from the array in consumer process, the array is

implemented using FIFO. If it is not the case or Vivado HLS cannot determine it, then the

memory is implemented using PIPO. The PIPO consists of two blocks of data, each of size

of the original array. One of the block can be written by the producer process while the

other block is read by the consumer process. The ping-pong ensures that the reading and

writing of each block of data alternates in every execution of the tasks. In PIPO, the data

can be written to or read from in any order. Whereas, the data is produced and consumed

in the same order in FIFO.

In HLS, each module will be implemented as a distinct FSM and task level pipelining

helps in the parallel execution of multiple FSMs. In Vivado HLS, the task level pipelining

is implemented using the directive: #pragma HLS dataflow. By applying this pragma,
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void model_flow(int A[LIMIT], int F[LIMIT])

{

int B[LIMIT], C[LIMIT], D[LIMIT],

E[LIMIT];

#pragma HLS dataflow

//HLS STREAM pragma is

//applied to B, C, D and E

module_1(A, B, C);

module_2(B, D);

module_3(C, E);

module_4(D, E, F);

}

void module_1(int A[LIMIT], int B[LIMIT],

int C[LIMIT]) {

int i;

for(i=0; i< LIMIT; i++){

B[i] = A[i] * 9;

C[i] = A[i] * 2;

} }

void module_2(int B[LIMIT], int D[LIMIT]) {

int i;

for(i=0; i< LIMIT; i++)

D[i] = B[i] * B[i];

}

void module_3(int C[LIMIT], int E[LIMIT]) {

int i;

for(i=0; i< LIMIT; i++)

E[i] = C[i] * C[i];

}

void module_4(int D[LIMIT], int E[LIMIT],

int F[LIMIT]) {

int i;

for(i=0; i< LIMIT; i++)

F[i] = D[i] + E[i];

}

Figure 3.22: Sample function “model flow”

Figure 3.23: “model flow”: Task level pipeline

coarse-grain parallelism is achieved by overlapping computation with communication using

a PIPO style buffer. As a result, all modules are running in parallel on a different set

of data. Let denote this task-level parallelism as FSMD-level parallelism. For streaming

applications implemented with FIFO, the producer and consumer process interactions are

interleaved on the same set of data while maintaining synchronization. Let denote this

task-level parallelism as data flow optimization. The dataflow directive can be combined

with the pipeline directive within each loop in the producer and consumer modules to form

fine grained parallelism of the operations on each data element. A typical example of data

flow optimization, (function: model flow) is presented in Fig. 3.22 and the corresponding

data flow structure of model flow generated by Vivado HLS is depicted in Fig. 3.23. After

58



Modelling Hardware Parallelism in C

Figure 3.24: Control flow of RTL-C: Task level pipeline

evaluation of an iteration of Module 1, the output is pushed into FIFO B. module 2 will start

processing its first iteration using this element while module 1 processes the next element

of array B. The module 3 and module 4 follow a similar execution pattern. A module stalls

its execution either when its input buffer is empty or if its output buffer is full.

Unlike any form of parallelism discussed earlier, task level parallelism requires actual

parallel simulation of multiple states of distinct FSMs. For cycle accurate simulation of the

task level pipelining, our basic idea is to simulate a single FSM state of each module in each

clock. To achieve this, a current state is maintained for each module. In each clock, the

current state of each module is executed, and then the current state is updated according to

the FSM transition of that module. Both FSMD-level parallelism and data flow optimization

are modeled in a similar manner. Specifically, we design an additional global FSM main as

shown in Fig. 3.24 with two states, the required FIFO/PIPO buffer instances, and other

variables. At the global FSM, we cycle accurately handle FIFO/PIPO transactions between

different modules whose equivalent C code is generated separately using our proposed RTL

to C conversion. The synchronization in PIPO and FIFO is handled differently since reading

and writing happen to two different buffers in PIPO whereas reading and writing occur in

the same buffer for FIFO.

The main module has to be handled separately since it has an additional global controller
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FSM. The design of the main module is as follows:

• Extract the parallel module instances and FIFO/PIPO instances shared between the

modules from the AST representation.

• Extract the global control signals and initial values.

• Create a two state controller FSM and map the operations as follows:

– S1: Termination Statements.

– S2: All parallel module function calls and micro-operation depends on the module

execution.

• Generate the C code and write to the output file.

state_1:

if(ap_done) goto end;

else goto state_2;

state_2:

module_1(&m1_start, &m1_done, &is_empty_B, &is_empty_C...);

module_2(&m2_start, &m2_done, &is_empty_B, &is_empty_C...);

module_3(&m3_start, &m3_done, &is_empty_B &is_empty_C...);

module_4(&m4_start, &m4_done, &is_empty_B &is_empty_C...);

/* Following code segments ensure that a module starts only if the input FIFO isn’t

empty */

m2_start = !is_empty_B;

m3_start = !is_empty_C;

m4_start = (!is_empty_E & !is_empty_D);

ap_done = (m1_done & m2_done & m3_done & m4_done);

end:

Figure 3.25: Representative RTL-C code structure of main

The C code for the global FSM main corresponding to sample function model flow is

shown in Fig. 3.25. State S1 of main checks if all the modules have finished execution and

either concludes the execution or proceed to state S2. At state S2, all the four modules

are invoked sequentially as shown in Fig. 3.24. Note that the modules can be invoked in

any order in state S2. Since a single state represents a single clock cycle and the buffers

are updated post execution of all the modules, the model effectively emulates the parallel

execution of all four modules. The sample C code of the module 2 is given in Fig. 3.26. As
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// All variables are declared static

if(resume_state == 1) goto S21;

else if(resume_state == 2) goto S22;

else if(resume_state == 3) goto S23;

S21:

if (m2_done == 1 || m2_start == 0) return;

else resume_state = 2; return;

S22:

// Activate fifo_B handshakes for read

fifo_B(ce_B, we_B, &done_B, &is_empty_B ....);

resume_state = 3; return;

S23:

if (is_full_D) { // check if fifo_D is full

resume_state = 3; return;

}

// Code statements to Calculate D[i]

// Activate fifo_D handshakes for write

fifo_D(ce_D, we_D, &done_D, &is_empty_D ...);

resume_state = 1; return;

Figure 3.26: Representative RTL-C code structure of module 2

shown in Figs. 3.26 and 3.24, only a single state of each parallel module is executed on every

invocation of that module, and the control returns to state S2 of main and the execution

state of each module is persisted globally (static variables) for clock synchronization.

The FastSim generates either an FSMD as shown in Fig. 3.12 for non-data flow case

(where task level pipelining is not applied) or an FSMD as shown in Fig. 3.25 for data-flow

case (when task level pipelining is applied) based on user inputs. In both cases, the FastSim

identifies distinct FSMD modules from the RTL code. In a non-data flow case, FastSim

creates a function call for such FSMD in the state where the function is scheduled. The tool

then generates C equivalents corresponding to each FSMD module using the flow discussed in

Section 3.3.4. In the data-flow scenario, it also extracts the structural FIFO/PIPO instances

and models the FIFO/PIPO transactions using FIFO/PIPO module function call. FastSim

then cycles accurate models of each module from its FSMD as discussed above. It then

generates a global main module for controlling the transactions between the distinct FSMDs.

The current version of FastSim cannot handle a nested task level pipeline where individual

modules can be further pipelined in a hierarchical manner. It would be an interesting future

work to explore how the strategy proposed in this work can be enhanced to accommodate

a nested task level pipeline.

61



FastSim: A Fast Simulation Framework for High-Level Synthesis

3.6 Debug Framework and Performance Estimation

Commercial HLS tools are pre-packaged with GUI enabled GNU Debugger (GDB) for ver-

ification of the C source. The platform provides user friendly software push-buttons for

step-over, step-in, and execution breakpoints to verify the source code by traversing through

individual code statements. They also provide a live state of all variables at any point of

execution in any convenient radix. We make use of such platforms for functional verification

and debugging of the RTL. The FastSim tool generates a well arranged C code that mimics

the execution of the RTL with cycle level accuracy. This generated RTL-C could be fed to

a GUI or Non-GUI based GNU debugger for state-wise/cycle-wise verification of the RTL.

Unlike the behavioural input C source, the RTL-C cycle accurately emulates the working

of the generated RTL design. The variables of the RTL-C are the registers of the RTL.

So, all the registers are visible at any clock during debugging. If there is any mismatch of

values identified after the execution of an operation, say rl “ fpri, rj, rkq, in a state, say sx,

during debug, the same can be annotated back to the RTL. The sx represents the state of

the controller FSM of the RTL. As discussed in Section 3.3.4, the operation rl “ fpri, rj, rkq

obtained by a spatial sequence of micro-operations in the datapath from the RHS registers

ri, rj, rk to the LHS register rl. Although we have not implemented this back annotation of

the mismatch into RTL, it is a trivial task to show a graphical view (for example using dotty

format) of the RTL datapath and highlight the transfer of register values for visualization.

Hence, cycle-wise execution of our RTL-C code in GDB would reveal all the C source to RTL

disparities like artificial deadlocks, output data ordering and FIFO based feedback problems

described in [44] which cannot be emulated by the input behavioural C source. However,

back annotation of operation of the RTL-C code to the input C code is not possible in our

framework so that one can relate a given RT operation to source C. Without some internal

information from the HLS tool, it is not possible to co-relate the input C operation and

operation in the RTL.

The synthesis report of the commercial and academic HLS tools has failed to provide

performance estimation for applications with data-dependent loop bounds or conditional

statements. The C simulation performed by commercial HLS tools also does not provide

any performance estimates. In contrast, the state-wise execution sequence of our RTL-C

code provides an accurate estimation of performance. We use a global counter which is

incremented at each state in the RTL-C to evaluate the latency of the RTL design in clock
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cycles. For data-dependent loop bounds and conditional statements, the execution cycles

depend on the input. Therefore, we report the maximum and minimum execution cycles,

like RTL co-simulation report, among all test cases used for simulation. In fact, it is also

possible to report additional performance results like the number of execution cycles for

each module or loop and the number of cycles when a particular FIFO was full/empty using

additional tracking variables in our RTL-C code.

Table 3.2: Characteristics of Benchmarks

Benchmark #Line #If-else #Array #Func #Loop

aes dec 949 24 15 13 13

aes enc 979 24 15 11 13

des 354 1 9 6 11

mips 313 0 5 1 5

dfsub 955 34 1 17 0

dfadd 554 32 1 8 0

dfmul 522 28 1 17 0

arf 53 2 0 0 0

motion 52 0 0 0 0

waka 33 2 0 0 0

3.7 Experimental Results

In this section, we have discussed the implementation detail of FastSim and detailed exper-

imental results.

3.7.1 Experimental Setup and Benchmark Characteristics

We have implemented our proposed FastSim RTL to C conversion framework on the Verilog

RTLs generated by the Vivado HLS design suite [10]. However, FastSim can be implemented

for any other HLS tool as well. The FastSim framework is implemented using Python. The

RTL to C conversion is integrated with PyVerilog toolkit [9, 121] to generate the AST

representation from the Verilog RTL generated by Vivado HLS. The AST representation is

persisted in memory and processed by the FastSim to generate the equivalent RTL-C code.

In this section, we compare our FastSim simulation framework with Vivado HLS C-

simulation [10], Vivado HLS RTL co-simulation (XSIM), ModelSim RTL simulator [8] and
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Table 3.3: RTL to C conversion results for Benchmarks

Benchmark #C #RTL #RTL-C Runtime(s)

aes dec 949 3154 5776 0.334

aes enc 979 2799 4784 0.237

des 354 2330 2856 0.189

mips 313 1779 5906 0.848

dfsub 955 2203 2856 1.097

dfadd 554 1724 2132 0.646

dfmul 522 2237 2858 0.593

arf 53 351 607 0.010

motion 52 415 780 0.014

waka 33 270 474 0.007

Verilator simulator[11] on the basis of simulation latency and performance estimates. All

the designs were synthesized for Kintex 7 series FPGA target [124] clocked at 100MHz. The

experiments have been performed on a system powered by Intel Core i7 - 9700KF (3.6 GHz)

processor and 16GB DRAM capacity. Our experiments have been performed on several

standard example programs from Bambu HLS Tool [2] and CHStone Benchmark Suite

[70]. The characteristic description of the benchmark programs used for our experiments is

presented in Table 3.2. The 1st, 2nd, and 3rd columns depict the name, the number of lines,

and the number of conditional statements respectively in each benchmark. The 4th, 5th,

and 6th depict the numbers of arrays, functions, and loops, respectively in each benchmark.

Table 3.2 demonstrates the computational diversity of benchmarks used for our experimental

analysis. Floating-point addition (dfadd), multiplication (dfmul) and subtraction (dfsub)

are control intensive benchmark programs with several conditional statements but no arrays.

Whereas larger benchmark programs like des, aes and mips are data intensive programs with

several arrays and function calls. We have also considered some smaller benchmarks like

arf, motion, and waka for the diversity of benchmark size.

3.7.2 RTL to C Conversion Results

The experimental details on the RTL to C conversion process are presented in Table 3.3

for the benchmark programs. For each benchmark, we record the number of lines of the

source C code (#C), Verilog RTL (#RTL), generated RTL-C code (#RTL-C) and the

conversion run-time (in second). The number of lines of code in RTL-C and RTL are found
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Table 3.4: Comparisons of FastSim with various RTL Simulators

Bench
mark

Simulation Time (seconds)

FastSimC-simSpeedup
RTL
Cosim

Speedup
Model
Sim

SpeedupVerilatorSpeedup

aes dec 20.176 14.442 0.72x 4467 221.4x 4780 236.9x 316.4 15.7x
aes enc 19.32 12.656 0.66x 4389 227.2x 4693 242.8x 296.23 15.3x
des 34.43 28.01 0.82x 34672 1007.9x 36024 1047x 723.01 21.1x
mips 1.782 0.985 0.55x 2620 1455.5x 2885 1618.8x 20.4 11.33x
dfsub 0.807 0.717 0.89x 8 10x 14 17.5x 4.117 5.1x
dfadd 0.629 0.561 0.89x 7 11.20x 13 20.7x 3.92 6.2x
dfmul 1.062 1.374 1.29x 10 9.43x 17 16x 7.165 6.8x
arf 0.624 0.601 0.96x 6 9.7x 11 17.7x 3.93 6.33x
motion 0.491 0.565 1.15x 6 12.24x 10 20.4x 3.3025 6.73x
waka 0.411 0.454 1.10x 8 19.46x 11 26.77x 2.72 6.62x
Average 0.91x 298.40x 326.45x 10.13x

to be relatively higher in array intensive programs as compared to the non-array based

programs. This is justified by the intrinsically large number of complex register transfers

in data intensive workloads. As discussed earlier, the generated RTL-C cycle accurately

emulates all the register transfer operations in each state. The number of lines in the RTL-

C is greatly increased due to copying of each register to an old variable in each state as

discussed in Sub-section3.4.A. Consequently, the number of lines of code in the RTL-C code

is much higher than that of source C code. For all the benchmarks, the conversion runtime

for generating RTL-C code is found to be less than a 1.1 second. Hence the total time for

simulation is still far less than RTL simulators.

3.7.3 HLS Simulation Results

Table 3.4 presents the simulation time and speedup of our FastSim framework relative to

other state-of-art simulators when experimented on different benchmarks. For each bench-

mark, we run the simulation for 30k input test cases. We couldn’t produce the results of

FLASH simulator [44] since the tool is not made public. As reported in [44], FLASH works

on scheduled C code and its performance is similar to Vivado HLS C simulator. Hence, we

can safely assume that performance of our FastSim is comparable to FLASH. It may be

noted that our FastSim is on average 9% slower than the C-simulation. As suggested by
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Table 3.5: Comparisons of FastSim with various RTL Simulators after applying pipeline (p) and
unroll (u) pragmas

BenchmarkFastSim(s)
Simulation Speedup

RTL Cosim ModelSim Verilator

aes dec
(u)

31.6 135.13x 142.47x 12.58x

aes dec
(p)

33.57 126.57 136.64x 12.77x

aes enc
(u)

26.07 155.96x 169.12x 14.48x

aes enc
(p)

32.62 127.49x 137.12x 12.58x

des (u) 41.4 697.05x 726.77x 17.4x

des (p) 46.5 797.22x 829.87x 20.35x

Average 339.90x 356.99x 15.03x

experimental results, Verilator is faster than RTL simulations like XSIM or ModelSim. It

could be observed that on an average, C simulation (C-sim) offers the best simulation per-

formance, whereas ModelSim and Vivado RTL Cosimulation framework (XSIM) shows the

worst performance. The FastSim simulator on an average shows comparable performance

as that of C simulator (0.91ˆ), performs 298ˆ as fast as XSIM, 326ˆ as fast as ModelSim

and 10ˆ as fast as Verilator.

Table 3.6: Comparisons of results for task level pipelining using ping pong (pp) or FIFO (ff)

Benchmark FastSim(s)
Simulation Speedup

RTL Cosim ModelSim Verilator
toy (pp) 23.7 20.46x 22.3x 6.06x
toy (ff) 26.6 18.73x 20.11x 5.4x
mergsort (pp) 31.2 25.2x 28.6x 8.7x
Insertionsort (ff) 39.5 21.7x 23.8x 7.6x
histogram (pp) 42 23.3x 26.2x 9.4x
FFT (pp) 153.2 117.6x 124.2x 10.1x
Average 37.8x 40.9x 7.9x

Similarly, a comparison of our FastSim simulator with various RTL simulators after

applying to unroll and pipeline pragmas on some bigger benchmarks and applying dataflow

(FIFO or PIPO) pragma on benchmarks from [84] are shown in Table 3.5 and Table 3.6,

respectively. We observe similar performance improvements for the pipeline and unroll. As
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shown in Table 3.6, FastSim supports both FIFO and PIPO styled task level pipelining. As

already elaborated in the introduction, FastSim simulates only the relevant RT operations

at the behavioural level within a particular state leaving the state-exclusive register states

unaltered. Meanwhile, RTL simulators emulate the complete RTL at every clock cycle. This

justifies the performance of FastSim with respect to RTL simulators. Owing to its generic

nature, the Verilator generated code is always suboptimal compared to HLS customized

FastSim code. Consequently FastSim outperforms Verilator. It is encouraging to note that

the speed-up achieved for larger benchmarks like des, mips,and aes are much higher than

the average. Hence the experimental results substantiate our motivation of approaching the

performance C-simulator.

Table 3.7: Performance estimation in clock cycles by Vivado synthesis report, Fastsim and RTL
co-simulation

Bench
Vivado Synthesis
(Clock cycles)

FastSim
(Clock cycles)

RTL Cosim
(Clock cycles)

Min Max Min Max Min Max

aes dec ? ? 5654 5654 5654 5654

aes enc ? ? 3006 3006 3006 3006

des 125065 125321 125425 125427 125425 1254257

mips ? ? 3383 3683 3383 3683

dfsub 8 21 9 19 9 19

dfadd 7 20 9 18 9 18

dfmul 8 22 12 20 12 20

arf 7 7 7 7 7 7

motion 6 6 6 6 6 6

waka 2 3 3 3 3 3

3.7.4 Performance Estimation

In Table 3.7, we compare the performance estimates of FastSim with respect to different

state-of-art simulation frameworks for 30k test cases. As shown in the table, the Vivado HLS

synthesis reports fails to provide performance estimates for benchmarks like mips, aes enc

and aes dec with data dependent loops. On the other hand, our simulation framework

predicts the same performance as that of the RTL co-simulator (XSIM). This substantiates

our claim that FastSim not only simulates faster than the conventional RTL simulators

but also gives accurate performance estimates as that of an RTL simulator. These exact
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performance estimates could be explained as the consequence of cycle accurate simulation

performed by FastSim simulation framework.

3.8 Conclusion

In this work, we exploited the separability of datapath and controller in the HLS generated

RTLs to build a fast simulation framework FastSim which simulates around 300 times faster

than traditional RTL simulators and exhibits the performance of the same order of mag-

nitude as that of software simulators while maintaining the micro-details of the generated

RTL. We have also proved experimentally that FastSim outperforms existing solutions for

faster simulation like Verilator [11] and FLASH [44] in terms of simultaneously incorporat-

ing high simulation performance, maintaining cycle accuracy, end-to-end verification, easy

debug facilitation and accurate performance estimation. The simulator is also equipped to

support common HLS optimizations like loop unrolling, instruction level pipelining, and

task level pipelining. In addition to regular simulation, FastSim outputs a well organized C

code which could be conveniently used for several objectives like the selective evaluation of

the performance of specific segments of the RTL or mount attack on RTL locking [77]. The

current version of FastSim cannot handle data width of more than 64 bits and fails to sim-

ulate hierarchical task level pipelining and sequence of level triggered operations in a single

state. However, in the future, we plan to enhance FastSim to overcome all such limitations.

Post incorporation of all industrially significant design space exploration features, we plan

to issue a complete open source package of FastSim for industrial and academic HLS design

verification.
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4
DEEQ: Data-driven End-to-End EQuivalence

Checking of High-level Synthesis

4.1 Introduction

Although High-level synthesis (HLS) tools are an attractive choice for the design houses

for quick development of hardware accelerators from behavioral specification, they are not

bug-free. Since HLS is a complex software that involves inter-dependent sub-tasks, a bug

may be introduced by the tool in handling a corner case or due to incorrect implementation

of any sub-task in the tool. Therefore, techniques for establishing an equivalence between

a behavioural specification and its synthesized RTL implementation are critical for wide

applications of HLS. Although, there are many HLS tools, such as Xilinx Vivado HLS [10]

and Siemens Catapault [3], etc. in the industry as well as Spark [67] and Bambu [107], etc.

in the academia, are available, there is no end-to-end formal verification tool exist for HLS.

The correctness of HLS generated RTL is primarily ensured by RTL simulation. Although

RTL simulation relatively accelerates the process of verification and is good at quickly

finding errors, it cannot guarantee the complete correctness of generated RTL because of

the inherent limitation of simulation-based verification. The alternative approach is the

translation validation of HLS [109] in which the correctness of each run of the HLS tool

69



DEEQ: Data-driven End-to-End EQuivalence Checking of High-level Synthesis

is verified by checking equivalence between the input C/C++ and the generated RTL.

Because of the huge semantic gap between the input and the output of HLS, the end-to-end,

i.e., C to RTL, translation validation of HLS is not well established yet. Instead, phase-

wise translation validation of HLS, such as scheduling verification [46, 87], allocation and

binding verification [82] and datapath and controller verification [79], is mostly explored by

the researchers. The phase-wise verification of HLS needs the intermediate synthesis results

which may not always be available or industrial tools may not want to make them public.

Therefore, an end-to-end translation validation of HLS has enormous importance for the

wide adaptation of HLS tools.

4.1.1 Contributions

In this Chapter, we propose a C to RTL equivalence checking method, called DEEQ, to prove

the correctness of the HLS generated RTL with respect to its input C code. For checking

the equivalence of two behaviours, we need to show that for every possible execution (i.e.,

trace) of one behaviour, there is an equivalent trace in the other behaviour and vice-versa.

There are many challenges in C to RTL equivalence checking: (i) The direct trace level

comparison is not possible due to the semantic gap between the C and RTL. The execution

of C code is completely different from that of RTL. (ii) The control structure of C is altered

most of the time during HLS. Therefore, the number of traces in C and RTL may not be

the same and the equivalence problem of traces is many-to-many. (iii) The number of traces

is also large in most cases. Therefore, finding an equivalent trace in RTL for each trace in

C needs quadratic comparisons. (iv) The variables of the input C code are mapped to the

registers/memories in RTL. This mapping is many-to-many and it is not available at HLS

output. Consequently, direct comparison at any intermediate point is also not possible. Due

to these challenges, C to RTL equivalence checking of HLS is an open problem till today even

though HLS tools are so popular. In this work, we have taken the following unique steps to

address the above identified challenges:

• To tackle the semantic gap, we first abstract out a high-level C-like behaviour, called

RTL-C, from the RTL. This makes the two behaviours comparable.

• Before checking equivalence, we identify the compatible traces (i.e., traces which have

the same outputs) within a behaviour and merged them into one. It reduces the many-

to-many trace equivalence into one-to-one trace equivalence in most of the cases.
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• During equivalence checking, a data-driven approach is taken to find the correspon-

dence of traces between two behaviours. This idea reduces the quadratic search of

equivalence traces between two behaviours into a linear one.

A satisfiability problem is formulated to prove or disprove the equivalence of corresponding

traces of both behaviours. Our equivalence checker is tool-independent since it does not

need any intermediate information from the HLS tool. Experimental evaluations show that

our proposed tool is capable of showing the correctness of a commercial HLS tool [10]. Our

proposed framework also successfully detected a known bug [72] in Vivado HLS.

The remainder of the chapter is organized as follows. Section 4.2 presents our equivalence

checking Formulation. Equivalence checking between C and RTL-C is presented in Section

4.3. The correctness of the method is presented in Section 4.4. Experimental results and

analysis are presented in Section 4.5. Section 4.6 concludes the chapter.

4.2 Equivalence Problem Formulation

In the C to RTL equivalence checking method, the input C and RTL-C are modeled as a

finite state machine with datapaths (FSMDs). In the below, FSMDs and the equivalence

theory are discussed.

4.2.1 The FSMD Model

An FSMD is an inherently deterministic model that can describe the behaviour of any

hardware circuits [65].

Definition 1. An FSMD M is formally defined as a 7-tuple xQ, q0, I, O, V, f, hy, where

• Q = {q0, q1, q2, ..., qn} is the finite set of control states,

• q0 P Q is the reset (initial) state,

• I is the finite set of input variables,

• O is the finite set of output variables,

• V is the finite set of storage variables,

• f : Qˆ 2S Ñ Q is the state transition function,
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• h : Qˆ 2S Ñ U is the update function of the output and the storage variables, where

S and U are defined as follows.

´S “ tL Y Eu is the set of status expressions where L is the set of Boolean literals of the

form b or ␣ b, b P B Ď V is a Boolean variable and E is the set of arithmetic predicates

over I Y pV ´ Bq. Any arithmetic predicate is of the form eR0, where e is an arithmetic

expression and R P t““,‰,ě,ą,ă,ďu.

´U is a set of storage or output assignments of the form tx ð e|x P O Y V and e is an

arithmetic predicate or expression over I Y pV ´Bq; it represents a set of storage or output

assignments.

q00

q01

q02

q03

q04

q05

q06

- / a ⇐ b + c

- / d ⇐ a - e

¬x < y / x ⇐ x - d              x < y / 
               x ⇐ x + y

- / t ⇐ x + f

- / m ⇐ t - d

- / h ⇐ r + m

- / -

a = b + c;
d = a – e;
If (x < y) {
   x = x + y;
 }
else {
   x = x - d;
  }
t = x + f;
m = t – d;
h = r + m;

(a) (b)

Figure 4.1: Example to illustrate FSMD Model

The FSMD models can be constructed from the high-level representations of the input
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C code. Any sequential behaviour consists of a combination of three basic constructs: (i)

sequences of statements (Basic Blocks) without any bifurcation of control flow, (ii) if-else

constructs (Control Blocks), and (iii) loops. Therefore, capturing these three constructs in

an FSMD model enables us to effectively represent any sequential behaviour as an FSMD.

The input behaviour basic block consisting of a sequence of n statements s1, . . . , sn, can

be represented as a sequence of n + 1 states qi,0, . . . , qi,n, say and n edges of the form

qi,j´1
´{sj
ÝÝÝÑ qi,j, 1 ď j ď n, in the corresponding FSMD. However, to reduce the number of

states in the FSMD, we first construct a dependence graph for the basic block (BB). The

graph consists of a node corresponding to each statement of the BB. There is a directed

edge in the dependence graph from the statement s1 to the statement s2 iff there is one of

read-after-write, write-after-read, and write-after-write dependencies between s1 and s2. A

Control Blocks (CB) is of the form: if(c) then BB1 else BB2 endif, where c is a conditional

statement and BB1 and BB2 are two basic blocks that execute when c is true and false,

respectively. The FSMD of the CB is obtained from these two FSMDs by (i) merging the

start states of two FSMDs into one start state and the end states of two FSMDs into one

end state and (ii) the condition c is placed as the condition of the first transition of the

FSMD corresponding to BB1 and the condition ␣c is placed in the first transition of the

FSMD corresponding to BB2. The FSMD(s) for other control blocks can be constructed in

a similar manner. The RTL-C is already a cycle accurate model. The FSMD will follow

the control structure of the RTL-C. In fact, FastSim constructs the FSMD first from the

datapath and the controller FSM and then represents the same in C. We will use the FSMD

constructed by FastSim.

Example 10. Consider the C code and its corresponding FSMD shown in Fig. 4.1 (a) and

Fig. 4.1 (b), respectively. The FSMD model the behavioural specification of the model is as

follows: M is formally defined as a 7-tuple xQ, q0, I, O, V, f, hy, where

• M = xQ, q0, I, O, V, f, hy, where

• Q = {q00, q01, q02, q03, q04, q05, q06},

• q0 = q00,

• I = tb, c, e, x, y, f, ru,

• O = thu,
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• V = ta, d, t,mu,

• U = tað b` c, dð a´ e, xð x´ d, xð x` d, tð x` f,mð t´ d, hð r `mu

• S = tx ă y,␣x ă yu,

• Some typical values of f are as follows: fpq00, ttrueuq “ q01, fpq02, tx ă yuq “ q03,

fpq02, t␣x ă yuq “ q03,

• Some typical values of h are as follows: hpq02, tx ă yuq “ tx ð x ` yu, hpq02, t␣x ă

yuq “ txð x´ du, hpq05, ttrueuq “ thð r `mu,

l

Definition 2. A trace τ of an FSMD is a finite walk from the reset state q0 back to itself

and q0 does not occur in between.

A (finite) path p of an FSMD is a finite walk from qi to qj, where qi, qj P Q, is a sequence

of state transitions of the form xqi
ci
ÝÑ qi`1

ci`1
ÝÝÑ . . .

cn`1
ÝÝÝÑ qn “ qjy such that @l, i ď l ď n´ 1,

Dcl P 2S such that f(ql, clq “ ql`1, and all the states are different, except the end state qj

that may be the same as the start state qi. Therefore, a trace is a concatenation of paths.

Definition 3. The condition of execution cτ of a trace τ is a logical expression over I and

constants, which must be satisfied by the initial data state in q0 to traverse τ .

Definition 4. The data transformation sτ of a trace τ over O is an ordered tuple xejy of

algebraic expressions using I and constants such that the expression ej represents the value

of the output oj after execution of the trace in terms of input variables.

The condition of execution and data transformation of the path can also be defined in a

similar manner. The cτ and sτ of a trace τ can be obtained by forward substitution [81].

Example 11. Let us consider the FSMD in Fig. 4.1 (b). It may be noticed that the FSMD

consists of two traces: τ0 “ q00 Ñ q01 Ñ q02
xăy
ÝÝÑ q03 Ñ q04 Ñ q05 Ñ q06 Ñ q00 with

cτ0 “ x ă y, and τ1 “ q00 Ñ q01 Ñ q02
␣pxăyq
ÝÝÝÝÑ q03 Ñ q04 Ñ q05 Ñ q06 Ñ q00 with

cτ0 “ ␣px ă yq. The output expression of traces τ0, and τ1 are r + (x + y + f -b - c + e),

and r + (x + f - 2b -2c + 2e), respectively. l
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4.2.2 Equivalence of FSMDs

Let the input C behaviour be represented by the FSMD M0 “ xQ0, q0,0, I, V0, O, f0, h0y and

the RTL-C be represented by the FSMD M1 “ xQ1, q1,0, I, V1, O, f1, h1y. It may be noted

that the inputs and outputs of both behaviours are identical. The V0 of M0 consists of the

variables in the input C program. The V1 of M1 consists of registers of the RTL behaviour.

The state transition function may differ since the control structure may be altered due to

the application of compiler transformations or by the scheduler. Our main goal is to verify

whether M0 behaves exactly as M1. This means that for all possible inputs, the execution

traces of M0 and M1 produce the same outputs. So, a trace, which represents one possible

execution of an FSMD, takes one assignment of inputs and produces the corresponding

outputs. The equivalence of traces and FSMDs are defined as follows.

Definition 5 (Equivalence of traces). A trace τ0 of an FSMD M0 is equivalent to a trace

τ1 of another FSMD M1, denoted as τ0 » τ1, if cτ0 ” cτ1 and sτ0 ” sτ1 , where cτ0 and cτ1

represent the conditions of execution of τ0 and τ1, respectively and sτ0 and sτ1 represent the

data transformations of τ0 and τ1, respectively.

Definition 6 (Containment of FSMDs). An FSMD M0 is said to be contained in an FSMD

M1, symbolically M0 Ď M1, if @τ0 PM0, Dτ1 PM1 s.t. τ0 » τ1.

Definition 7 (Equivalence of FSMDs). Two FSMDs M0 and M1 are said to be computa-

tionally equivalent, i.e., M0 »M1, if M0 Ď M1 and M1 Ď M0.

For deterministic model, one way containment implies equivalent, i.e., M0 Ď M1 ùñ

M0 »M1 since the union of conditions of execution of all traces in M0{M1 is True [46].

4.3 Equivalence Checking between C and RTL-C

There can be many traces in an FSMD. Therefore, the notion of path cover is introduced

for verification of scheduling in [81]. Consequently, a set of path-based equivalence checking

(PBEC) methods are proposed [24, 46]. The idea is to insert cutpoints in the FSMDs to

break them into a finite set of paths such that any trace can be represented by a concate-

nation of paths from that set. All loops of the behaviour must be cut by a cutpoint. The

finite set of paths between cutpoints without having any intermediate cutpoint is called

path cover of the FSMD. The equivalence is then established between the path covers of
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C RTL

C to FSMD
RTL to C

Converstion

RTL-C to FSMD

Checking one-to-one equivalence

Merge compatible traces

Identify all traces in both behaviors

Find potential corresponding traces

Checking one-to-many equivalence

Equivalent/may not Equivalent

C-FSMD
RTL-C

RTL-C-FSMD
Ph

ase-1

P
h

ase-2

Figure 4.2: Proposed equivalence checking framework

two FSMDs. Consequently, M0 Ď M1 can be redefined as if there exists a finite cover

P0 “ tp00, p01, . . . , p0lu of M0 for which there exists a path cover P1 “ tp10, p11, . . . , p1lu of

M1 such that p0i » p1i, 0 ď i ď l. Therefore, showing the equivalence of path cover is

sufficient for verification of scheduling. However, these PBEC methods either extend a path

[81] or propagate mismatch values to subsequent paths [24] when equivalence of paths can-

not be shown. These path extensions or value propagation may be carried out till the reset

state in the worst case. Therefore, all PBEC methods have exponential time complexity in

the worst case [81].

We cannot apply the PBEC based approaches for checking equivalence between C and

RTL-C because V0 of M0 (corresponding to input C code) and V1 of M1 (corresponding to

RTL-C) have a completely different set of variables. Specifically, V0 consists of the variables

of the input program, and V1 consists of the registers of the RTL. Consequently, the equiv-

alence of intermediate paths cannot be shown since there are no common variables among

M0 and M1. Therefore, PBEC methods always need exponential time for our problem. We,

therefore, stick to showing equivalence between traces of two FSMDs.

76



Equivalence Checking between C and RTL-C

To show the trace level equivalence between C and RTL-C, we need to identify all the

traces in an FSMD first. Since a loop with a dynamic bound may result in an infinite

number of traces, we assume that each loop in a behaviour has a static loop bound. Static

loop bounds for generic program equivalence are quite restrictive. However, HLS tools do

not support dynamic memory allocation. Specifically, the dynamic arrays are replaced with

a static sized arrays in the input program before applying HLS [10]. The loops are primarily

used for array manipulation in a program. Therefore, most of the loops in HLS applica-

tions have static bounds. Although static loop bounds for generic program equivalence are

restrictive, our assumption of static loop bound is a valid one in translation validation of

HLS.

The overall flow of the proposed equivalence checking approach is demonstrated in

Fig. 4.2. The equivalence between the C-code and its corresponding RTL generated by

HLS is established in two phases: In the first phase, we abstract out a high-level C-like be-

haviour, called RTL-C, from the RTL using our FastSim tool. In the next phase, equivalence

checking between input C code and RTL-C is carried out.

Our proposed equivalence checking method DEEQ, given as Algorithm 2, takes two FS-

MDs – input C and RTL-C, representing the FSMDs of input C-code and the corresponding

RTL-C obtained from the RTL at the output of HLS tools, respectively. The algorithm ex-

amines whether the trace-pairs of input-C and RTL-C are equivalent or not. The algorithmic

implementation details are described below.

4.3.1 Generate all Traces in Both Behaviors

The algorithm first uses the function constructFSMD to automatically extract the FSMDs

M0 and M1 from the input C and RTL-C behaviours, respectively. In order to compare

these two behaviours, we need to find all traces in both behaviours. The function findTrace

(line 1) first constructs the FSMDs from C and RTL-C and then extracts all the traces

and assigns to the sets T0 and T1, respectively. We have used Klee [7] for this purpose.

Specifically, Klee generates all the possible traces in the control flow graph of both behaviours

along with the constraints on inputs which are to be satisfied to get that trace. To get the

symbolic data transformation and the condition of execution of the traces, we have modified

Klee’s source code. We assume that the loops in the behaviours are of fixed bound which

can be determined at the compile time. Therefore, the number of traces is finite in our
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Algorithm 2: DEEQ (C, RTL-C)

Input: Input-C, RTL-C
Result: Equivalent, May not equivalent

1 T0 = findTrace(C); T1 = findTrace(RTL-C);
2 T0 = mergeTrace (T0); T1 = mergeTrace (T1);
3 copyT0 “ T0; copyT1 “ T1;
4 while T0 ‰ ϕ do
5 τ0 = select a trace from T0;
6 TC = getTestcase(τ0);
7 τ1 = getCorrespondingTrace(T1, TC);
8 if ppcτ0 ” cτ1q ^ psτ0 ” sτ1qq then
9 //τ0 and τ1 are equivalent;

10 removeTrace (τ0, copyT0);
11 removeTrace (τ1, copyT1);

12 else if ppcτ0 ” cτ1q ^ psτ0 ‰ sτ1qq then
13 Report “Not Equivalent (NEq)” and Exit;

14 endif
15 removeTrace (τ0, T0);

16 endwhile
17 if (}copyT0} ‰ NULL) then
18 foreach τ0 P copyT0 do
19 cτ = ϕ;
20 foreach τ1 P copyT1 do
21 if (cτ0 ^ cτ1 ‰ ϕ) then
22 if (cτ0 ^ cτ1 ^ sτ0 ‰ sτ1) then
23 Report “Not Equivalent” and Exit;

24 else
25 cτ “ cτ _ cτ1 ;

26 if (cτ ‰ cτ0) then
27 Report “Not Equivalent” and Exit;

28 Report Equivalent (Eq);

case. However, the number of traces may not be the same in the input C and the RTL-C.

Specifically, the scheduling of conditional behaviours may change the number of traces. An

example of such a case is given below.

Example 12. Consider the input C-code, transformed C-code and their corresponding FS-

MDs shown in Fig. 4.3. For efficient scheduling (hardware reuse) in HLS [105], the input
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(b)(a)

q00

q01

q02

C1/

c2/
        t1 = a + b

!c2/
        t1 = c x d 

!c1/
        t1 = c x d 

(c)

α1

q00

c1  ∧  c2/
     t1 = a + b

!(c1 ∧c2)/
   t1 = c X d

α2

q01

if (c1 ∧ c2){
  t1 = a + b;

}

else {

  t1 = c x d;

}

if(c1){

    if(c2)

        t1 = a + b;

    else 

        t1 = c x d;

 }

 else{

    t1 = c x d;

     }       

(d)

β1
β2

β4

q10

q11

q12

C1/

c2/
        r2 = a + b

!c2/
        r3 = c x d 

!c1/
        r1 = c x d 

β3

(e)

Figure 4.3: (a) The input C and (b) The transformed C for efficient scheduling (c) FSMD (M0)
of input C, (d) FSMD of transformed C, (e) FSMD (M1) of RTL-C

behaviour in Fig. 4.3(a) is transformed into the equivalent one in Fig. 4.3(b), where the

condition c1 ^ c2 has been split. The FSMD in Fig. 4.3(e) represents the RTL-C obtained

from the RTL generated by HLS tool Bambu [107]. As a result, the FSMDs of Fig. 4.3(c)

and Fig. 4.3(e) do not have the same number of traces. It may be noted that the input C

code consists of two traces α1 and α2, as shown in its FSMD M0 in Fig. 4.3(c), whereas the

RTL-FSMD in Fig.4.3(e) has three traces: β1β3, β1β4 and β2. l

4.3.2 Merge Compatible Traces

As discussed, the number of traces may not be the same in both behaviours due to various

transformations in HLS. To improve performance of equivalence checking, traces which have

same output expression, i.e., compatible traces, in each behaviour are merged.

Definition 8. Two traces τ0 “ xcτ0 , sτ0y and τ1 “ xcτ1 , sτ1y of an FSMD M0 are com-

patible iff sτ0 ” sτ1 , where cτi and sτi represent the condition of executions and the data

transformations of τi, i “ 0, 1, respectively.

The merge trace is represented as τ “ xcτ , sτy where cτ “ cτ0_cτ1 and sτ “ sτ1 . Function

mergeTrace in Algorithm 2 (line 2) merges compatible traces in T0 and T1.

Example 13. Consider the FSMD of RTL-C shown in Fig. 4.3(e). It may be noted that

traces β1β4 and β2 consist of the same output expression cˆ d. In the search for compatible

trace, the trace β1β4 with cβ1β4 “ c1^␣c2 and trace β2 with cβ2 “ ␣c1 are merged to a new

trace βn. The condition of execution of βn is cβ1β4 _ cβ2, i.e., cβn “ pc1 ^ ␣c2q _ ␣c1 =
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␣pc1^ c2q. As a result Fig. 4.3(e) will have the following new traces : β1β3 “ q10
c1^c2
ÝÝÝÑ q12

and β “ q10
␣pc1^ c2q
ÝÝÝÝÝÝÑ q12. l

Merging compatible traces reduces the trace count within C/RTL-C, makes the trace count

the same in both C and RTL-C in most of the cases; hence, enables one-to-one equivalence

checking using a data-driven approach. In that case, the equivalence of traces can be shown

efficiently, i.e., with Opnq comparisons, where n is the number of traces. The while loop

in lines 4-16 is used for this purpose. In some corner cases, function mergeTrace could

not merge the compatible traces because of complex control transformations by the HLS

tool. The output expressions of two traces are composite in such a case i.e. the output

expressions are not equivalent for the entire input domain but are equivalent for a subset of

the input domain. In such case, our method needs one-to-many equivalence checking (lines

17-27 of Algorithm 2). If the number of traces in T0 and T1 are not the same even after

merging compatible traces (denoted by the |copyT0| ‰ NULL in line 17 of Algorithm 2), a

trace in T0{T1 is equivalent to a set of traces in T1{T0. In this case, Opn2q comparisons is

needed to find the equivalence, where n is the number of traces.

4.3.3 Find Potential Corresponding Traces

After merging compatible traces, we need to find out which trace in M0 is equivalent to which

trace in M1. i.e., finding corresponding traces between M0 and M1. To reduce complexity,

a data-driven approach is taken to find the potential corresponding traces between T0 and

T1 using Klee [7] first. Klee gives a test case for each trace in a behaviour. Hence, we know

the values of input variables (test case) for each trace τ0 in T0. Now, we can run M1 with

this test case and find the trace τ1 which is followed for this particular test case. Lines 5-7

of Algorithm 2 implements this idea.

Example 14. For example, for the trace τ0 “ α1 in Fig. 4.3(c), Klee gives c1 “ 1 and

c2 “ 1 (and also the values of a, b, c, d). By using this test case, we find the trace τ1 “ β1β3

is the potential corresponding trace of τ0. l

Since the behaviours are deterministic, it is always possible to obtain τ1 using our data-

driven approach. In general, to find the equivalence of trace between M0 and M1, we have

to take a trace τ0 in T0 and compares it with each trace τ1 in T1. This comparison of

two traces involves checking the equivalence of their respective data transformations and
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condition of executions which are symbolic expressions. Such formal equivalence checking

relies on the modern day SMT solvers which is a time consuming process. Moreover, for

finding equivalence of τ0 in T1, we need Opnq comparisons of traces, where n is |T1|. With

our strategy of finding potential corresponding trace τ1 in T1 for τ0 first using the data-driven

approach, we need to only check the formal equivalence between τ0 and τ1. This reduces

the complexity of finding the equivalence of τ0 in T1 to one comparison of traces.

4.3.4 Checking One-to-one Equivalence

In our approach, we first identify the one-to-one equivalence among the traces of T0 and T1

in the while loop in lines 4-16 of Algorithm 2. A potential corresponding trace pair are

equivalent if their respective condition of executions and data transformations are equivalent

(in lines 8-11). If the condition of executions match exactly but the data transformations

are not equivalent, we report the non equivalence (in lines 12-13). We have used SMT solver

Z3 for checking equivalence of data transformations and condition of execution of executions

two traces. At the end of the while loop, the traces for which one-to-one equivalence cannot

be shown remain in copyT0 and copyT1, respectively. For those traces, we check for a possible

one-to-many equivalence in lines 17-27 of Algorithm 2.

Example 15. The trace τ0 “ α1 and the trace τ1 “ β1β3 are potential corresponding traces

in Fig. 4.3(c), with c1 “ 1 and c2 “ 1. (as shown in example 14). The condition of execution

of traces τ0 and τ1 are same (c1 ^ c2). The data transformations of both traces are also

equivalent a + b. As a result, the potential corresponding traces τ0 and τ1 are equivalent. l

4.3.5 Checking One-to-many Equivalence

For each trace τ0 in copyT0, we identify the traces in iterative manner in copyT1 that have

overlap (common) conditions with τ0. If the outputs of any of such trace are not equivalent

with τ0, we report the non equivalence in lines 17-23 of Algorithm 2. For each trace τ0

in copyT0, we identify all traces in copyT1 that have same data transformation as that of

τ0. The union of the condition of executions of all such traces must be equivalent to the

condition of execution of τ0 (in lines 28). In this way, one trace may be equivalent to more

than one trace of other behaviour. Since the behaviours are deterministic, the union of

the condition of executions of all such traces must be the same as the trace of the other

behaviour.
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The trace-wise equivalence of potential correspondent traces is checked using SMT solver

Z3 [54] in this work. The equivalence problem of two traces is modeled as the satisfiability

problem. Although the SMT expects the program to be in the static single assignment (SSA)

form [32], we do not need to convert the C and RTL-C into SSA. We do not use each line

of the program in the SMT formulation. Instead, we compute the condition of execution

and data transformation of a trace and use them in SMT formulation. Therefore, SSA

conversion is avoided in our formulation. If the SMT solver returns SAT, it means that the

corresponding formulas are not equivalent.

4.4 Correctness

In this Section, we will discuss the termination, soundness, and completeness of our method.

4.4.1 Termination

Theorem 4.4.1. The Algorithm 2 always terminates.

Proof. The set T0 has finite number of traces. In each iteration of the while loop (lines 4-16)

in Algorithm 2, the algorithm either reports a possible non-equivalence or the equivalent of

the trace τ0 of T0 is found in T1 and τ0 and its corresponding equivalent trace τ1 have been

removed from T0 and T1 (in lines 10 and 11), respectively. The selected trace τ0 will not be

considered again in other iterations of the while loop because of the elimination of one trace

from T0 imposed in line 15. So, the while loop always terminates. Similarly, copyT0 and

copyT1 also have finite traces and the for loop (lines 17-23) uses one trace in each iteration.

Therefore, the for loop also terminates. Therefore, Algorithm 2 cannot execute the loops

(while and for) infinitely long. Hence, the algorithm always terminates.

4.4.2 Soundness

Theorem 4.4.2. If Algorithm 2 terminates at line 28, then C and RTL-C are equivalent.

Proof. If Algorithm 2 terminates through the line 28, it indicates that none of non-equivalent

scenarios (i.e., line 13, line 23 and line 27) arise. Since the Algorithm 2 always terminates, it

reports an equivalence of C and RTL-C when it terminates through the line 28. We have to

show that C and RTL-C are indeed equivalent in this scenario. The sets T0 and T1 contain

the set of traces in C and RTL-C, respectively. Two scenarios may arise in this case.
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• Scenario 1: (one-to-one equivalence) This scenario arises when the copyT0 is NULL

at the end of the while loop (lines 4-16). Specifically, Algorithm 2 finds that for each

trace in τo in T0, the potential corresponding trace τ1 in T1 is actually equivalent.

Their respective condition of executions and data transformations are formally shown

be equivalent using theorem proving. In case of equivalence, both the set contain equal

number of traces. In this case, it is ensured that for each trace in T0, there exists an

one-to-one equivalent trace in T1.

• Scenario 2: (Both one-to-one and one-to-many equivalences) This scenario arise when

the copyT0 is not NULL at the end of the while-loop (lines 4-16). In this case,

}T0} ‰ }T1}. For a subset of traces in T0, one-to-one equivalence is shown with T1

in the while loop. For each τ0 in the rest of the trace in T0, a subset of traces are

identified in T1 such that the data transformation of each of them is equivalent with τ0

and the union of the condition of executions of them are equivalent with the condition

of execution of τ0. This one-to-many equivalence is being shown in lines 17-27. When

this for-loop is completed and the control reaches the line 28, it is ensured that for each

trace of T0, either there exists one trace in T1 such that they are one-to-one equivalent

or there exists a set of traces in T1 such that their one-to-many equivalence is proven.

What remains to be proved is that there is no trace left in T1 in both the scenarios. This

is ensured since the RTL-C is a deterministic model. As discussed above, all the traces of T0

are already covered. So, their union of the condition of executions is True. For each trace

of T0, the equivalent trace(s) is/are found in T1. So the union of condition of executions of

all such corresponding traces in T1 is also True. Therefore, if Algorithm 2 exits through line

28, the algorithm ensures that C and RTL-C are equivalent. The control is reached here

only when the equivalence of all the traces in T0 and T1 is formally proven using an SMT

solver. Hence, the Algorithm 2 is sound.

4.4.3 Completeness

Our equivalence checking method has two phases: RTL-C extraction from RTL and equiva-

lence checking between C and RTL-C. The RTL-C extraction relies on the rewriting method

which is proved to be sound and complete in [79]. Therefore, it is always possible to abstract

RTL-C from the HLS generated RTL and the RTL-C is functionally equivalent to the RTL.
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The equivalence problem of two programs is in general undecidable. The undecidability

arises from two facts: (i) parameterized loop bound: The number of traces will be infinite

in such a case. Since the loop bounds are static in our case, this situation will not arise. (ii)

Arithmetic logic: Checking the equivalence of two traces involves arithmetic logic which in-

volves the whole of integer arithmetic. Therefore, checking the equivalence of traces reduces

the validity problem of a first-order logic which is, in general, undecidable. All the variables

in C/RTL-C in HLS are bit-precise and finite due to the fixed width of the datapath in the

hardware implementation. So, the logic of bit-vectors should be applicable here which is

decidable. However, we model all the variables as unsigned long int in RTL-C and use a

logical AND operation to truncate the not-relevant part of the variable. For example, we

model 3-bit variables v as unsigned long int and then AND with 7 (i.e., 111) to use the

3-bits of it. Therefore, the underlying SMT theory used to encode the equivalence problem

of traces is undecidable. The SMT solver may return unknown or time out in such cases.

Therefore, our equivalence checking method is sound and not complete.

4.5 Experiment Results and Analysis

Implementation Detail: The end-to-end equivalent checking framework of HLS DEEQ

is implemented in Python and is tested on a set of HLS benchmarks. The Vivado HLS

tool [10] is used to generate Verilog RTL for the benchmarks written in C. The benchmarks

are taken from [107]. We have then used the pyVerilog [9] parser to extract the abstract

syntax tree (AST) from the Verilog and then implemented the rewriting method to obtain

the RTL-C. Specifically, we have adapted FastSim [15] to generate the RTL-C from Verilog.

The RTL-C generation time is less than 5ms for all cases. All traces of both the behaviours

( C and RTL-C) are obtained by running Klee [7]. Klee also gives a test case corresponding

to each trace. We forced Klee to get expressions for the output variables in smtlib format.

The output equivalence of two traces is formally verified using the SMT solver Z3 [54]. We

have also used Z3 to identify compatible traces for merging. The experiments have been

performed on a machine with a CPU: Intel Core i7, 2.5GHz, and 8GB RAM.

Experiments: The experiment results of our benchmarks are shown in Table 4.1. The

2nd (#in) and 3rd (#out) show the number of inputs and outputs for each benchmark,

respectively. We have recorded the number of code lines (#line) and variables (#var) of

the input C, RTL, and RTL-C in the next six columns. The number of lines in the RTL-C
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Table 4.1: Experimental results for different high-level synthesis benchmarks

Bench
marks

#in#out C code RTL code RTL-C Traces Equivalent
Not

Equivalent

#line#var#line#regs#line#var #C
#

RTLC
#merged time(s) resulttime(s)result

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Waka 20 3 33 21 270 12 474 126 3 4 (3, 3) 1.709 Eq 0.669s NEq

Arf 11 4 53 43 351 19 607 158 4 4 (3, 3) 1.890 Eq 0.949 NEq

Parker 6 1 51 14 188 2 330 100 12 23 (2, 2) 1.614 Eq 0.976 NEq

Find
Min8

8 1 40 15 175 11 780 243 128 128 (8, 8) 22.246 Eq 17.141 NEq

Matrix
Add

2 1 48 7 734 44 2595 241 1 1 (1, 1) 1.684 Eq 0.749 NEq

Sum
Array

1 1 19 4 263 15 541 100 1 1 (1, 1) 0.754 Eq 0.706 NEq

Motion 10 3 52 43 415 29 780 235 1 1 (1, 1) 0.681 Eq 0.663 NEq

Dfadd 2 1 554 70 1975 113 2132 650 67 68 (21,42) 1016.05 Eq 960.23 NEq

code is high as compared to the RTL since each register is copied in a temporary variable

at the start of each state to maintain the concurrent execution of operations of hardware

in C [15]. The 10th, 11th and 12th columns are the number of traces of the input C (#C),

RTL-C code (#RTLC) and merged traces (#merged), respectively. Equivalence checking

results in terms of the total time spent are given in the 13th. As shown, our tool successfully

established the equivalence (Eq) in all cases.

In our further experiment, we have created some non-equivalent scenarios from the

RTL-C by swapping if-else conditions, changing operation type, or adding/deleting some

operations. For example, one of the operation tmp6 reg 362 = (in7 + add5 reg 305 temp)

taken from motion is intentionally replaced by tmp6 reg 362 = (in7 * add5 reg 305 temp);

clearly these two operations are not equivalent. In this scenario, our equivalence checking

method reported non-equivalent. In all cases, these errors are correctly identified by our

proposed method as shown in the 15th (time) and 16th (result) columns. Our tool reports

non-equivalence (NEq) in all cases since Z3 returns SAT with a witness of violation. Our

framework can prove the equivalence of all eight benchmarks successfully within two sec-

onds except for findMin8 and Dfadd. For findMin8, merging of compatible traces is taking

almost 15 seconds. For Dfadd, the number of traces after merging is not equal. As a result,
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equivalence checking takes more time.

Result Analysis: There are several interesting scenarios that arise during our experiments:

(i) For FindMin8, there are many compatible traces found since one of the 8 inputs will be

the minimum. As a result, 128 traces are merged into only 8 traces. Therefore, merging

compatible traces reduce the complexity in equivalence checking. (ii) For Parker and Waka

examples, the number of traces becomes the same after compatible trace merging resulting

in improving verification complexity. None of the existing techniques [88] can handle such

scenarios of equilavence. (iii) In Dfadd, the number of traces is not equal even after merging.

However, equivalence is proved by our method. (iv) Except dfadd, equivalence is established

efficiently, i.e., in the while loop of Algorithm 1 due to merging compatible traces.

Comparisons: Although a few end-to-end HLS verification methods like VTV [88] and

V2C [100] are available, the C to RTL verification for HLS is still an open problem. We

found that V2C generates incorrect C code from the Verilog generated by the Vivado HLS

tool. So, it can’t be used for our purpose. The VTV is the closest to our work which is also

applied to verify the results of Vivado HLS. However, VTV fails to show the equivalence

when the number of traces is not the same in C and corresponding RTL since it does not

support optimizations that alter the control structure. Therefore, VTV will fail in three

(i.e., waka, Parker, and dfadd) of our test cases. This shows the novelty of our proposed

method over the state-of-the-art techniques.

Usefulness: The benchmarks consist of complex if-else (findMin8), loops and arrays (ma-

trixAdd, sumArray), complex non-linear arithmetic operations (arf and motion), and func-

tion calls (Dfadd). Also, our method works for non-equivalent cases. Therefore, DEEQ

is useful in the verification of HLS results for a commercial HLS tool. The scalability of

the method is demonstrated with a relatively larger benchmark having around 3K lines

of RTL-C code (Dfadd). Since our method merges many compatible traces before check-

ing equivalence and uses a data-driven approach to find the correspondence of traces, the

method is expected to scale well for larger benchmarks as well. We have also tested on a

recent bug reported in the Vivado HLS tool in [72] that produces the wrong result dur-

ing RTL simulation in Xilinx Vivado HLS v2017.2. In this test case, a large integer value

is shifted repeatedly by the values stored in an array. For this example, our equivalence

checker reported the non-equivalence. We have tested with FastSim as well and it reports

the non-equivalence with output for source code as 73741823 and for the RTL-C as 6632959.

Therefore, our tool can detect the reported bug in Vivado HLS. Thus, experimental results
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show the applicability and scalability of our method for a wide variety of applications.

4.6 Conclusion

We presented an RTL to C translation validation framework for verification of HLS results.

The innovative part of our framework to improve the efficiency of equivalence checking are

(i) extraction of a C like behaviour from the RTL to reduce the semantic gap between C

and RTL, (ii) merging compatible traces within a behaviour to handle control structure

modification during HLS and (iii) use of a data-driven approach to find the potential equiv-

alent trace pairs between two behaviours. The equivalence of potential equivalence traces

is then formally proved using an SMT solver. The experimental results for a commercial

HLS tool for several HLS benchmarks show that our method can efficiently check the equiv-

alence automatically without taking any information from the HLS tool. To the best of our

knowledge, DEEQ is the first completely automated framework for C to RTL equivalence

checking for HLS without taking any input from the HLS tool. In the future, we plan to

use techniques like invariant-sketching and query decomposition of the SMT formula [68]

to further improve the scalability of our equivalence checker. DEEQ means ‘the ruler’ in

Arabian. DEEQ has all the potential to rule the HLS verification.
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5
REVAMP: Reverse Engineering Register to
Variable Mapping in High-Level Synthesis

5.1 Introduction

In embedded system design, hardware acceleration is the use of application-specific hard-

ware (accelerator) especially made to perform some functions more efficiently and have a

dramatic impact on the speed of critical operations. The HLS is an attractive choice for

the algorithm developers for hardware accelerator development. However, understanding

detailed implementations and functions that operate by accelerators in the form of hard-

ware description languages like Verilog are not an easy task for algorithm developers. The

C equivalent of the RTL code for accelerator would be helpful for the algorithm developers

to understand the design structure, the impact of certain HLS optimizations, analyze the

output of the accelerator and hence use the HLS tool meaningfully.

To reverse engineer an equivalent C code from the HLS generated RTL meaningfully,

one important step is to decode the mapping between variables in scheduled C code and

registers in the RTL or the mapping between variables in input C and registers in the RTL

generated by HLS. Finding such register to variable mapping is challenging because many

to many mapping exist between them. It may be noted that the variables are mapped
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registers during the allocation and binding phase of HLS. The number of registers in the

RTL usually is much less than the number of variables in the scheduled C (SD-C) or input

C. One register may store more than one variable in different time steps provided their

lifetimes do not overlap. Similarly, one variable may be split into more than one register

for better mapping. Therefore, the relation between registers in the RTL and the variables

in scheduled C and input C is complex and it is a challenging task to recover such mapping

without taking any information from the HLS tool. In this work, we consider two problems

(i) finding the relation between the variables in input C and the registers in RTL and

(ii) finding the relation between the variables in scheduled behaviour (i.e., SD-C) and the

registers in the RTL. In this work, we develop reverse engineering framework a REVAMP

for both the problems.

5.1.1 Contributions

The first contribution in this chapter is to identify the mapping between variables in SD-C

and registers in RTL-C based on an invariant generation tool Daikon. In our approach, we

first obtain SD-C and RTL-C from the scheduling information generated by the HLS tool

and the output RTL, respectively. Since the control structure of behaviour is not modified

after scheduling, both SD-C and RTL-C programs contain the same numbers of states and

state transitions. We use Daikon to find invariants at each state in a program. Since Daikon

[4] finds invariants in a program, we combine state-wise SD-C and RTL-C. From the outputs

of Daikon, we extract the invariants in which there is an equality relation between a variable

of SD-C and a register of RTL-C. With this mapping information, we can rewrite the RTL-

C in terms of variables in SD-C and finally generates an equivalent scheduled C-code from

the RTL-C. The working of the proposed method is demonstrated on the RTLs generated

by the Vivado HLS tool [10].

The second contribution of this chapter is the extraction of the mapping between the

variables in input C and the registers in RTL by using an SMT solver. In our approach,

we first extract a high-level behaviour (RTL-C) from the RTL. We then modeled both the

input C code and RTL-C as a finite state machine with datapaths (FSMD), called C-FSMD

and RTL-FSMD, respectively. Both the C-FSMD and RTL-FSMD are then converted

into to static single assignment (SSA) form. A Satisfiability Modulo Theory (SMT) based

satisfiability problem is then formulated to obtain the variable to register mapping. With
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this mapping information, we can rewrite the RTL-C in terms of variables of the input

C and finally generates an equivalent C-code from the RTL. The working of the proposed

method is demonstrated again on the RTLs generated by Vivado HLS tool [10]. To the best

of our knowledge, this is the first attempt to automatically reverse engineers the register to

variable mapping in HLS.

The rest of the chapter is organized as follows. Section 5.2 presents details of reverse

engineering register to variable mapping using Daikon including challenges faced and exper-

imental results. The details of SMT based register to variable reverse engineering method

including experimental results are presented in Section 5.3. Section 5.4 present applica-

tions of our framework. Comparisons of Daikon and SMT based register to variable reverse

engineering are presented in Section 5.5. Section 5.6 concludes the chapter.

5.2 Daikon based Reverse Engineering of Register to

Variable Mapping

As discussed in the Introduction, the number of registers in the RTL is usually less than the

number of variables in the SD-C since the values of all the variables are not stored in the

registers in all states of the FSM. However, the control structure of the controller FSM of

the RTL and the SD-C are exactly the same. Therefore, the task is to identify the content

of each register in terms of variable in each state of the controller FSM.

Daikon [4] is software that dynamically detects likely invariants. The invariant is a

property that holds at certain points in the program. Daikon observes the values of the

variables at a particular point or points in the program and reports the relationship between

the variables. If the values of two variables are equal at a point in all the test cases then

the relationship between these variables is equal at that point. Based on values, a relation

are established between the variables or between two equations.

5.2.1 Reverse Engineering Steps

In this approach, we propose a two-phase register to variable mapping framework. In the first

phase, we abstract out a high-level C-like behaviour, called RTL-C, from the RTL. This RTL-

C is nothing but a high-level C code in terms of the inputs, constants, registers/memories,

and outputs in the RTL. In the next phase, register to variable mapping is carried out. The
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Schedule information
(.rpt file)

Register to variable mapping

RTL

Parser of .rpt file RTL to C converter

Combine SD-C and RTL-C

Daikon

Extract useful mapping

SD-C RTL-C

Combined code (SDRTL-C

Invariants

Figure 5.1: Daikon based register to variable reverse engineering flow

overall flow of our method framework is demonstrated in Fig 5.1. Our method takes two

input behaviours – schedule information and RTL-C. The steps are discussed below with

help of an example.

5.2.1.1 RTL-C Abstraction from RTL

The main technical issues addressed in this phase are the following: “Given a synthesizable

RTL design generated by the HLS tool, generate a sequential C code that preserves the

RTL semantics”. We have used our RTL-to-C conversion technique discussed in Chapter 3

for this purpose. It may be recollected that the HLS generated RTL has a datapath and a

controller FSM. In each FSM state, the controller assigns 1{0 values to the control signals

to execute a specific set of RTL operations in the datapath. Our objective is to identify

the RTL operations performed in each state of the controller by this control assignment.

The RTL-to-C conversion involves steps taken by the parser are (i) Extraction of variables,

controller and state-wise micro-operations (ii) Rewrite method to find RTL operations (iii)

Processing RAM, ROM, and Function modules (iv) Generate C code.
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int diffeq(int x,int dx,int u,int y){

int t1,t2,t3,t4,t5,t6,t7;

t1 = 3*x;

t2 = t1*u;

t3 = t2*dx;

t4 = 3*y;

t5 = t4*dx;

t6 = u-t3;

u = t6-t5;

t7 = u*dx;

y = y+t7;

}

Figure 5.2: C source code of Diffeq example

ST_1 :%u_read=call i32 @_ssdm_op_Read.

ap_auto.i32(i32 %u) nounwind

ST_1 :%dx_read = call i32 @_ssdm_op

_Read.ap_auto.i32(i32 %dx) nounwind

ST_1 :%x_read = call i32 @_ssdm_op_

Read.ap_auto.i32(i32 %x) nounwind

ST_1 :%shl_ln12 = shl i32 %x_read, 2

ST_1 :%t1 = sub i32 %shl_ln12, %x_read

ST_1 :%mul_ln14 = mul i32 %dx_read, %u_read

ST_1 :%shl_ln15 = shl i32 %dx_read, 2

ST_1 :%t4 = sub i32 %shl_ln15, %dx_read

Figure 5.3: State 1 of diffeq.verbose.rpt file generated by Vivado HLS

5.2.1.2 Scheduled C code

The HLS tool like Vivado HLS generates a report that contains all the information about

scheduling [44]. The report contains state-wise 3-address operations of the FSM. The syn-

tax of these operations is in the form of intermediate representation (IR) of the front-end

compiler. We need to decode these operations to get the Scheduled C code (SD-C). The

scheduled information generated by Vivado HLS tool for Diffeq example given in Fig. 5.2 at

state 1 obtained from diffeq.verbose.rpt file is shown in Fig. 5.3. After decoding the schedule

information (instructions) shown in Fig. 5.3, the scheduled C code generated corresponding

to state 1 is shown in Fig. 5.4. Here, u read, dx read, and x read contain the values read

from input variables u, dx, and x, respectively. So, we have replaced u read, dx read, and

x read by u, dx, and x, respectively. Other 3-address operations are shown in the syntax
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shl_ln12 = x << 2;

t1 = shl_ln12 - x;

mul_ln14 = dx * u;

shl_ln15 = dx << 2;

t4 = shl_ln15 - dx;

Figure 5.4: State 1 of scheduled C code after decoding verbose file

if((1==ap_CS_fsm_state1)&&(ap_start==1)){

t4_reg_120=(dx << 2) - dx;

t1_reg_110=(x__temp<<2) - x__temp;

mul_ln14_reg_115=dx * u;

}

goto ap_ST_fsm_state2;

Figure 5.5: State 1 in RTL-C of Diffeq example

of the C language. For Diffeq example shown in Fig. 5.2, The RTL-C contains five states.

Instructions of state 1 in RTL-C are shown in Fig. 5.5.

5.2.1.3 Combine Two C Codes

Now, we have two C codes: RTL-C and SD-C. The RTL-C contains operations in terms

of inputs, constants, registers, and RAM and ROM. The format of the RTL-C is given in

Section 3.12. The SD-C contains operations in terms of inputs, constants, and variables

and instructions are in three-address form. In both cases, the operations can be identified

state-wise. As Daikon finds invariants in the same program, we need to combine RTL-C and

SD-C into one program to find the mapping between registers and variables. As discussed,

the number of states and the state transitions from one state to another are the same in

both C codes. Diakon finds invariants at the function’s entry and exit. Therefore, the

instructions of both RTL-C and SD-C in each state are combined and put into a function.

Daikon finds invariant only if the variables are declared globally. So all variables must be

declared globally. Instructions of state 1 of both RTL-C code and SD-C code are combined

and put into a function called state1(). The combined C code is shown in Fig. 5.6.
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void state1(){

//state 1 code of RTL-C

t4_reg_120 = (dx << 2) - dx;

t1_reg_110 = (x__temp << 2) - x__temp;

mul_ln14_reg_115 = dx * u;

//state 1 code of SD-C

shl_ln12 = x << 2;

t1 = shl_ln12 - x;

mul_ln14 = dx * u;

shl_ln15 = dx << 2;

t4 = shl_ln15 - dx;

}

Figure 5.6: State 1 of combined C code

5.2.1.4 Invariant Generation using Daikon

After obtaining the combined C code for all states, we need to find invariants at the state

entry and exit points of each function (representing a combined state) in the combined

program. Invariants generated by the Daikon depend on the number of test cases and the

quality of test cases. We make sure that our test cases cover all traces of the combined code.

Daikon finds invariants based on values contained by the variables while running it on these

test cases. The invariants found by Daikon are shown in Fig. 5.7 for the combined code of

state 1 of Fig. 5.6.

5.2.1.5 Extract Useful Mapping

As shown in Fig. 5.7, the output of Daikon contains many invariants. Many of them are

not relevant in our context. So, we need to identify the useful invariants in which there

is an equal relationship between the registers of RTL-C and the variables in SD-C. So, in

this phase, useful mapping is extracted automatically from the Daikon generated invariants.

The useful mapping of the registers of RTL-C and the variables of SD-C is shown in Fig. 5.8.

Registers mul ln14 reg 115, t1 reg 110 and t4 reg 120 mapped with variables mul ln14, t1

and t4, respectively. Registers to variables mapping for all other states of the FSM can be

found in a similar manner.
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state1():::exit

::add_ln20_fu_96_p0 == ::add_ln20_fu_96_p0_temp

::add_ln20_fu_96_p0 == orig(::add_ln20_fu_96_p0)

::t1_reg_110 == ::t1

::add_ln20_fu_96_p0 == 0

::mul_ln4_fu_56_p0 == 0

::dx != ::u

::x != ::t3

3 * ::x - ::t1_reg_110 == 0

4 * ::x - ::shl_ln12 == 0

::t5 >= orig(::t4)

::t6 >= ::sub_ln18

::dx == ::dx_read

::u == ::u_read

::x == ::x_read

::mul_ln14_reg_115 == ::mul_ln14

::t1_reg_110 == ::t1

::t4_reg_120 == ::t4

Figure 5.7: Daikon invariants output for state 1

state1 :

::mul_ln14_reg_115 == ::mul_ln14;

::t1_reg_110 == ::t1;

::t4_reg_120 == ::t4;

Figure 5.8: Mapping of State 1 registers to variables

5.2.2 Challenges Resolved

In this Subsection, we describe major challenges that we need to address in our Daikon

based register to the variable reverse engineering process with the solution approaches.

5.2.2.1 Generating Quality Test Cases

Daikon output depends on the quality of test cases. So, we have to make sure that the test

cases selected must cover all the traces in the behaviour. We have utilized the symbolic

execution tool Klee [7] for this purpose. Specifically, we have used Klee to identify all traces

in the combined code first. We then tuned Klee to provide a test case/inputs for each trace.

In fact, we generate multiple test cases for each trace in combined code using Klee. This

ensures that our test cases have a hundred percent functional coverage of the combined

96



Daikon based Reverse Engineering of Register to Variable Mapping

code. To add diversity to the test cases, we include some random test cases as well.

5.2.2.2 Unmapped Temporary Variables

The RTL-C code contains more than one operation in a single statement due to operation

chaining in hardware. The expressions in SD-C, on the other hand, contain only one opera-

tion (since it is in three address form). Therefore, many temporary variables are created in

SD-C which are not mapped to any register in the RTL. Since these operations are happen-

ing in a single state and they have no further use in any future states, we don’t need to find

the mapping for these temporary variables of SD-C. So before calling Daikon, the combined

code needs to be pre-processed so that all the temporary variables that are not being used

in other states are removed. Its value is substituted in expressions where it is being read.

Example 16. For instance, the operation of one state of RTL-C in Waka benchmark is

t23 reg 365 = in3 - in4 + in22 + in7 + in12 + in8.

The operations in the corresponding state of SD-C are

t5 = in3 - in4,

add ln21 = t5 + in22,

add in12 = in7 + in12,

t11 = add in12 + in8,

t23 = add ln21 + t11.

Here we see that there is operation chaining happened in the RTL-C code. The variables

add ln21, add in12, t5 and t11 are temporary variables in a same state. So, we remove

these temporary variables and replace their occurrence with their expressions in that state.

l

5.2.2.3 Transitive Analysis of Daikon Output

In some cases, the direct register to variable mapping may not be found in the Daikon

output. Specifically, some of the mappings is missing in Daikon output due to transitive

dependency. To resolve this issue, we perform transitive analysis on Daikon output to obtain

relevant invariants in such cases.

Example 17. Consider the following instructions from Matrixop benchmark:

mat1 load reg 651 = mat1 q0, and

mat1 load = mat1 addr 1.
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The above two instructions are of RTL-C and SD-C, respectively. From Daikon output, we

obtain the following mappings:

::mat1 q0 == ::mat1 addr 1,

::mat1 q0 == ::mat1 load and

::mat1 q0 == ::mat1 load reg 651.

Here mapping of mat1 load reg 651 and mat1 load is missing. By transitivity, we can get

the required mapping. l

5.2.2.4 One Register to Many Variables Mapping in a State

We know that in a time step one register can not hold more than one value. Both RTL-C

and SD-C are cycle accurate. So, the mapping of one register to many variables in a state

is not possible. But in Daikon output, we find such one-to-many mapping due to copy

propagation. In such a case, we can use one of the mappings in all places since both the

variables have the same value.

Example 18. For instance, the operation of one state of RTL-C is

res1 load 1 reg 161 = mul ln12 reg 661 + res1 load 1 reg 161 temp.

The operations in the corresponding state of SD-C are

add ln12 = mul ln12 + res1 load 1,

res1 load 1 = add ln12.

Here we see that there is copy propagation is happening in SD-C. Daikon gives us following

mappings

::res1 load 1 reg 161 == ::add ln12 and

::res1 load 1 reg 161 == ::res1 load 1.

So, the register res1 load 1 reg 161 maps to two variables in a same state. As register

res1 load 1 reg 161 maps to two variables, we can use any one of two mappings in that

state. l

5.2.2.5 Mealy vs Moore Models

The controller FSM can be a Mealy or Moore machines. In our framework, we support both

as discussed below.

Mealy Model: In this model, operations are associated with the state transition. Based

on transition condition, the operation performed is decided. For the Mealy machine, we
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//Control Structure

state1:

o1;

c = exp ? 1 : 0;

if (c){

o2;

goto state2;

}

if (!c){

o3;

goto state3;

}

(a)

//Mealy model:

e1(){

o1;

o2;

}

e2(){

o1;

o3;

}

state1:

c = exp ? 1 : 0;

if (c){

e1();

goto state2;

}

if (!c){

e2();

goto state3;

}

(b)

//Moore model:

state1(){

o1;

if(c){

o2;

}

if(!c){

o3;

}

}

state1:

c = exp ? 1 : 0;

state1();

if(c){

goto state2;}

if(!c){

goto state3;

}

(c)

Figure 5.9: (a) Control Structure (b) Code structure following Mealy Model (c) Code structure
following Moore Model

model the transitions as function in the combined code.

Example 19. Consider the control flow example shown in Fig. 5.9(a). There are three

states in the FSM, and from state1 (s1) there are two transitions based on the condition

’c’. If c is True, then control goes to state2 (s2), and if c is False, control goes to state3

(s3). Operations in state1 are o1, o2, and o3. The operation o2 executes when there is the

transition from state1 to state2, the operation o3 executes when there is the transition from

state1 to state3 and the operation o1 executes in all the cases. So, the operation associated

with transition e1 (from state1 to state2) is o1, o2 and the same for the transition e2 (from

state1 to state3) is o1, o3. The Mealy model of this scenario is shown in Fig. 5.9(b) and in

Fig. 5.10(a) with a diagram. Daikon finds invariants at the entry and exit of the transition

functions e1 and e2. l

Moore Model: In this model, operations are associated with states. All the operations

are performed in the state, and based on the condition transitions are made separately. For

the Moore machine, we model the states as functions in the combined code.
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c/{o1,o2} !c/{o1,o2}

S1

s2 s3

S1{o1
,02,03

}

s2 s3

c !c

(a) (b)

Figure 5.10: (a) Mealy Model. (b) Moore Model.

Example 20. Consider the control flow Fig. 5.9(a) again. The state1 (s1) contains three

operations {o1, o2, o3}. The operation o2 is performed when condition c is True. The

operation o3 is performed when condition c is False. The o1 is the operation performed

in all the conditions. So, all the operations are associated with state1. But, they will be

executed when the corresponding condition is True. The transition is performed separately.

If c is True in state 1, then transition to state2 occurs and if c is False in state 1, then the

transition to state3 occurs. The Moore model of this scenario is shown in Fig. 5.9(c) and

in Fig. 5.10(b) with a diagram. l

5.2.3 Correctness of Reverse Engineering Flow

We use Klee for generating the test cases that cover all the traces in the combined code. In a

state, if the values of two variables are the same for all the test cases and one is register ri of

RTL-C and the other is variable vi of SD-C then it is sure that ri map to vi. As a result, the

mappings obtained by Daikon are consistent with all traces of the behaviour. We have done

simulation-based verification for our benchmarks to check the correctness of the register to

variable reverse engineering. Specifically, we rewrite the RTL-C by replacing the register

name with the corresponding variable name using the mapping obtained. We then run the

test benches used for RTL co-simulation on the reverse engineered C code and compared the

outputs with input C code. The outputs match for all benchmarks used which confirm the

correctness of our reverse engineering flow. Although the simulation-based method does not

provide formal correctness proof, it is commonly used in the HLS domain for verification.

100



Daikon based Reverse Engineering of Register to Variable Mapping

Table 5.1: Experimental Results for different high-level synthesis benchmarks

Bench
marks

#in#C#SC#RTLC
#

State
#var#regs

M
required

Mobtained
Mapp
APP

NOTCRtime(s)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Diffeq 4 14 30 406 5 15 7 15 15 15 100 1.32
Matrix

op
2 33 274 3771 17 90 32 75 64 75 100 931.7

Waka 20 33 133 474 3 21 12 19 16 19 100 5
Motion 10 52 101 780 5 42 29 44 43 44 100 7.89
ARFNC 15 48 68 607 5 28 12 28 28 28 100 4.55
ARFNB 17 54 63 981 7 56 21 58 58 58 100 173.51
Parker 6 51 67 330 2 14 2 3 3 3 100 0.456

5.2.4 Experimental Results

The above reverse engineering framework is implemented in Python and is tested on a set of

HLS benchmarks. We have used the Vivado HLS tool [10] to generate Verilog RTL for the

benchmarks written in C. We then extract RTL-C from the Verilog using our FastSim tool.

We have obtained the SD-C from the synthesis report of the Vivado HLS manually. The

RTL-C and SD-C codes are then combined manually and the rest of the flow is automated.

The experiments have been performed on a machine with a CPU: Intel Core i7, 2.5GHz,

and 8GB RAM. We evaluate our method on a variety of HLS benchmarks (Waka, Motion,

Diffeq, Parker, Matrixop, auto-regressive lattice filter with no constant (ARFNC) and auto-

regressive lattice filter without branch (ARFNB)), each of them written in C-code. The

experiment results of our benchmarks are shown in Table 5.1. The 1st column has the

name of the benchmarks used. The 2nd and 3rd columns represent the number of inputs

(#in) and the number of lines (#C) of the input C code, respectively. The 4th, 5th and

6th show the number of lines of SD-C code (#SC), the number of lines of RTL-C code

(#RTLC), and the number of states (#State), respectively. The number of variables (#var)

in the SD-C code and the number of registers (#reg) in the RTL-C code are shown in

columns 7th and 8th columns, respectively. The 9th, 10th, 11th, and 12th columns are the

number of mapping required (Mrequired), the number of mapping obtained (Mobtained),

the number of mapping after post-processing (MappAPP), and the number of test cases

(NOTC), respectively. Finally, the last column reports the time spent by our system to
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map registers to variables. Mrequired is less than the product of #reg and #State because

in some of the states not all the registers are used. So, the Mrequired is the sum of registers

used in every state. We set our test case population to 100 because the number of paths

in each benchmark is less than 100. These test cases are the combination of x test cases

generated by the Klee and p100´xq are the random test cases. It may be noted from columns

7 and 8 that the number of registers is significantly less than the number of variables. Also,

column 10 suggests that most of the required mappings are obtained directly by Daikon.

For Matrixop, waka, and Motion, the rest of the mappings are also obtained by transitive

analysis of the Daikon result (as discussed in Section 5.2.2.3). Therefore, our framework

identifies all the required register to variable mapping of all benchmarks successfully. The

run-time is also less than a minute in most of our test cases. The run time is a bit high

in Matrixop test case since it involves arrays. We have also observed that the run time is

improving if we use less test cases (but cover all traces) in Daikon. Specifically, one may

identify the adequate test cases for an application to optimize the run time of our tool.

5.3 SMT based Reverse Engineering of Register to

Variable Mapping

Our objective is to find the mapping between the variables in the input C and the registers in

the RTL. In this case, the input C code is untimed. Therefore, combining input C and RTL-

C state-wise is not possible. Instead, we have to consider the complete behaviours together.

In this work, we formulated the mapping problem as a satisfiability (SAT) problem and

used an SMT solver Z3 to identify the mapping. The overall flow is discussed below.

5.3.1 Reverse Engineering Steps

The overall flow of our SMT based register to variable reverse engineering approach is given

in Fig. 5.11. First, we extract the RTL-C from the RTL using our FastSim tool. In the

next step, both the input C and RTL-C are modeled as FSMD [64], called C-FSMD and

RTL-FSMD, respectively. We then convert both the FSMDs into static single assignment

form in SSA steps [50]. Next, the SAT problem is formulated and the SMT solver is invoked.

If the SMT solver finds the formula satisfiable, we can get the mapping from the instance

provided by the SMT solver. If SMT solver timeouts or could not solve the formula, our
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Input C RTL

SSA
RTL to C converter

Register to variable map find

C-FSMD
(in SSA)

RTL-C (RTL-
FSMD)

SSA

Map found?

Register to variable mapping

 Error in register to variable 
mapping

C-FSMD

RTL-FSMD
(in SSA)

Yes

NO

Figure 5.11: SMT based Register to variable reverse engineering flow

extraction process fails.

5.3.1.1 FSMD Extraction from HLS Generated RTL

The RTL structure generated by the HLS tool consists of three basic constructs: (i) a set

of always statements, (ii) the controller FSM block and (iii) a set of assignment statements.

The always statement blocks update the registers under certain conditions. The condition

depends on the state and a conditional statement over registers/inputs. The condition of

state transitions and the operations in each transition is not mentioned in the controller

structure. These can be obtained by combining controller FSM with the always blocks and

the assignment statements. In assignment statements, their left-hand side (LHS) is updated

whenever the right-hand side value changes. Overall, the datapath and the controller FSM

can be identified in the RTL with this. The extraction of the RTL-C from the HLS generated

RTL is discussed in detail in Section 3.3.4. We take the FSMD representation of RTL-C in

this work.

103



REVAMP: Reverse Engineering Register to Variable Mapping in High-Level

Synthesis

5.3.1.2 SSA Transformation

In static single assignment (SSA) representation, each variable is assigned exactly once in

the behaviour, and every variable is defined before it is used [50]. Since the variables of

the C specification are mapped to registers in the RTL, these two FSMDs, i.e., C-FSMD

and RTL-FSMD are not comparable yet. We then convert both the FSMDs into a single

assignment form in SSA steps [50]. In SSA, we first convert all the operations in 3-address

form i.e., at most one operator in the right-hand side (RHS) expression of an operation. A

variable in the C specification may be defined multiple times. As a result, such variables

may be mapped to more than one register in the RTL. Also, multiple variables with non-

overlapping lifetime may be mapped to a single register which effectively indicates that a

register is defined multiple times in RTL-FSMD. The SSA step on C-FSMD ensures that

each variable is defined exactly once in the C specification. The SSA on RTL-FSMD ensures

that each register is defined exactly once in the RTL. Since both these sets of variables

capture the lifetimes of variables of the input specification, the number of variables in the

C-FSMD and the number of registers in the RTL-FSMD will be the same after this step.

We perform this step because modeling redefinition of a variable is not possible in the SMT

formula. However, we need to keep track of the new variables introduced in SSA with their

corresponding original variable name.

If  (in9  <  in10 )  {                                                                                                           
        t25 = in2 + in3;                                                                     
        t26 = t25 + in27;                                       
 }                                                                                                                    
else  { 
         t26 = in5 + in18                                                                                                                           
 }                                                                                                             
out30 = t26 + in29;
                                                                      
        (a) 

If  (in9  <  in10)  {
     t25 = in2 + in3;                               
     t261 = t25 + in27;
 }
else  {
         t262 = in5 + in18;
 }
 t26 =  Φ(t261, t262);
 out30 = t26 + in29; 
      
            (b) 

Figure 5.12: SSA example

Example 21. Consider the example shown in Fig. 5.12. In Fig. 5.12(a), the variable t26

is defined twice. This can be resolved in SSA by creating two new variables: t261 and t262,

which are assigned only once. Most programs have branch and intersection (join) nodes.
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At the join nodes, we add a special form of statement called a ϕ-function as shown in Fig.

5.12(b). The operands to the ϕ-function indicate which assignments to t26 to reach the joint

point. Depending on the control flow before the joint node, this function will generate a new

definition t26 by choosing either t261 or t262. The SSA version of the behaviour in Fig.

5.12(a) is given in Fig. 5.12(b). l

Algorithm 3: Obtain register to variable mapping (C-FSMD, RTL-FSMD)

Result: register to variable mapping
1 Vc “ tϕu, Vr “ ϕ, Ic “ ϕ, Ir “ ϕ, CTP = tϕu.
2 repeat
3 Generate next random input.
4 Simulate the both C-FSMD and RTL-FSMD on the input to obtain the traces, τc

and τr, respectively.
/* Collect variables and the registers that involved in τc and τr */

5 Vc “ VcY {set of all variables updated in τcu.
6 Vr “ VrY {set of all variables updated in τru.
7 Ic “ IcY {set of all inputs involved in τcu.
8 Ir “ IrY {set of all inputs involved in τru.
9 CTP = CTP Yxτc, τry.

10 until (Vc ” V ^ Vr ” R ^ Ic ” Ir ” I);
11 F = Formulate SAT problem(C-FSMD, RTL-FSMD, CTP).
12 Call Z3 for with all the formulas in F .
13 if Z3 returns SAT then
14 return the register to variable mapping.
15 else
16 Report error in register mapping.

5.3.1.3 SAT Formulation

An FSMD may contain many traces. We can consider all traces in the SAT formulation.

However, that will make the problem complex. To simplify the formulation, our intuition is

to collect enough traces so that all variables, all registers, and all the inputs are involved.

For this purpose, the RTL-FSMD and the C-FSMD (obtained after SSA transformations)

are simulated together. It may be noted that the inputs and the outputs are the same for

both the FSMDs. The initial simulation runs with random inputs. The traces obtain in both

the FSMDs for a given random input called as corresponding trace pair (CTP). Let assume
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that the CTP obtained by initial simulation is xτc, τry, where τc is a trace in C-FSMD and

τr is the corresponding trace in RTL-FSMD. We shall collect the variables that get defined

in τc in a set Vc. Similarly, all the registers get defined in τr are collected in a set Vr. Also,

all the inputs that are involved in sτc and in sτr are collected in Ic and Ir, respectively. We

next generate the next trace using concolic testing approach [18] and continue to do the

above. This process will stop when Vc “ V (set of variables), Vr “ R (set of registers) and

Ic “ Ir “ I. The reverse engineering method is presented as Algorithm 3. The lines 1-10 of

Algorithm 3 is performing this step.

Let the set of variables and the set of registers be denoted as V and R, respectively.

As argued before, both these set contain the same number of elements. Let’s assume each

of them contains N number of elements. Let consider the Boolean variables mvr, @v P

V, @r P R. Let assume that the Boolean variable mvr “ 1 if the variable v P V is mapped

to register r P R; otherwise, mvr “ 0. The mapping between the variables and the registers

is one-to-one. The following two constraints are captures that fact.

(i) Each variable must be mapped to exactly one register.

N
ÿ

r“1

mvr “ 1, @v P V (5.1)

(ii) For each register, exactly one variable is mapped to that register.

N
ÿ

v“1

mvr “ 1, @r P R (5.2)

In addition, expression corresponding to each output in the traces C-FSMD will be

rewritten in terms of mrb and r. Each variable vi in an output expression will be replaced

by
řN

r“1mvirˆr. We loosely denote this replacement as vi˝mvr. For example, the expression

corresponding to output o1 is v1 ` v2 in a trace τc in C-FSMD. Assume that we have two

registers r1 and r2 in S-FSMD. The v1 will be rewritten as mv1r1 ˆ r1 ` mv1r2 ˆ r2. This

expression indicates that v1 is replaced by the corresponding register. The corresponding

register of v1 is r1 if mv1r1 “ 1; otherwise, r2. Similarly, v2 will be rewritten as mv2r1 ˆ

r1 `mv2r2 ˆ r2. Let the output expression corresponding to o1 in S-FSMD is r2 ` r1. The

constrains will be passed to SMT solver for o1 is (mv1r1 ˆ r1 `mv1r2 ˆ r2) + (mv2r1 ˆ r1 `

mv2r2 ˆ r2) ” r2 ` r1. We will identify such constraints for each output for each trace pair

identified in Algorithm 3.
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Let us assume that the output set is denoted as O in both the FSMDs. The third

constrain is as follows.

(iii) For each corresponding trace pair selected in algorithm 3, the outputs are equivalent.

@xτc, τry, @o P O,Rτc ˝mvr ” Rτr (5.3)

We call Z3 with all these constraints to find the values of mrb that satisfies all the

constraints. If there is any solution, the SMT solvers will return the values of mvr. The

overall process is given as algorithm 3.

Using the value of mvr, the exact mapping between variables and registers is obtained.

All the registers in the RTL-FSMD can be replaced by the corresponding variable with mvr.

The resultant FSMD is called S-FSMD (i.e., scheduled FSMD). The overall algorithm to

register to variable reverse engineering is given as Algorithm 3.

Example 22. An example of identifying register mapping is given in listing 5.1; In this

example, C code is out “ a ´ b which is mapped to out “ r2 ´ r1 is RTL. The Z3 returns

m11 “ 0,m12 “ 1,m21 “ 1,m22 “ 0. Basically, the formulation recovers that the register

r2 maps to variable a and the register r1 maps to variable b. l

Listing 5.1: An example SMT code to obtain mapping

(declare-const m11 Int)

(declare-const m12 Int)

(declare-const m21 Int)

(declare-const m22 Int)

(declare-const out1 Int)

(declare-const out2 Int)

(declare-const r1 Int)

(declare-const r2 Int)

;values are either 0 or 1

(assert (or (= m11 1) (= m11 0)))

(assert (or (= m12 1) (= m12 0)))

(assert (or (= m21 1) (= m21 0)))

(assert (or (= m22 1) (= m22 0)))

;each var is mapped to one reg

(assert (= (+ m11 m12) 1))

(assert (= (+ m21 m22) 1))

;each reg is associated to exactly one var

(assert (= (+ m11 m21) 1))

(assert (= (+ m12 m22) 1))

(assert (= out2 (- r2 r1)))

(assert (= out1 (- (+ (* m11 r1) (* m12 r2))
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(+ (* m21 r1) (* m22 r2)))))

(assert (= out1 out2))

(check-sat)

(get-model)

5.3.2 Experimental Results

The SMT based register to variable reverse engineering framework of HLS is implemented

in Python and is tested on a set of HLS benchmarks. We have used the Vivado HLS

tool [10] to generate Verilog RTL for the benchmarks written in C. Our tool invokes the

SMT tool Z3 [55] as shown in Algorithm 3. A satisfiable instance will reveal the mapping

between the variables and registers. One primary challenge was handling arrays. In Vivado

HLS, arrays are mapped to block RAMs. For RAM, a separate module is created with an

address port, data port, and write enable to access it. In each control state, the controller

assigns appropriate values to these ports for RAM access. Based on these values, our

rewriting method identifies the actual memory read/write operation in each state. The RTL-

C extraction is automated as discussed in Chapter 3. The SSA step is not automated. The

steps of Algorithm 3 i.e., identifying enough traces in the FSMD, SMT formula generation,

and SMT invocation are automated.

The experiments have been performed on a machine with a CPU: Intel Core i7, 2.5GHz,

and 8GB RAM. We evaluate our method on a variety of HLS benchmarks (Waka, Motion,

DIFFEQ, maximum of three numbers (Max3), and auto-regressive lattice filter with branch

(ARFWB) and without branch (ARFNB)), each of them written in C-code. Table 5.2

presents the experimental results. The 1st column has the name of the benchmarks used.

The 2nd and 3rd columns are the lines and variables in the C code, respectively. The 4th, 5th,

6th, and 7th columns are the number of lines, number of variables, latency, and number of

states of the RTL-FSMD in RTL-code, respectively. The number of variables in the C-code

after SSA and the number of registers in the RTL-code after SSA are the same in all test

cases. The 8th and 9th columns show the number of lines in SMT format code and SMT

time, respectively. The SMT time is the time required by Z3 for register mapping. Finally,

the last column reports the total (HDL parsing time + SMT code generation + Z3 run

time) time spent by our reverse engineering framework for each benchmark. The run times

are not high and are less than three seconds for all cases. The majority of time is taken by

the SMT tool Z3. Our proposed method is applicable for moderate size benchmarks. The
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Table 5.2: Experimental Results for different high-level synthesis benchmarks

Bench
marks

C code RTL code Our tool

#lines #var. #lines #reg. latency #States #smtcode
SMT

time(s)
Overall
time(s)

Waka 33 21 270 8 8 3 658 0.380 0.432
Motion 52 42 415 21 8 5 1920 1.470 1.545

DIFFEQ 14 15 220 7 6 5 578 0.034 0.0925
Max3 15 5 150 3 2 3 377 0.025 0.0498

ARFNB 54 56 444 21 10 7 1803 1.380 1.488
ARFWB 48 28 351 12 6 5 1547 1.300 1.397
Matrixop 49 90 832 32 10 17 4803 2.486 2.798

Parker 51 23 188 12 4 2 547 0.027 0.0396

scalability of this approach depends on the SMT solver. For large benchmarks, we found

SMT solver timeouts.

We have done simulation-based verification for our benchmarks to check the correctness

of the register to variable reverse engineering. Specifically, we rewrite the RTL-C by replac-

ing the register name with the corresponding variable name using the mapping obtained.

We then run the test benches used for RTL co-simulation on the reverse engineered C code

and compared the outputs with input C code. The outputs match for all benchmarks used

which confirm the correctness of our reverse engineering flow.

5.4 Applications of REVAMP Framework

In this section, we will discuss some of the potential applications of the register to variable

mapping information extracted by our proposed method REVAMP.

5.4.1 Register Allocation and Security Aspect

Register allocation is the mapping of a large number of variables to a limited number of

physical registers. Let us assume that Vi be the set of variables with i number of variables in

a program and Rj be the set of registers with j number of registers in the target architecture.

Register allocation is a function which maps the set of variables to the set of registers and/or

memory locations, f : Vi Ñ Rj YMk where usually j ď i and Mk is the reserved memory
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locations for arrays Vk where 0 ď k ď i. The following scenarios may arise due to register

allocation.

´ A variable va is mapped to a register rx, i.e. fpvaq “ rx.

´ More than one variable are mapped to a register. For example, fpvaq “ fpvbq “ fpvcq “

rx means the variables va, vb and vc are mapped to the register rx.

´ A variable is mapped to more than one register, i.e. fpvaq “ trx, ry, rzu which is called

the live range splitting. In this case, some re-definitions of va is renamed first and then

different instances of va is mapped to different registers. Usually, it reduces the register

pressure. In case of limited registers, live range splitting is used if it minimizes the register

usage.

´ If there are not enough registers, a array variable needs to be stored into memory, i.e.

fpvaq “ ma where ma is the reserved memory location for the variable va.

Securing compiler transformation is an emerging research area and very few works have

been done on trusted code generation. The correctness-security gap of compiler optimiza-

tions attract some attention in recent times. D’Silva et al. [58] studied various compiler

transformations to identify the leaky one. They conclude that the gap arises due to the

techniques that do not model the state of the underlying machine. They only considered

the transformations at the source level, nothing mentioned the information leaks in register

allocation. Deng and Namjoshi presented a polynomial-time algorithm for secure dead store

elimination in [56]. Recently, Besson et al. [27] proposed a formal definition of the Informa-

tion Flow Preserving (IFP) program transformations in which they model the information

leak of a program using the notion of attacker knowledge. The authors have shown how

to validate register allocation and dead store elimination and if needed how to modify it in

order to be IFP.

Register allocation is a mandatory transformation for any source program to generate

the machine code. Thus, it should be properly investigated from the security point of view.

Moreover, none of the existing works provide a secure register allocation algorithm. In

this work, we target the reverse engineering of the register to variable mapping in register

allocation. Although, this work does not target the security analysis of register allocation,

the recovered mapping can be useful in analyzing the same. Specifically, this mapping
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information can be used to identify the information leakage after register mapping and then

iteratively modify the register allocation to stop the leak. This could be interesting future

work.

5.4.2 Correlating C and RTL

The quality of designing a hardware device by the HLS tools depend on the way one has

written the design specification in C/C++ code. From specification document, an RTL de-

scription is created to examine the design in terms of functionality, performance, compliance

with standards and other high-level issues by HLS tools. On the other hand, the high-level

specification developers do not understand how the specification is represented in RTL. In

order to help specification developers understand, debug and verify an RTL design that is

generated from the HLS tool, it is important to bridge the knowledge gap between the two

levels of abstraction. A C equivalent of the RTL model would be helpful for the specification

developers to understand, debug and verify the output RTL design and hence use the HLS

tool meaningfully. One of the important steps in obtaining a high-level C behaviour from

the RTL is to recover the mapping between variables in input C and registers in the RTL

generated by HLS. Our work is helpful in this context.

5.4.3 Fast Simulation and Debug

As discussed in Chapter 3, the RTL co-simulation is the primary way to verify the correctness

of the generated RTL of an HLS tool. Specifically, the test cases developed for the input C

code are used by the commercial HLS tools [10] for RTL simulation. The C-simulation is

faster than the RTL simulation. Therefore, generating an equivalent C code from the RTL

would greatly reduce the verification time as well. In FastSim [15], an C code obtained from

the RTL is shown to be much faster for RTL verification. However, the code obtained from

the RTL cannot be used for correlating the bug with the source C code of the HLS tool and

hence for souce level debug. With the variable to register mapping information obtained in

our work, correlating the source C with RTL is possible in debugging a bug in the RTL.
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5.5 Comparisons of Daikon and SMT based Reverse

Engineering Frameworks

The Daikon based framework is used to extract mapping between the variables in SD-C and

RTL-C. Whereas, the SMT based framework identifies the mapping between the variables

in the input-C and RTL-C. These two methods are applied to get back an equivalent C code

from the RTL code generated by the HLS tools in this Chapter. Daikon [4] is software that

dynamically detects likely invariants. There is no formal guarantee in the Daikon based

approach. Daikon based register to variable reverse engineering fails to get an equivalent

C code from the RTL when Daikon generates insufficient invariant. On the other hand,

the SMT based framework fails when the SMT solver fails to prove the satisfiability of our

formulation of reverse engineering. Another difference is that the Daikon based register to

variable reverse engineering needs the scheduled information to obtain the corresponding C

code but the SMT based framework does not need that. Both of them are using the RTL-C

obtained from the Verilog RTL.

The Daikon based SD-C versus RTL-C register to variable mapping extraction process

is simple and scalable. It is because both SD-C and RTL-C programs contain the same

numbers of states and the state transitions, and state-wise analysis is possible. Therefore, it

is also possible to handle bigger designs since the extraction process handles the combined

code state-wise manner. The problem is more challenging when we want to find the mapping

variable of input C code and the registers in the RTL-C in our SMT based flow. It is because

of the following reasons: (i) the input behaviour is transformed into 3-address form and then

is converted to static single assignment (SSA) form during the prepossessing step of HLS,

(ii) various compiler optimizations may also be applied during prepossessing, (iii) Moreover,

the input C code is untimed. Therefore, state-wise correlation (like SD-C and RTL-C)

is not possible. Moreover, this method is also not scalable because it takes the complete

behaviours of C and RTL-C in terms of some traces and generates an SAT formula for the

same. If the application is very large, this formula will be complex and the SMT solver may

not find the instances for the satisfiability.
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5.6 Conclusion

In this Chapter, we have presented the reverse engineering framework REVAMP for ex-

tracting mapping between the variables of (i) scheduled C code (SD-C) and the RTL-C

(representing the RTL) and between the variables of (ii) input C code and RTL-C for high-

level synthesis. The first one uses a Daikon based invariant generation tool on the state-wise

combined SD-C and RTL-C to identify register to variable mapping state-wise. For the sec-

ond problem, we formulate the mapping as a satisfiability problem and use SMT solver Z3

to find the register to variable mapping between input-C and RTL-C. We have discussed

a few applications of the extracted mapping information. In both methods, we have done

simulation based verification on the set of benchmarks to check the correctness of our reverse

engineering process. We have tested with several HLS benchmarks for the Verilog generated

by the Vivado HLS tool and we found that the overall conversion time is reasonably small

in both cases.
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BLAST: Belling the Black-Hat High-Level

Synthesis Tool

6.1 Introduction

The complexity of modern day Integrated circuits (ICs) is growing exponentially [71]. To

keep pace with this complexity and to reduce design time, the use of electronic system level

(ESL) computer-aided design (CAD) or high-level synthesis (HLS) [65, 49] tools are rapidly

increasing. About 14 out of the top 20 semiconductor companies are using HLS tools for

IC development [23]. The HLS tool converts the high-level C/C++ input specification into

equivalent RTL design. The RTL consists of a datapath and a controller FSM. The FSM

decides the operations to be executed in the datapath in each time step.

Hardware Trojans (HT) [83] are malicious design modifications by an adversary to either

change functionality, degrade performance, leak information, or denial of service. Most of the

HTs are activated by a rare condition. The circuit performs correctly in normal scenarios.

Therefore, HTs are very hard to detect during the pre-silicon validation phase. Once the

HT is activated, the circuit will start malfunctioning. The HTs may also be inserted in

any phase of the design cycle by an untrusted computer aided design (CAD) synthesis

tool [106, 26], a rogue employee in intellectual property (IP) development house, or by an
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untrusted foundry [83]. The impact of HTs includes economic damage, planned obsolesce

or cyber-attack on national assets [29]. Therefore, detection of HTs is an important task for

securing the design. This is an active domain of research in this decade [73, 102, 85, 19, 62].

The commercial electronic design automation (EDA) companies sold proprietary HLS

CAD tools with a set of IPs as their component library. It may be the case that the licensed

software is altered by a rogue employee. As result, the HLS tool will generate Trojan

infected hardware which may not perform as expected after a certain time (i.e., once the

Trojan gets activated). The employee may do this to create significant economic damage

for the company or to give an attacker to access the secret key of cryptography hardware

or to create a bad name for the company. Since the hardware Trojan primarily reuses the

actual datapath components, it will be hard to detect them by the testing phase. In a

recent study [106], [26], it is shown that hardware Trojan can be inserted by the HLS tool

itself. The authors have shown that it is easy to insert HTs by the HLS tool compared to

other EDA tools like logic synthesis and physical synthesis tools. Specifically, the Black-

Hat HLS tool [106] inserts three types of HTs: battery exhaustion attack (BE) which may

increase power consumption, degradation attack (DA) to degrade the performance of the

IPs, and downgrade attack (DG) to reduce the security level of the design. Since the HLS

process transforms an un-timed C/C++ code into a timed RTL code and applies various

optimization in each of its sub-step, it is a difficult task for the formal verification tools to

find the correlation between the initial specification and the generated RTL by HLS tool

[39]. Therefore, simulation is the primary way to verify the correctness of the HLS result.

Since it does not provide complete coverage, hardware Trojan inserted during HLS may

likely be undetected.

6.1.1 Contributions

The objective of this chapter is to develop a formal HLS Trojan detection framework. Since a

HLS tool user generates RTL from an initial C specification, we can assume that the attacker

has access to both the initial C code and the corresponding RTL code. However, the attacker

does not have access to any intermediate synthesis information like scheduling of operations,

variable to register mapping information, etc. of the HLS tool. The question is “can we

detect the HLS Trojan by comparing the generated RTL with the initial C specification?”

It may be noted that our objective is not proving the equivalence between the C and the

116



HLS Trojan Detection Framework

RTL, rather, we try to find the difference between these two behaviours. This behavioural

difference may lead to yhe detection of HLS Hardware Trojans.

Our HT detection framework is developed by utilizing two of the previous works FastSim[15]

and DEEQ [16]. In [15], we have shown a way to extract a high-level behaviour from the HLS

generated RTLs. In [16], we have used that high-level behaviour of the RTL to prove the

correctness of HLS by showing the equivalence between the C and RTL. For completeness of

the chapter, we discuss the ideas of [15] and [16] and briefly here as well. However, Fastsim

or DEEQ cannot detect HLS inserted HTs. In this work, we developed a HT detection

framework by utilizing the power of them. Specifically, we are looking for any inconsistency

or difference during the extraction of a high-level behaviour from the RTL in [15] or during

equivalence checking in [16]. Once such difference or inconsistency is identified, we further

analyzed to detect the HTs. We have shown that all three HLS Trojans presented in the

Black-hat HLS tool [106] are detectable in our framework. Specifically, the contributions of

the chapter are as follows:

• A detection mechanism called BLAST for HLS tool inserted hardware Trojans [106]

is presented here. This is the first attempt to detect the HLS inserted HTs.

• A high-level behaviour extraction form RTL and a C to RTL equivalence checking

method are utilized for this purpose.

• We have shown that all HLS Trojans presented [106] can be identified by BLAST.

• A prototype of BLAST is implemented. Experimental results show the usefulness of

the proposed method.

The remainder of the chapter is organized as follows. HLS Trojan detection framework

is presented in Section 6.2. Detection of battery exhaustion, degradation and downgrade

attacks are presented in Sections 6.3, 6.4 and 6.5, respectively. Experimental results are

presented in Section 6.6. Section 6.7 presents performance of BLAST for HLS optimizations.

Section 6.8 concludes the chapter.

6.2 HLS Trojan Detection Framework

The overall flow of our HT detection framework BLAST is given in Fig. 6.1. Our method

takes C and RTL as the inputs. The high-level behaviour, called RTL-FSMD is the first
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abstract out from the Verilog RTL using the idea of [15]. The input C code is modeled

as C-FSMD. Next, the equivalence checking between input C-FSMD code and RTL-FSMD

is carried out. We can detect all three hardware Trojans inserted by the Black-hat HLS

tool [106] during this process. During RTL-FSMD extraction from the RTL, any spurious

form of operation will be identified. With further analysis, the battery exhaustion attack

can be detected. The degradation attack and the downgrade attack will be detected using

equivalence checking. The detection mechanisms are discussed in detail in the following

sections.

Vivado
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Detect BE
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Found 
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Figure 6.1: The overall flow of our HT detection framework

6.3 Detection of Battery Exhaustion Attack

Hardware circuits (especially small devices created with IPs) require a battery power source.

Managing energy utilization is a key design principle in a circuit design. Battery exhaustion

attacks can drain out power by including extra (useless) or idle functional units that use a
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considerable amount of power from the source. As a result, extra power will be consumed

by the useless functional unit when it is switched on and the battery lifetime is shortening

with no impact on the functionality.
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(d)

Figure 6.2: An example to illustrate the effect of battery exhaustion attack

6.3.1 Attack Model

In a battery exhaustion attack in [106], the idle functional Units (FUs) will be used to

drain out the power when the Trojan is activated. The number of FUs required for one

type of operation (e.g., multiplier) is determined by the maximum number of that operation

scheduled to execute in parallel in a control state. In a control state where the number of

operations scheduled is less than the number of FUs present in the datapath, some of the

FUs will remain idle in that state. These idle FUs are reused to execute some fake operations

in a battery exhaustion attack. The output of the FUs is bit-flipped and then multiplexed

with the actual input for the FU. This multiplexer is controlled by the Trojan trigger. The

results of such fake operations will not be stored in the destination register. This can be

done by disabling the write enable signal of the destination register. If no idle FU is available

in any control state, the tool may insert an additional state and implement the attack on

that state. The idea behind this attack is to trigger the combinational functionality and

enhance dynamic power consumption.
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Example 23. Let us consider the example given in Fig. 6.2. The expected datapath is shown

in Fig. 6.2(a). The inputs in1 and in2 to the multiplier are from many time multiplexed

registers. The details are not important in our context. We consider only the relevant part of

the datapath to explain the effect of the battery exhaustion attack. The datapath is modified

as shown in Fig. 6.2(b) to introduce the attack. Specifically, the output of the multiplier is

negated (i.e., bit-flipped) and is multiplexed with the actual input of the multiplier. The bit-

flipped data is stored in the register to avoid the combinational loop. These two additional

multiplexers and the registers are controlled by the Trojan trigger tj. l

The battery exhaustion attack will be detected during the RTL-FSMD extraction from

the Verilog RTL. Specifically, HLS generated RTL has a separate datapath and controller

FSM. So, in the FSMD extraction phase as explained in [15], the datapath is analyzed

for the control signal assignment of each state, and the RTL operations executed in that

particular state are identified. This way the controller FSM and datapath can be converted

into an equivalent FSMD which is nothing but a high-level behaviour. The overall idea of

the RTL-FSMD extraction process will be explained in the next subsection and how BE

attack will be detected during that phase in the subsequent subsection.

6.3.2 RTL-FSMD Extraction

In the datapath, signal flow is controlled by the control signals. For each datapath module,

input to output assignments is termed micro-operations. For example, for a multiplexer

out “ MUXpin1, in2, selq, there are two micro-operations possible, i.e., out Ð in1 and

outÐ in2 and the associated control signal assignment are sel “ 0 and sel “ 1, respectively.

Given a control signal assignment in a control state, we have a set of active micro-operations

in each transition of the controller FSM. All the assignment operations are active in all

control steps. The RT operations in each state are then obtained by application of the

rewriting method of the work [15]. Starting from a micro-operations of the form r ð rin,

the rewriting method identifies the spatial sequence of data flow needed for an RT-operation

in reverse order. The method consists in rewriting terms one after another in the right-hand-

side expression using the active micro-operations. The method stops when all the terms in

the RHS are either registers, inputs, or constants. The rewriting takes place from left to

right in a breadth-first manner.

The above process will identify the RTL operation(s) executed in a state of the controller
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FSM. The same process can be applied for each state of the controller FSM to extract the

RTL-FSMD from the RTL. We use Algorithm 1 discussed in chapter 3 and subsection 3.3.4

for the RTL-FSMD extraction process. The lines 5-9 in the Algorithm represent the rewrit-

ing process. In this method, we use a Mealy Model representation. In this model, operations

are associated with the state transition. Based on the transition condition, the operation

performed is decided.

6.3.3 Detection

The BE attack will be identified during FSMD extraction from the RTL. The idea is to

identify the Trojan pattern shown in Fig. 6.2(b) in the datapath during FSMD extraction.

The trigger to identify such a pattern is when an RTL operation of the form RÐ ␣R (bit-

flipped) is found in a state during the rewriting method. For each state si, there are some

active micro-operations. The rewriting method takes a micro-operation in which a register

Ri presents in LHS and keeps rewriting the RHS terms one by one until the RHS expression

consists only of inputs, registers, or constants. If the rewriting method starts with a micro-

operation Ri Ð w (where w is a wire signal) and stops with an RTL operation Ri Ð ␣Ri,

then we store the instance of the register in the set Rbf (set of bit-flipped register). Here,

the RHS consists only of LHS register in negation form. We perform the following analysis

to identify the attack.

We shall collect all the bit-flipped registers in a state in a set Rbf in each control state.

We shall also collect all the idle FUs (Fidle) in each control state. Let assume that the FU fi

is idle in control state sn. A FU is idle in a control state if it is not used by any of the RTL

operations in that state. The same can be identified by some additional book-keeping in

Algorithm 1. Since all the control signals have some value in each control state, data from

some registers are coming to the inputs of an idle FU as well. We now apply the rewriting

method from the output of the idle FU. This will identify the operation starting from the

idle FU output (and not from a destination register). This operation for fi is called as input

pattern to fi. If the input pattern of fi contains any register from the set Rbf , we shall

report a possible battery exhaustion attack in the state sn with all relevant details to the

user. The overall idea is that if some register’s value is bit-flipped whenever the trigger

signal is on and that register’s value is used in some functional unit and the output of the

functional unit is not utilized then that is the instance of battery exhaustion attack. The
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overall detection mechanism is presented as Algorithm 4.

Algorithm 4: Detect Battery Exhaustion Attack (RTL, sn)

Result: An instance of the battery exhaustion attack in the state sn.
1 Collect all bit-flipped registers in the state sn in Rbf from RSn (Ref Algorithm 1);
2 Collect all idle FUs in the state sn in Fidle.
3 for each Register ri in Rbf do
4 for fi P Fidle do
5 Apply the rewrite method from the output of the idle FU fi.
6 if the input pattern of fi contains any register from Rbf then
7 Report “A possible instance of battery exhaustion attack” with relevant

detail.

8 Report “No battery exhaustion attack is found in the state sn.”

Example 24. Let us now consider the example given in Fig. 6.2. Let assume that the

multiplier in Fig. 6.2(a) is idle in state s1. In FSMD, the operation in a state is placed

in the corresponding transitions from that state. Since the multiplier is idle in s1, the

register r1 will not be updated in this state. The multiplier output can be visualized as

fOut Ð in1 ˆ in2 in normal mode as shown in Fig. 6.2(c). This is the correct version

of the controller for this state transition. However, the controller FSM behaviour will be

affected by the battery exhaustion attack as shown in Fig. 6.2(d). In this case, there will

be two transitions controlled by the Trojan trigger tj from the state s1 in the HT affected

design. In a normal mode when the HT is disabled, i.e., tj is False, no spurious operation

will be executed. However, when the Trojan is triggered, the spurious operations as shown

in the transition with condition tj will be executed.

During FSMD construction, the Algorithm 4 will identify the operations r4 “ ␣r4 and

r5 “ ␣r5 in line 1 and store r4 and r5 in Rbf . Since the multiplier is idle in this state,

the rewriting method will identify the input pattern r4ˆ r5 for the multiplier. Since r4 and

r5 occur in the input pattern of the multiplier, Algorithm 4 will report a possible battery

exhaustion attack. In addition, it will also report the involved multiplexers, registers, the

FU for further debugging. l
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6.4 Detection of Degradation Attack

The IPs are reused in different applications of system design to reduce design costs. They

are excellent candidates for hardware accelerator design. Many circuit design companies

use HLS tools to create reusable IPs at high-level specifications. Therefore, an attacker

is more interested in potential modification of the IPs during the design process. In the

degradation attack (DA), the attacker inserts empty states in the controller FSM. As a

result, the performance of the IPs will be degraded when the Trojan trigger is activated.

6.4.1 Attack Model

The degradation attack inserts a few empty states (i.e., bubble) in the controller FSM. These

bubbles create a divergence in control flow (i.e. an alternative path) from a specific state si

before coming back to the next state si. The transitions are controlled by the trigger signal

of the Trojan. This alternative trace just consumes some extra clock cycles before coming

back to the original behaviour. The circuit will perform properly in a normal scenario. The

Trojan can be activated only after a predefined amount of time or in the case of a specific

input sequence. When a Trojan is activated, the alternative trace is executed and it will

slow down (i.e., degrade) the actual computation.

int FIR(int ntaps, int sum){

for(int i=0; i < ntaps; i++){

sum + = h[i] * z[i];

}

return sum;

}

Figure 6.3: C code for FIR filter

Example 25. Let us consider the FIR behaviour in Fig. 6.3. The bahaviour is simplified

by removing a few loops related to the memory read and wait for the start signal for sim-

plification. The corresponding C-FSMD obtained from the input C is shown in Fig. 6.4(a).

The RTL-FSMD obtained from the RTL-C is shown in Fig. 6.4(b). The HLS tool inserts a

bubble state t7 as shown in Fig. 6.4(b). The degradation attack creates a divergence of con-

trol flow from the state t4. In the normal scenario, the transition t4
!tj
ÝÑ t5 will be executed.

So, there will be no degradation. The execution will follow the bubble state (t4
tj
ÝÑ t7 Ñ t5)
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when the Trojan trigger tj is True. As a result, for every iteration, there will be one cycle

of degradation. The bubble is inserted inside the loop which iterates ntaps time. Therefore,

total degradation will be ntaps cycles. l

/i = 0

(a) C-FSMD

s1

s2

s3
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s5

s6
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tj/t2 = z[i]
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Figure 6.4: An example to illustrate the effect of degradation attack: (a) C-FSMD obtained from
the input C (b) RTL-FSMD obtained from the RTL after HT insertion

The DA will be detected during equivalence checking of two FSMDs (between C-FSMD

and RTL-FSMD). The DA changes the behaviour of the controller FSM. As a result, the

number of traces has increased in the RTL-FSMD and the condition of execution of some

traces has also changed. As a result, the equivalence of a few traces of C-FSMD could

not be found in RTL-FSMD. In such a situation, we will analyze to find a set of traces in

RTL-FSMD whose union is equivalent to the trace in C-FSMD. With further analysis of the

condition of executions of those traces, the DA can be detected. In the following, we briefly

discuss the equivalence checking method followed by the detection of DA.

6.4.2 C to RTL Equivalence Checking

The primary challenge in C to RTL equivalence checking is the abstraction gap between

the C and the RTL codes. Therefore, RTL-FSMD is abstracted first from the RTL using

Algorithm 1 in chapter 3. We also represent the input C using C-FSMD. How the FSMD

model can be constructed from the input C is discussed in detail in [33].
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Algorithm 5: Detect DA DG Attack (C, RTL)

Input: C is the input C to HLS, RTL is generated by a HLS tool from C
Result: Equivalent, detect degradation or downgrade attack

1 M0 = constructFSMD (C);
2 M1 = RTL-FSMD Extraction(RTL);
3 T0 = findTrace(M0); T1 = findTrace(M1);
4 while (T0 ‰ ϕ) do
5 τ0 = select a trace from T0;
6 TC = getTestcase(τ0);
7 τ1 = getCorrespondingTrace(T1, TC);
8 if ppcτ0 ” cτ1q ^ psτ0 ” sτ1qq then
9 //τ0 and τ1 are equivalent

10 removeTrace (τ1,T1);

11 else if {(cτ0 ^ cτ1‰ ϕ) ^ psτ0 ” sτ1q} then
12 Detect DA Attack (τ0, T1);//Algorithm 6
13 if (not DA) then
14 Detect DG Attack (τ0, T1);//Algorithm 7

15 else if {(cτ0 ^ cτ1 ‰ ϕ) ^ psτ0 ‰ sτ1q} then
16 Detect DG Attack (τ0, T1);//Algorithm 7

17 removeTrace (τ0, T0);

18 if (no DA or DG) then
19 Report “No attack is found”;

The Algorithm 5 is used to detect degradation and downgrade attacks. The equivalence

checking method used here is adapted from Algorithm 2 in chapter 4. The algorithm

examines whether the trace pairs of C-FSMD and RTL-FSMD are equivalent or not. In

our method (Algorithm 5), we do not use the merging compatible (traces that have the

same output) trace concept. The merged trace condition of execution is represented as the

union of traces that are merged. As a result, the effect of HTs may not be shown. However,

in the s adapted algorithm, we include techniques whose goal is to detect degradation attacks

and downgrade attacks. The algorithmic steps are described briefly below.

1. Generate all traces in both the behaviours: All the traces of both behaviours input C

(M0) and RTL-c (M1) have been extracted and assigned to the sets T0 and T1, respectively.

The tool Klee [7] has been used for this purpose. We have modified Klee’s source code to

get the symbolic the data transformation (sτ ) and the condition of execution (cτ ) of a trace

τ in M0 and M1.
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2. Find potential corresponding traces between two behaviours: For checking the equivalence

between M0 and M1, we need to check equivalence between the traces. A naive algorithm

will take Opn2q comparison (n is the number of traces in a FSMD) to find the equivalence

because it will compare each trace in M0 with all traces in M1 (to the worst case) to find

the equivalence. To reduce complexity, a data-driven approach is taken to find the potential

corresponding traces between T0 and T1. Klee gives a test case for each trace in a behaviour.

Hence, we know the values of input variables (test case) for each trace τ0 in T0. Now, we

can run T1 with this test case and find the trace τ1 which is followed for this particular test

case. Lines 5-7 of Algorithm 5 implements this idea. This data-driven approach will reduce

the complexity of equivalence checking to Opnq comparisons.

3. Equivalence checking of traces between two behaviours: Finally, the trace-wise equiva-

lence of potential correspondent traces is checked using SMT solver Z3[54] in this work. A

potential corresponding trace pair are equivalent if their respective condition of executions

and data transformations are equivalent (in lines 8-10). If they are not equivalent(in lines

12-14), we check for possible instance of degradation or downgrade attacks.

6.4.3 Detection

We can detect degradation attacks with the help of the equivalence checker tool. The tool

will give us the trace level equivalence between the C-FSMD and RTL-FSMD. As shown in

[106], this bubble effectively creates an alternative trace in the behaviour with no effective

operation inside it. Therefore, our objective is to identify such spurious traces in the RTL-

FSMD. It may be noted that each of these traces is associated with a condition (i.e., the

trigger of the Trojan) and those conditions are not present in the initial behaviour. During

equivalence checking, therefore, the equivalent trace cannot be found for these traces. Let

p : xqi ñ qjy be one path from the state qi to qj in the RTL-FSMD in which the condition

to enable the HT is incorporated by the attacker. In fact, there will be another parallel

path (or a set of paths) from qi in RTL-FSMD which is associated with the negation of the

trigger condition. It is, therefore, possible to find two (or a set of) traces in RTL-FSMD

through qi and qj whose union will be equivalent to the corresponding trace in C-FSMD.

By analyzing the conditions of these traces, the HT trigger condition will be identified.

The overall degradation attack detection mechanism is presented in Algorithm 6. The

Algorithm 6 invokes in line 12 of Algorithm 5 when the equivalence of τ0 of M0 and τ1 of
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M1 cannot be shown because the respective condition of executions are not equivalent but

their intersection is not NULL (i.e., there is some common condition of executions between

them). In Algorithm 6, we first identify a set of traces in the RTL-FSMD M1 each of them

has a stronger condition of execution than that of τ0 of C-FSMD M0. The stronger condition

of execution is indicated by implication in line 4 of the Algorithm 6. Then, we check if the

union of condition of executions of all these traces turns out to be equivalent to the cτ0 . This

indicates that some spurious traces may be added in the RTL-FSMD by the attacker for

implementing DA or DG attacks. A trace of C-FSMD can also be split into multiple traces

in RTL-FSMD during scheduling as shown in [105]. In such case, a possible DA attack will

be detected which is false positive. Therefore, a careful manual inspection of the condition

of executions of the traces will identify if any spurious HT trigger condition is added in the

RTL-FSMD.

Algorithm 6: Detect DA Attack (τ0, T1)

Input: τ0, T1

Result: Instance of the degradation (Trojan trigger condition)
1 ccomb = ϕ; //combined condition of traces
2 foreach τi P T1 do
3 check if cτi is stronger condition than cτ0 and data transformations match
4 if ((cτi Ñ cτ0 ^ sτi ” sτ0)) then
5 ccomb “ ccomb _ cτi ;

6 //check the union of the strong condition cτi is equal to condition cτ0
7 if (ccomb ” cτ0) then
8 Report “Possible degradation attack is found in T1”.

9 else
10 Report “No degradation attack is found in T1.”

Example 26. Consider the FSMDs in Fig. 6.4. During checking equivalence from the

corresponding states pair xs1, t1y, the equivalence checking method (given as Algorithm 5)

could not found any equivalence for a trace τ0 “ s1 Ñ s2 Ñ ps3
c
ÝÑ s4 Ñ s5

c
ÝÑ s6 Ñ

s3qntaps Ñ s1 of C-FSMD in Fig. 6.4(a) in the RTL-FSMD in Fig. 6.4(b). Then Algorithm

5 calls Algorithm 6 to check a possible instance of degradation attack. It found two traces

τ1 “ t1 Ñ t2 Ñ pt3
c
ÝÑ t4

tj
ÝÑ t7 Ñ t5 Ñ t6

c
ÝÑ t3qntaps Ñ t1 and τ2 “ t1 Ñ t2 Ñ pt3

c
ÝÑ

t4
!tj
ÝÑ t5 Ñ t6

c
ÝÑ t3qntaps Ñ t1 in the RTL-FSMD such that union of these two traces are
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equivalent to τ0 and cτ1 and cτ2 are stronger than cτ0. After a careful inspection of cτ1 and

cτ2, we found the trigger condition is tj. l

6.5 Detection of Downgrade Attack

A compromised HLS tool can inject a malicious functionality to access the behaviours of

the design. This malicious functionality can be used by the actual attacker to extract

useful information from the circuit. As a result, the security properties of the design like

cryptography algorithms (AES, SHA) will be compromised. The level of trust of these

algorithms depends on the number of rounds that are executed. If the algorithms execute

some rounds below a given count, the design becomes vulnerable. It is sufficient to reduce the

number of the executed round in the cryptography algorithms to compromise the security

of the algorithms.

(a)

Comp

Count in1

out1

(b)

Comp

Count

out1

in1

MUX
0 1

in2

Mux_out

trigger

Figure 6.5: An example to illustrate the effect of downgrade attack

6.5.1 Attack Model

Downgrade attack changes the functionality of the input specification. The tool might

reduce the number of the executed round in Secure Hash Algorithm (SHA) [14]. This can

be done by modifying the loop constants in the RTL or by pre-loading a value higher than

0 as the initial value of the loop iterator. As a result, the security of the algorithm will be

compromised. The value of the loop constant depends on the trigger signal of the Trojan.

For example, message pairs with a collision can be generated for the SHA algorithm when

the number of a round is reduced from 64 to 18 [113]. The following example explain the

downgrade attack (DG).
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Example 27. Let us consider the example given in Fig. 6.5. Consider the datapath shown

in Fig. 6.5(a). The input in1 (an input that determines the loop bound) and count (loop

variable) are inputs to the comparator and the output determines whether the loop body will

be executed or not. We consider only the relevant part of the datapath to explain the effect

of a downgrade attack. The datapath is modified as shown in Fig. 6.5(b) to introduce the

attack. Specifically, an extra constant (i.e., in2) is introduced and is multiplexed with in1.

The output of the multiplexer depends on the trigger condition of the HT. If the trigger

condition is True, the loop will iterate in2 times instead of in1 times. The value of the loop

bound is changed based on the trigger condition. l

Algorithm 7: Detect DG Attack (τ0, T1)

Input: τ0, T1

Result: Instance of the downgrade (Trojan trigger condition)
1 ccomb = ϕ; //combined condition of traces
2 foreach τi P T1 do
3 //check if cτi is stronger condition than cτ0
4 if (cτi Ñ cτ0) then
5 ccomb = ccomb _ cτi ;

6 //check the union of the strong condition cτi is equal to condition cτ0
7 if (ccomb ” cτ0) then
8 Report “Possible downgrade attack is found in T1”.

9 else
10 Report “No downgrade attack is found in T1.”

#define nb 64

int AddRoundKey(int stmt[nb], int

ret[nb]){

for(int i=0; i < nb; i++){

stmt[i*4] = ret[i*4];

}

}

(a)

#define nb 64

int AddRoundKey(int stmt[nb], int

ret[nb]){

nb = tj? 32 : nb;

for(int i=0; i < nb; i++){

stmt[i*4] = ret[i*4];

}

}

(b)

Figure 6.6: (a) C Code from AES before adding tj, (b) Representative RTL-C after downgrade
attack
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Since the functionality has changed in this attack, our equivalence checking method will

report a possible non-equivalence between the C-FSMD and the RTL-FSMD. In addition

to that, the traces for which equivalence could not be found by the method will also be

reported. These traces are corresponding to the block where functional changes are made

by the tool. An attacker in the foundry or a rogue user can activate the Trojan after a

predefined amount of time or by a specific input sequence. With the careful inspection of

this information, the user can pinpoint the Trojan inserted by the HLS tool.

(a) (b) 

 !(i<nb)

S1

S2

S3

S4

   

i=0
nb = 64

 i < nb
   

stmt[i*4]= ret[i*4]

i = i + 1

t1

t2

t3

t4

t5

  

 i=0
   
   

   !tj/nb=64
   

stmt[i*4]= ret[i*4]

i = i + 1

   tj/nb=32
   

i < nb

!(i < nb)

Figure 6.7: An example to illustrate the effect of downgrade attack: (a)C-FSMD (M0) obtained
from the input C (Figure 6.6(a)) (b) RTL-FSMD (M1) obtained from the RTL-C (Figure 6.6(b))

6.5.2 Detection

Downgrade attack (DG) compromises the circuit behaviour only when the Trojan is acti-

vated. As long as the Trojan trigger is not activated, the design produces correct results and

the Trojan stays undetected. We use our equivalent checker tool to detect the HT trigger

condition for DG. In a DG attack, the number of traces in M0 and M1 are different due to

the HT trigger condition. Specifically, M1 contains more traces than that of M0. The overall

downgrade attack detection mechanism is presented in Algorithm 7. Algorithm 7 is invoked

in Algorithm 5 when our equivalent checker could not find equivalent of a trace of τ0 of M0

in M1 in two scenarios (in line 13 and in line 15). In the former case (line 13), the respective

condition of executions have some overlapping but are not equivalent but the data trans-

formations are equivalent. In the latter case (line 15)), both conditions of executions and

the data transformations are not equivalent. In Algorithm 7, we first identify a set of traces

τi in the RTL-FSMD for which the condition of execution is stronger (stronger condition
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is indicated by implication) than that τ0. Then, we check if the union of the condition of

executions of all these traces ccomb turns out to be equivalent to the condition of executions

of cτ0 . This indicates that some spurious traces may be added to the RTL-FSMD by the

attacker for implementing the DG attack. By a careful analysis of the traces involved in

ccomb, we can figure out the spurious HT trigger condition of the downgrade attack, and the

value of the loop counter is changed.

i = 0
nb =64

(a) 

s1

s1

stmt[0] = ret[0]

stmt[4] = ret[4]

stmt[63*4] = ret[63*4]

(b) 

i = 0

t1

t1

stmt[0] = ret[0]

stmt[4] = ret[4]

stmt[31*4] = ret[31*4]

tj/nb =32

. . .

i = 0

(c) 

t1

t1

stmt[0] = ret[0]

stmt[4] = ret[4]

stmt[63*4] = ret[63*4]

!tj/nb =64

. . .

Figure 6.8: An example to illustrate the effect of downgrade attack: (a) Trace of τ00 from C-
FSMD obtained after unrolling (nb = 64) (b) Trace of τ10 from RTL-FSMD obtained after unrolling
(nb = 32) (c) Trace of τ11 from RTL-FSMD obtained after unrolling (nb = 64)

Example 28. Consider the input C-code and the corresponding RTL-C (after HLS tool

inserts Trojan) as shown in Fig. 6.6(a) and Fig. 6.6(b), respectively, and their corre-

sponding FSMDs are shown Fig. 6.7(a) and Fig. 6.7(b), respectively. The traces of the

respective behaviours are shown in Fig. 6.8. Specifically, the C-FSMD has one trace and

the RTL-FSMD has two traces. During equivalence checking between traces in M0 and M1,

the equivalence of τ00 could not be found. But, the Algorithm will select τ10 (or τ11) and

Algorithm 7 will be called in line 13 (or line 15). Since cτ10 and cτ11 are stronger than cτ00

and pcτ10 _ cτ11q ” cτ00, the Algorithm 7 will report a possible DG attack. After a careful in-

spection of the data transformation and condition of execution of of τ10 and τ11, we identify
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that the hardware Trigger condition tj and the value of loop count (variable) is decided by

tj. The loop executes a reduced number of rounds (from 64 to 32) in case of HT activated.

In addition to loop count, the actual operations are also affected by the modification of the

loop count. l

6.6 Experimental Results

Implementation detail and Experimental setups: Our HT detection framework BLAST is

implemented in Python. The BLAST first extracts an abstract syntax tree (AST) from the

Verilog using pyVerilog [9] parser and then implemented the rewriting method on the AST

to obtain the RTL-FSMD. Specifically, we have adapted the FastSim [15] to extract the

RTL-FSMD in our work. The RTL-FSMD of our flow and the RTL-C of FastSim represents

the same reverse engineering high-level behaviour of RTL. The C-FSMD is extracted from

the input C behaviour. The experiments have been performed on a machine with a CPU:

Intel Core i7, 2.5GHz, and 8GB RAM on a set of HLS benchmarks. We have used the

Vivado HLS tool [10] to generate Verilog RTL for the benchmarks written in C. We then

manually inserted all three hardware Trojans (battery exhaustion, degradation, and down-

grade attacks) on the RTLs and generate various versions of the RTL1. In battery exhaustion

attack, the attacker is interested in compromising the execution of the design by draining

out the power. In HLS, the number of FUs presented in datapath is greater or equal to

the number of operations scheduled in a control state. As a result, some of the FUs will

remain idle in some control states. We reused these idle FUs to execute fake operations

to implement a battery exhaustion attack in the HLS generated RTLs. If no idle FUs are

available, we manually inserted an additional state in the control FSM and implemented the

attack on that state. In the case of degradation attack, we inserted a few empty states in the

control FSM and add the corresponding transitions. These empty states create alternative

paths in the behaviour when a Trojan is activated. The alternative path consumes extra

clock cycles. As a result, it will slow down the actual computation. In downgrade attack,

we identified the loop bound constant. We provided an additional constant to control the

loop iterations. We then added the HT trigger condition to activate the HT scenario. We

have not added any trigger circuit in the RTLs to activate the HTs. We perform the RTL

1The BlackHat HLS tool [106] is not available online. Therefore, we have implemented the same idea
on the Vivado HLS generated RTLs.
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simulation to ensure the functional correctness of the modified RTLs when the HTs are not

activated and the desired behaviours when the HTs are activated.

Table 6.1: Experimental Results of Battery exhaustion degrade, and downgrade attacks for dif-
ferent high-level synthesis benchmarks

Bench
Type #C #RTL #RTLC #TC-SC #TC-RTLC #Instance #DT (s)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Parker
BE 56 235 366 12 271 2 2.304
DA 63 200 358 12 311 1 133.300

Waka
BE 34 309 741 3 2 1 1.802
DA 34 294 646 3 5 1 2.46

ARFNC
BE 53 381 844 4 6 1 2.002
DA 65 385 971 4 8 2 3.887

ARFNB
BE 62 477 1559 1 2 2 1.76
DA 62 455 1680 1 2 2 2.63

Motion
BE 50 395 339 1 1 2 2.248
DA 50 376 1056 1 2 1 3.152

Array add
BE 19 285 790 1 2 1 0.064
DA 19 263 614 1 2 1 0.299
DG 19 275 541 1 2 2 0.101

FMM
BE 30 446 1716 81 93 2 0.147
DA 40 419 1955 81 16 2 191.401

Find min BE 40 208 376 128 63 1 753.347
DA 40 187 354 128 66 1 789.835

DFadd DA 554 1724 2132 67 69 1 797.3

AES BE 979 2799 4784 - - 1 0.487

DES BE 354 2330 2856 - - 1 0.439

Experiments: We evaluated our method on a variety of HLS benchmarks (Waka, Motion,

Parker, Array add, Find min, FMM, and auto-regressive lattice filter with branch (ARFNC)

and without branch (ARFNB)), each of them is written in C-code. The benchmarks are

taken from the distribution of Bambu HLS [2]. The experimental results of our benchmarks

are shown in Table 6.1. The 2nd (type) and 3rd (#C) columns show the type of attacks and

the number of input C code lines for each benchmark, respectively. We have recorded the

number of code lines (#RTL) of RTL and the number of code lines (#RTLC) of RTL-C

in 4th and 5th columns, respectively. The 6th and 7th columns are the trace count (#TC)

in the source C and RTL-C, respectively. It may be noted that the trace count is not
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Table 6.2: Comparisons of area overhead for RTL (original) with respect to the RTL(BE),
RTL(DA) and RTL(DG)

Bench
mark

Device
utilization

RTL codes
RTL

(Original)
RTL
(BE)

Overhead
RTL
(DA)

Overhead
RTL
(DG)

Over
head

Parker

#Slices 332 366 +0.55% 340 +0.13% - -
# Flip Flops 108 166 +0.47% 120 +0.1% - -

#LUTs 624 697 +0.59% 635 +0.12% - -

Waka

#Slices 345 398 +0.86% 354 +0.14% - -
# Flip Flops 196 228 +0.26% 207 +0.09% - -

#LUTs 657 754 +0.79% 662 +0.04% - -

ARFNB

#Slices 2292 2315 +0.37% 2304 +0.2% - -
# Flip Flops 728 840 +0.91% 810 +0.67% - -

#LUTs 4163 4220 +0.47% 4198 +0.29% - -

ARFNC

#Slices 309 328 +0.31% 315 +0.1% - -
# Flip Flops 325 387 +0.51% 340 +0.13%

#LUTs 464 512 +0.39% 489 +0.2%

Motion

#Slices 1008 1882 +14% 1774 +12.5% - -
# Flip Flops 458 599 +1.14% 529 +0.59% - -

#LUTs 1659 3362 +13.86% 3032 +11.17%

Array add

#Slices 21 87 +1.1% 31 +0.16% 21 +0.0%
# Flip Flops 20 90 +0.57% 32 +0.1% 25 +0.04%

#LUTs 61 183 +0.99% 91 +0.24% 57 -0.036%

FMM

#Slices 145 168 +0.37% 159 +0.23% - -
# Flip Flops 113 157 +0.31% 139 +0.21% - -

#LUTs 271 307 +0.3% 292 +0.2% - -

Find min

#Slices 316 347 +0.51% 331 +0.25% - -
# Flip Flops 143 167 0.2% 157 +0.12% - -

#LUTs 271 293 0.17% 307 +0.3% - -

DFadd

#Slices 1897 1955 0.93% 1923 0.42% - -
# Flip Flops 1055 1135 0.65% 1107 0.43% - -

#LUTs 3655 3710 0.47% 3689 0.32% - -

AES

#Slices 1600 1654 0.88% 1625 0.41% - -
# Flip Flops 1491 1552 0.56% 1519 0.24% - -

#LUTs 2135 2210 0.64% 2175 0.40% - -

DES

#Slices 2294 2355 0.97% 2318 0.46% - -
# Flip Flops 2378 2415 0.65% 2397 0.16% - -

#LUTs 3490 3542 0.85% 3508 0.15% - -
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measured for BE attack since it is identified in RTL-FSMD extraction. The number of

instances (#instance) of HT insertion is given in column 8th. The column 9th represents the

HT detection time (in seconds) by our tool BLAST. Each row (BE/DA/DG) represents a

battery exhaustion/degradation/downgrade HT scenario created from the original RTL. In

the case of an exhaustion attack, the detection time is less compared to other attacks because

BE attack is identified during the FSMD extraction phase. For the FMM example, although,

the traces are high in FMM, the BE attack in FMM is detected in the FSMD extraction

phase itself. So, equivalence checking is not needed to detect BE attacks in FMM. The DA

attack detection takes more time in Parker, Find min, and FMM, as compared to the DA

attack detection in other test cases because the equivalence checking, is taking more time

since the number of traces are more in Parker, Find min, and FMM compared to other test

cases. In all cases, HT attacks are correctly detected by our proposed method. Generally,

the detection time for our framework is not high. We have tested that the runtime of our

tool is not much impacted by the applications of HLS optimizations on our benchmarks

since the overall steps to be checked are mostly the same in all cases.

HT Overheads: We synthesized the original RTL code (RTL(original)), RTL code after

the inclusion of BE (RTL(BE)), DA (RTL(DA)), and DG (RTL(DG)) to check the resource

utilization overheads of HT implementation. We evaluated the attacks implemented in Vi-

vado HLS generated RTL code. All the designs were synthesized for Virtex4 XC4VCX15

series FPGA. From the device utilization summary report obtained after synthesis, we cal-

culate the overhead (Slices, Flipflop and LUT) needed by the additional logic added to

implement BE, DA, and DG in the original RTL. Table 6.2 presents device utilization

summary and area overhead of RTL(BE), RTL(DA) and RTL(DG) as compared to the

RTL(original). As shown, the hardware needed to implement RTL(BE), RTL(DA), and

RTL(DG) is slightly more than the hardware needed to implement RTL(original). The

area overhead is less than 1% in most cases. In general, these results show that the HTs

minimally impact the area. Similarly, a comparison of minimum input arrival time before

clock (MIATBC), maximum output required time after clock (MORTAC), and maximum

combinational path delay (MCPD) of RTL(BE) and RTL(DA) compared to RTL(original)

obtained from timing report after synthesis and extra delay added by the inclusion of HTs

is shown in Table 6.3. This report only provides estimated results. It can be observed

that on an average 1ns increase in the delay. Hence, we conclude that extra logic added to

implement HTs into the original RTL minimally impacts the area and speed of the design.
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Table 6.3: Comparisons of increase in delay for RTL (original) with RTL(BE) and RTL(DA)

Benchmark
Time

Summary(ns)

RTL codes
RTL

(original)
RTL (BE)

Increase
in delay

RTL (DA)
Increase
in delay

Parker
MIATBC 6.425 7.724 1.299 7.969 1.544
MORTAC 10.785 11.857 1.072 11.913 1.128
MCPD 9.625 10.574 0.949 10.689 1.064

WAKA
MIATBC 5.585 6.714 1.129 6.925 1.340
MORTAC 7.921 8.985 1.064 9.566 1.645
MCPD 7.243 8.123 0.880 8.964 1.721

Motion
MIATBC 9.265 10.148 0.883 10.282 1.017
MORTAC 12.709 13.814 1.105 13.965 1.256
MCPD 9.869 10.871 1.002 11.120 1.251

Array add
MIATBC 2.151 4.179 2.028 4.653 2.502
MORTAC 5.212 6.871 1.659 6.789 1.577
MCPD 4.947 5.986 1.039 6.125 1.178

DFadd
MIATBC 2.880 4.200 1.320 4.542 1.662
MORTAC 5.330 6.812 1.482 7.152 1.822
MCPD 4.947 6.100 1.153 6.512 1.565

AES
MIATBC 1.900 2.810 0.91 3.010 1.110
MORTAC 5.781 6.662 0.881 6.753 0.972
MCPD 4.977 6.170 1.193 6.341 1.364

DES
MIATBC 2.891 3.743 0.852 3.934 1.043
MORTAC 5.542 6.336 0.794 6.482 0.94
MCPD 4.943 5.891 0.948 5.982 1.039

6.7 Performance of BLAST for HLS Optimizations

Modern day HLS tools are equipped with various software and hardware oriented optimiza-

tions to provide efficient hardware from a given C/C++ behaviour. In the front-end of the

HLS tool, a compiler like GCC or LLVM is used to parse the input bahaviour. Since these

C/C++ compilers consist of hundreds of software code optimizations, they are now avail-

able in the HLS tool. On the other hand, the HLS tool applies various hardware oriented

optimizations like array partitioning, loop pipelining, loop unrolling, data flow optimiza-

tions, etc. in the back-end of HLS to make the input C/C++ code hardware efficient. In

this section, we have analyzed how HLS optimizations affect the performance of the BLAST

framework.

The BLAST has two phases - an RTL-FSMD extraction phase and a C to RTL equiva-
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lence checking phase. The RTL-FSMD extraction phase is relied on the FastSim [15] tool.

This tool is equipped to handle all kinds of optimizations applied in HLS. To detect BE

attack, BLAST essentially adds a module (i.e., Algorithm 4) in FastSim flow to analyze the

BE attack in presence of bit-flipped operations in a state as discussed in Subsection 6.3.3.

Therefore, the BE attack can be detected by BLAST irrespective of what HLS optimiza-

tions are applied by the HLS tool. Since BLAST analyzes the RTLs generated by the HLS

tool in a state-wise manner of the controller FSM, the run time of BE attack detection is

not impacted much by the applications of HLS optimizations. Usually, the BE attack is

identified in seconds.

The DA and DG attacks detection rely on the C to RTL equivalence checking in which

the RTL-FSMD extracted in the phase one is formally compared with the input C be-

haviour (i.e., C-FSMD). Since BLAST checks the trace level equivalence between these two

behaviours, a major change in the control flow due to HLS optimizations will impact DA

and DG attacks detection probability. The front-end optimizations like constant propaga-

tion, copy propagation, common sub-expression elimination, dead code elimination, static

single assignment, code motion, operator strength reduction (e.g., multiplication by con-

stant is replaced by left shift by constant), etc. mostly impact the data dependence in the

behaviour. Such optimizations do not impact much on the control flow of the input be-

haviour. Therefore, the performance of BLAST won’t be impacted by applications of such

software optimizations in the front-end of the HLS.

Let us now discuss the hardware oriented optimizations. The array partitioning es-

sentially breaks an array into multiple arrays to map them into multiple RAMs in order to

improve memory access time. The array merging is the reverse process of array partitioning.

In our case, the RAMs are represented as arrays in RTL-FSMD. So, we have two behaviours

where the number of intermediate arrays are different. The control structure of the input be-

haviour is not impacted by this optimization. Therefore, array partitioning/merging won’t

impact our DA and DG detection. Loop unrolling unrolls the loop of input C. In algorithm

5, we use Klee to identify traces in the behaviours. Klee unrolls loops to identify the traces.

Although loop unrolling changes the control structure, it won’t impact the detection of DA

and DG attacks in BLAST since loops are unrolled during detection.

The loop pipelining creates multiple stages within a state where each stage works on

the data of different iterations of the loop. This helps in running the multiple iterations of

the loop in parallel to improve the latency. For a pipelined function, the pipelined stages
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stage1:

a = I1 + 10;

b = I2 + 5;

stage2:

c = a + b;

state3:

d = c * c;

(a)

State 1:

//Code to update stage1, stage2 and stage3 flags

a_t = a, b_t = b, c_t = c;

if(stage1){

a = I1 + 10; b = I2 + 5; }

if(stage2)

c = a_t + b_t;

if(stage3)

d = c_t * c_t;

(b)

Figure 6.9: Representation of pipelined loop in C

work in a similar manner. The FastSim creates a sequential representation of the pipelined

stages with suitable logic to handle the inherent dataflow among the subsequent stages.

Consider the example in Fig. 6.9 to understand the fact. Assume the operations within a

loop body are scheduled in three pipeline stages as shown in Fig. 6.9(a). The corresponding

RTL-FSMD behaviour is shown in Fig. 6.9(b). Each pipeline stage is activated by a flag.

In the first clock, only stage 1 is active and in the second clock, both stage 1 and stage

2 are active. From the third clock, all stages are active. FastSim copies the value of each

intermediate variable into a temporary variable and uses them in the right-hand expression

of the operations. Consequently, at ith clock, stage 1 works on ith inputs, stage 2 works on

the pi´1qth data and state 3 works on pi´2qth data. During equivalence checking between C-

FSMD and RTL-FSMD, such pipelined loop will result in a single trace. The corresponding

loop of C-FSMD also results in a single trace. Thus, there won’t be any change in the

control flow between C-FSMD and RTL-FSMD in presence of loop pipelining. Therefore,

BLAST can detect DA and DG attacks in presence of loop and function pipelining.

In data-flow optimization, the producer-consumer relation between various modules in

the input C code is identified and such modules are executed in parallel in RTL. The

first-in-first-out (FIFO) or Ping-Pong buffer is used between a producer-consumer pair for

asynchronous data communication between them. To model such parallel behaviour in

RTL-FSMD (which is a sequential behaviour), we extract the RTL-FSMD for each module

first. We then generate a global RTL-FSMD in which one of the states of each module will

be executed in each clock1. The next state to be executed in a module is determined by the

state transition of RTL-FSMD of the corresponding module. The detail of such modeling

1Since RTL-FSMD is a cycle accurate model, operations executed in each clock can be tracked.
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may be found in [15]. Since the control flow of the RTL-FSMD in presence of data flow

optimization is completely different from that of the C-FSMD, BLAST cannot detect DA

or DG attach in such a scenario. Specifically, the Algorithm 5 returns false-negative (in

line no 19) if dataflow optimizations are applied. In general, if the control flow of the input

behaviour is modified significantly by HLS, BLAST may return false-negative results. We

have used Klee to obtain the traces in a program (line 3 of Algorithm 5) and Z3 SMT solver

for checking the equivalence of traces in our Algorithms. So, the run time of BLAST largely

depends on these two tools to detect DA and DG attacks.

6.8 Conclusion

In this Chapter, we presented the BLAST framework to detect high-level synthesis tool

inserted Hardware Trojan in the RTL. The strength of our detection framework is the

ability to construct a C-like behavioural specification from the RTL generated by the HLS

tool. This helps us to correlate the RTL with the input C-specification. We have shown

that all three Trojan inserted by the Black-hat HLS tool are detected in our framework.

Our framework will identify the possible instances of the HT. The developer can identify

the actual HT with further analysis. We have also analyzed the area and delay overheads of

our benchmarks. We concluded that the inclusion of HTs minimally impacts the area and

the delay. The experimental results for a commercial HLS tool for several HLS benchmarks

show that our method can efficiently detect the attacks automatically without taking any

information from the HLS tool.

Based on the impact of HTs, they can be categorized into (i) change functionality (ii)

degrade performance (iii) leak information, and (iv) denial of service. While denial of service

type HT will be hard to implement at HLS, the others HTs are possible. In fact, the BE at-

tack degrades performance by consuming more power, the DA attack degrades performance

by increasing the latency of the design and the DG attack changes the functionality. Similar

to BE and DA attacks, the other attacks can also be formulated to leak information about

secret data in terms of power or latency. The novelty of our work lies in the fact that we

have identified the generic impacts of the HTs at a higher abstraction level. Specifically,

the HTs result in either (i) executing spurious bit-flipping operations around an idle FUs

in a state, or (ii) any HT trigger condition effectively creates branches in the controller

FSM. This results in a situation where a set of traces are created from a single trace of the
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input behaviour. The approach proposed in this work is trying to find these two scenarios.

Therefore, BLAST be should able to detect any kind of HTs that changes functionality or

degrades performance, or leak information.
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7
Conclusions and Future Work

In this chapter we summarize the work done, highlight the contributions, and suggest the

directions for possible future work.

7.1 Summary of Contributions

The contributions of this thesis are summarized below:

FastSim - A Fast Simulation Framework for High-Level Synthesis: The state-of-the-

art commercial HLS tools provide C simulation and RTL co-simulation framework for be-

havioural and functional design verification. The RTL co-simulation incurs undesirable

time overhead and the hardware’s detailed cycle accurate simulation of the RTL is incom-

prehensible to non-FPGA experts. Consequently, some research works have been devoted

to converting synthesizable Verilog RTL to C/C++. However, the generated C/C++ code

is complex in terms of comprehension of code behaviour and incurs performance hampering

redundancies and also is not cycle accurate and is not capable to estimate design perfor-

mance. In Chapter 3, we presented an automatic cycle accurate and performance estimation

simulation framework FastSim for HLS generated RTL to C conversion. The Verilog RTL

is represented as an abstract syntax tree (AST) format using the PyVerilog [9] library and

the replacement of the C incompatible constructs of Verilog like bit-select and part select
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with equivalent compatible representations is done on AST. Next, the register transfer op-

erations at each control step of the controller FSM is identified to generate an equivalent

FSMD code. Finally, the FSMD code and the variables, controller state, RTL operations,

etc. are mapped into appropriate data types and the equivalent C code. FastSim is equipped

to handle the impact of advanced optimizations like loop pipelining, data-flow, and other

optimizations available in modern day HLS tools. It is shown through experimentation

that our tool is cycle accurate, ensures RTL correctness, and on an average around 300

times faster simulation compared to RTL simulators and comparable performance to that

of software C simulators.

DEEQ: Data-driven End-to-End EQuivalence Checking of High-level Synthesis: Although

HLS comes with huge advantages, it is still a complex translation process to generate RTL.

As a result, its correctness becomes a major barrier to its wide adaptation. Therefore, devel-

oping techniques to check equivalence between a behavioural specification and its synthesized

RTL implementation is critical for wide applications of HLS. Although many path-based

approaches have been proposed for verification of HLS, the end-to-end (input C/C++ code

and its corresponding RTL) equivalence checking of HLS is not well established yet. In

Chapter 4, we presented a HLS verification framework called DEEQ for C to RTL equiv-

alence checking. In the proposed method, a high-level specification is extracted from the

RTL. We introduced merging compatible traces within a behaviour, finding corresponding

traces between two behaviours using a data-driven approach, and formulating a satisfiabil-

ity problem that is strong enough to prove the equivalence of corresponding traces of input

C/C++ and corresponding RTL. Correctness issues of the method have been dealt with.

The experimental results also show that our framework DEEQ can validate the end-to-end

equivalence for a commercial HLS tool for several benchmarks.

REVAMP: Reverse Engineering Register to Variable Mapping in High-level Synthesis:

The variables of a high-level behaviour are mapped to hardware registers during register

allocation (RA). Reverse engineering such mapping is a challenging task due to possible one

register may store more than one variable provided their lifetimes do not overlap or one

variable may be split into more than one register for better mapping. Daikon and SMT

based frameworks for reverse engineering of the register to variable mapping in high-level

synthesis are presented in Chapter 5. In the Daikon based framework, first, we introduced a

method to extract schedule C code from the scheduling information. We also presented how

to use Daikon to find invariants at each state on the combined program (Schedule C code
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(SD-C) and high-level behaviour (RTL-C) from the RTL). Then the state-wise mapping

between registers in RTL-C and variables in SD-C is extracted. Since Daikon based reverse

engineering of the register to variable mapping relies on Daikon’s invariant generation, there

is no formal guarantee of the mapping obtained. In SMT based frameworks for reverse

engineering of the register to variable mapping, we use SMT solver Z3 to find the register to

variable mapping. Specifically, the mapping between the variables of the input C code and

the registers of the RTL is extracted in this method. The mapping problem is formulated

as SAT on the SSA versions of C and RTL-C. Although there is a formal guarantee of

the correctness of the extracted mapping, scalability is not guaranteed. The prototypes

of both frameworks have been implemented and tested on several HLS benchmarks. With

this mapping information, we can rewrite the RTL-C code in terms of variables and finally

generates an equivalent C-code. Experimental results showed that the proposed frameworks

could generate equivalent C code from RTL in reasonably small time.

BLAST: Belling the Black-Hat High-level Synthesis Tool: Due to the increasing cost of

ICs manufacturing foundries, most ICs manufacturing companies do not have their own

foundry. As a result, most of the ICs companies outsource the fabrication of the ICs to a

third-party foundry. Manufacturing ICs from a third-party raised concerns over potential

malicious modification of the ICs (Hardware Trojans) during the fabrication process. The

HTs may also be inserted in any phase of the design cycle by an untrusted computer aided

design (CAD) synthesis tool. Most of the HTs are hard to detect since they are activated

by a rare condition. Since the HTs may be inserted at any phase of the design cycle, it

is important to detect them early in the design process. In Chapter 6, we proposed a

formal framework for HLS Trojan detection. Specifically, the framework can detect battery

exhaustion attacks, degradation attacks, and downgrade attacks inserted by a malicious HLS

tool. Specifically, BLAST detects HTs at RTL. A battery exhaustion attack is identified

during FSMD construction from the RTL. The equivalence checking method proposed in

this chapter can detect degradation attacks and downgrade attacks. We also have analyzed

the area and delay overheads of our benchmarks after inclusion of HTs, and inclusion of

HTs minimally impacts the area and the delay. The experimental results show that our

methods detect HTs of the black-hat HLS tool.

.
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7.2 Future Perspectives

In this section, possible future works for further improvement of the proposed methods and

possibilities of application of our method in other domains are discussed.

• Enhancement of FastSim: The work in Chapter 3 of this thesis presented a framework

called FastSim for the conversion of HLS generated Verilog RTL to equivalent C code.

However, our current version of FastSim cannot handle datawidth more than 64 bits.

Our framework FastSim can further be enhanced to handle data width more than 64

bits. In addition, the current version of our simulator fails to simulate hierarchical

task level pipelining and sequence of level triggered operations in a single state. In

future, we would like to improve FastSim to accommodate such pipeline variants by

extending our approach given in Chapter 3. Finally, we also plan to make FastSim a

complete open source package for industrial and academic HLS design verification.

• Scalability of DEEQ: The work presented in Chapter 4 of this thesis is the first one

completely automated framework for C to RTL equivalence checking for HLS without

taking any input from the HLS tool. However, our current version of DEEQ needs

scalability improvement. We observed that SMT solver fails to show the equivalence of

traces. In future, we plan to use techniques like invariant-sketching and query decom-

position of the SMT formula [51] to further improve the scalability of our equivalence

checker.

• Detection of other hardware Trojans: The hardware Trojans detection framework

BLAST proposed in Chapter 6 can detect all three HLS Trojans presented in the

Black-hat HLS tool [106]. Currently, we manually inserte hardware Trojans (battery

exhaustion, degradation and downgrade attacks) on the RTL and generate various ver-

sions of the RTLs. In the future, we plan automate this process on the HLS generated

RTLs. We plan to use the scheduling information to insert a predefined number of

bubbles defined by the HLS developer automatically. In the case of battery exhaustion

attack, the idle functional units in each clock cycle can be determined from the allo-

cation and binding information of HLS. In the future, we also plan to develop other

possible hardware Trojans that can be inserted by HLS tool in our automated HT

insertion framework and then check if BLAST can detect such new hardware Trojans.
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• Fuzzing the HLS tool: It has been identified that HLS tools are inherently prone to

introducing bugs in the final RTL functionality [37]. Recently a fuzzing [72] campaign

on four popular HLS tools reveals that “all four HLS tools can be made to generate

wrong designs from valid C programs and one tool could be made to crash”. In [72],

HLS tools are run on automatically generated C programs and is checked whether

that the RTL generates the same output as the input C program. Although fuzzing

usually does not check the correctness of the output, this work reveals an interesting

approach to find bug in HLS tool. This work fuzzes the HLS tool rigorously. However,

it is also important to rigorously fuzz the RTL produced by an HLS tool from an real

application to find if there is any corner bugs in the RTL. Since RTL simulation is

slow, the recent trend [122] is to generate a C model from RTL and fuzz the RTL

using software fuzzing tools. So, the RTL-C obtained from HLS generated RTL in

this work can be used to fuzz the RTL at the software level to identify bugs. It will

be interesting to explore how an RTL bug is behaved in software level Fuzzing.

• Reporting Critical Path at Behavioural Level: In circuit design, the critical path is the

longest combinational path in the circuit must be completed within the target clock

period. If a critical path delay is greater than the target clock period, measures has

to be taken to reduce critical path delay. In context of HLS, if generated RTL does

not meet the target clock period, the user has to apply appropriate optimizations or

sometime has to rewrite the input specification to improve the timing of the resultant

RTL. Therefore, identifying and reporting critical paths in a C equivalent behaviour

of RTL (RTL-C) would help the algorithm developers to take appropriate measure at

higher abstraction level. This could be another interesting application of our reverse

engineering framework.

• Critical Path Aware HLS Locking: To mitigate an attacker from IP piracy and coun-

terfeiting, the RTL obfuscation/locking technique can be applied. Logic locking is a

technique by which the underlying intellectual property of hardware is modified to

intentionally conceal or lock its functionality in order to prevent an untrusted party

from reverse-engineering the hardware design. In recent time, there is an interesting

use of HLS tool for hardware obfuscation to create secure description at structural and

functional level. the logic locking can be performed on input C [22], during HLS [108]

or at the output RTL [78]. However, these methods lock design without knowing the
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critical path of the design. Precisely, these technique inserts logic for keys by randomly

picking constants, operations or constants from the specification. Although, the area

overhead is not significant of such locking, the additional logic may be inserted into

the critical path of the design. As a result, it might make the critical path worse. In

order to minimize timing degradation due to logic locking, such insertion should be

done only on noncritical paths. To achieve that, the critical path information must be

available at C or during HLS. One approach could be run HLS once on the input C,

identify the critical paths, lock C accordingly or instruct HLS tool not to add locking

in certain positions and run HLS again. Identifying the critical paths and reporting

them to C level, our RTL to C reverse engineering process will be useful.

7.3 Conclusion

This dissertation presents an automatic RTL to C reverse engineering frameworks by tak-

ing advantages of the RTL structure generated by the HLS tool. Our generated RTL-C

code guarantees fast simulation, functional correctness of the RTL, cycle accuracy, accu-

rate performance estimation and generate a highly readable and debug friendly simula-

tion code. We have shown four applications of our reverse engineering framework. We

truly believe that our FastSim framework has the potential to influence future HLS sim-

ulation routines. We are pretty sure it will stimulate further works in the field of high-

speed simulators for HLS. To make it happen, we make our existing results available at

https://github.com/ckarfa/FastSim.
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[118] A. M. Sllame and V. Drábek. An efficient list-based scheduling algorithm for high-level

synthesis. Proceedings Euromicro Symposium on Digital System Design. Architectures,

Methods and Tools, pages 316–323, 2002. [Pg.6]

[119] S. Soldavini, S. L. Alarcón, and M.  Lukowiak. Using reduced graphs for efficient hls

scheduling. In 2020 IEEE International Symposium on Circuits and Systems (ISCAS),

pages 1–5, 2020. [Pg.6]

[120] R. Stewart, K. Duncan, G. Michaelson, P. Garcia, D. Bhowmik, and A. Wallace. Ripl:

A parallel image processing language for fpgas. ACM Trans. Reconfigurable Technol.

Syst., 11(1), mar 2018. [Pg.11]

[121] S. Takamaeda-Yamazaki. Pyverilog: A python-based hardware design processing

toolkit for verilog hdl. In Applied Reconfigurable Computing, volume 9040, pages

451–460, Apr 2015. [Pg.63]

[122] T. Trippel, K. G. Shin, A. Chernyakhovsky, G. Kelly, D. Rizzo, and M. Hicks. Fuzzing

hardware like software. CoRR, abs/2102.02308, 2021. [Pg.145]

[123] R. Walker and S. Chaudhuri. Introduction to the scheduling problem. IEEE Design

Test of Computers, 12(2):60–69, 1995. [Pg.6]

[124] Xilinx. Xilinx Kintex 7 series FPGA configuration manual, 2018. [Pg.64]

[125] S. ya Abe, M. Yanagisawa, and N. Togawa. Energy-efficient high-level synthesis for

hdr architectures. Information and Media Technologies, 7(4):1319–1330, 2012. [Pg.6]

[126] Z. Yang, K. Hao, K. Cong, L. Lei, S. Ray, and F. Xie. Scalable certification framework

for behavioral synthesis front-end. In 2014 51st ACM/EDAC/IEEE DAC’14, pages

1–6, 2014. [Pg.26], [Pg.27]

[127] Z. Yang, K. Hao, K. Cong, L. Lei, S. Ray, and F. Xie. Validating scheduling transfor-

mation for behavioral synthesis. In 2016 Design, Automation Test in Europe Confer-

ence Exhibition (DATE), pages 1652–1657, 2016. [Pg.27]

160



BIBLIOGRAPHY

[128] M. Yasin, C. Zhao, and J. J. Rajendran. Sfll-hls: Stripped-functionality logic lock-

ing meets high-level synthesis. In 2019 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pages 1–4, 2019. [Pg.11]

[129] Z. Yang, K. Hao, S. Ray, and F. Xie. Handling design and implementation

optimizations in equivalence checking for behavioral synthesis. In 2013 50th

ACM/EDAC/IEEE DAC’13, pages 1–6, 2013. [Pg.29]

[130] X. Zhang, O. Shi, J. Xu, and S. Dutt. A power-driven stochastic-deterministic hier-

archical high-level synthesis framework for module selection, scheduling and binding.

J. Low Power Electron., 15(4):388–409, 2019. [Pg.6]

[131] X. Zhang and M. Tehranipoor. Case study: Detecting hardware trojans in third-

party digital ip cores. In 2011 IEEE International Symposium on Hardware-Oriented

Security and Trust, pages 67–70, 2011. [Pg.31]

[132] J. Zhao, Y. Zhao, H. Li, Y. Zhang, and L. Wu. Hls-based fpga implementation of

convolutional deep belief network for signal modulation recognition. In IGARSS 2020

- 2020 IEEE International Geoscience and Remote Sensing Symposium, pages 6985–

6988, 2020. [Pg.10]

[133] R. Zhao, M. Tan, S. Dai, and Z. Zhang. Area-efficient pipelining for fpga-targeted

high-level synthesis. In 2015 52nd ACM/EDAC/IEEE Design Automation Conference

(DAC), pages 1–6, 2015. [Pg.6]

161



Department of Computer Science and Engineering

Indian Institute of Technology Guwahati

Guwahati 781039, India


	1 Introduction
	1.1 High-Level Synthesis Flow
	1.1.1 Preprocessing
	1.1.2 Scheduling
	1.1.2.1 Scheduling Algorithms in HLS

	1.1.3 Allocation and Binding
	1.1.4 Datapath and Controller Generation

	1.2 Advances in High-Level Synthesis
	1.3 Motivations and Objectives
	1.3.1 HLS tool Usage
	1.3.2 Slower RTL Simulation
	1.3.3 Lack of Formal Verification Support
	1.3.4 Threat of Hardware Trojan in HLS
	1.3.5 Objectives

	1.4 Contributions
	1.4.1 FastSim: A Fast Simulation Framework for High-Level Synthesis
	1.4.2 DEEQ: Data-driven End-to-End Equivalence Checking of High-Level Synthesis
	1.4.3 REVAMP: Reverse Engineering Register to Variable Mapping in High-Level Synthesis
	1.4.4 BLAST: Belling the Black-Hat High-Level Synthesis Tool

	1.5 Organization of the Thesis

	2 Literature Survey
	2.1 RTL to C/C++ Reverse Engineering
	2.1.1 Generic RTL to C/C++ to enable Design Space Exploration through HLS
	2.1.2 Generic RTL to C Conversion for Fast Simulation

	2.2 Verification of High-level Synthesis
	2.2.1 Formal Verification of HLS
	2.2.1.1 Phase wise Verification of HLS
	2.2.1.2 End to end Verification of HLS


	2.3 Hardware Trojan Detection
	2.4 Conclusion

	3 FastSim: A Fast Simulation Framework for High-Level Synthesis
	3.1 Introduction
	3.1.1 Contributions

	3.2 Our Proposed Framework
	3.3 RTL to C Conversion
	3.3.1 RTL Structure
	3.3.2 AST Representation
	3.3.3 Automatic Pre-processing of RTL
	3.3.3.1 Concat Operation
	3.3.3.2 Part-select Operation

	3.3.4 RTL to C Conversion
	3.3.4.1 Extraction of Variables, Controller and State wise Micro-operations
	3.3.4.2 Rewrite Method
	3.3.4.3 RAM, ROM and Modules
	3.3.4.4 Generation of Cycle Accurate RTL-C Code


	3.4 Challenges Resolved in RTL to C Conversion
	3.4.1 Data Inconsistency
	3.4.2 Sign Conversion
	3.4.3 Data-width Mismatch
	3.4.4 Level-triggered Operations

	3.5 Modelling Hardware Parallelism in C
	3.5.1 Loop Unrolling
	3.5.2 Instruction Level Pipelining
	3.5.3 Task Level Pipelining

	3.6 Debug Framework and Performance Estimation
	3.7 Experimental Results
	3.7.1 Experimental Setup and Benchmark Characteristics
	3.7.2 RTL to C Conversion Results
	3.7.3 HLS Simulation Results
	3.7.4 Performance Estimation

	3.8 Conclusion

	4 DEEQ: Data-driven End-to-End EQuivalence Checking of High-level Synthesis
	4.1 Introduction
	4.1.1 Contributions

	4.2 Equivalence Problem Formulation
	4.2.1 The FSMD Model
	4.2.2 Equivalence of FSMDs

	4.3 Equivalence Checking between C and RTL-C
	4.3.1 Generate all Traces in Both Behaviors
	4.3.2 Merge Compatible Traces
	4.3.3 Find Potential Corresponding Traces
	4.3.4 Checking One-to-one Equivalence
	4.3.5 Checking One-to-many Equivalence

	4.4 Correctness
	4.4.1 Termination
	4.4.2 Soundness
	4.4.3 Completeness

	4.5 Experiment Results and Analysis
	4.6 Conclusion

	5 REVAMP: Reverse Engineering Register to Variable Mapping in High-Level Synthesis
	5.1 Introduction
	5.1.1 Contributions

	5.2 Daikon based Reverse Engineering of Register to Variable Mapping
	5.2.1 Reverse Engineering Steps
	5.2.1.1 RTL-C Abstraction from RTL
	5.2.1.2 Scheduled C code
	5.2.1.3 Combine Two C Codes
	5.2.1.4 Invariant Generation using Daikon
	5.2.1.5 Extract Useful Mapping

	5.2.2 Challenges Resolved
	5.2.2.1 Generating Quality Test Cases
	5.2.2.2 Unmapped Temporary Variables
	5.2.2.3 Transitive Analysis of Daikon Output
	5.2.2.4 One Register to Many Variables Mapping in a State
	5.2.2.5 Mealy vs Moore Models

	5.2.3 Correctness of Reverse Engineering Flow 
	5.2.4 Experimental Results

	5.3 SMT based Reverse Engineering of Register to Variable Mapping
	5.3.1 Reverse Engineering Steps
	5.3.1.1 FSMD Extraction from HLS Generated RTL
	5.3.1.2 SSA Transformation
	5.3.1.3 SAT Formulation

	5.3.2 Experimental Results

	5.4 Applications of REVAMP Framework
	5.4.1 Register Allocation and Security Aspect
	5.4.2 Correlating C and RTL
	5.4.3 Fast Simulation and Debug

	5.5 Comparisons of Daikon and SMT based Reverse Engineering Frameworks
	5.6 Conclusion

	6 BLAST: Belling the Black-Hat High-Level Synthesis Tool
	6.1 Introduction
	6.1.1 Contributions

	6.2 HLS Trojan Detection Framework
	6.3 Detection of Battery Exhaustion Attack
	6.3.1 Attack Model
	6.3.2 RTL-FSMD Extraction
	6.3.3 Detection

	6.4 Detection of Degradation Attack
	6.4.1 Attack Model
	6.4.2 C to RTL Equivalence Checking
	6.4.3 Detection

	6.5 Detection of Downgrade Attack
	6.5.1 Attack Model
	6.5.2 Detection

	6.6 Experimental Results
	6.7 Performance of BLAST for HLS Optimizations
	6.8 Conclusion

	7 Conclusions and Future Work
	7.1 Summary of Contributions
	7.2 Future Perspectives
	7.3 Conclusion

	References

