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What are Wavelet Transforms?
m Mathematical Functions
m Much like Fourier Transforms

m Approximating functions contained neatly in
finite domain

m \Well-suited for approximating data with sharp
discontinuities.
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Wavelets in Compression

m Original signal represented using coefficients in
a linear combination of wavelet functions

m Data operations performed using just the
corresponding wavelet coefficients

m Truncating the coefficients below a threshold,
helps in representing the data sparsely, thus
resulting in “Compression”
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Advantages over Fourier
Transform (FT)

m FT shows the frequency content of a function but
loses the time information

m FT does a very poor job in approximating sharp
spikes and discontinuities as compared to WT

m Reason : The basis function used by FT (sine
and cosines) are infinitely long
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Short Time Fourier Transform
(STFT)

m STFT was first developed to have time localization and
to analyze non-stationary signals

m In STFT analysis, window function is placed first at the
beginning of signal and slided along with time to capture
different segments of signal at different times

m Hann, Hamming, Kaiser are some examples of windows

m Ideal characteristic of a window is that the local spectral
behaviour of the signal must be identified accurately.
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STFT Cont’d.

m The STFT Is given as

X o7 (B, W) = Tx(t)v(t —b)e Mt

—00

where, V Is window function

m The inverse relationship is given as

X(t) = A | [ Xsrer (b, wv(t —b)e ™ dwdb

—00—00
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lllustration of STFT

Orignial Signal, with Windows demarkated
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History of Wavelets

PRE - 1930’s

m First mention : Appendix to thesis of
A.Haar(1909)

m 1807- Joseph Fourier, Fourier Synthesis

m Gradually focus shifted from the previous notion
of frequency analysis to scale analysis.

m Scale analysis — Less sensitive to noise as It
measures average fluctuations of signal at
different scales.
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History of Wavelets (contd.)

1930’s

m Representation of functions using scale-varying basis
functions

m Paul Levy investigated Brownian Motion using Haar
basis function. Found Haar basis function to be better
than Fourier basis function

1960 — 80’'s

m Grossman and Morlet defined wavelets in context of
guantum physics.




History of Wavelets (contd.)

Post — 1980’s

m Stephane Mallat(1985) - Gave wavelets an
additional jump-start through his work in Digital

Signal Processing

m Y.Meyer — Meyer wavelets, continuously
differentiable

m Ingrid Daubechies — Perhaps the most elegant
set of wavelet orthonormal basis functions




Piecewise
Constant Approx.
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Piecewise Constant
Approximation

m Function takes constant value on small
Intervals

m Constant Value = Average of the signal over

that interval
1

o () = Tf{ a(t
ra

m Information obtained

Specific to the resolution
Incremental Information
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Plecewise Constant
Approximation (contd.)

m Incremental Information expressed as
multiple of function y(t)

m Translates and dilates - (2™t — nt) capture
iInformation specific to other resolutions

m Over an interval, a smooth function x(t) =

o 21‘71 _1

(1) + y: y: Crmn (2™t — )

m=0 n=>0




The Haar Transform

m Multiresolution analysis
Scaling function a(t) 1

G()
Wavelet function (i)

W)



Haar Transform (contd.)

m Haar — simplest orthogonal wavelet system

m Compact Support

m Large Class of signals represented as

[

fiOy=Y ao(t—k)+ Y ¥ dixp(2t — k)

k=—no k=—nc j=0



lllustration:
5.& ,-_'I:',.If 1
3 B(t)
= -
1 I}
f(t) 1

1y
Original Steps (5,3) transformed to (low resolution)
average 4 and the (high resolution) detail 1.



lllustration 2:

m Input : An array of 8 pixel values (1D) —
(1, 2, 3, 4, 5, 6, 7, 8)

m Level-1. Averages + Difference (detall)
(3/2, 7/2, 11/2, 15/2, -1/2, -1/2, -1/2, -1/2)

m Level-2:

(5/2, 13/2, -1, -1, -1/2,  -1/2,  -1/2,  -1/2)
m Level-3:

(9/2, -2, -1, -1, -1/2, -1/2, -1/2, -1/2)

The final array is the Haar Wavelet transform of the input data



Haar Transform on Images
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" S
Compression applied to “Lena”

Original 70%
coefficients
40% 10% @ 1 _'

coefficients coefficients
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Properties — Scaling and Wavelet
Function

ou(t) =t —k) keZ  $(t) € L*(R)

~J

 defined
as
Vi = Spani{ok(27t)} = Spani{®;x(t)}

dix(t) = 22p(27t — k)
VoCc Vi Cc Vo ... Cc LA(R)

a (D), V5u(t)) = f ik (D), (H)dt =0

m All members of V; are orthogonal to members of W,
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Properties — Scaling and Wavelet
Function

(contd.)

m Waveletspal - _ - ) W, odefined as

whic - _ - Pw.Ppw. P Q/

m |n oeneral thic nivec

R =V, PW. P P ..



Embedded

Zero-Tree Wavelet (EZW)
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EZW — A new approach!

m Introduced by Jerome M. Shapiro in 1993

m A very effective Iimage compression
algorithm

m Yields a fully Embedded Code



" J
Key Features

m DWT which provides a compact multiresolution
representation of the image

m Zerotree coding provides compact multiresolution
representation of significance maps.

m Entropy-coded successive-approximation quantization

m Universal lossless data compression achieved via
adaptive arithmetic coding
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Zerotree Coding Hypothesis

m [f a wavelet coefficient is insignificant at a coarse scale with respect
to a given threshold T, then all wavelet coefficients of the same
orientation in the same spatial location at finer scales are
Insignificant

m More specifically, with the exception of the highest frequency
subbands, every coefficient at a given scale can be related to a set
of coefficients at the next finer scale of similar orientation.

m Coefficient at coarse scale:Parent .

m Coefficents corresponding to same spatial location at the next finer
scale of similar orientation : Children



" S
Parent-Child dependencies of
subbands

*With the exception

of lowest frequency

subband, all parents
have 4 children

*For lowest frequency
subband, Parent-child
relationship is defined
such that :

Each parent node
has three children
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Zerotree Coding

m No child is scanned before its parent

m Each coefficient within a given subband is

scanned before any coefficient in the next
subband



Scanning Order for Encoding

AR R
- HL,
I Hatt H .
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Zerotree Algorithm

m A coefficient x Is said to be an element of a
zerotree for threshold T, If itself and all of its
descendants are insignificant with respectto T

m An element of a zerotree Is a zerotree root If It IS

not the descendant of a previously found
zerotree root



Zerotree Algorithm!

mput Coefficient

YES Is MO

Coefficient
Sigraficant

Predictably
Insignificant,

Dion®™t Code
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Coefficient

Hawve
Significant
eacendants

e

Code il Cipde Code
Faositive Megative Isolated Zero Eerolres Hoot

Symbal Symbol Symbol Symbaol
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Successive-Approximation
Quantization (SAQ)

SAQ sequentially applies a sequence of thresholds T,,T,,...T\ ;
to determine significance, where thresholds are chosensothat T =T _,/2
T0 Is chosen such that| X, [< 2T, for all transform coefficients X,

2 separate lists are maintained — dominant list and subordinate
list

Dominant list: Coordinates of those coefficients that have not yet
been found to be significant in the same relative order as the initial
scan

Subordinate List : Magnitudes of those coefficients that have been
found to be significant
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SAQ (Contd..)

m For each threshold, each list is scanned once

m During a dominant pass, coefficients are compared to the threshold
to determine their significance. The significance map is then
zerotree coded

m Each time a coefficient is encoded as significant, its magnitude Is
appended to the subordinate list and coefficient in wavelet transform
array is set to zero

m Dominant pass followed by subordinate pass where magnitudes are
refined to an additional bit of precision
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lllustration (Contd..)

The largest coefficient magnitude is 63, therefore we chose our
threshold T,=32

First Dominant pass:

First coefficient has magnitude 63 which is greater than threshold, and is
positive so a positive symbol is generated

Even though the coefficient 31 is insignificant with respect to the threshold
32, it has a significant threshold two generations down in subband
LH1with magnitude 47. Thus, symbol for an isolated zero is generated

The magnitude 23 is less than 32 and all descendants are insignificant. A
zerotree symbol is generated, and no symbol will be generated for any
descendant coefficient during current dominant pass. AND so on...

No symbols were generated from subband HH2 which would ordinarily
precede HL1 in the scan. Also, since HL1 has no descendants,
entropy coding can resume using a 3-symbol alphabet where 1Z and
ZTR symbols are merged into the Z (zero) symbol



"
lllustration (Contd...)

Processing of
First Dominant Pass

o

[ TCosfcient | Feconstruction |
Comment | Subband Value _5_'|rl:r'.|:ll:I|. 1iI'rH-]'llE
f_ (1] | LL3 61 | POS 48
HL3 -H | NEG 48
(2) LHZ | -3l 4 0
@ Em | @ | iR 0
| THIZ ] e FO5 48
4 | H2 T T ZTR 0 1
HEZ 14 ZTR 0 !
HLZ -13 ZTR 0
LH2 15 LTH 0
(5] LH2 14 o0 |
LH2 ] ZTR | O .
Lz 7 ITR | [N
G HLT | 7 Z 0
| HL i3 Z | i
LT [ 3 Z [
HLI R b
LH] T T
(7] LH] 47 POS 48
I T L o
O 0
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lllustration (Contd...)

m During the first dominant pass, which used a threshold of 32, four
significant coefficients were identified.

m First subordinate pass will refine these magnitudes and identify
them as being in the interval [32,48) which will be encoded with
symbol “0” or in the interval [48,64) which will be encoded with the
symbol “1”

m After the completion of the subordinate pass, the magnitudes on the

subordinate list are sorted in decreasing magnitude

Coefficient | | Reconsiruction
Magmitude | Symbol  Magnitude
[ 3
Mo 40
H ] o 1
I 47 | 0 BT 1
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lllustration (Contd...)

m The process continues to the second dominant pass with
a new threshold of 16

m Only those coefficients not yet found to be significant are
scanned. Previously significant are treated as zero

m The process continues alternating between dominant and
subordinate passes and can stop at any time



Set Partitioning In

Hierarchical Trees (SPIHT)
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SPIHT?

m Introduced by Amir Said and William Pearlman
In 1996

m An extension of EZW

m Provides better performance than EZW

m Reference:

A Said and W Pearlman, “A New, Fast, and Efficient Image Codec
based on Set Partitioning in Hierarchical Trees”, IEEE Trans. on
Circuits and Systems for Video Technology, vol.6, no.3, June 1996
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Features of SPIHT

m Ordering data Is not explicitly transmitted

m Execution path of any algo is defined by the results
of the comparisons on its branching points.
Therefore, if encoder and decoder have same
sorting algorithm, then the decoder can duplicate
encoder’s execution path if it receives the results of

magnitude comparisons



"
Set Partitioning Sorting
Algorithm

m Sorting algo divides the set of pixels into partitioning
subsets T,, and performs the magnitude test

max{|c . [}>2"
max{c, [}

m “No”: All coefficients in T, are insignificant

m “Yes”. A certain rule shared by the encoder and the
decoder Is used to partition !n Into new subsets T,
Significance test is then applied to the new subsets

m This set division process continues until the magnitude
test is done to all single coordinate significant subsets In
order to identify each significant coefficient



Motion Compensated

Temporal Filtering (MCTF)
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MCTF — based Video Coding

Jygls *4? .

— U
Sy
I %_’. L-'i ! LA e ;1
2
.-f';nnl}als. Filter Bank synthesis Filter Bank

Obtaining the high-pass (prediction residual) pictures

Hk = Szk+1 - P(SZK)

Obtaining the low-pass pictures
Lk:82k+U(82k+l_ P(SZK)) = %SZK + U(SZk+1)

where, U(P(s)) = s/2



"
Recent Advances in MCTF - based
Video Coding

m Incorporation of motion compensation into the lifting
steps of a temporal filter bank

m Lifting scheme is invertible

m Motion compensation with any motion model possible to
Incorporate

Variable block-size motion compensation
Sub-sample accurate motion vectors
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MCTF Extension to H.264/AVC

m Highly efficient motion model of H.264/AVC

m Lifting steps are similar to motion compensation in B
slices

m Block-based residual coding

m Open-loop structure of the analysis filter bank offers
the possibility to efficiently incorporate scalability

m Incorporation of multiple reference picture
capabilities makes it similar to H.264/AVC

m Update Operators are derived at the decoder
enabling B-frame like representation



Derivation of Update Operators

* Foreach 4x4 luma block B, , in the picture U(H,), derive m,,
m,,,. and r, as follows oo X ]
1. EBvaluate all my, and m,, that point into B,, — =
| |
2. Select those m,, and m,, that use hy
maximum number of samples for reference
out of B,, |
Picture UH,)| .
3. Setm,=-my and m_  =-my, B
4xd
4. Setry, and 1y, to point to those pictures -
into which MC is conducted using m,,, and ﬁ:’ic’cure Y
m,,, respectively
5. Harmonize derived my,, 75 My, and ry,

with H.264/MPEG-4 AVC syntax

- Foe




Temporal Coding Structure
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Temporal Coding Structure (Contd..)

m Group of N, input pictures partitioned into two sets:
Set1: N, (0 <N, <Ng), Set 2: Ng = Ny — N,

m Set 1: pictures Ay, Set 2: pictures By

m Pictures H, are spatially shift-aligned with pictures B,

m Pictures L, are spatially shift-aligned with pictures A



Temporal Decomposition Structure

._,.

\
LR

GOP boundary

_:./ ..




Results for the MCTF Extension

Mobile CIF 30Hz

Y-PSNR [dB]

37
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—-— H. 264/ MPEG-4 AVC IBBP...
—ib MCTF extension

—— \CTF extension w/o update

576

768 9

60 11

bit rate [kKbit/s]

52 1344

1536

1728

Courtesy : HHI



Lattice Structure for Perfect Reconstruction

Filter Bank
Polyphase components and Noble identities




Noble Identities

—(im)—

A(2) I—’ = — A(Z")

—(1n)—

Noble identity for down sampling

Cc(z")

— — — C(2)

Noble identity for up sampling
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Polyphase Components

m Signal x[n] can be separated into different phases
For general M, there are M-phase
m ki phase : x[Mn+k]
m K=0,1,2... M1
For M = 2, we can divide x[n] into:
m Even phase: {..., x[-2], X[0], x[2], ...}
= Odd phase: {..., x[-1], x[1], X[3], ...}

m (| M)x[n] : only the O-phase, {x[Mn]} survives



 JEE
Polyphase Components (cont'd.)
B(z)=> b[n]z "
B(2) =2 b[2k]z "+ > b[2K +1]z

B(z) = By(z°) + z'B,(z°)

B,(z%) and z'B,(z?) are the polyphase components of b[n]



Application of Polyphase components
and noble identities to PRFB

Hy(2) Hn,wen(z*)\%%

z’ ‘ Applying polyphase components
{Ho o) [
(a)
i) —(12)—{ Mot} —@—

Applying noble identities




Conjugate Quadratic Perfect Reconstruction
Filter Bank

_<_| H,(2) —r@—> 4>®_. -z""'”H.,(z'1)4@—>
L z“"H,(-z") _"@_‘ A’@—' -H.(-2) >

Analysis side Synthesis side
Hy(z) = 1 4+ aztand L =2
Gnlz) = _i’f‘_l']Hn::ni:—-?_J::' = -1 _ 5



Lattice Structure

Analysis side

-1
Z

V) VA

On the Synthesis side, we reverse arrows and replace
the downsampler by an upsampler with the same
factor. This is called transposition.
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Advantages of Lattice Structure

m Modular Realization
Hardware implementation easier

m Amenable to optimization
the noble identities can be easily applied



Wave-packet transform




Multi-resolution Analysis

m L’(R) denotes the set of square integrable
functions.

m MRA of L%(R) is ladder of subspaces,
..CV,CV,CV,CV,...c..ei...
mIngeneral, V., =V, + W,

m We are interested in splitting W,



Filter Banks

S O



Noble ldentity

@

—»
H(z2) ( : )




Wave-packet decomposition

Ho(2)-Ho(22) Dooo(t)
Yo Ho(2)-Go(22)

° ° — D;00(t)
Go(2)-Ho(2?) — ®pso(t)
Go(2)-Go(2?) — ®150(t)
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Example using Haar wavelet

m H,(z2) = 1+22 and G,(2z2) = 1-22

d(4t)

1/4



Example cont'd

1I1I1I1 ¢°00(t)
1,1,-1,-1

— ¢100(t)
1,-1,1,-1 — ®o10(t)
1,-1,-1,1 — ®,10(t)




" I
Example cont'd

O CDOOO( ) = ©(41) + (4t-1)+ P(4t-2)+ P(4t-3)
O Cbmo( )= O(4t) + P(41-1)- P(4t-2)- P(41-3)
and so on.

m All these are wave-packets generated out
of filter banks.



Plots of wave-packets

®;00(t)




" S
Spectral domain representation




Lifting Scheme
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The Lifting Scheme

m Lifting based scheme requires far fewer
computations and reduced memory for the DWT.

m Hence, it Is faster, consume less power and
occupy smaller area.

m Lifting based scheme has an additional
advantage of in-place computation
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The Basic Idea Behind Lifting

A canonical case of lifting consists of three stages, which we refer
to as: split, predict, and update.

We start with an abstract data set Ao
* In the first stage we split the data into two smaller subsets A. and v..
In the second stage, we use A. subset to predict the y. subset based

on the correlation present in the original data. If we can find a
prediction operator P, independent of the data, y.=P (A.).

P (A.) 15 likely to be close to y.. Therefore, we might want to replace
v+ with the difference between itself and its predicted value P (A.).
This difference will contain much less information than original y. set.
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The Basic Idea Behind Lifting (contd..)

* We denote this abstract difference operator with a — sign and
thus get

Vi =71 —P ().

The wavelet subset now encodes how much the data deviates from
the model on which P was built.

« To find a better A. so that a certain scalar quantity Q (), for e.g.
the mean, 1s preserved, or
Q (A1) = Q (A).
Therefore the already computed wavelet set y. 1s used to update A.
so that the later preserves Q ( ). In other words, an operator U is

used to update A. as
A=At U (’Yl)



i

|
/‘
v

At

Split

v

»
>

U
é
This leads to the following wavelet transform algorithm:

{7\4, 'Yj} = Spllt (7\.j+1)

For j = -1 downto —n: vi -=P (\)
Ai+=U (1)

Once we have the forward transform, we can immediately derive the inverse.
The only thing to do 1s to reverse the operations and toggle + and -.
This leads to the following algorithm for the inverse wavelet transform:
A== U(w)
Forj=-nto-1: Vi += P (N)
7\.j+1 = Join (7\4, ’YJ)
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Lifting Algorithm

m Let h(z) and g(z) be the lowpass and highpass
analysis filters

Mo=helr)+e 6D Rg=h, @)+2 71, 00
=) Eo=g ) a0

O The_ corresponaing polypnase martrices are
defined as

_[ he® satz}] | Be@ byl
Pz) [hn{z) 2,(2) P{z}_[ﬁz{z} 5 (2)

m If (h,g) Is a complementary filter pair, then
P(z) can be factored as
[ 1 0} L 5i(2)
t;(Z)l 0 1

K 0] s@ 1 o _| K 0
P'(Z)“[ 0 KQ]H[O | Hw) 1]”?2(2)"[ 01 Kz}

i=



The two types of lifting scheme are shown in figure below

Xy

N B
HF
—»  splie sz > lit 3 E) Ilffl
LP {4!\ T LP
> ®

X, T p K

-
-
.

m Split: The entries are stored in even and odd entries.

Predict Step: Even samples are multiplied by the time domain
equivalent of t(z) and are added to odd samples.

Update Step: Updated odd samples are multiplied by the time
domain equivalent of s(z) and added to even samples.

Scaling: Even samples multiplied by 1/K and odd by K.
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[llustration using DWT Implementation

m Two schemes of Implementation
-- Convolution --Lifting

1
1 b __@_‘} (n} Xy + HP'_
Xin) ——= —Yr
x1{n}) X M ——— . 1
g(n) —-@_‘ —.1 Split t(z) 5(z)

4+ *@E’
@ Retain every other sample X Lia)

¥

Y20 = agpen by {220+ 1]+ 020 - 1]} + 2o +1] = I[_EM - 1]_+ Py {a{2n] + x{2n + 2]}

| ul2n] = z[2n]+ U; - {u[2n + 1] + u[2n + 3]}

Cop{en+ 2 +a2n =2+ dop - {e2n -3+ 220+ 3} + J2n+1] = ulzn+1]+ Py- {ul2n] + ul2n+ 2]}

o {1n+2 it -2} y[2n] = u2n]+ Uy - {y[2n + 1] + y[2n + 3]}
Y20 +1 = a0+ 1)+ by {22 + 220+ 2} + d2m+1) = —K-y[2n+1]
Cop {220 = 1)+ 220+ 3} - {220 - 2]+ 220 + 4]} 22n] = K7'-y[2n+1]

Convolution Equation Lifting Equations For Daubechies (9, 7) Filter
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Lifting Scheme for DWT using
Daubechies (9, 7) Filters

Ernpind send) i e

ol Inermediane
sLages
-

-

Hiph-pnss
| ;I'E\w'
II'_:
! Low-pass

Iy : - LAHGT 3434 00saars g
P Bt S
p | +DER291I075530938

e | 0 A4 RGRS 24307 |

K= 17/ Ky | +1.230174 104914001

An overview of the JPEG 2000 still image compression standard
Majid Rabbani_, and Rajan Joshi
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JPEG2000 filters

Integer Coefficients of Lossless (5,3) Le Gall filter

A

Floating pt Coefficients of Lossy (9,7) Daubechies filter

<« Lifting Filter Coefficients of (5,3) and (9,7)




Magnitude (dB)

Phase (degrees)

Daubechies 9/7 Analysis Filter

1 |Lowpass Filter /@)

Highpass Filter 4 ()
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Daubechies 9/7 Synthesis Filter

Magnitude (dB)

Phase (degrees)
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5/3 Analysis Filter
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5/3 Synthesis Filter
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Introduction of JPEG2000 =~

» JPEG (Joint Photographic Experts Group) committee was
formed in 1986.

» The committee’s first published standard was named as
Baseline JPEG.

» It enjoyed its wide spread use in many digital imaging
applications.

» In 1996, JPEG committee began to investigate possibilities

for new Image compression standard that can serve current
and future applications.

> This initiative was named as JPEG2000.
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JPEG2000 STANDARD

1. Superior Low Bit Rate performance
2. Lossless and Lossy compression

3. Progressive transmission by pixel accuracy
and resolution

4. Tiling of digital image
5. Region Of Interest Coding
6. Protective image security
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JPEG2000 Engine

Compressed Image Data

L J
Store
of Transmit

Compressed Image Data ’1

Source Forward P :
Image Data Transtorm —M™  Quantization [—M™ Entropy Encoding —M
fa)
Reconstructed |
+— nverse — Inverse — —
image Data Transform Uuantization Entropy Uecoaing
(b}

General block diagram of the JPEG 2000 {a) encoder and (b) decoder.

A. Skodras, C. Christopoulos and T. Ebrahimi, "The JPEG2000 Still Image
Compression Standard,” IEEE Signal Process. Magazine, pp. 36-58, Sept. 2001.
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Forward Transform

- . »  Colour > 1T
DC LEVEL Shift Tiling
transform
To Entropy Encoder Discrete
) wavelet «
transform
Yy 0299 0587 0114 (R
C, ‘:‘ -016875 -033126 05 G
) 05 ~041869 -008131) | B,

Irreversible Colour transform

Block Diagram Of Forward Transform Block



Matlab Simulation

dJLUE

Red Green and Blue Component of

ORIGINAL IMAGE image

e

Y Cr Cb component obtained after colour transform
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Discrete Wavelet Transform

» The 1D DWT -

e The forward 1D DWT is best N\
understood as successive ] ; A
applications of a pair of low- N
pass and high-pass filters. L) :

« Which is followed by down

sampling by a factor of two. Frequency [;ﬁ;nrﬁ:g analysis of
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Discrete Wavelet Transform

Cont.
e Two schemes of Implementation
X; HP
T 4 b

v1{n)
- hin) —-@—-
5{z)

X(n) —=
xl(n) X :
o) _._@—- _.‘I Sphit lu_)
4 »@H»
Lia)

X

@ Retain every other sample
e Convolution Scheme e Lifting Scheme




Lifting Scheme for DWT using
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Daubechies (9, 7) Filters

L

-

Iy | - L SHGT 34 34 20000y
1 | - D.OSI9H011E5T296]
=== N

b | L ER2OT IS 30N

a I S0 AR A S S e AT ]
& =14 K +1. 23R T 1AL ]

i Fa 1L RS TR T P

I pzrimediane

ETREITL
e

Hiph-pnss
1]
Low-pass

An overview of the JPEG 2000 still image compression standard

Majid Rabbani_, and Rajan Joshi
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Response Of Le-Gall (5,3) filter

U e
Sai g

A
o e

L ]

LeGall (5,3) Low pass and High pass fiter magnitude frequency responses

2 T T RLIMTS T T I
o 8, — Low pass filter
La3al (53] Low pass fiter mpudss rasponses Laal {5,3) High pass fiter impulss mspansas = " i High Pass Filter
1 T . T 18F : % -
! 3 18} " ]
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14r .
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]
-':I.ES | | -l:l:l‘s | | | | |
T 2 4 0 4240 1 23
Trmg — T —
LeGall (5.3) filter impulse response (a)LPF Time domain, (b) HPF time domain oL | | | | b
0 1 2 3 4 5 6 7

Nomnalized frequency -—=
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.:="Iﬂ1'
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l-ll-TL.«
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Response Of Daubechies (9,7)
Filter

Daubechias (9,7) Low pass filter impulse responsas Daubechies (9,7) High pass filter impulsa responses
T T T

07 I I I I 12 o Daubechies (9,7) Low pass and High pass fiter magnitude frequency responses
25 T T T T T T
— Low pass filter
06k aQ J 1r 1 1 High Pass Filter
08+ g
05} 8 2-
06+

04r
1 1
i i 04r 1 P
o 8 I
ERE E 3
£ Pl® £ o2t £
< < el

=
| !
T 3
0.1
_|:|2 L
01 L L L L 06 . N, L
0 2 4 8 8 10 0 2 4 B 8 7
Timea —= Time —= Nomalized frequency ——=

Time Domain response of Low

pass And High Pass Filter Frequency Domain Response of Low Pass

And High Pass Filter
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Architectures Implemented for
1D DWT

* Polyphase Decomposition Based
Convolution Scheme

o Coefficient Folding Convolution Based
Convolution Scheme

e Lifting Scheme

o Coefficient Folding Convolution Based
Lifting Scheme
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Polyphase Decomposition

Scheme
Even Part
2,0 - Input is switched between

Even and Odd samples
Area cost IS same *

" \/: Muttiplier a
Out At No. of multipliers same
- Regt e Time cost is half
% Regi
Odd Part

Decimation filter employing the polyphase decomposition technique.

* Compared to convolution scheme
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Coefficient Folding Based Lifting
Scheme

PE 1 PE O

« Coefficient are switched between one multiplier.
 Input is not switched between even and odd samples

e Areacostis half *
 Time cost remains same

* Compared to convolution scheme
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Lifting Scheme

Xi2n+3) XiEZn+l)

TiZn+l) yizn-1l) o zfZn-1j — ZiZn-3)
—— AN F2/N 4 izne1)
imp xin

B T ™ T
3 - Ko
iz ., ™1 . I :_"-,._l_.,
XLZn+l) D % (2n) yiIng u}'-.ln-:.'.' wz-_zn.-l_- : L
n Latch at freg £ # Adder _f_

[1 Latch at fregq £/2 E:'J- Multiplier/Ehifter £caling multipliers

Area Cost is Less than half *
Time cost is half as input is split between even and odd samples

* Compared to convolution scheme
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Proposed Coefficient Based
ifting Scheme

T cutpH
AlEn+3RiZnel ) xizn-1) yizn-1) yin-3) ¥iin-5) yizn-7) 1(Zn-TiRiZn-9) e
1
s fa m 72 imnl HLE
U
; |
: 0
—1 _1
]
1 y
' — }r{ =+ zian-4) Cutpl
Linsdl yiznsl yin ¥iqp-20yEn-4) z(in-4)zi2p-E12(20-0)

[1 Latch at fr=q £/2 [ Multiplier/Shifter ﬂ Latch at freq £ Q@ adder

A combination of Coefficient Folding and lifting Scheme
Number of multipliers are even half as compared to normal lifting scheme



Comparison of Architectures for
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Daubechies (9, 7) filters

Design Number of Number of Adder | Critical path
Multiplier
Convolution 16 14 Tm+8Ta
Scheme
Polyphase 16 14 Tm+5Ta
Decomposition
Coefficient Folding 9 9 Tm +Ta
Scheme
Lifting Scheme 6 8 4Tm+8Ta
AT N

Coefficient Folding (|3 ) U i) @
Based Lifting
Scheme

*Tm is multiplier delay and Ta is adder delay
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Comparison of Architectures

Archl = Simple lifting scheme, adopted from [4]
Arch2 = Proposed lifting-based coefficient folding technique
Arch2 = Pipelined lifting-based coefficient folding technique

Design Summary

Parameters ARCHI1 ARCH2 ARCH3 UNITS
No of Slices 1144 (9 %) 805(6%) 827( 6%) Out of 12288(%)
No of Slice Flip Flop 260(1%) 255 (1%) 548(2%) Out of 24576(%)
No of LUT4 1982(8%) /IEQ{](S%\ 1195(4%) Out of 24576(%)
Equivalent gate count 28172 \ 18100 ) 19585 Gates
-
Timing Summary
Parameter ARCHI ARCH2 ARCH3 UNITS
Minimum Period §1.702 27325\ 22.141 nsec
Maximum Frequency 12.204 ( 36.597 ) 45.165 MHz

N_



Modified Booth’s Algorithm
VieViVitd Zj IiX Comments
000 00 +0 String of 0
001 01 +X End of String of 1's
010 01 +X A Single 1
011 10 12 End of String of 1's
100 (-1)0 -2 Beginning of String of 1's
101 0(-1) -X A Single 0
110 0(-1) -X Beginning of String of 1's
111 00 +0 String of 1's

— Reduce the number of partial products by re-coding the

multiplier operand

—  Works for signed numbers
— Because we need constant multipliers , so instead of 8:1 mux we

require 2:1 mux, so reduced area.

IIT Bombay
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Example

Example: Multiply -118d by -99d

Radix-4 Booth
B =-118d = 1000 1010b

-B = 118d = 0111 0110b

2B = -236d = 1 0001 0100b | step1) Initialize -118d = 0111 0110b

-2B = 236d = 0 1110 1100b 99d=_22 1 1
Step2) Find partial —111117210001010b B
A=-99d = 1001 1101b | products 01110110 b -B
-99d = 2211 " _» d2100010100 b 2B
Step3) Sum-up the 011101100 h -2B

1 shifted partial 0010110110100010 b

——| products

Sign Extension
Convert 2’s-Comp back to decimal:

0010 1101 1010 0010 = 11682d
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M

-
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Comparison of architectures

Archl = Proposed Lifting —based coefficient folding technique
Arch2 = Proposed lifting-based coefficient folding technique using Booth’s Multiplier
Arch2 = Pipelined lifting-based coefficient folding technique using Booth’s Multiplier

Design Summary

Parameters ARCHI ARCH2 ARCH3 UNITS

No of Slices 805(6%) 644(5%) 910( 7%) Out of 12288(%)
No of Slice Flip Flop | 255 (1%) 260 (1%) 1.149(4.5%) Out of 24576(%)

No of LUT4 1290(5%) | ,901(3.6%)\ | 1.340(5.5%) | Out of 24576(%)
Equivalent gate count 18100 \ 12201 ) 23,261 Gates

Timing Summary

Parameter ARCHI1 ARCH2 ARCH3 UNITS
Minimum Period 27.325 26.358 ﬁl.%ﬁ nsec

Maximum Frequency 30.597 37.939 \ 84.25 / MHz
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Advantages Of Proposed
Scheme

Reduced area as the number of multipliers
are reduced. Nearly 30% reduction in area

Reduced critical path

Speed is increased 3 times
Reduced glitches in outputs
Reduction in total power dissipation



Line based-Lifting Scheme for "™

2D DWT Architecture

Direct Implementation

N X N storage space is required
For an N x N image

1 |

Line Based Implementation

10N storage space is required
For N x N image
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2D Architecture Cont..

EVEN ROW
—FIZI——I-EINE DELAY l >+ _'I LINE DELAY J, »{ + LL or HL
o] |l cix | ?
L =
ODD ROW
[} *|LINE DELAY — [ IINEDELAY =.R:;, LINE DELAY LH orHH

CLE CLE LK

CLE
Column wise Filtering Architecture
CONTROL PING_PONG

L ak 'l T ’ COLUMNWISE [ tb
— | ROWWISE - LH
Input I I H CLK RST —
Image CLk out
CLK  RST | COLUMNWISE — HL
Complete 2D Architecture CLK T T RSt A
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Variable length line Delays

In
T
Nf2! L7 .
N/24-1 .
N/2J-2 N/2Y L
: N;z.l-'l In
N/4 R A i I WS T
N2 ’ Select 4—*« Out-b
V. S - m bits Gt
MN/8
SS_.c:lea[t  —_ | Sel=0  Sel=1
Ignals T
9 —— Out-a In XXX
N4 Out-b XXX In
R e e (b
v
(a) Out

{a) Variable length Line delay with select signals to change its size to
N/ NfLNSEL...N/2Y in the different decomposition levels.

(b} The 1 to 2 demultiplexer used in the line delay.
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Synthesis Report
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Following table shows final synthesis report for 2D DWT synthesized on
Virtex2p FPGA

Design Summary

Parameters 2D Out of
Architecture
No of Slices 11,349 13,696
No of Slice Flip Flop 20,283 27,392
No of LUT4 1,955 27,392
Maximum Frequency 148.39 MHz
Minimum delay 6.739ns | = -
Equivalent gate count 2,677,355 4,000,000




Simulation Result

(4) B) (€)

(A) Lena image after 1 level of filtering (B) after 2 level of filtering
(C) after 3 level of filtering



IIT Bombay

%):  Region of Interest Coding

1. Mask generation for arbitrarily shaped ROI

RO vegion with fine
quantzation as compared to
backaround

(A) Three level decomposition of mask, (B) The ROI of the image,
(C) The image after quantization
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Region of interest (cont.)

2. Adaptive determination of ROI

400
200 200
200 200
0 D 0
0O 100 200 100 200 D 100 200 0O 100 200
400

200

400
200 | I
0

FE
L)

200
100 100

O 100 200 100 200 D 100 200 0 100 200
200 200
100 100 200
0 D 0
o 100 200 100 200 D 100 200 0 100 200
200 200 200
100 100 100
0 D 0
o 100 200 100 200 D 100 200 0 100 200

(A) The histogram of Lena image (B) The quantized Lena image



Embedded Zero Wavelet Tree ™"
Algorithm (EZW)

LI L. |
D7 HLp |
L Hufl 8- |
- Hi

Jiﬂ/./ Wi
level 3 -
x”%\
';/ER [l level 2 / o
D000 levelt

The relations between wavelet coefficients in different
sub bands as quad-trees.

| I I
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Flow Chart for EZW Algorithm

Inpuat Coafficient

YES = [T
Coethcient
igmificant

Predictably
Insignificant,
Don't Code

{+]

Signihcant
Descendanis
-

Code Code Cade Caode
Paositive Megative laolated Fero Ferotres Hool
Syminal Symbol Symbel Svrnibenl

Flow chart for encoding a coefficient of the significance map
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Example
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Result

“HH-I@

10

11

Image generated after decoding each level of
encoding
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HE

_, Results (Cont.)

Level Number Mean Square Error (MSE) PSNR=10log,,(255%/MSE) dB
1 6314.9 10.1279
2 702.5 19.6644
3 482.5 21.2713
4 329.4 22.9539
5 182 25.5301
6 71.1 29.6147
7 23.9 34.4090
8 7.1 39.8220
9 2.1 45.5381
10 0.9 48.6664
11 0.8 49.3142
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VLSI Architecture for EZW
Algorithm

e Depth First Search Algorithm ( DPS)

 Proposed VLSI Architecture for EZW Algorithm



DPS Algorithm

b3

— | T

/\\/\\/\\/\/\\ /\\/\/f\/\\ _/\/\\/\\

1 14 318 0

HL branch LH branch HH branch

Tree representation of wavelet coefficients
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Proposed Architecture for EZW

Algorithm

623l-zalas |10 7 |13 |-12]| 7 I
|
31l 23 114 [-13 4|6 | -1 |
15 — E 12]\5 9 A, '
14 - iy o Loy |
9 | -7 12 s a e, /’/ '
al 7 UL 3 |
. 12 | l
_5 e | 4?12:’.4 S 32\32_ Y
; S [z | 2[[o [ 4
2 |3 a B [8]|[>] 6 o))
5 |11 6 |lo | alllal 4 ()
A Bit 1*.{:;}9 OR for B

every cluld group

A Grouping method used to reduce looping of tree
B BIT Plane Representation of Proposed Architecture
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Design flow of Algorithm

Generate child group after each level of filtering
Grouping goes upto second level
Start Morton Scan

If dominance is found then replace the coefficient with
zero value

If parent is found dominant then check flag used to
Indicate it to child

Check flags used to indicate coding of coefficients used
for subordinate pass.
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Synthesis Result of Algorithm
for 8x8 Image

Design Summary

Parameters 2D Architecture Out of
No of Slices 528 13,696
No of Slice Flip Flop 341 27,392
No of LUT4 671 27,392
Maximum Frequency 124.023MHz | -
Minimum delay 8.063ns | = -
Equivalent gate count 76,611 4,000,000
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Testing of Hardware

-

- Werification

Werification

Place and FEoute
Encoding chip

FPGA Design Flow

i Werification
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FPGA Flow cont...

{ EDIF o MNGC O C NGO )

Translate |
I T Roeport | | inGDBwildy |

Functional Simulation WHDILVerilog
Froorpian

Static Timing Analysis

Mlap Aspori |—0—| Plapy |—i- Past-Map Simulation
Manually Place and |: PCF j
Route (FPGA Editor)

Static Timing Analysis

I AR Report |—-—
L FPost-PAR Simulation [ wHDLNerilog )
| Fad Report |--——| PaA |—__
Froorprannar) C_Per D
PR
| Delay Asport I—— {Floorplannear)

Manually Route {': P )
(FPGA Editor) F

MNCDr
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XUPV2P Development System

=

Thres high curment power supplies

weith Ccontinwous monitoring

Platform
Power Flash Tor
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arsd- gwitch FPGA
oonfig-
urations
wecs,
Video "'I USE2 port
Part far FRGA
coniig-
uratisns
Compact
S5ATA /’ fiash carg
conmnachors pexrt for
for Gigshbit ’ FFPGA,
sazrial W \ config amd
resmovahle
storage
101060 i
Ethernat —p=
AR A HY 1 =
mousa and
kayboard
_____ et
Stareco f
audio via -l
ACaT HE—E’_JE
s \* sarial port

High-spead expansion connacbor
compatible with Digdent boards

Buttorns, swilchas, Low-spead axpansion connector
and LEDs oompatible with Digilent boasds
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Boundary Scan

3 untitled [Configuration Mode] - IMPACT

Fle Edit ‘View Mode Operabors Output Help
ﬁ-ﬁnlﬂ":&ﬁ?‘.“ |.1-|ﬂr|lil-t

O
Boundary-5can |3IE|1.|'E Serial | SEIE:tHAF’| Deskt

Right click d=vice to selzct operations

8B

nofdfp ACCACA
x¥oli2p_fs4B —File " —

DO

Properly Identified JTAG Configuration Chain
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Hardware Setup Used

Proaranunang the FPGA

~[ =

# Memory Block For q
Storing ouiputs

Chipscope Instantiated Computer
FPGA Virtex2p xv2v30  ppan.




Chipscope Design Flow

ChipScope Pro
Core Generator

Generate... Instantiate...
ICON, ILA,
ILAJATC, cores into HDL
IBASOPB, source
IBA/PLE,
VIO, or
ATCZ2 cores
L]
Synthesize... Connect...
design with buses and
cores in it internal signals
to cores

or..

Synthesize...

design without

instantiating
ChipScope cores

ChipScope Pro
Core Inserter

Insert...

ICON, ILA, ILAJATC,

and/or ATCZ2 cores into
synthesized design
i(.ngc or EDIF netlist)

ISE
Implement...
T design
i
Select...
bitstream
Set..
trigger
View: ..
waveform

cspra_tooks_deskgn_fow_Ce1204

IIT Bombay
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Wavelet Based
Scalable Video Coding

Ankur Gupta

Department of Electrical Engineering
Indian Institute of Technology, Bombay

Dual Degree Presentation
3rd July, 2006

Ankur Gupta Wavelet Based Scalable Video Coding



What is SVC?

SCALABLE VIDEO CODING

QCIF
Bltstream1 25 fps
| 512 Kbps

Receiver 1 1
CIF
BltstreamZ 30 fps
| 256 Kbps
Video Streaming Server Recewer 2

Ankur Gupta Wavelet Based Scalable Video Coding



What is SVC?

SCALABLE VIDEO CODING

QCIF
25 fps
Scalable | 512 Kbps
- Receiver 1
Bitstream
CIF
‘ - 30 fps
= . NN 256 Kbps
Video Streaming Server Receiver 2

Ankur Gupta Wavelet Based Scalable Video Coding



An Outline

@ sospiHT

@ SPIHT
@ Extension to 3-D SPIHT
@ Scalability of SPIHT Video Coder

Ankur Gupta Wavelet Based Scalable Video Coding



An Outline

@ sospiHT

@ SPIHT
@ Extension to 3-D SPIHT
@ Scalability of SPIHT Video Coder

e 3D Scan based Wavelet Transform
@ Principle
@ Temporal scan based video wavelet transform
@ Experimental Results

Ankur Gupta Wavelet Based Scalable Video Coding



An Outline

@ sospiHT

@ SPIHT
@ Extension to 3-D SPIHT
@ Scalability of SPIHT Video Coder

e 3D Scan based Wavelet Transform
@ Principle
@ Temporal scan based video wavelet transform
@ Experimental Results

e Motion-Compensated Temporal Filtering

Ankur Gupta Wavelet Based Scalable Video Coding



An Outline

@ sospiHT

@ SPIHT
@ Extension to 3-D SPIHT
@ Scalability of SPIHT Video Coder

e 3D Scan based Wavelet Transform
@ Principle
@ Temporal scan based video wavelet transform
@ Experimental Results

Motion-Compensated Temporal Filtering

Resolution Scalable Coding
@ Error Feedback Hierarchical Coding
@ Experimental Results

Ankur Gupta Wavelet Based Scalable Video Coding



An Outline (contd..)

© 'mproved Bidirectional MCTF
@ Subpixel Accuracy
@ Bidirectional MCTF
@ Experimental Results

Ankur Gupta Wavelet Based Scalable Video Coding



An Outline (contd..)

© 'mproved Bidirectional MCTF
@ Subpixel Accuracy
@ Bidirectional MCTF
@ Experimental Results

e Scalable Motion Coding

Ankur Gupta Wavelet Based Scalable Video Coding



An Outline (contd..)

© 'mproved Bidirectional MCTF
@ Subpixel Accuracy
@ Bidirectional MCTF
@ Experimental Results

e Scalable Motion Coding
e Overcomplete Motion Compensated Wavelet Coding
@ Principle

@ Wavelet-domain block matching algorithms
@ Experimental Results

Ankur Gupta Wavelet Based Scalable Video Coding



An Outline (contd..)

© 'mproved Bidirectional MCTF
@ Subpixel Accuracy
@ Bidirectional MCTF
@ Experimental Results

e Scalable Motion Coding
e Overcomplete Motion Compensated Wavelet Coding
@ Principle

@ Wavelet-domain block matching algorithms
@ Experimental Results

e Summary

Ankur Gupta Wavelet Based Scalable Video Coding



3-D SPIHT SPIHT

Extension to 3-D SPIHT
Scalability of SPIHT Video Coder

Outline

@ sospiHT

@ SPIHT
@ Extension to 3-D SPIHT
@ Scalability of SPIHT Video Coder

Ankur Gupta Wavelet Based Scalable Video Coding



3-D SPIHT SPIHT

Extension to 3-D SPIHT
Scalability of SPIHT Video Coder

SPIHT

SET PARTITIONING IN HIERARCHICAL TREES

@ Introduced by Amir Said and William Pearlman in 1996

]
L]

* T
0 =N

\:H @ Progressive
-] ] Transmission
@ Embedded Coding

\ %g \ @ Partitioning
fficients f t
%ﬂ E E i<:noe icients for sets

spatial-orientation
trees

(a) (b)
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3-D SPIHT

SPIHT
Extension to 3-D SPIHT
Scalability of SPIHT Video Coder

3-D SPIHT

h

r
s

(a) (b)

@ Similarly, on the 3D subband structure, 3D spatiotemporal orientation tree and its
parent-child relationships are defined.
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3-D SPIHT

SPIHT
Extension to 3-D SPIHT
Scalability of SPIHT Video Coder

Scalable Encoding

A LAYERED STRUCTURE

Original Bitstream
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Principle
Temporal scan based video wavelet transform
Experimental Results

3D Scan based WT

Outline

e 3D Scan based Wavelet Transform
@ Principle
@ Temporal scan based video wavelet transform
@ Experimental Results
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Principle
Temporal scan based video wavelet transform
Experimental Results

3D Scan based WT

Need for a scan based system

@ 3D subband coding suffers from significant memory
requirements

@ Hence, 3D blocks are used after temporal splitting. Results
in temporal blocking artifacts(flickering)

@ Solution: 3D Scan Based Wavelet Transform is introduced
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Principle
Temporal scan based video wavelet transform
Experimental Results

3D Scan based WT

Need for a scan based system

@ 3D subband coding suffers from significant memory
requirements

@ Hence, 3D blocks are used after temporal splitting. Results
in temporal blocking artifacts(flickering)

@ Solution: 3D Scan Based Wavelet Transform is introduced

Frames of the sequence are acquired and processed on the fly
to generate 3D wavelet coefficients. Data is stored in memory
only until these coeffecients have been encoded.

Ankur Gupta Wavelet Based Scalable Video Coding



Principle
Temporal scan based video wavelet transform
Experimental Results

3D Scan based WT

Temporal scan based video WT

3D DWT = 2D DWT (spatial) + 1D
DWT (temporal)

The Temporal System

@ L=2S+1;
x L : length of LP & HP Filters

@ Receiving S + 1% transformed
frame allows computation of first

N
\ LP frame
N

Time

LF

L @ HP frames & LP frames are
oE obtained alternately

Input Frame  Temporal Filtering o Waltlng S —+ 2 frames = 1 LP &
Buffer
1 HP temporal frames

Temporal Synch. Buffers @ Can be extended to N-level
temporal wavelet decomposition

Figure: One level temporal system
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Principle
Temporal scan based video wavelet transform
Experimental Results

3D Scan based WT

Delay and Memory Requirements

@ For a 2-level wavelet decomposition,
Delay =[(S + 2) + (S + 1)] + S frames

Delay for a N-level temporal wavelet decomposition
D=2"""2S+1) - S+1

@ Memory Requirement = Sum of frames in N filtering buffers + number of
frames in the synchronization buffers

e Sum of frames in N filtering buffers = L x N = (2S5 + 1)N
e Number of frames in synchronization buffers =

2+ 0 ,(d—1)

Memory requirement for a N-level temporal wavelet decomposition

M = framesize x [2"~'(2S + 1) + (N — 1)S+ N + 1]
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Principle
Temporal scan based video wavelet transform
Experimental Results

3D Scan based WT

Experimental Setup

@ Spatial Transform : Haar Filter

@ Temporal Transform : 5/3 Filter

@ Sequence : Foreman

@ Frame Size : QCIF (176 x 144)

@ Frame Rate : 10 fps

@ Full Rate : 1980 Kbps

@ Number of Frames : 100 Luminance Frames

Ankur Gupta Wavelet Based Scalable Video Coding



Principle
Temporal scan based video wavelet transform
Experimental Results

3D Scan based WT

PSNR v/s Bit Rate
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Principle
Temporal scan based video wavelet transform
Experimental Results

3D Scan based WT

Demonstrating Scalability

220
/mn/rm/‘
& Base Layer

@ Low Pass Frames
@ 100 Kbps (FIXED RATE)

40

25

% 28
= / 120 o 5fps
= .
o
§ 75 ‘
Enhancement Layer 1
z @ High Pass Frames

@ 0-120 Kbps (VARIABLE)

0 0 100 150 200 260
Bit rate (in Kbps)
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Principle
Temporal scan based video wavelet transform
Experimental Results

3D Scan based WT

Pre-Processed Input Video

MOTION COMPENSATED FRAMES RESULT IN BLOCK OVERLAPS AND HOLES

Input Frame MNo.1

Output Frame Mao.1
S WA
- | ] o
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Outline

e Motion-Compensated Temporal Filtering
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MCTF

Generic Lifting Scheme

POLYPHASE DECOMPOSITION, PREDICTION AND UPDATE

(a) [}
Lifting Scheme Inverse Lifting Scheme
(Analysis Filterbank) (Synthesis Filterbank)

@ The high-pass (prediction residual) pictures are obtained by:
hlk] = s[2k + 1] — P(s[2k]) (1)
@ The low-pass pictures are obtained by:

ITK] = sl2K] + U(hIK]) @)
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MCTF

MCTF for Video Coding

s[/, k] is a video sample at spatial location / = (x, y) at time instant k

The prediction and update operators for temporal decomposition using:
@ Haar Wavelet

Phaar (8[1,2k]) = s[I + mpo, 2k — 2rpo] (3)
1
UHaar(h[/, k]) = Eh[/ + myo, k + rUO] (4)
@ 5/3 Wavelet

1
P5/3(S[I, 2k]) = E(S[I+ mpo,2k — 2fp0] + S[/+ me1, 2k +2 + 2rp1] (5)

1
Us/s(h[l, K]) = Z(h[l+ Muo, K + ruo] + hll + mut, k — 1 — ] (6)

The prediction steps in both the cases exactly correspond to the predictive
coding
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MCTF

Derivation of Update Operator

For each 4x4 luma block Baxs in the picture
U(Hk), muo, ruo, mys and ry; are derived as
follows

Evaluate all mpg and mp4 that point into
Buxa

Select those mpg and mp; that use
maximum number of samples for
reference out of Baxa

Set myo = —mpo and My = —Mepy

Set ryo and rys to point to those
picturesinto which MC is conducted
using mpeo and mp+, respectively

Picture X

Picture U(le

Picture Y
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MCTF

o
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Frame No.2
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Temporal Decomposition Structure
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Error Feedback Hierarchical Coding
Experimental Results
Resolution Scalable Coding

Outline

e Resolution Scalable Coding
@ Error Feedback Hierarchical Coding
@ Experimental Results
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Error Feedback Hierarchical Coding
Experimental Results

Resolution Scalable Coding

RSC Block Diagram

Original Spatiotemporal Multiresolution Codeword =
Image ; > h LN - 3
g Analysis “| Encoding 7 Packing 5
Sequence g
2

0

2

Reconstructed . . Q
Image Spatiotemporal |, |Multiresolution |, Selective Data e
Sequence Synthesis ~ Decoding N Reception %

@ Lower resolution and frame-rate videos are generated by a 3D subband filter
bank

@ Spatial Analysis followed by Temporal Analysis
@ Temporal Subband Analysis: two-tap MCTF
@ Spatial Subband Analysis : Haar, 5/3 filters, etc
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Error Feedback Hierarchical Coding
Experimental Results

Resolution Scalable Coding

Spatiotemporal Multiresolution Analysis/Synthesis

@ Implemented for specific case of 6 different spatiotemporal resolutions:

o 3 levels of spatial resolution
e 2 different frame rates
@ Vj: Output video, where

i €0,1,2 represents 3 spatial resolutions,
J € 0,1 represents two temporal resolutions

@ Vjo: Low frame rate video at i spatial resolution
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Error Feedback Hierarchical Coding
Experimental Results

Resolution Scalable Coding

Error Feedback Hierarchical Coding

] m I m I h
tig 10 Dey | Afyy Lh iy

hl hh hl hh hl hh
flO flo Aflo Aflo fll fll

Wavelet Based Scalable Video Cod

KEY

e indicates
residual after
prediction

Af indicates a
refinement
due to
cascaded
quantization of
corresponding
low band




Error Feedback Hierarchical Coding
Experimental Results

Resolution Scalable Coding

Experimental Setup

Spatial Transform : Daubechies 4
Temporal Transform : MCTF

Sequence : Foreman

Input Frame Size : CIF (352 x 288)

Input Frame Rate : 30 fps

Full Rate : 23760 Kbps

Number of Frames : 80 Luminance Frames
Output Frame Rates : 30 fps, 15 fps

Output Frame Resolutions : CIF (352 x 288), QCIF (176 x 144) and
Q-QCIF (88 x 72)
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Error Feedback Hierarchical Coding

Experimental Results

Resolution Scalable Coding

\j\

PSNR (in dB)

S
*‘@tQ

1) 1000 2000 3000 4000 5000 6000
Bit Rate (in Kbps)
[—V21 = V20 + V11 V10 = V01 - V0D |
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Improved Bidirectional MCTF Connected/Unconnected Pixels
Subpixel Accuracy
Bidirectional MCTF
Experimental Results

Outline

© 'mproved Bidirectional MCTF
@ Subpixel Accuracy
@ Bidirectional MCTF
@ Experimental Results
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Improved Bidirectional MCTF Connected/Unconnected Pixels
Subpixel Accuracy
Bidirectional MCTF

Experimental Results

Problems with existing MCTF

@ Filtering across poorly matched pixels decreases coding
efficiency in MCTF

@ Absence of subpixel accuracy while performing MCTF

@ Bidirectional MCTF should perform better as compared to
unidirectional MCTF

Ankur Gupta Wavelet Based Scalable Video Coding



Improved Bidirectional MCTF Connected/Unconnected Pixels
Subpixel Accuracy

Bidirectional MCTF
Experimental Results

Pixels are Connected Pixels if A first frame @ :comected pixe

B : second frame ‘@; ‘unconnected pixel
@ There is a one-to-one connection
between the pixels ®—o oo

o-—® *~—o
*«<—e
(@+b)/ /5
\' (b-a)/ /5
N V2

@ |[f several pixels in frame2

connect to the same pixel in °
frame1, only one of them is a :\
connected pixel : o ‘o2
i i o-—® o
@ Unconnected pixels in frame1 oo oo
are not used as reference for [ — o
frame2 &—® ’ L a—J
/ A B Y ' low  high
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Improved Bidirectional MCTF Connected/Unconnected Pixels
Subpixel Accuracy

Bidirectional MCTF
Experimental Results

Pixels are Connected Pixels if A first frame @ : connected pixel
/@ :unconnected pixel

. . B : second frame
@ There is a one-to-one connection
between the pixels

*—e

*-—e

(@+b)/ 75 o *
\' (b-a 5
J2a %)

@ |[f several pixels in frame2

connect to the same pixel in °
frame1, only one of them is a :\
connected pixel o ‘e Vs
. n o—o
@ Unconnected pixels in frame1 oo
are not used as reference for [ — o
frame2 & —® | L a—J
< A B ¥ low high

@ MCTF is performed only on connected pixels. Unconnected pixels are
not filtered

@ For unconnected pixels in frame1, their scaled original values are
inserted into temporal low subband

@ For unconnected pixels in frame2, the scaled displaced frame
differences are inserted into temporal high subband
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Improved Bidirectional MCTF Connected/Unconnected Pixels
Subpixel Accuracy
Bidirectional MCTF

Experimental Results

Subpixel Accurate MCTF using Lifting Implementation

@ :integer pixel O : subpixel

Alm — dpyn — don) N.B m — dp + dm,n — dyy + dn)
=y, — doy O’\
@ B[m,n|

If MV’s have subpixel accuracy, the lifting scheme calculates:
@ Temoral High-Frame as

1 Tot[m — dim, n — ] (7)

H[m, n] = 7

1
ﬁlzm [m, n] —
@ Temporal Low-Frame as

L[m—dm, n—adh] = H{M—dm~+dm, N— 0o+ dh]+ V2l [m—dm, n—d,] (8)
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Improved Bidirectional MCTF Connected/Unconnected Pixels
Subpixel Accuracy
Bidirectional MCTF
Experimental Results

Bidirectional MCTF

THE ALGORITHM

@ Two kinds of blocks - Connected and Unconnected Blocks

@ For connected blocks, high-pass and low-pass coefficients are computed using
Equation (7) and (8)

@ For unconnected blocks, based on the SAD of spatial interpolation and the sum
of absolute DFDs of forward and backward MCP, we get :

e P block using frame one (2t)

H[m, n] = k/m [m, n] — \}572,[m —dm,n—dy  (9)

e P block using frame three (2t + 2)

1 1~
H[m, n] = \/5/2t+1 [m,n] — EIZH—Z[m —dn,n—dp] (10)

e /block
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Improved Bidirectional MCTF Connected/Unconnected Pixels
Subpixel Accuracy
Bidirectional MCTF
Experimental Results

Experimental Setup

@ Sequence : Foreman

@ Input Frame Size : QCIF (176 x 144)

@ Input Frame Rate : 30 fps

@ Number of Frames : 50 Luminance Frames
@ GOP Size : 16 frames
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Improved Bidirectional MCTF Connected/Unconnected Pixels
Subpixel Accuracy
Bidirectional MCTF
Experimental Results

Bidirectional MCTF Comparison
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Improved Bidirectional MCTF Connected/Unconnected Pixels
Subpixel Accuracy
Bidirectional MCTF
Experimental Results

Subpixel Accuracy Comparison

PSNR (in dB)
&
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31 +
30 T T T T T
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[~ Integer Pixel —= Half Pixel —+ 1/3 Pixel —— Quarter Pixel |
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Scalable Motion Coding Introduction
Experimental Results

e Scalable Motion Coding
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Scalable Motion Coding Introduction
Experimental Results

Introduction

@ Proposed by Taubman and Secker in 2004

@ Traditionally, motion parameters were coded losslessly due to
non-linear interaction between motion and sample data

@ But, this relationship turns out to be linear for all "optimal”
combinations of motion and sample bit rates

@ Therefore, motion and sample data can be coded independently
of each other
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Scalable Motion Coding Introduction
Experimental Results

Experimental Setup

@ To verify the linear relationship between Motion MSE and Total Frame
Error

@ To see how the PSNR varies as we increase the Motion bits

The Scalable Motion Coding model was applied to the highest spatial
resolution video of the RSC model

@ Sequence : Foreman

@ Input Frame Size : CIF (352 x 288)

@ Input Frame Rate : 30 fps

@ Number of Frames : 80 Luminance Frames
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Scalable Motion Coding Introduction
Experimental Results

Total Frame Error v/s Motion MSE
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Scalable Motion Coding Introduction
Experimental Results

PSNR v/s Motion bits per frame
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Principle
Wavelet-domain block matching algorithms

Overcomplete Motion Compensated Wavelet Coding Spermeial Rl

Outline

e Overcomplete Motion Compensated Wavelet Coding
@ Principle
@ Wavelet-domain block matching algorithms
@ Experimental Results
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Principle
Wavelet-domain block matching algorithms
Experimental Results

Overcomplete Motion Compensated Wavelet Coding

Principle

@ For a 1-D sequence x(n), either even-indexed or odd-indexed
coefficients are sulfficient for perfect reconstruction

@ What about y(n), where y(n) = x(n+ 7)?

@ Reason: Frequency aliasing brought by decimation OR
motion accuracy sacrifice

eecocccoo
XXX XXX
eececcee P
(AN N NNNN]
XXX coset
XXX XXX

XXX

YXXXXXX

Yo mias) mv': 0,1) ph :(1,1)

(a) (b)
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Principle
Wavelet-domain block matching algorithms
Experimental Results

Overcomplete Motion Compensated Wavelet Coding

OMCP Coder

OVERCOMPLETE MOTION COMPENSATED PREDICTION

Key Difference {ZZ.:; EDWT " y—\Q rcl ——
Both ME and MC
are performed
between
maximally-
decimated_vyavelet Phase |_ |
decomposition of Shifting
current frame and Motion [E
the overcomplete Compensation DWT Moti

. otion
expansion of T

revious frame .
p ) Motion Frame
Estimation Buffer
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Principle
Wavelet-domain block matching algorithms

Overcomplete Motion Compensated Wavelet Coding o

Wavelet-domain BMA v/s Spatial-domain BMA

@ BMA is based on nonlinear criterion such as SAD

@ W-BMA is less affected by occlusion because pixels in covered
and uncovered areas are decorelated by spatial filtering first.

@ S-BMA is highly sensitive to photmetric distortion.
W-BMA alleviates this problem due to its frequency selectivity
(high-band coefficients used for block matching would be less
affected than low-band ones)
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Principle
Wavelet-domain block matching algorithms

Overcomplete Motion Compensated Wavelet Coding e |

Experimental Setup

@ Sequence : Foreman

@ Input Frame Size : QCIF (176 x 144)

@ Input Frame Rate : 30 fps

@ Number of Frames : 80 Luminance Frames
@ GOP Size : 16 frames
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Principle
Wavelet-domain block matching algorithms

Overcomplete Motion Compensated Wavelet Coding e |

PSNR Variations
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Principle
Wavelet-domain block matching algorithms

Overcomplete Motion Compensated Wavelet Coding e |

Comparison
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Summary

Outline

e Summary
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Summary

Summary

We conclude that

@ 3D Scan based WT helps in solving the problem of temporal artifacts
and also greater complexity of 3D SPIHT

@ 3D scan based WT face problems when grouped with motion
compensation, making MCTF a necessity

@ Bidirectional MCTF with subpixel accuracy offers a gain of nearly 7dB
over unidirectional MCTF

@ Overcomplete MCP increases the PSNR further by approximately 3dB

@ Scalable Motion Coding also appears promising, specially at lower
bitrates.
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Summary

Future Work

@ The unified scalable coder should be compared for
performance to the Scalable Video Codec (SVC) being
developed by JVT

@ Another area of work is the rate control block for the
scalable codecs. One of the possible algorithms that could
be used is the Multidimensional Bit-Rate Control
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