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Preface

AS THE TITLE indicates, this book is meant to be a text which can be used
for a first course in ordinary differential equations. The student is assumed
to have a knowledge of calculus but not what is usually called advanced
calculus. During the last four years, I have presented most of this material
in a one-semester course.

My aim has been to give an elementary, thorough, systematic introduc-
tion to the subject. All significant results are stated as theorems, and careful
proofs are given. I have tried to emphasjze general properties of equations
and their solutions.

The preliminary Chapter 0 contains results from calculus and algebra
which are required in the later chapters. Complex numbers and complex-
valued functions are introduced here and are used throughout the book.
Chapters 1-4 contain material on linear equations. The short Chapter 1
concerns linear equations of the first order. Chapter 2 contains a rather
complete discussion of linear equations with constant coefficients, including
a uniqueness theorem which is derived from an elementary inequality.
In Chapter 3 linear equations with variable coefficients are treated. The
early part of this chapter can be covered quite rapidly, since it really
amounts to a review of some of the material in Chapter 2. Equations with
analytic coefficients, with the Legendre equation as a prime example, arc
introduced here. Chapter 4 contains a detailed treatment of second order
equations with regular singular points; the Bessel equation receives special
emphasis. Chapter 5 is concerned with initial value problems for a single—
in general nonlinear—equation. Existence and uniqueness of solutions are
established. The successive approximation method is used for the existence
proof, and general results on uniform convergence (a topic usually taught
in advanced calculus) are not used. The required convergence proofs arc
dealt with by means of explicit inequalities. Both local and non-local
existence results are given. In Chapter 6 it is shown how most of the
results in Chapter 5 remain valid for systems of equations. Here complex
n-dimensional vectors are introduced, and systems are treated as vector
equations, with solutions being vector-valued functions.

vii



oiil Preface

Several sections are starred. I have usually not devoted any classroom
time to these.

Included in the book are many exercises. There are exercises which
serve to develop the student’s technique in solving equations, and there
are many problems which are intended to help sharpen the student’s
understanding of the mathematical structure of the subject. I have also
used the exercises to introduce the student to a variety of topics not treated
in the text: for example, stability, equations with periodic coefficients,
boundary value problems.

I wish to record here my gratitude to Professor Norman Levinson,
from whom I learned so much during the period of our collaboration in
writing an earlier advanced work on this subject. Also, I wish to thank Mr.
George Biriuk for reading portions of the manuscript, and Professor
Richard C. Gilbert, to whom I am particuiarly indebted for reading all the
manuscript and suggesting many interesting exercises. Finally, I would
like to express my appreciation to Mr. Richard Hansen, of Prentice-Hall,
for his patient understanding.

Earl A. Coddington
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CHAPTER 0

Preliminaries

1. Introduction

In this preliminary chapter we consider briefly some important concepts
from calculus and algebra which we shall require for our study of differen-
tial equations. Many of these concepts may be familiar to the student, in
which case this chapter can serve as a review. First the elementary proper-
ties of complex numbers are outlined. This is followed by a discussion of
functions which assume complex values, in particular polynomials and
power series. Some consequences of the Fundamental Theorem of Algebra
are given. The exponential function is defined using power series; it is of
central importance for linear differential equations with constant coeffi-
cients. The role that determinants play in the solution of systems of linear
equations is discussed. Lastly we make a few remarks concerning principles
of discovery, and methods of proof, of mathematical results.

2. Complex numbers

It is a fundamental fact about real numbers that the square of any such
number is never negative. Thus there is no real z which satisfies the equa-
tion

22+1=0.

We shall use the real numbers to define new numbers which include numbers
which satisfy such equations.

A complex number z is an ordered pair of real numbers (z, y), and we
write

z = (z,9).
If
2 = (.'51, yl}a 2 = (.’122, y2)a
1
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are two such numbers, we define 2; to be equal to 2,, and write 2y = 2,,
if 21 = z5and i1 = ys. The sum 2, + 2, is defined to be the complex number
given by

21+ 22 = (21 + 22 1 + ¥2).
If z = (z, y), the negative of 2, denoted by —z, is defined to be the number
—z = (—z, —y).
The zero complex number, also denoted by 0, is defined by
0= (0,0).

It is clear from these definitions that

() z1itz=2+2

(i) (a+t2) +zm=2a+ (2+2)

(i) z2+0=2

(iv) z2+(—-2) =0

for all complex numbers 2, 2;, 2;, 2;.
The difference z, — 2, is defined by

21— 22 =21+ (—zz)a
and we have
21— 29 = (xl - X2, % — y2)°

The product 212, is defined by
2122= (ﬁzz = UN1Y2, T1Y2 -+ xz!h)-

This definition appears curious at first, but we shall soon see a justification
for it. It is easy to check that multiplication satisfies

(v) 212 =224
(vi) (2:22)23 = 21(225)

for all complex numbers z,, 2;, 2.
The unit complex number, with respect to multiplication, is the number
(1, 0) for we see that if z = (z, ) is any complex number

z(ly 0) = (x’ y) (1’ 0) = (x: y) = 2.
For this reason we denote the number (1, 0) by just 1. Then we have

(vil) 21 =2
for all complex z.
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If z= (z,y) # (0,0) there is a unique complex number w such that
zw=1(= (1,0)). Indeed, if w = (u,v), where u, v are real, the equation
zw = 1 says that

zu—gyv =1
yu +zv = 0.
These equations have the unique solution

z y = -y
z’—l—y” _x2+y2’

provided z® + »? # 0, which is equivalent to the assumption we made that
2 # 0. The number w, such that zw = 1, is called the reciprocal of 2z, and
we denote it by 2! or 1/z. Thus

71 = (2+y2’:c2+y2) if 2z # 0.

(vili) 2z71 =1, if 2 # 0.
The quotient 21/, is defined when z; = 0 by

u=

Then

z .
—£=zlz2, if 2, 3 0.
22
The interaction between addition and multiplication is given by the
rule

(ix) 21(2; + 23) = 2122 + 212s.

The complex numbers of the form (z, 0) are such that the negative and
reciprocal of any such number have the same form, for

—(z,0) = (—=,0),
(z,0)! = (z1,0), if z0.

Moreover, the sum and product of two such numbers have the same form,
since

(xl, 0) + (.‘Dz, 0) = (xl + X2, 0)’
(xl, 0) (:'L‘z, 0) = (xlx?, 0).

The real numbers are in a one-to-one correspondence with the complex
numbers of this form, the real number z corresponding to the complex
number z = (z,0). Further, as we have just seen, the numbers corre-
sponding to —z, 7Y, 21 + o2, 21z, are just —2z,27Y, 21 + 23, 212, if 2, = (21,0),
22 = (zz, 0). For this reason it is usual to identify the complex number
(z,0) with the real number z, and we write z = (z, 0). [Notice that this
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agrees with our earlier identifications 0 = (0, 0), 1 = (1, 0).] In this
sense, the complex numbers contain the real numbers. The properties
(¢)—(3z), which hold for complex numbers, are also valid for real numbers,
and thus we see that we have succeeded in enlarging the set of real numbers
without losing any of these algebraic properties. We have gained something
also, since there are complex numbers z which satisfy the equation

22+1=0.

One such number is the imaginary unit ¢ = (0, 1), as can be easily checked,
and this provides one justification for our definition of multiplication.

If z = (z,y) is a complex number, the real number z is called the real
part of z, and we write Re z = z; whereas y is called the imaginary part
of z, and we write Im z = y. Thus

z=(z,y) =2(1,0) +9(,1) =z+ iy = Rez + i(Imz).

Hereafter it will be convenient to denote & complex number (z,y) as
z + .

It is clear that the complex numbers are in a one-to-one correspondence
with the points of the (z, y)-plane, the complex number z = z + <y corre-
sponding to the point with coordinates (z, y). Then thought of in this way
the z-axis is often called the real azis, the y-axis is called the 1maginary axis,
and the plane is called the complex plane.

If z = z + 4y, its mirror image in the real axis is the point x — 7y. This
number is called the complex conjugate of 2, and is denoted by z. Thus
2=z —yif 2 =z + 1y. We see immediately that

zZ = 2,2 + 2o =3 + 52, 2129 = 2.152, zl = (z)—l’

for any complex numbers 2, 2, 2s.
Introducing polar coordinates (r, 8) in the complex plane via

x =rcosf, y =rsing, (r20,0=<0<27n),
we see that we may write
z=2x+ 1 =r(cosf + 7sinf).
The magnitude of z = = + iy, denoted by |z, is defined to be . Thus
2] = (& + 1)1 = (),

where the positive square root is understood. Clearly |Zz| = |z|. Suppose
zis real (that is, Im z = 0). Then z = = + 10, for some real z, and

|2] = (@),
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which is the magnitude of z considered as & real number. In addition the
magnitude of a complex number obeys the same rules as the magnitude of a
real number, namely :

2| z 0,

|z| =0 ifandonlyif 2z =0,
| —2| = [2],
|21 + 2| = |a] + 2],
|2122| = |a1] |2].

We show that |z + 22| = |z1| + |2, for example. First we note that

Rez < |z|
for any complex number z. Then

|2t + 2|2 = (21 + 22) (21 + 22) = |&1|? + |22]* + 2122 + 2122

|21|2 + |22|2 + 2 Re (2:2,)
< |a|2 4+ || + 2]22)
= |2+ |2]* + 2|a] |2]
= (la| + |2])3

from which it follows that |z + 2| < |z1] + |z:].
From the above rules one can deduce further that

lzn] = |zl S |aa + 2| S |2 | + | 2],
21 =|z1|
22 |22|.

Geometrically we see that |z, — 2:| represents the distance between the
two points z; and 2, in the complex plane.

EXERCISES

1. Compute the following complex numbers, and express in the form x + 1y,
where z, y are real:

® @— i3)+ (=1 i) ® G+ iD — 6 3)
A

@ (6= DD+ i) @1

© (4 — 5] () Re (4 — i5)

(g) Im (6 + 22)
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2. Express the following complex numbers in the form r (cos 8 4 < sin §) with
r=0and 0= 0 < 27
@) 1+ &3 (b) 1+ 4)

14 ¢ , )
© 1T @ 1+ 90— 1)
3. Indicate graphically the set of all complex numbers 2 satisfying:
@) |[z—2[=1 b) [z+ 2| <2
(¢) |Rez| =<3 d) [Imz|>1

€ |z=—1|+|z+2|=8.

4. Prove that:
@) z+z2=2Rez (b)) z—2=2tImz
(¢) [Rez| = |z] d) |z] = [Rez|+ |Imz|

5. If r is a real number, and z complex, show that
Re (rz) = r (Re 2), Im (rz) = r (Im 2).

6. Prove that
lz21] — |22 || £ |21 + 22]..

(Hint: 23 = 214 22 + (—2;), and 29 = 21 + 22+ (—z1).)
7. Prove that

lan+ z2P+ (21— z2f =22+ 2]z
for all complex zy, z,.
|z—a |
|1 — dz|
9. If n is any positive integer, prove that

™ (cos nf + ¢ sin nf) = [r (cos 6 + 1 sin 0)]~.

(Hint: Use induction.)

8. If |a | < 1, what complex z satisfy =17

10. Use the result of Ex. 9 to find
(a) two complex numbers satisfying 22 = 2,
(b) three complex numbers satisfying 2* = 1.

3. Functions

Suppose D is a set whose elements are denoted by P, Q, - -+, which are
called the points of the set. Let R be another set. A function on D to R is a
law f which associates with each point P in D exactly one point in R, which
we denote by f(P). The set D is called the domain of f. The point f(P)
is called the value of f at P. We can visualize the concept of a function as
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Figure 1

in Fig. 1, where each P in D is connected to & unique f(P) in R by a string
according to some rule. This rule, or what amounts to the same thing, the
collection of all these strings, is the function fon D to R.

We say that two functions f and g are equal, f = g, if they have the
same domain D, and f(P) = ¢g(P) for all Pin D.

The idea of a function is very general, and is a fundamental one in
mathematics. We shall consider some examples which are of importance
for our study of differential equations.

(a) Complex-valued functions. If the set B which contains the values of
S is the set of all complex numbers, we say that f is a complex-valued func-
tion. If f and ¢ are two complex-valued functions with the same domain D,
we can define their sum f + g and product fg by

(f+9)(P) =f(P) +¢(P),
(fg) (P) = f(P)g(P),

for each P in D. Thus f + g and fg are also functions with domain D. If «
is any complex number the function which assigns to each P in a domain D
the number « is called a constant function, and is also denoted-by «. Thus
if f is any complex-valued function on D we have

(af ) (P) = of (P)
for all P in D.

A real-valued function f defined on D is one whose values are real num-
bers. Such a function is a special case of & complex-valued function. Clearly
the sum and product of two real-valued functions on D are real-valued
functions. Real-valued functions are usually the principal object of study
in first courses in calculus.

Every complex-valued function f defined on a domain D gives risc to
two real-valued functions Re f, Im f defined by

(Ref) (P} = Re[f(P) ],
(Imf)(P) = Im[f(P)],
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for all P in D, Re f and Im f are called the real and imaginary parts of f
respectively and we have

f=Ref-+1iImf.

Thus the study of complex-valued functions can be reduced to the study of
pairs of real-valued functions. To obtain examples of complex-valued func-
tions we must specify their domains.

(b) Complex-valued functions with real domains. Many of the functions
we consider in this book have a domain D which is an interval I of the real
axis. Recall that an inferval is a set of real x satisfying one of the nine
inequalities

asz=b a=sz<hb a<z=b a<z<hb
asSr< o, —o<<zr=bh a<zr< o, —wo Lz
—o < r< «,

where a, b are distinct real numbers. The calculus of complex-valued func-
tions defined on real intervals is entirely analogous to the calculus of real-
valued functions defined on intervals. We sketch the main ideas.

Suppose f is a complex-valued function defined on a real interval I.
Then f is said to have the complex number L as a [tmit at xo in I, and we
write

limf(z) = L, or f(a) =L, (z—m),

x+zg
if
|f(z) — L] -0, as 0< |z — 2] —0.
This means that given any ¢ > 0 there is a § > 0 such that
|f(x) — L] <e¢ whenever 0 < |z — x| <8, xinl.

Note that here we are using the magnitude of complex numbers. Formally
our definition is the same as that for real limits of real-valued functions.
Because of this the usual rules for limits, and their proofs, are valid. In
particular, if f and ¢ are complex-valued functions defined on I such that
for some z in I

f(x)_)L; g(x)_)M; (117—*170),
then

J+a@) L+ M, (fg)x)—LM, (z— ).
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Ly 4 1L, at xo, where L,, L, are real. Then

Suppose f has a limit L
since
| (Ref) (z) = Lu| = | Re[f(z) — L]| = |f(x) — LI,

and

| (Im f) (x) = Lo| = | Im[f(z) — L]| = |f(=) = LI,
it follows that

(Ref)(z) = Ly, (Imf)(x) > L, (z— ).

Conversely, if Re f and Im f have limits L,, L, respectively at z,, then f
will have the limit L = L; 4 L, at 2.

We say that a complex-valued function f defined on an interval I is
continuous at xo in I if f has the limit f(x,) at zo, that is,

|f(x) — f(z)| =0, as 0 < |z — | — 0.

Equivalently, f is continuous at x, if both Re f and Im f are continuous at
x5. We say f is continuous on [ if it is continuous at each point of I. The
sum and product of two functions which are continuous at x, are continuous
there.

The complex-valued function f defined on an interval I is said to be
differentiable at x, in I if the ratio

J(z) — f(2)

X — X

,  (z# m),

has a limit at z,. If fis differentiable at z, we define its derivative at x,
f'(x0), to be this limit. Thus, if f'(z,) exists,

f(z) = @) _
r— %
An equivalent definition is: f is differentiable at z, if both Ref and Im f
are differentiable at z,. The derivative of f at x, is given by

J'(20) = (Ref)'(zo) +i(Im [ )" (20).

Using these definitions one can show that the usual rules for differentiating
real-valued functions are valid for complex-valued functions. For example,
if f, g are differentiable at x, in I, then so are f + ¢ and fg, and

(f + 9) (xo) =J'(x0) + g’ (20),
(f9)' (o) = f'(x0)g(x0) + f(x0) g’ (20).

If f is differentiable at every z in an interval I, then f gives rise to a new
function f* on I whose value at each z on I is f/ ().

f(x) | =0, as 0 < |z — x| —O.
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A complex-valued function f with domain the interval a <z < b is
said to be integrable there if both Re f and Im f are, and in this case we define
its integral by

b b b
f flz) dz = f (Re ) (x) dz + z'f (Im f)(z) dz.
Every function f which is continuous on a < z < b is integrable there.

This definition implies the usual integration rules. In particular, if f and
g are integrableon @ < z < b, and ¢, § are two complex numbers,

f: (af + Bg) (x) dzx =a/¢b f(z) dz +ﬁf:g(x) da.

An important inequality connected with the integral of a continuous
complex-valued function f definedona < z < b is

[ 1@ az|s [116) |an

This inequality is valid if f is real-valued, and the proof for the case when
f is complex-valued can be based on this fact. Let

F = /: f(z) dz.

If F = 0 the inequality is obvious, If F = 0, let
F=|F|lu uw=cosf+1ising (0=<48<2r).

Then ui = 1, and we have

f: J(z) dz

=12[:f(x) dx =Re[12fabf(:c) dx]

= f b Re [af(z)] dz < f | f(z) |d=,

*By b
[ 1s@ae

is meant the integral of the function | f | given by | f|(z) = |f(z)|fora = z < b. Thus
a more appropriate notation would be

b
[ Lf 1(z)dz.

We shall use the former notation since it is commonly used, and there will be no chance
of confusion.
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since
Re [af(z)] < |af(z) | = [f(=)].
As particular examples of complex-valued functions let

fz) =z + (1 —0),

g(z) = (1 + )%,
for all real z, Then

(Ref)(z) =z+ 2, (Im[)(z) = -2,
(f+9)(z) =z + 22,
(f9) (x) = (1 + )2 + 22*,
f(x) =14 (2 - 20)z,

5

[:f(a:) dx =[olxd:c+ (1 —2) lezdx =3

_t
=

(¢) Complex-valued functions with complex domains. We shall need to
know a little about complex-valued functions whose domains consist of
complex numbers. An example is the function f given by

f(z) = 2",

for all complex 2z, where n is a positive integer.
Let f be a complex-valued function which is defined on some disk

D: |z—a| <r

with center at the complex number a and radius r > 0. Much of the calculus
for such functions can be patterned directly after the calculus of complex-
valued functions defined on a real interval I. We say that f has the com-
plex number L as a limit at 2z in D if

|f(z) — L| =0, as 0 < |z—2z|—0,

and we write

imf(z) =L, or f(z) =L, (z—).

Hlo

If f and g are two complex-valued functions defined on D such that for some
2ein D

J(&) =L, g(&) =M, (z—>2),



12 Preliminaries Chap. 0

then
F+9@ L+ M (fg)iz) > LM, (z— z).

The proofs are identical to those for functions defined on real intervais.
The function f, defined on the disk D, is said to be continuous at z,
in D if
|/(2) — f(z0) | >0, as 0 <[z — z|—0.

It is said to be continuous on D if it is continuous at each point of D. The
sum and product of two functions which are continuous at z, are continuous
there. Examples of continuous functions on the whole complex plane are

) =|z], g(z) =2

Let g be defined on some disk D, containing z,, and let its values be in
some disk D», where a function f is defined. If ¢ is continuous at z,, and f
is continuous at g(zo), then “the function of a function” F given by

F(z) =f(g(2)), (2 in Dy, (3.1)

is continuous at 2z,. The proof follows the same lines as in calculus for real-
valued functions defined for real zx.

If f is defined on a disk D containing 2z, we say that f is differentiable
at 2o if

J(2) = S(20)

Z2— 2y

’ (z 7 20),

has a limit at z,. If f is differentiable at z, its derivative at 2o, f'(20), is defined
to be this limit. Thus

J(2) — f(20)

zZ2— 2

—f'(z0) |0, as0<|[z—2]=—>0.

Formally our definition is the same as that for the derivative of & complex-
valued function defined on a real interval. For this reason if f and g are
functions which have derivatives at zo in D then f + g, fg have derivatives
there, and

(f + 9)'(20) =S (20) + ¢'(20),
(f9)' (z0) = J'(20)g(20) + S(20)g'(20).

Also, suppose f and g are two functions as given in (3.1), and that ¢ is
differentiable at z,, whereas f is differentiable at g(20). Then F is differen-
tiable at 2o, with

(3.2)

F'(20) = f'(g(20))g’ (20) -
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It is clear from the definition of a derivative that the function ¢ defined
by ¢(z) = ¢, where ¢ is a complex constant, has a derivative which is zero
everywhere, that is, ¢’(z) = 0. Also, if p1(z) = z for all 2, then p;(2) = 1.
Combining these results with the rules (3.2) we obtain the fact that every
polynomial has a derivative for all 2. A polynomial is a function p whose
domain is the set of all complex numbers and which has the form

p(z) = ae™ + aiz" ™ + <+ + a2 + @,

where ao, a1, * -+, a» are complex constants. The rules (3.2) imply that for
such a p

P'(2) = amz" ' + a(n — 1)z"2 + «oo + Gy,

Thus p’ is also a polynomial.

It is a rather strong restriction on a function defined on a disk D to
demand that it be differentiable at a point 2, in D. To illustrate this we note
that the real-valued function f given by

f(x) = |:E|,

for all real z, is differentiable at all z #¢ 0. Indeed f’(z) is +1 or —1 accord-
ing as z 1s positive or negative. However the continuous complex-valued
function g given by

g(z) = IZI,
for all complex 2, is not differentiable for any z. Suppose 2, = 2y + yo #= 0,
for example, and let z = z + yi. Then for z # 2,
lz] —Jz| _ (2* + )V — (2§ + y5)'?
z— 2 (x — =) + iy = w)
_ (> +¢") — (21 + v7)
[(z — z0) + i(y — y0) (22 + y9)2 + (a8 + y§)'*]

If we let |z — 2| — 0 using z of the form z = z, + yi (that is y — %)
we see that

2] — [#] Yo
z—z iz + g’ (33)

whereas if we let |z — 29| — 0 using 2 of the form z ='z + yq (that is
T — 29) we obtain

|z| — | 2] o

2 — 2 - (z5 + ?/(2))”2. (34
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The two limits (3.3) and (3.4) are different. However, in order that g be
differentiable at 2z, we must obtain the same limit no matter how
|z — 20| — 0. This shows that g is not differentiable at z,.

(d) Other functions. Other types of functions which are important for
our study of differential equations are usually combinations of the types
discussed in (b), (¢) above. Typical is a complex-valued function f which
is defined for real z on some interval |z — 2| = a (xo real, a > 0), and for
complex z on some disk |z — 2| £ b (2 complex, b > 0). Thus the do-
main D of fis given by

D: |z—x| Sa, |z—2| =0,

and the value of fat (z, 2) is denoted by f(z, z). Such a function f is said to
be ¢ontinuous at (£, 1) in D if

|7(z,2) — f(&,n)|—0, as 0< |z—¢] + |z —19|—0.

There are two important facts which we shall need in Chap. 5 concern-
ing such continuous functions. The first is that a continuous f on the D
given above (with the equality signs included) is bounded, that is, there is a
positive constant M such that

lf(z,2)| = M,

for all (z,2) in D. This result is usually proved in advanced calculus
courses. The second result relates to “plugging in” a complex-valued func-
tion ¢ into f. Suppose ¢ is a complex-valued function defined on

|$—xo| =aq,

which is continuous there, and has values in |z - Zol < b. Then if fis
continuous on D, the function F given by

F(z) = f(=z, $(2)),

for all zsuch that |z — x| < a, is continuous for such z.
A slightly more complicated type of complex-valued function f is one
which is defined for real  and complex z;, « « «, z, on & domain

D: |z—m| a0, |lan— 20| + ¢+ |22~ 2m] =D

Here o is real, zy9, - - », zn0 are complex, and a, b are positive. The value of
fatz, 2, ««+,2zqis denoted by f(z, 21, + - -, 2»). Continuity of f is defined just
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as in the case of one z. Thus fis continuous at &, m, *++, 3, in D if

If(x;zl' "';zﬂ) —f(E;m; Y ’7")] — 0,

0< |z—¢&| +]as—m| + -+ + |za — n| > 0.

Such an f is bounded on D, and if ¢,, «++, ¢, are n continuous complex-
valued functions defined on |z — 29| =< a, having the property that

|¢1(:ﬁ) — Zml + oo 4 [@u(z) —2n0| <D
for all such z, then the function F given by
F(x) = f(xy ¢1($U), Y ¢,.(.'D))
for |z — 20| < a is continuous there.
EXERCISES

1. Leta = 24 13,5 = 1 — <. If for all real
f(@) = az + (bz),

compute:
(a) (Re f)(x) (b) (Im f)(z)
1
© @ @ [ @ s
0
2. If for all real
2
flz) = z+ @2  g(x) = rt

compute:
(a) The function F given by F(z) = f(g(x)) (b) F'(x)

3. If e is a real-valued function defined on an interval I, and f is a complex-
valued function defined there, show that

Re (af) = a(Re f), Im (af) = a(Im f).
4. Let f(z) = 22 for all complex 2, and let
u(x, y) = (Re iz + i), oz, y) = (Im fHz + ).
(a) Compute u(z, y) and v(z, y).

du Oy du dv
I Sh tl t —_—= - ’ P TR e e
(b) Show tha 3 . P
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(¢) Show that

u o 9%
—+4+—=0, —+—=0
da? + gt 0 9z t Y

5. Let f be a complex-valued function defined on a disk
D. |z|<r (r>0),
which is differentiable there. Let
u(z,y) = (Re iz 4+ ty), o(z,y) = Am Nz + ).

Show that
Ju dv du dv

ub — e ™

oz dy' dy oz’

forallz = x4+ tyin D. (Hint: If 290 = 20+ tyoisin D,let 0 < |z — 29| — 0,
in the definition of f’(z9), through z of the form z = z 4 iyo, and then of the
form z = o < 1y, to obtain

0 0
(@) = (o, o) + & —(s, o)
dz Jzx

av( ) — 1 u( )
= —(Zg, Yo) — ¢ (& .
3y 0, Yo ? 3y 0, Yo

The equations (*) are called the Cauchy-Riemann equations.)
6. Let f be the complex-valued function defined on

D: |z|=21, |z|£2
(x real, z complex) by

f(z, z) = 32 + zz 4 2,
and let ¢ be the function defined on |z | < 1 by
¢(x) = z + <.
(a) Compute the function F given by
F(z) = flz,¢(), (l=z|=1.

(b) Compute F'(z).
(¢) Compute

1
f F(z) dz.
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7. If ris a complex number, and
p@) =(@— rn,

where n is a positive integer, show that

plr) = p/(r) = +++ = p V() = 0,  pW(r) = nl.

4. Polynomials

We have defined a polynomial as a complex-valued function p whose
domain is the set of all complex numbers and which has the form

p(2) = @oz® b 2"+ o0 o+ AugZ -+ an,

where 7 is a non-negative integer, and ay, a; +* -+, a, are complex constants.
The highest power of z with non-zero coefficient which appears in the
expression defining a polynomial p is called the degree of p, and written
deg p. A root of a polynomial p is a complex number r such that p(r) = 0.
A root of p is sometimes called a zero of p. We shall require, and assume, the
following important result.*

Fundamental theorem of algebra. If p is a polynomial such that
deg p = 1, then p has at least one root.

This is a rather remarkable result, and justifies our introduction of the
complex numbers. We have seen that not every polynomial with real
coefficients (for example z* 4+ 1) has a real root, but polynomials of degree
greater than zero with complex coefficients always have a complex root.
The remarkable fact is that we do not need to invent new numbers, which
mclude the complex numbers, to guarantee a complex root.

We derive some consequences of this fundamental theorem.

Corollary 1. Let p be a polynomial of degree n = 1, with leading coeffi-
cient 1 (the coefficient of z), and let r be a root of p. Then

p(z) = (z — r)g(2)
where q s a polynomial of degree n — 1, with leading coefficient 1.
Proof. Let p(2) have the form
p(z) =2 +ae*' + o+ + anz + an,
* A proof can be found in G. Birkhoff and S. MacLane, A survey of modern algebra,

New York, rev. ed., 1953, p. 107, and also in X. Knopp, Theory of functiors, New York,
1945, p. 114.
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and let ¢ be any complex number. Then
p(z) —p(c) = (2" —c") +a(e" — ) + +++ +ana(z —0)
= (z — ¢)q(2),
where ¢ is the polynomial given by
q(z) = 2"ttt oo o
+a(zr? ez e ) oo+ Gp

Clearly deg ¢ =n — 1 and ¢ has leading coefficient 1. In particular if
¢ = r, a root of p, then we have

p(z) = (2 —r)g(2),
as desired.
If n — 1 2 1, the polynomial ¢ has a root, and this root is also a root of
p by Corollary 1. Thus applying the Fundamental Theorem of Algebru
n times, together with Corollary 1, we obtain

Corollary 2. If p 7s a polynomial, deg p = n = 1, with leading coeffi-
ctent ag ¥~ 0, then p has exactly n roots. If ry, ra, *++, Ty are these roots, then

p(z) =a(z — 1) (2 —13) o0 (2 — Tn). (4.1)

Note that a3'p is a polynomial which has leading coefficient 1. We re-
mark that the roots need not all be distinct. If r is & root of p, the number
of times z — r appears as a factor in (4.1) is called the multzplicity of r.

Theorem 1. If r 28 a root of multiplicity m of a polynomial p,deg p = 1,
then

p(r) =p'(r) = +o =pD(r) =0,
and

p™(r) #0.

Proof. Let p have leading coefficient ao # 0, and degree n = m. It
follows from Corollary 2 that

p(2) = ap(z — r)™q(2), (4.2)

where ¢ is a polynomial of degree n — m, and ¢(r) £ 0. Clearly p(r) =0
by the definition of a root. Also

P'(2) = am(z — r)™g(2) + ao(z — r)™¢'(2),
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and this implies that, if m — 1 > 0, p’(r) = 0.1Ilf m = 1 we have
p'(2) = uog(z) + ao(z — 1)¢'(2),

and thus p'(r) = awq(r) # 0.
The general argument can be based on (4.2) and the formula

vk — 1
(fg)® = fRg 4 | fe-Dg’ + L(i“_z'_) JEDY 4 eee  fg® (4.3)

for the k-th derivative of the product fg of two functions having & deriva-
tives. Formula (4.3) can be established by induction. Applying (4.3) to
the functions f(z) = (2 — r)™, g(2) = q(2) in (4.2), we obtain

p®(2) = allm(m — 1) +++ (m — k + 1) (z — r)™*q(2)
-+ (terms with higher powers of (z — r) as a factor) ].
It is now clear that

p(r) =p'(r) = -+ =p"(r) =0,
and
p™(r) = agn!q(r) #0,

which is the desired result.

EXERCISES

1. Compute the roots, with multiplicities, of the following polynomials:

(@) 22+2—6 M 2+z2z+4+1
(c) 22— 322+ 4 2—-—C+02+ 1+ :2)z—1
(e) 2 — 3

2. If ris such that 7 = 1,and r 3¢ 1, provethat 1 4 r 4 r* = (.
3. Let p be the polynomial given by
p(z) = ae” -+ w2+« -0+ an,
with @y, a3, ***, @a all real. Show that
p(@) = (@)
As a consequence show that if = is a root of p, then sois 7.

4. Prove that every polynomial of degree 3 with real coefficients has at least
one real root.
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5. Prove that if p is a polynomial, deg p = 1, and r is a complex number such
that

p(r) = p'(r) = «o0 = p»V(r) =0, p™(r) # 0,
then r is a root of p with multiplicity m. This is the converse of Theorem 1.

6. (a) Use the result of Ex. 5 to show that 7 is a root of the polynomial »
given by

p@) =24+ 2— 3)A+ (—1— &)2+ (—6— 5)22+ (—6+ 20)z+ 24,

and compute the multiplicity of <.
(b) Find the other roots of the polynomial p in (a).

7. Prove the formula (4.3). This can be written in the form

(fg)(k) = f(k)g + (k)f(k—l)gf -+ (]26) f(lc—2)gu
1
+ eve + (I:)f(k—l)g(t) + see ~+— fﬁ(k)’

k k!
(z) T NG — DI

is a binomial coefficient. Hint: Use induction, and show that
T0-02)+0)
( VAV RAV) )

5. Complex series and the exponential function

where

If z is a real number, and e is the base for the natural logarithms, the
number ¢* exists, and

o) xk
& kY
where the series converges for all real x. Indeed, this series may be taken

as the definition of e*. We shall need to know what e? is for complex z. One
way is to define e* by

e* = (0! =1),

Now we have to prove that this scries converges for all complex 2, and in
fact there is the problem of defining what we mean by a convergent series
with complex terms. The method is the same as that used to define con-
vergent series with real terms.

e =

(5.1)
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A series

’g Ck, (52)

where all ¢; are complex numbers, is said to be convergent if the sequence of
partial sums

sn“—-zck, (n=0,1;2)'°'))

k=0

tends to a limit s, as n — oo, That is, s 1s & complex number such that
|sn — 8| — 0, (n— ),

where the magnitude is the magnitude for complex numbers. If the series
(5.2) is convergent, and s, — s, we call s the sum of the series, and write

0
s =2 o
k=0

If the series is not convergent we say that it is divergent.
The series (5.2) with complex terms ¢ gives rise to two series with
real terms, namely

i Re ¢, i Im ¢, (5.3)
k=0 k=0

and it is not difficult to see that the series (5.2) is convergent with sum
s = Res 4+ 7Im s if, and only if, the two real series in (5.3) are con-
vergent with sums Re s and Im s respectively. In principle, therefore, the
study of series with complex terms is the study of pairs of real series.

The series (5.2) is said to be absolutely convergent if the series

2 || (5.4)

1s convergent. It can be shown that every absolutely convergent series is
convergent. Since the series (5.4) has terms which are real and non-negative,
any condition which implies the convergence of such series can be applied
to guarantee the convergence of the series (5.2). One of the most important
tests for convergence is the ratzo test. One version of this is the following.

Ratio test. Consider the series
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where the ci are complex. If |ci| > 0 for all k beyond a certain positive
integer, and

|ck+l|
| e |

—L (k> =), (5.5)

then the sertes 1s convergent if L < 1, and divergent for L > 1.

Thus the series (5.2) is convergent if (5.5) is valid foran L < 1.
An immediate application of this result is to the series

foe) zk
Z
Here ¢ = 2*/k! and
Lo | _ |2 BN _ el
Ickl_ (}C+1)! zk —k+1_)0; (k—-)@)_

Thus this series converges for every z such that |z| < «, that is, for all
complex z. Hence our definition (5.1) of ¢ as the sum of this series makes
sense. The function which associates with each z the complex number e*
is called the exponential function.

The series defining e* is an example of a power series

o]

E a(z — z0)* (5.6)

k=0

about some point 2, the a; being complex. Many of the properties of a
power series of the type

=]

> a(z — m)k,

k=0

where the ai, , zo are real, remain true for series of the form (5.6), and
the proofs are identical. In particular, if a series (5.6) is convergent on a
disk D:|z — 24| < r (r > 0), then the function f defined by

(22]

f(2) = 2 a(z — %)%,  (zin D),

k=0

has all derivatives in D, and these may be computed by differentiating term
by term. Thus

F(2) = 3 kan(z — 200 = 3 kap(z — )+,
k=0 ki
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where the last series converges in D. Applying this result to (5.1) we find
that

21 = 21 o, Z*
s\ — _— = _— = — 5
() k_zlkk! x-S °
Another important property of the exponential function is that

efrts2 — gtign2 (5.7)
for every complex 21, z;. This can be proved by justifying the following
steps

- EHED- 5o
k=0

Here

R
o= =

nmt (K — n)In!

R
21 "2

1 &
_k_g k—n)!

1
=% (z1 + 2z2)%.

Thus formally we have the product of the series defining e and e is the
series defining en1+#2, and these steps can be justified to give a proof of the
equality (5.7). A consequence of (5.7) is that

(et) n = gnt

for every integer n. In particular 1/e* = e,
Another property of the exponential function is that for all real 6,

e¥ = cos § + ¢ sin 6, (5.8)

and the proof results from adding the series involved. Indeed, #* = —1,
2 = —1, 74 = 1, etc., and thus

6 6
COSG=1_2_!+‘§_”.

(10)? | ()¢

R TR TR
smo—o—f+f—---,
(8)° | (i8)*

18m9=18+ 3! + 5! +-cc.
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Hence . .
. . 16)* 6)?
cosf +1sinf =1 +1,0+£;2—i)—+ (23') 4+ eee
=, (16)* y
= ev,
= k!
A consequence of (5.8) is that
e ® = cosf — 7sin 0, (5.9)
since cos (—0) = cos 6, and sin (—0) = — sin 6. Using (5.8) and (5.9)
we can solve for cos § and sin 6§, obtaining
eia + e—.'a
cos § = g
. e‘iﬂ —_ e—iﬂ
sin § = o

If z is a complex number with polar coordinates (r, §), then
z2=r(cosf + ¢sin @), (r=20,0=<60<2m7),
and we have, using (5.8),
z = re®, (5.10)

Note that |z| = r, |e®| = 1 for every real 6. The relation (5.10) can be
employed to find the roots of polynomials p of the form

p(2) =2" —~ ¢, (5.11)

where c is a complex constant, Suppose ¢ = |c|eis, where aisreal, 0 < a <
2w, and re® is a root. Then

et = |c|ete,
and taking magnitudes of both sides we see that
m = |le|, or r=|c|Vn
where the positive n-th root is understood. Further

e = gia, or gint-a) = 1,
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There are exactly » distinct values of 8 satisfying this relation and 0 < § <
2w, namely, those for which

nd — a = 2wk,
or
g — a -+ 27rk,
n

(k=010 —1).

Thus the roots 2, « - -, 2, of the polynomial p in (5.11) are given by

Zeil = I ¢ Il/uei(a+2rk)lu

= I c IU" [COS (M—-Tzr]'c) + ?: Sin (a +n27rk):|’ (k = 0; 1; ree, N — 1).

Geometrically we can describe the roots of p as follows. All roots lie on a
circle about the origin with radius |c|!/". One root has an angle «/n with
the real axis, if ¢ has angle o with the real axis. The remainder of the roots
are located by cutting the circle into » even parts, with the first cut being
at the root at angle o/n.

As a particular example let us find the three cube roots of 4¢. Thus we
want the roots of 2 — 4¢. Here ¢ = 47, and hence the cube roots will all
have a magnitude of |47|13 = 4!, If we write ¢ = |c|e™s, we see that
a = 7/2 n this case. Thus the three cube roots of 41 are given by

Imaginary
axis

4i

Real

Zy i
1
k/ 4 ) o
Z3

Figure 2. Three eube roots of 42
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or since /6 represents 30°,

vi 1 v3 )
— A41/3 - =4[ — = 4 =
a =4 (2 2)’ 2 =4 ( 2 2)’ '

2 = — 4,

These roots are sketched in Fig. 2.

EXERCISES
1. Find the three cube roots of 1.
2. Find the two square roots of 1.

3. Find all roots of the polynomials:
(a) 2+ 24 (b) 2* + i64
(c) A+ 4224 4 (d) 21— 1

4. If z = z + iy, where z, y are real, show that | ¢*| = ¢*. As a consequence
show that there is no complex z such that e = 0.

5. If a, b, = are real show that:
(a) Re [ela+M2] = ¢%= cos bx (b) Im [e*+®=2] = ¢9% gin by

6. (8) If r = a 4 b 7 0, where g, b are real, show that (¢”*)’ = re™.
(b) Using (a) compute:

)] j: e* dx

1
(ii) [ €* cos bx dx
0

1
(iid) [ e** sin bx dr
0

7. (a) If ¢(x) = €™, where r is a comnlex constant, and x is real, show that
¢'(x) — r¢(x) = 0.
(b) If ¢(x) = e%=, where ¢ is & real constant, show that:
@) ¢'(z) — dap(z) = 0 |
(i) ¢"(z)+ d’(z) =0

8. For what values of the constant r will the function ¢ given by ¢(z) = €™
satisfy

¢ () + 3¢'(x) — 2¢(z) = 0
for all real 2?
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9. Let a;, = k! -+ (¢/k!). For what real x are the following series convergent?

®) 3 (Re ap)et ® 3 dm e
femm() k=)

(e) i arr*
k0

10. Consider the series -

D2, *)

k=0

where z is complex.
(8) Show that the partial sum

sne) = 332 =
k=0

1 — zntl

11—z’

if z % 1.
(b) Show that the series (*) converges absolutely for | z| < 1.
(¢c) Compute the sum s(z) of the series (*) for |z| < 1.

6. Determinants

We shall need to know the connection between determinants and the
solution of systems of linear equations. Suppose we have such a system of n
equations

an?r + anpze + o+ + a2 = €1

02121 + Q22 + <+ + GenZn = & (6.1)

U121 + Gno22 + *** + AunZn = Cn,

where the a;; and ¢; are given complex constants. The problem is to find
complex numbers z;, «--, z, satisfying these equations. Such a set of =
numbers is called a solution of (6.1). We say that two solutions 2y, + -+, 2,
and z;, -+, 2. of (6.1) areequal if 2, = 2, *++, 2, = 2. If @ = €a = =++ =
¢, = 0 we say that the system is a homogeneous system of n linear equations,
otherwise we say (6.1) is a non-homogeneous system. The determinant A
of the coefficients in (6.1) is denoted by

A1 Q2+ din

Qo1 Q22 *°** dQ2n
A= . )

Qnl Gnz *°** Qnn
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and is shorthand for the number A given by
A= E(:}:)alﬁaﬁn *** Qniy,

where the sum is over all indices 7;, +++, 2, such that 4;, <+, 7, is a permuta~
tion of 1, --+, n and each term occurs with a 4+ or — sign according as
1y, **+, 1, is an even or odd permutation of 1, -« +, n. Thus

a1 QA2
=anaee — 1202,
21 Qa2
and
an Qa2 040
= Qs — Anlxds: -+ G120230;1
Q21 Q2 Qo3

— 019021033 + Q13021032 — Q13029031.

Q31 Q32 Q33

The principal results we require concerning determinants are contained in
the following theorems. They are usually proved in elementary texts on
linear algebra.

Theorem 2. If the determinant A of the coefficients in (6.1) is not zero
there 1is a unique solution of the system for zy, +« -, 2,. It 18 given by

A
2k =z,

where Ay is the determinant obtained from A by replacing s kth column
1k, "',ankaC],, tee, Cn.

Proof for the case n = 2. In this case suppose 2, 2, satis{y

a2 + a2 = €1

(6.2)
a2121 + G2 = Ca.

Multiply the first equation by @z, the second equation by —ay., and add.
There results

G Qar
214 = anc — anc: = = A,
C2 Qa2
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Multiply the first equation by —az, and the second by au, and add, ob-
taining
an G
2A = —au6 + anc: = = A,.
Qo1 C2

Thus if A 5 0, 2, must be A,/A (k = 1, 2), and it is readily verified that
these values satisfy (6.2).

We note that for a homogeneous system (¢, =¢; = +++ = ¢, =0 in
(6.1)) there is always the solution

zl=22=oo- =Z1|=0-

This solution is called the {rivial solution.

Theorem 3. If ¢; = ¢, = «++» = ¢, =0 in (6.1), and the determinant
of the coefficients A = 0, there is a solution of (6.1) such that not all the z; are 0.

Proof for the case n = 2. We are dealing with the case
anz + oz, = 0

az21 + amze = 0,

where
ands — ana;z = 0.
If an # 0,
— 012
2 = ; zz =1,
an
is a solution. If a;; = 0, and ay > 0,
—da2
21 = 3 20 = 1,
Aoy

is a solution. If a; = 0, and ay = 0,

2 =1, 2, =0,
is a solution.
Combining Theorem 3 with Theorem 2 we obtain

Theorem 4. The system of equations (6.1) has a unique solution if, and
only if, the determinant A of the coefficients vs not zero.

Proof. If A 0 Theorem 2 says that there is a unique solution. Con-
versely, suppose there is a unique solution z;, »+«, 2z, of (6.1). If A = 0, by
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Theorem 3 there is a solution {y, - - -, {, of the corresponding homogeneous
system, which is not the trivial solution. Then it is easy to check that
214§, 000, 20 + ¢ is a solution of (6.1) distinet from 2, «+-+, 2,, and
forces us to conclude that A = 0.

EXERCISES

1. Consider the system of equations
w1+ 2=14+¢
2214 (2 — 2)zs = 1.

(a) Compute the determinant of the coefficients.
(b) Solve the system for z; and 2z,.

2. Solve the following system for 2y, z; and 23:
321+ 22— 23=0
221 - =1

22+ 223=2

3. Does the following system of equations have any solution other than
2y = 2o = 23 = 07 If so find one.

4Z1+222+ 223=0
321+7Zg+223= 0
214+ zz+ z=0

4. Consider the homogeneous system corresponding to (6.1) (the case ¢; =
¢z = *** = ¢, = 0). Show that if the determinant of the coefficients A = 0,
there are an infinite number of solutions. (Hint: If 2y, ++-, 2, is a non-trivial
solution, show that az,, *«-, az, is also a solution for any complex number «.)

5. Prove that if the determinant A of the coefficients in (6.1) is zero then
either there is no solution of (6.1), or there are an infinite number of solutions.
(Hint: Use Ex. 4.)

7. Remarks on methods of discovery and proof

Often a student studying mathematics has difficulty in understanding

why or how a particular result, or method of proof, was ever concetved in
the first place. Sometimes ideas seem to appear from nowhere. Now it is
true that mathematical geniuses do invent radically new results, and meth-
ods for proving old results, which often appear quite strange. The most
that ordinary people can do is to accept these brilliant ideas for what
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they are, try to understand their consequences, and build on them to
obtain further information. However, there are a few general principles
which, if followed, can lead to a better understanding of mathematical dis-
covery and proof.

Concerning discovery, we mention two principles:

(a) wuse stmple examples as a basis for conjecturing general results,
(b) argue in reverse.

Both of these principles are illustrated in the proof we gave of Theorem 2
for the case n = 2. We were faced with trying to find out whether the
system (6.1) of n linear equations has a solution or not, and what condition,
or conditions, would guarantee a unique solution. We looked at the simplest
example, which occurs for n = 2 (using (a)). Then we assumed that we
had a solution (principle (b)), and found out what must be true for a
solution, namely, that

2A = A1, 224 = A;.
We immediately saw that if A £ 0, then

Ay Ap

a=—, @a=-. (7.1)
Note that at this point we have not yet shown that there s a solution, All
we have shown is that #f 2, 2; i a solution, and A # 0, it must be given by
(7.1). We can now guess that if A ¢ 0, then 2z, 2; given by (7.1) is a solu-
tion. This can be readily verified by substituting (7.1) into the given
equations. An alternate procedure is to check that the steps leading to
(7.1) can be reversed, if A # 0. Once we have discovered the right condi-
tion for the case n = 2, it is natural to conjecture that a similar condition
will work for a general n.

Three important methods of proving mathematical results are:

(i) a constructive method,
(ii) method of contradiction,
(iii) method of induction.

A typical example of a constructive method appears inthe proof of Theorem3
for the case n = 2, We wanted to show that nontrivial solutions of the
two homogeneous equations exist if A = 0. To do this we constructed
solutions explicitly., An example of the method of contradiction appears in
the proof of Theorem 4. We supposed that the system (6.1) had a unique
solution. We assumed that A = 0, and, using logical arguments, we arrived
at the fact that (6.1) does not have a unique solution. This is a contradic-
tion, and the only thing that can be wrong is our assumption that A = 0,
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The only other alternative is that A > 0, which is the conclusion we de-
sired.

The method of induction is concerned with proving an infinite number
of statements s, s, -+, one for each positive integer n. If s, is true, and
if for any positive integer &k the statement s, implies the statement s.4;,
then all the statements sy, s, - ++, are true. An example of a result which
can be proved using induction is the formula

k tk k k!
k) — (k—1) (1) = ——
(o) E‘(l)f g (z) Ik — 1’
for the k-th derivative of the product of two complex-valued functions
f, g which have k derivatives; see (4.3). The proof is the same as the induc-
tion used to prove the binomial formula

k
@+or =3 (e k=120,
=0
for the powers of the sum of two complex numbers a, b. The method of
induction is equivalent to a property of the positive integers, and conse-
quently we assume that this method is a valid method of proof.

The principles of discovery (a), (b), and the methods of proof (i),
(ii), (iii), will be used many times throughout this book. It will be instruc-
tive for the student to identify which principles and methods are being
used in any particular situation.



CHAPTER 1

Introduction—Linear Equations of the

First Order

1. Introduction

in Sec. 2 we discuss what is meant by an ordinary differential equation
and its solutions. Various problems which arise in connection with differ-
ential equations are considered in Sec. 3, notably initial value problems,
boundary value problems, and the qualitative behavior of solutions. In a
succession of easy steps we solve the linear equation of the first order in
Secs. 4-7.

2. Differential equations

Suppose f is a complex-valued function defined for all real £ in an
interval I, and for complex y in some set 8. The value of f at (z,y) is
denoted by f(z,y). An important problem associated with f is to find a
(complex-valued) function ¢ on I, which is differentiable there, such that
for all z on I,

(i) ¢(z)isin S,
(i)  ¢'(2) = f(z, d(x)).

This problem is called an ordinary differential equation of the first order,
and is denoted by

Yy =f(z,y). (2.1)

The ordinary refers to the fact that only ordinary derivatives enter into
the problem, and not partial derivatives. If such a function ¢ exists on I
satisfying (i) and (ii) there, then ¢ is called a solution of (2.1) on I.

33
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As an example consider the case when f is independent of y, that is, we
have the equation

y' = f(z), (2.2)

where f is defined on some interval I. The problem is to find a function
¢ on I such that ¢’ exists there, and ¢'(x) = f(x). This i1s one of the most
important problems considered in the study of calculus. Indeed, if f is
continuous on I, we know that the indefinite integral function ¢, defined by

wim) = [ ) a

where zy is some fixed point in I, is a solution of (2.2). Moreover, if ¢ is any
solution of (2.2), then there is a constant ¢ such that

¢(x) = ¢o(x) + ¢

for all z in I; and every constant ¢ gives rise to a solution in this way. Thus
all solutions of (2.2) are known in case f is continuous on I, and the study
of (2.2) reduces to the study of integration.

For a second example, suppose that ¢(z) denotes the amount of a cer-
tain substance at time z, and we know that the substance increases at a
rate proportional to the amount present at any time z. Then we must
have

¢'(2) = ke(2),
where k is some constant. Thus ¢ is a solution of the differential equation
y = ky. (2.3)

Conventional examples of processes described by this equation are popula-
tion growth (¥ > 0) and radioactive decay (k¥ < 0). A solution of (2.3)
is given by

p(z) = e,
which exists for all real z.

The problem posed by the equation ¥’ = f(x, ¥) has a simple geometri-
cal interpretation in case f is real-valued, and y is defined on a set S of real
numbers. Then for each £in I and y in S we are given a number f(z, y¥),
which may be thought of as the slope of a straight line through the point
(z, y). A solution of ¥’ = f(z, y) on I is a function ¢ whose graph (the set
of points (z, ¢(x)), z in I) is a curve whose tangent at (z, ¢(z)) has the
slope ¢'(x), which is the same as the given slope f(z, ¢(z)) at this point.
Thus, geometrically we are given a set of directions, and the differential
equation is the problem of finding curves having these directions as tan-
gents. The set of directions {f(z, )} is called a direciion field. Fig. 3 shows
such a field for f(z,y) = —ay, and the curve sketched is the solution
() = 2¢~=* of the equation y' = —zy.
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Figure 3. The direction field given by f(z, y) = —zy (y > 0)

Sometimes a differential equation occurs in a slightly more general
form, where the derivative ¢’ is not by itself on one side of the equation.
Thus it might be necessary to consider an equation of the form

F(z,y,y') = 0. (2.4)

Here F is some function defined for real z in an interval I, and complex
Y1, Y2 in sets S;, S; respectively. Then (2.4) is the problem of finding a
(complex-valued) function ¢ on I, which is differentiable there, such that
for all z on I,

(i) ¢(x) isin S;, ¢'(x) isin S,,
(so that F(x,‘ o(z), ¢'(x)) is defined),
(i) F(z, ¢(2),¢'(z)) =0.

This problem is also called an ordinary differential equalion of the first
order. The equation (2.1) is the special case when

F(z,y,y) =y — f(z,y).

Usually we shall consider equations in the form (2.1), since it can be shown
that (2.4) can be reduced to the form (2.1) under rather general conditions
on F.

More general differential equations involve higher order derivatives.
Let F now be a function defined for real z in an interval I, and for complex
Y1, Y2, ** *, Yna1 In sets Sy, Sy, « - -, Sy respectively. The problem of ﬁnd—
ing a function ¢ on I, having n derivatives there, and such that for all z
in I,

(i) % N(x) isin S, (k=1,2,+ee,n + 1),
(@ (2) = ¢(2)),

(11) F(.’D, d’(x); % ¢(”)($)) = 0,
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is called an ordinary differential equation of the nth order, and is denoted by
F(z,y,y', «++,y™) = 0. (2.5)

A function ¢ on I, with n derivatives, satisfying (i) and (ii) is called a
solution of (2.5) on I. Again it will be the usual situation to consider those
equations of the form

y(ﬂ) = f(x; Y, yI; MY y("_n)'

An example of a second order equation is
y'+y =0, (26)

which arises naturally in the study of electrical and mechanical oscillations.
Two solutions ¢, ¢, which exist for all real x are given by

¢1(2) = cos z, ¢:(z) = sin z,

3. Problems associated with differential equations

When presented with a differential equation our first impulse might be
to try to find all solutions of it. Ideally we would like to write down these
solutions in terms of well-known functions. This can be done for a large
number of very important equations. For example, we indicated in Sec. 2
that all solutions of

y' = f(x),  (fcontinuous), (3.1)
are given by

#(z) = [ 1) dt + o, (3.2)

where 7 is some point in the interval where f is defined, and ¢ is any con-
stant. All solutions of
v =ky (3.3)
are of the form
¢(:E) = ceh’ (3'4)

and ¢ can be any constant. We shall prove this elementary fact in Sec. 5.
Also every solution of

y' +y=0 (3.5)
has the form
¢(xz) = c1cos x + ¢z 8in z, (3.6)

where ¢;, ¢; may be arbitrary constants. The proof of this will occur in
Chap. 2.
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Frequently we are not interested in all solutions of an equation, but
only those satisfying certain other conditions. These conditions may take
many forms, but two of the most important types are initial conditions
and boundary conditions. An initial condition is a condition on the solution
at one point. For example, the solution of (3.3) having the property that
¢(0) = 2 (the initial condition) is readily seen from (3.4) to be given by

o(x) = 2ek=,
Such an tnztial value problem would be denoted by

yI = ky’ y(O) = 2.
Similarly, the solution ¢ of (3.5) satisfying

¢(0) =1, ¢'(0) =2,
is given by
¢(x) = cos x + 2sin x.

This problem would be denoted by
y¥' +y =0, y(0) =1 ¢(0) =2

A boundary condition is a condition on the solution at two or more points.
For example, the solution ¢ of (3.5) satisfying

¢(0) = 1; ¢'(27r) = _1;
is given by
¢(x) = cos x — sin z.

There are many equations for which it is not obvious that solutions
exist at all; and if they do, it might not be possible to write down ‘‘nice’’
formulas for them. For example, consider the equation

v'+y +siny =0, (3.7)

which is encountered in the study of the motion of & pendulum. It can be
shown that (3.7) has solutions, satisfying any given real initial condition,
which exist for all real z, although we can not express them in terms of
functions we meet in calculus. How do we solve equations such as (3.7),
that is, find the solutions? One method is to develop mathematical pro-
cedures which would allow us to compute the value of a solution at any
given = to any desired degree of accuracy. This method should be suffi-
eiently general to cover a large number of equations. Such a procedure is
developed in Chap. 5, where a general method for computing solutions to
initial value problems is given.

Even though it is impossible to express solutions of some equations in
nice formulas, it is often the case that we can say a good deal about the
properties of the solutions. In many situations it is just some property of
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the solutions which we wish to investigate. For example, without solving
(3.7) we can show that any solution ¢ for which

-7 < ¢(0) <, ¢’(0) =0,

will tend to zero as # — «. This corresponds to the fact that the oscilla-
tions of the pendulum are damped, and eventually the pendulum will stay
arbitrarily close to its equilibrium position y = 0.

1.

2.

EXERCISES

Find all solutions of the following equationson —®o < 2z <
(.8-) y’=e32+sinx (b) y”=2+$
(¢) y® = 0, (k a positive integer) (d) y'"' = «*

Verify that the following are solutions of the differential equations given:

(a) ¢(z) = e*n = fory’ + (cos z)y = 0

(b) ¢(z) = sin x — 1, for ' + (cos x)y = sin z cos z

() ¢(z) = 1,fory” — ¢y’ =0

d) ¢(z) = 5, fory"’ — ¢y’ =0

(e) ¢(x) = 1+ coe?, for y’ — y' = 0, (c1, c2 any constants)

(f) ¢(z) = sin 2z, fory"”" + 4y = 0

(8) ¢(z) = ¥, fory” + 4y = 0

(h) ¢(x) = ¢y cos kx + ¢3 sin kz, for y'’ + k% = 0, (k a positive constant,
and ¢, ¢; any constants)

Consider the equation y’ 4+ 5y = 2.
(a) Show that the function ¢ given by

$(z) = § + ce™

is a solution, where c is any constant.

(b) Assuming every solution has this form, find that solution satisfying
$(1) = 2.

(c) Find that solution satisfying ¢(1) = 3¢(0).

. Consider the equation ¢’ = 3z + 1.

(a) Find all solutions on the interval 0 < z = 1.
(b) Find that solution ¢ which satisfies ¢(0) = 1, ¢'(0) = 2.
(c) Find that solution ¢ which satisfies ¢(0) = 0, (1) = 3.

Consider the equation y’ = ky on — © < z < =, where k is some constant.
(a) Show that if ¢ is any solution, and Y(z) = ¢(x)e~**, then ¢¥(z) = ¢,
where ¢ is a constant. (Hin¢: Show that /() = 0 for all z.)

(b) Prove that if Re £ < 0 then every solution tends to zero as z— «©,

(¢) Prove that if Re £ > 0 then the magnitude of every non-trivial (not
identically zero) solution tends to «© as z — .

(d) What can you say about the magnitudes of the solutionsif Re &k = 07
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4. Linear equations of the first order

We initiate our study of differential equations by considering the simple
case of a linear equalion of the first order. This is an equation of the form

¥y + a(z)y = b(x), (4.1)

where a, b are certain functions defined on an interval I. Writing this in
the form 3’ = f(z, y) we see that

Mz, y) = —a(x)y + b(x). (4.2)

If b(x) = 0 for all z in I, the corresponding equation
¥y +a(x)y =0

is called a homogeneous equation, whereas if b is not identically zero on I,
(4.1) is called a non-homogeneous equation.

We note that if b(z) = 0 for all z in I, then the f of (4.2) is linear in y,
that is,

f(x, n+ yz) = f(x; yl) +f(x; yz)’
and homogeneous in y, that is,

J(z,ey) = ¢f(x,y),

where c is any constant.
We first solve the simple case of (4.1) when a is a constant, and then
treat the more general case.

b. The equation y’ 4 ay = 0
If a is a constant and ¢ is a solution of
¥ +ay =0, (5.1)
then ¢’ + a¢ = 0, and this implies that

(¢’ + a¢) =0,
or
(e**¢)’ = 0.

Therefore there is a constant ¢ such that ¢¢(z) = ¢, or

¢(z) = ce™=. (5.2)
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We have shown that any solution ¢ of (5.1) must have the form (5.2),
where ¢ is some constant. Conversely, if ¢ is any constant, the function ¢
defined by (5.2) is a solution of (5.1), for

¢’ () + ap(x) = —ace* + ace™ = 0.

We have proved a small theorem,

Theorem 1. Consider the equation
y +ay =0,

where a ts a complex constant. If ¢ is any complex number, the function ¢

defined by

¢(x) = ce™e=

is a solution of this equalion, and moreover every solution has this form.

Notice that all solutions exist for all real x, that is, for — © < 2 < o,
Also note that the constant ¢ is the value of ¢ at 0, that is, ¢ = ¢(0).

6. The equation y’' + ay = b(x)

Let a be a constant and let b be a continuous function on some interval
I. We consider the equation

¥ + ay = b(x), (6.1)

and try to solve it using the same method as in Sec. 5. If ¢ is & solution of
(6.1), then
e**(¢' + ap) = =,
or
(e*%¢)’ = e**b.

Let B be a function such that B'(z) = e**b(x), for example,

B(z) = [ C () di,

zg

where z, is some fixed point in I. Since ¢**¢ is another function whose
derivative is e**b, it follows that

e*¢(r) = B(x) +¢
for some constant ¢. Therefore
¢(z) = e**B(x) + ce™°=. (6.2)

It is easy to see that our steps can be retraced to prove that if ¢ is defined
by (6.2), where ¢ is any constant, then ¢ is a solution of (6.1).
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We observe from (6.2) that the function ¢ defined by ¢(x) = ¢ **B(x)
is a particular solution of (6.1), since it is the solution corresponding to
¢ = 0. We summarize our result.

Theorem 2. Consider the equation
y + ay = b(x),

where a ts a constant, and b s a continuous function on an interval 1. If xo
is a point in I and c'zs any constant, the function ¢ defined by

o(z) = e /z (1) dt + ceo=

]

1s a solution of this equation. Every solutron has this form.

EXERCISES

1. Find all solutions of the following equations:
(@) y — 2y =1 My+y=¢
) y—2y=2"+1z d) 3y +y=2e"
(e) ¥' + 3y = e
2. Let ¢ be the solution of ' + 7y = x such that ¢$(0) = 2, Find ¢(r).

3. Consider the equation
Ly + Ry = E,

where L, R, E are positive constants,
(a) Solve this equation.
(b) Find the solution ¢ satisfying ¢(0) = I, where I, is a given positive
constant.
(¢) Sketch a graph of the solution given in (b) for the case Iy > E/R.
(d) Show that every solution tends to E/R as z — .

4. Consider the equation
Ly’ + Ry = E sih wz,

where L, R, E, w are positive constants.
(a) Compute the solution ¢ satisfying ¢(0) = 0.
(b) Show that this solution may be written in the form

¢(z) = B ot ﬁv_wilsz e RiLz L ——————-r_ﬁ__—-Rzi =i sin (wz — ),
where « is the angle satisfying
R ] wl
cosa = 7122:-{—;—«}_14—2’ sl @ = W——:‘____@

(e) Sketch the graph of the solution given in (b).
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§. Consider the equation
Ly’ + Ry = Eet*s,

where L, R, E, w are positive constants,
{(a) Compute the solution ¢ which satisfies $(0) = 0.
(b) Using the differential equation show that ¢, = Re ¢ satisfies

Ly’ 4+ Ry = E coswz.
Compute ¢;.
(c¢) Using the differential equation show that ¢2 = Im ¢ satisfies

Ly + Ry = E sin wz.
Compute ¢2.

6. Let ¢ satisfy the equation

¥ + ay = bi(z),
and let ¢ satisfy the equation

¥ + ay = bx(z),

where by, b; are defined on the same interval I, and a is a constant.
(a) Show that x = ¢ -+ ¢ satisfies

¥ + ay = bi(z) 4 ba(z)

onl.
(b) Apply the result of (a) to find the solution of

v+ y=sinz+ 3cos2z
whose graph passes through the origin.
7. Consider the equation
¥ + ay = b(z),

where a is & constant, and b is a continuous function on 0 § z < «, satis-
fying there | b(z) | < k, where k is some positive number,

(a) Find the solution ¢ satisfying ¢(0) = 0.

(b) If Re a # 0, show that this solution satisfies

k
@) | = 2—[1 — ™

(c) Show that the right side of the inequality in (b) is the solution of
¥+ (Rea)y=1%  (Rea »0),
whose graph passes through the origin.

8. Let a be a constant, and let by, by be two continuous functionson0 S z < ®
such that
[i@) — @D ISk, (03 2z< ®), )



Sec. 7 Introduction—Linear Equations of the First Order 43

for some constant k£ > 0. Let ¢ be a solution of 3’ 4+ ay = bi(x), and ¢ & sclu-
tion of ¢’ + ay = ba(x). Assume that ¢(0) = ¥(0). Show that

k
|p(x) — Y(z) | = Rea [1 — e (Rea)e] **)
ea
for0 £ z < o,

(Note: If be approximates b; with an error at most k, in the sense of (*), then
(**) gives an estimate for the difference between the solutions. If k is small y
will be close to ¢.)

9. Consider the equation y’ 4+ ay = b(x), where a is a constant such that
Re a > 0, and b is a continuous funetion on 0 £ & < o which tends to the
constant 8 as z — . Prove that every solution of this equation tends to
B/aas z— o,

7. The general linear equation of the first order

We now consider the equation
¥y +a(x)y =b(x), (7.1)

where a and b are continuous functions on some interval I. If we are given
an equation

a(z)y’ + 8(x)y = v(z)

and «(z) » 0 on I, we may divide by «(z) to obtain an equation of the
form (7.1). The points where a(z) = 0, called singular points, are fre-
quently troublesome. We postpone a discussion of these difficulties until
later; see Chap. 4.

We try to solve (7.1) in the same way we solved the case when a was
constant. Suppose ¢ is a solution of (7.1). We try to find a function » such
that

u(¢’ + ap) = (ug)’.
If A is a function whose derivative is a, for example
A=) = [ a0 @,
zp

where 1z, is a fixed point in I, then such a function u is given by u == e4
since

(e4¢)’ = e1¢’ + ael¢p = e4(¢' + ad).
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Therefore ¢’ + a¢ = b if and only if
(et¢)’ = e4b,
and this is valid if and only if
e‘¢ = B + ¢, (7.2)

where ¢ is a constant, and B is a function whose derivative is e4b. For ex-
ample we can choose B to be given by

B) = [ eAb(0)dt.
Now (7.2) holds if and only if
8(z) = 4@B() + cea, (7.3)

We have thus shown that every solution of (7.1) has the form (7.3), and
conversely, if ¢ is any constant, the function ¢ defined by (7.3) is a solu-
tion of (7.1).

We remark that the function y = ¢4B is a particular solution of (7.1)
(the case ¢ = 0), and that ¢; = ¢ is a solution of the homogeneous
equation ¥’ + a(z)y = 0.

Theorem 3. Suppose a and b are continuous functions on an interval 1.
Let A be a function such that A’ = a. Then the function  given by

W) = e [ eaop(y) a
o
where Xo 1s in 1, ts a solution of the equation
¥y +a(z)y = b(x) (7.1)
on 1. The function ¢, given by
bi(2) = e
18 a solution of the homogeneous equation
y +a(z)y = 0.
If ¢ is any constant, ¢ = ¢ + cdy s a solution of (7.1), and every solution of
(7.1) has this form.

In solving a particular linear equation a person with a good memory
could remember (7.3), but it is probably easier to remember that multipli-
cation of ¢’ + a¢ = b by e yields (e4¢)’ = e4b, which can be immediately
integrated to give (7.3). As an example consider the equation

Yy + (cos x)y = sin z cos z.
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Here a(z) = cos z, b(x) =" sin z cos z, and » choice for 4 is A (x) = sin z.
Thus, if ¢ is any solution,

(esin %)’ = esin = gin z cos z,
and an integration gives

esin z¢(x) = (Sin xr — 1)ealn z 4 c,
or
¢(x) = (sinz — 1) + ce®ine,

where c is an arbitrary constant.

EXERCISES

1. Find all solutions of the following equations:
(@) ¥+ 2y = =
(b) zy +y=32*—1 (forz> 0)
(¢) ¥ + ey = 3¢*
(d) ¥ — (tan z)y = e***  (for 0 < z < w/2)
e) ¥ + 2zy = ze=*"

2. Consider the equation y’ + (cos z)y = e~®in =,
(a) Find the solution ¢ which satisfies ¢(m) = =.
(b) Show that any solution ¢ has the property that

¢(rk) — ¢(0) = =k,

where & is any integer.

3. Consider the equation 2%’ 4+ 22y = 1on 0 < z < o,
(a) Show that every solution tends to zero as z— 0.
(b) Find that solution ¢ which satisfies ¢$(2) = 2¢(1).

4, Consider the homogeneous equation
y + a@)y = 0, (*)

where a is continuous on an interval I.
(a) Show that the function ¢ given by ¢(z) = 0 for all zin I (the identically
zero function) satisfies this equation. This solution is called the irivial
solution,
(b) If ¢ is any solution of (*), and ¢(z0) = O for some xo in I, show that ¢ is
the trivial solution.
(¢) If ¢,y are two solutions of (*) satisfying ¢(zo) = y(zo) for some o in I,
show that ¢(z) = y(z) for all z in I.
(d) If ¢ is not the trivial solution, and y is any other solution, show that
there is a constant ¢ such that y = c¢, that is, Y (x) = c¢(z) for all z in I,
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5. The equation
¥ + alz)y = B(x)y*,  (k constant),

is called Bernoulli’s equation,
(a) Show that the formal substitution z = y'"* transforms this into the
linear equation

2+ (1 — k)a(z)z = (1 — k)B(z).
(b) Find all solutions of 3y’ — 2zy = x3?.

6. Consider the homogeneous equation ¢’ + a(z)y = 0, where a is a continu-
ous function on — o < g < o which is periodic with period £ > 0, that
is, a(z + &) = a(z) for all z.
(a) Let ¢ be a non-trivial solution, and let y(z) = ¢(x + £). Show that ¢ is
a solution.
(b) Show that there is a constant ¢ such that ¢(z + &) = c¢(z) for all z.
(Hint: Ex. 4 (d)). Show that

H
¢ = exp (—-/ a(t) dt).
0

(Note: exp u is an alternate notation for e+.)

(¢) What condition must a satisfy in order that there exist a non-trivial
solution of period £; of period 2£? If a is real-valued, what is the condition?
(d) If a is a constant, what must this constant be in order that & non-
trivial solution of period 2¢ exist?

7. Consider the non-homogeneous equation y’ 4+ a(z)y = b(x), where a, b are
continuous real-valued functions on — © < z < o which are of period £ > 0,
and b is not identically zero.
(a) Show that a solution ¢ is periodic of period £ if, and only if, $(0) = ¢ (¥).
(b) Show that there exists a unique solution of period £ if there is no non-
trivial solution of the homogeneous equation of period &.
(¢) Suppose there is a non-trivial periodic solution of the homogeneous
equation of period £. Show that there are periodie solutions of period & of
the non-homogeneous equation if, and only if,

£
/ eAOp() dt = 0,
. 0
where 4(f) = f a(s) ds.
0

(d) Find solutions of period 27 for the equations:
(i) ¥ + 3y = cos z
(i) ¢’ 4+ (cos )y = sin 2z

8. Find all solutions of the equation
Y+ 2y =b@), (—x <z ®),

where b(z) = 1 — |z |for |z| < 1,and b(z) = Ofor |z | > L
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9. The formula z
¥e) = 4o [ eron(g a

zg
for a solution ¥ of the equation

¥ + a(2)y = b(z)

msakes sense for some functions b which are not continuous. It is sometimes
convenient to consider such b, and this ¢ is called a solution even in this case.
Of course y satisfies the differential equation at the continuity points of b.
Find a solution of the equation

¥y + ay = b(z), (aconstant),

where b(z) = 1for0 5z s ¢ and b(z) = Ofor z > £. Here ¢ is some positive
constant,

10. Suppose ¢ is a function with a continuous derivativeon 0 5 z s 1 satis-
fying there ¢’(z) — 2¢(z) s 1, and ¢(0) = 1. Show that

| P(z) s § — %
11. Let ¢, ¥ be solutions of ' + a(z)y = b(x) on an interval I containing z,.
Show that for zin I,

V(@) — $(@) = Wiz) — deo)] exp [—- [ a0 dt],

8
and consequently that

| ¥(x) — ¢(x) | = | Y (z0) — @(x0) | exp [-—- _[ i Re a(t) dt]

zg
12. Consider the boundary value problem

=1y, y(1) = e2y(0),

where « is a fixed real number, and ! is a complex number.
(a) Show that this problem has a non-trivial solution if, and only if,

l =M = 27k — q,

where k = 0, 1, ==2, «--.
(b) Compute a solution ¢ of the problem for ! = A; which satisfies

1
.[0 |¢k($) Izd.’l! =1,

(c) If ¢;, P, are the solutions determined in (b) for I = \;, I = A, respec-
tively, show that

1
[0 SR de = 0
ifA; » A
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(d) If fis a function having the form

=411+ < + Aagn,

where the ¢, are as in (b), and the A, are constants, show that

f —
0 -

13. Let f be any continuous function on 0 < 2z < 1, and consider the problem
W —ly=f=), y1) =e“y0),

where « is real, and ! is a complex number not equal to any of the A, in Ex.
12, (a). Find a solution y of this problem, and show that it can be expressed
in the form

1
V() = fo 0@, 1)1(w) dy,

where g has a discontinuity at y = =z.
14. (a) Find the solution ¢ of the linear equation
y=1+y

satisfying ¢(0) = 0. Observe that this solution exists for all real =,
(b) Find the real-valued solution y of the nonlinear equation

¥ =1+
satisfying ¥(0) = 0. Observe that this solution exists only for — (r/2) <
z < (r/2). (Hint: For any ¢ for which such a y exists we must have
v'(t)
1+ [p@F

Integrating from 0 to z we obtain tan™ y(z) = z, or y(z) = tan z. Check
that this y is the solution desired.)

= (tan™t y)’(¢) = 1.

(Note: This illustrates one of the differences between linear and non-
linear equations. General techniques for solving equations such as in (b)
will be considered in Chap. 5.)



CHAPTER 2

Linear Equations with

Constant Coeflicients

1. Introduction

A linear differential equation of order n with constant coefficients is an
equation of the form

ay™ + ay™ ™ + ay" P + ooo +ay = b(2),

where ao = 0, ay, *++, a, are complex constants, and b is some complex-
valued function on an interval I. By dividing by a, we can arrive at an
equation of the same form with a, replaced by 1. Therefore we can always
assume a, = 1, and our equation becomes

Y™ gy gD - ooe gy = b(z). (1.1)

It will be convenient to denote the differential expression on the left
of the equality (1.1) by L(y). Thus

L(y) = y(’l) + aly(ﬂ"l) + azy(ﬁ"'m + ses + any,

and the equation (1.1) becomes simply L(y) = b(z). If b(x) = 0 for all
z in I the corresponding equation L(y) = 0 is called a homogeneous equa-
tion, whereas if b(z) # 0 for some z in I, L(y) = b(z) is called a non-
homogeneous equation.

We give a meaning to L itself as a differential operator which operates on
functions which have n derivatives on I, and transforms such a function ¢
into a function L(¢) whose value at z is given by

L(¢) (z) = ¢™(x) + ap™V(x) + +++ + and(2).
Thus

L($) = ¢™ + 0™ + +++ + aug.
49
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A solution of L(y) = b(x) is therefore a function ¢ having n derivatives on
I such that L(¢) = b.

From a theoretical standpoint, if b is continuous on 1, it is possible to
find all solutions of L(y) = b(x). We have done this for the case n = 1
in Chap. 1, Sec. 6. In this chapter we first consider the simple case of the
second order equation (n = 2). All solutions of the homogeneous equation
can be found by a simple device which reduces the problem to the algebraic
one of locating roots of a polynomial. The solutions of the non-homogeneous
equation can be generated by using the solutions of the corresponding
homogeneous equation, together with an integration involving the function
b. Secondly we show how the methods which work for the second order case
can be extended to solve the n-th order equation. Finally we indicate a
method of solving the non-homogeneous equation that works for a large
class of b, and which is often quicker than the general method to apply.

2. The second order homogeneous equation

Here we are concerned with the equation
L(y) =y +ay + ay =0, (2.1)

where a, and a; are constants. We recall that the first order equation with
constant coefficients ¥’ + ay = 0 has a solution e=*. The constant —a
in this solution is the solution of the equation 4+ a = 0. Since differentiat-
ing an exponential ¢* any number of times, where 7 is a constant, always
yields a constant times e™, it is reasonable to expect that for some ap-
propriate constant r, ¢ will be a solution of the equation (2.1). We have
seen that this works for equations of the first order. Let us try it for (2.1).
We find

L(e=) = (r* 4+ air + az)e™,

and e'= will be a solution of L(y) =0, i.e. L(e"®) =0, if r satisfies r* 4
ayr + a: = 0. We let

p(r) =+ ar + as,

and call p the characteristic polynomial of L, or of the equation (2.1).
Note that p(r) can be obtained from L(y) by replacing y®* everywhere by
r*, where we use the conventions that the zero-th derivative of y, y@, is
y itself, and that * = 1. From the Fundamental Theorem of Algebra we
know that the polynomial p always has two complex roots 7;, 72 (which
may be real). If 7, # 75, we see that ¢ and ¢ are two distinct solutions
of L(y) = 0.
It is possible to find two distinct solutions in the case r, = 73 also. We
have
L(e™) = p(r)e™ (2.2)
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for all » and x. We recall that if r, is a repeated root of p, then not only
p(r1) = 0, but p’(r)) = 0. This suggests differentiating the equation (2.2)
with respect to 7. In doing this we observe that, since L involves only
differentiation with respect to z,

d d
B;L(e ) = L(E;e )— L(ze™),

and therefore

L(xe=) = [p'(r) + zp(r) Je=

Now setting » = 7 in this equation we see that L(ze*) = 0, thus showing
that ze"# is another solution in case r = r.. We formulate our results so
far as a theorem.

Theorem 1. Let a,, a; be constants, and consider the equation
L(y) =y" +ay + ay = 0.
If 11, r2 are distinet roots of the characteristic polynomial p, where
p(r) =14 air + as,
then the funclions ¢, ¢, defined by
¢i1(z) = €=, du(2) =7, (2.3)

are solutions of L(y) = 0. If r; is a repealed root of p, then the funciions
¢1, ¢z deﬁned by
$(z) =e"%  do(z) = ze* (2.4)

are solutions of L(y) = 0.

We now turn to the problem of finding all solutions of L(y) = 0. It is
a remarkable fact that every solution of this equation is a linear combina-
tion, with constant coefficients, of the two functions ¢, ¢. given by (2.3)
in case r, # ry, and by (2.4) in case 7, = r.. This will be shown in Sec. 3
(Theorem 5).

First we verify the interesting fact that if ¢, ¢. are any two solutions of
L(y) =0, and ¢, ¢; are any two constants, then the function ¢ = ci¢y +
Cz¢p2 1s also a solution of L(y) = 0. Indeed

L(¢) = (cipr + C2¢2)" + ar(crhr + cag2)’ + az(c1ohr + C22)
R T c2al¢; + 61050, + Cy8,9,
= ¢iL(¢1) + c:L(¢2) = 0.

The function ¢ which is zero for all z is also a solution, the irivial solu-
tion of L(y) = 0.
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The result of Theorem 1, together with Theorem 5, allows us to solve
all homogeneous linear equations of the second order with constant coeffi-
cients. We have only to compute the two solutions ¢,, ¢. and then form all
linear combinations ¢;¢) + c2¢: of these two, where ¢, ¢; are any constants.

As an example consider the equation

¥y +y —2 =0 (2.5)
The characteristic polynomial is

p(r) =r+7r-2,
whose roots are —2 and 1. Therefore every solution ¢ has the form

o(x) = g% + co6%, (2.6)

where ¢), ¢; are constants. Moreover, if ¢, ¢; are any two constants the ¢
given by (2.6) is a solution.
As a second example consider

y' + oy =0, (2.7)
where w 1s a positive constant. The characteristic polynomial is
p(r) =1+ o,

whose roots are 7w and —tw. Consequently all solutions of (2.7) are of the
form

cleiwz + @e—iwz’
where ¢;, ¢, may be any two constants. Taking ¢, = %, & = 1, we see that
cos wz is a solution; and letting ¢, = 1/2¢,¢c; = —1/2¢, we find that sin wz

is a solution. The equation (2.7) is important in the study of oscillatory
behavior in many physical situations, and is called the harmonic oscillator

equation.

EXERCISES

1. Find all solutions of the following equations:

(@) y'—4y=0 () 3y + 2 =0
(e ¢y + 16y =0 d) y" =0
@ v +2iy+y=0 ) v " — 4+ 5y=10

@) y"+ Bi— 1)y —3wy=0

2. Consider the equation " -+ 3’ — 6y = 0.
(a) Compute the solution ¢ satisfying ¢(0) = 1, ¢
(b) Compute the solution ¥ satisfying Y(0) = 0, ¢’
(¢) Compute ¢(1) and ¥(1).
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3. Find all solutions ¢ of " + y = 0 satisfying:
(a) ¢(0) = 1, ¢(x/2) = 2 (b) ¢(0) = 0,¢(r) =0
(e) ¢(0) = 0,¢'(7/2) = 0 (d) ¢(0) = 0, ¢(m/2) =0

4. Consider the equation
¥+ aw’ + aw = 0,

where the constants a), as are real. Suppose a 4+ i3 is a complex root of the
characteristic polynomial, where «, 3 are real, 8 5% 0.

(a) Show that e« — 18 is also a root.

(b) Show that any solution ¢ may be written in the form

¢(x) = ¢**(d) cos Bz + d; sin Bz),
where d), d; are constants.
(c) Show that a = —ay/2, B = a; — (ai/4).
(d) Show that every solution tends to zero as z — 4 = if a; > 0.

(e) Show that the magnitude of every non-trivial solution assumes arbi-
trarily large valuesas r— 4+ « if a; < 0.

5. Consider the equation
1
L+ Ry + -y =0,
where L, R, and C are positive constants. (Note: L is not a differential operator

here.)
(a) Compute all solutions for the three cases:

1) —IT’ - ITCT' >0
... R? 4
W 1™
N 4
(iii) 2 Lo <0

(b) Show that all solutions tend to zero as x — o for each of the cases (i),
(ii), (iii) of (a).

(c) Sketch the solution ¢ satisfying ¢(0) = 1, ¢’(0) = 0 in the case (iii).
(d) Show that any solution ¢ in case (iii) may be written in the form

¢(z) = Ae*® cos (Bz — w),
where 4, a, 8, w are constants. Determine «, 3.
6. Show that every solution of the constant coefficient equation

'+ a4+ ay =0

tends to zero as x— o if, and only if, the real parts of the roots of the char-
acteristic polynomial are negative. (Note: In this case the solutions are often
called transients.)
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7. Show that every solution of the constant coefficient equation
Y’ +ay +ay=0

is bounded on 0 £ z <« if, and only if, the real parts of the roots of the
characteristic polynomial are non-positive and the roots with zero real part
have multiplicity one.

8. Consider the equation y”” + k* = 0, where % is a non-negative constant,
{a) For what values of k will there exist non-trivial solutions ¢ satisfying
(i) ¢(0) =0, ¢() =0,
(i) ¢'(0) = 0, ¢'(m) = 0,
(iii) ¢(0) = ¢(m), ¢'(0) = ¢'(m),
(iv) ¢(0) = —¢(), ¢'(0} = —9¢'(m)?

(b) Find the non-trivial solutions for each of the cases (i)-(iv) in (a).
9. Let ¢ be a solution of the equation
y'+ a' + ay = 0,
where a;, a; are constants. If
Y(z) = e@D7g(z),

show that  satisfies an equation ¢’ + ky = 0, where & is some constant. Com-
pute k.

3. Initial value problems for second order equations

The demonstration that every solution of the equation
Ly) =y" +ay + oy =0

is a linear combination of the solutions (2.3) or (2.4) will depend on show-
ing that the initial value problems for this equation have unique solutions.
An initial value problem for L(y) = 0 is a problem of finding a solution ¢
satisfying

¢p(@) =, ¢ (z0) =B, (3.1)

where z, is some real number, and «, 8 are two given constants. Thus we
specify ¢ and its first derivative at some initial point z,. This problem is
denoted by

L(y) =0, 2(®m)=a ¥ (z) =8 (3.2)

Theorem 2. ( Existence Theorem) For any real x,, and constants e«, 8,
there exists a solution ¢ of the tnitial value problem (3.2) on — o <z < o,
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Proof. We show that there are unique constants ci, ¢ such that ¢ =
cid + c:¢, satisfies (3.1), where ¢, ¢ are the solutions given by (2.3),
or (2.4). In order to satisfy the relations (3.1) we must have

a1 (z0) + ae(z) =
(3.3)

cld’:(xo) + 0245;(%) =8
and these equations will have a unique solution ¢, ¢; if the determinant

| g1(m0)  @a(o)
A= = ¢1(%0) o (%0) — ¢ (20) ¢2(z0) # O.
¢1(z0) g (w0)

In case r % 7y,
¢l(x) = €'t%, 4’2(37) = e'*,
and

A = 7geNiT0prE0 P oTITOETIT0 — (7-2 — 1-1) e(r;-H-.)zg’
which is not zero, since e+ 9= £ 0, If r; = 1,

hi@) = e, a(z) = 2o
and
A = en30(en=0 | gorieN®) — riTeeN e = ¢¥170 £ (),

Therefore the determinant condition is satisfied in either case. Thus, if
¢, ¢ are the unique constants satisfying (3.3), the function

¢ = Ci¢1 + Cop2

will be the desired solution satisfying (3.1).

We have shown that there is a unique linear combination of ¢; and ¢,
which is a solution of (3.2). Although it is not quite obvious, it turns out
that this solution is the only one. Before proving this we give an estimate
for the rate of growth of any solution ¢ of L(y) = 0, and its first derivative
¢, in terms of the coefficients 1, a;, a2 appearing in L(y). As a measure of
the “size” of ¢ and ¢’ we take*

l¢() || = Cle@) [® + [¢'(z) 2]
where the positive square root is understood. The “size’’ of L will be meas-
ured by
k=14 |a| + |ee].

* Note that || ¢(z)|| is just the magnitude, or length, of the vector with componenta
¢ (z), ¢/ (x).
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In the course of the proof we shall require the elementary fact that if b
and c are any two constants, then

2[6[[c] = [b]% + [e|® (3.4)
This inequality results by noticing that
0= (|p] — [e[)?=[b]2+ [e]2 - 2]B] |c].
Theorem 3. Let ¢ be any solution of
L(y) =y" +ay +ay =0

on an inlerval 1 containing a point xo. Then for allx in 1

| ¢ (o) || e === < || $(2) || = || #(0)]]| €¥I=—=! (3.5)
where

le@ Il = Cle@ >+ |6/ @ 217 k=1+ |a] + |a].

Remark. Geometrically the inequality (3.5) says that || ¢(z) || always
remains between the two curves

y= ” ¢(x0) ” ek(z—zg) and Yy = ” ¢(xo) ” e—k(:—zo);
the shaded area in Fig. 4.

Proof of Theorem 3. We let u(z) = || ¢(z) || % Thus
u = ¢+ ¢IE’7)
where #(z) = ¢(z), ¢ () = ¢'(z). Then
v =¢'¢+¢¢ +¢"¢ +¢¢”

y=“¢(x°)”eklx-x.l

o Ly=j¢tale™
Figure 4
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and therefore*

| (z) | 22| ¢(2)|| ¢'(x) | + 2]¢'(2)]] " () |. (3.6)
Since ¢ satisfies L(¢) = 0 we have

¢ = —ap’ — a9,
and hence

|6 (2) | 2 ||| ¢/ (2) | + | a2 ] &(2) | (3.7)
Using (3.7) in (3.6) we obtain

|u'(2) | 2214 |a2]) |$(@)]] ¢ (2) | + 2] || &' (2) |2
Now applying (3.4) to b = ¢(z), ¢ = ¢'(x), this gives
|/ (2) | £ (1 +ae]) [¢(2) |2+ (1 + 2|ai| +]ae]) [¢' () |2

< 2(1+|a| +]a|)[]¢(2) |2 + ¢/ (2) |7],
or
|u'(z) | = 2ku(z).
This is equivalent to
—2ku(z) £ v'(z) < 2ku(x) (3.8)

and these inequalities lead directly to (3.5). Indeed, consider the right
inequality which can be written as

w — 2ku £ 0.

If this were an equality, it would be a linear differential equation for u of
the first order. We “integrate’ this inequality using the same procedure we
used in Chap. 1. It is equivalent to

e %s(y' —2ku) = (e %=u)’ £ 0.
If > xo we integrate from z, to x obtaining

e~ *zy(x) — e %=y(x,) < 0,
or
u(z) = u(mo) =9,
yielding}
o) | = || ¢(0) || =0, (2> x).

The left inequality in (3.8) similarly implies
o(x0) || e*= = [l o(2) I, (x> 20),

and therefore

| ¢(z0) || e*E=0 < || ¢(2) || = || p(x0) || =0, (x> m),

* From the definition of a derivative it follows that ¢’ = ¢'. Also | ¢(x)| = | ¢ (z)]-
110 = b = c then 0 S bt < ¢}, where the positive square root is understood.
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which is just (3.5) for £ > 0. A consideration of (3.8) for # < x, together
with an integration from z to xzy, yields

I} (z0) || === = || ¢(2) [} = || $(20) || e*=0, (2 < o),
which is (3.5) for z < ..
Theorem 4. (Uniqueness Theorem) Let a, B be any two constants, and

let xo be any real number. On any interval 1 containing xo there exists at most
one solutton ¢ of the tnitial value problem

L(y) =0, y@) =a  y(m) =5
Proof. Suppose ¢, ¢ were two solutions. Let x = ¢ — ¢. Then
L(x) = L(¢) — L(¥) =0, and x(w) =0, x'(m) =0.
Thus || x(x0) || =0, and applying the inequalities (3.5) to x we see that
| x(z) || =0 forallzin I.

This implies x(z) = 0forall zin I, or ¢ = ¢, proving our result.
Theorems 2 and 4 now imply the result we promised in Sec. 2.

Theorem 5. Let ¢1, ¢2 be the two solutions of L(y) = 0 given by (2.3)
in case Ty # 1y, and by (2.4) in caser, = ry. If ¢y, c2 are any two constants the
Sfunction ¢ = ci¢r + Cogp2 15 a solution of

Lly) =0om — o <z < o,
Conversely, if ¢ is any solution of

Liy) =00n — v <z < o,
there are unique constants c,, ¢ such that

¢ = Ci¢1 + Cagp2.

Proof. The first part of the theorem follows, as we have seen, from the
fact that

L(¢) = ciL(¢1) + 2L (¢2).

If ¢ is a solution and x; is real, let ¢(2) = @, ¢'(20) = 8. In the proof of
Theorem 2 we showed that there is a solution ¢ of L(y) = 0, satisfying
¥v(zo) = a, ¥'(x0) = B, of the form

v = Ci¢1 1+ G,

where ¢, ¢; are uniquely determined by «, 8. By uniqueness (Theorem 4)
¢ =¥
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EXERCISES

1. Find the solutions of the following initial value problems:
(a) " — 2y — 3y = 0,9(0) = 0,y (0) = 1
y'+ @+ 1)y +y=0y0=01y0)=0
@ ¥+ @ — 1y —3y=0,90)=2790)=0
) ¢+ 10y = 0,y(0) = =, y'(0) = =*

2. Suppose ¢ is a function having a continuous derivativeon 0 £ z < «, such
that ¢/(z) + 2¢(x) = 1 for all such z, and ¢(0) = 0. Show that ¢(z) < & for

z 0.
3. Find a function ¢ which has a continuous derivative on 0 £ 2z £ 2 which
satisfies
$0) =0, ¢'0) =1,
and
y' —y =0, for 0 sz =1,
and

v’ — 9y =0, for 1 22 < 2.

4. Suppose ¢, Y are two solutions of the constant coefficient equation
Ly) =y"+ ay +ay=0

on a finite interval I including a point z,. Let
¢(x0) = cn,  ¢'(z0) = By,
Y(xo) = az, Y (20) = Bo,
(1 — a)* + (81— Bo)* = €.

(a) If x = ¢ — ¥ show that x satisfies L(y) = 0, and

and suppose

X(@o) = a1 — a3,  x'(x0) = B1 — Be.

(b) Show that
|@(z) — Y(x) | < ekl

forallzin I, wherek = 14 | a1 |+ | az|, and | I | is the length of I. (Note:
This result implies that if @ — a1, 82— B1, then e — 0, and hence y(z) —

¢(z)on l.)

5. Consider the constant coefficient equation

Liy) =y"+ ay’ + ay = 0.
Let ¢; be the solution satisfying

$1(z0) = 1,  ¢i(z) = 0,
and let ¢ be the solution satisfying

$2(z0) = 0,  @alzo) = 1.
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If ¢ is a solution satisfying

$(ro) = a,  ¢'(x0) = B,

show that

o(r) = agi(r) + Bea(x)

for all . (Note: This shows that every solution ¢ is a linear combination of
¢1 and ¢, and that ¢ is a linear function of its initial conditions «, 8.)

6. Let I be the interval 0 < z < 1. Find a funection ¢ which has a continuous
derivative on — « < z < =, which satisfies

y' =0 inl,
v’ 4+ k*% = 0 outside I, (k > 0),
and which has the form

¢(:B) = gikz + Ae“"", (:B < 0)’
and

¢(z) = Beik=, (z 2 1).

Determine ¢ by computing the constants A and B, and its values in 1.

4. Linear dependence and independence

Two functions ¢;, ¢: defined on an interval I are said to be linearly
dependent on I if there exist two constants ¢, ¢, not both zero, such that

adi(z) + cx2(z) =0

for all z in I. The functions ¢, ¢2 are said to be linearly independent on I
if they are not linearly dependent there. Thus ¢,, ¢: are linearly independent
on [ if the only constants ¢, ¢; such that ¢i¢1(x) + cep2(z) = 0 for all =
in I are the constants ¢, = 0, ¢; = 0.

The functions defined by (2.3) are linearly independent on any interval
I. For suppose

cre® + € = 0 (4.1)
for all z in I. Then, multiplying by e, we obtain
e + celrIz = 0,
and differentiating there results
Co(rs — r)elrrz = (.

Since r, # r;, and €=z is never zero, this implies ¢z = 0. But if ¢z = 0,
the relation (4.1) gives cie”* = 0, or ¢; = 0 also.
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Similarly the functions ¢y, ¢: defined by (2.4) are linearly independent
on any interval I. The proof is the same. If

clenz + Coxe™F = 0
on I, by multiplying by e we get
€+ Cx = 0,

and differentiating we obtain ¢; = 0, and this implies ¢, = 0.

There is a simple test which enables us to tell whether two solutions
¢1, ¢2 of L(y) = 0 are linearly independent or not. It involves the deter-
minant

b1 P2

W (¢1, ) = = 19y — P12

¢ ¢
which is called the Wronskian of ¢1, ¢.. It is a function, and its value at
is denoted by W (¢, ¢2) (z).

Theorem 6. Two solutions ¢1, ¢2 of L(y) = 0 are linearly independent
on an interval I if, and only if,

W, ¢2) (z) # 0

Jor all x in 1.

Proof. First suppose W (¢, ¢2) (x) # 0 for all z in I, and let ¢, ¢c; be
constants such that

ad1{z) + () =0 (4.2)

for all z in I. Then also
c1¢1'(x) + c2¢;(x) =0 (4.3)

forall z in I. For a fixed x the equations (4.2), (4.3) are linear homogeneous
equations satisfied by ¢, ¢;. The determinant of the coefficients is just
W (¢1, ¢2) (z) which is not zero. Therefore (Theorem 2, Chap.0) ¢, = ¢; =
is the only solution of (4.2), (4.3). This proves that ¢,, ¢, are linearly
independent on 1.

Conversely, assume ¢, ¢» are linearly independent on I. Suppose that
there is an xo in I such that W (¢, ¢2) (o) = 0. This implies that the system
of two equations

Ci¢1(zo) + Cop2(x0) =0,

61¢:(x0) + cz%'(xo) =0,

has a solution ¢;, ¢;, where at least one of these numbers is not zero ( Theorem
3, Chap. 0). Let ¢, ¢; be such a solution and consider the function ¢ =
ci¢1 + cp2. Now L(y¥) = 0, and from (4.4) we sce that

¥ (z) =0, V' (z) = 0.

(4.4)
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From the uniqueness theorem (Theorem 4) we infer that ¢(z) = 0 for
all z in 7, and thus

a1 (z) + Cpa(z) =C

for all z in I. But this contradicts the fact that ¢, ¢, are linearly inde-
pendent on 7. Thus the supposition that there was a point z, in I such that

W (¢, ¢2) (z0) =0
must be false. We have consequently proved that

W (1, ¢2) (x) # 0
forall z in I.

It is easy to see that we need compute W (¢, ¢2) at only one convenient
point to test the linear independence of the solutions ¢,, ¢,.

Theorem 7. Let ¢, ¢2 be two solutions of L(y) = 0 on an interval 1, and

let xo be any point in 1. Then ¢y, ¢2 are linearly independent on 1 if and only
i
W (¢, ¢2) (20) #= 0.

Proof. If ¢, ¢, are linearly independent on I then

for all z in I, by Theorem 6. In particular

W (¢, ¢2) (w0) == 0.
Conversely, suppose W (¢1, ¢2) (zo) # 0, and suppose ¢, ¢; are constants
such that

ap(z) + ape(z) =0
for all z in 7. Then we see that

cip1(z0) + cxpa(zo0) =0,
¢, 81 (o) + Cby(xy) = 0,

and since the determinant of the coefficients is W (g1, ¢2) (o) = 0, we
obtain ¢; = ¢; = 0. Thus ¢y, ¢: are linearly independent on 1.

Using the concept of linear independence we can show any two linearly
independent solutions of L(y) = 0 determine all solutions, in the sense of
the following theorem.

Theorem 8. Let ¢y, ¢2 be any two linearly independent solutions of
L(y) = 0 on an interval 1. Every solution ¢ of L(y) = 0 can be written
uniquely as

b = 11 + Cagde,

where ¢,, C2 are constants.
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Proof. Let xo be a point in I. Since ¢, ¢2 are linearly independent on [/
we know that W (¢4, ¢2) (o) 5% 0. Let ¢ (20) = a, ¢'(x) = B, and consider
the two equations

c1¢1(20) + Copa(m0) = «
¢, (o) + 0205;(-’50) =8

for the constants c;, ¢;. Since the determinant of the coefficients of ¢, ¢;
is just
W (¢, ¢2) (x0) # O,

there is a unique pair of constants ¢, ¢; satisfying these equations. Choose
c1, ¢z to be these constants. Then the function ¢ = ¢ + c2¢2 is such that

Y(x0) = ¢(x0), ¥ (20) = ¢' (%), and L(y) =0.

From the uniqueness theorem (Theorem 4) it follows that ¢ = ¢ on I,
that is,
¢ = cid1 + Cooa.

The importance of Theorem 8 is that we need only to find any two
linearly independent solutions of L(y) = 0 (not necessarily the ones we
found in Sec. 2) in order to obtain all solutions of L(y) = 0. For example,
the equation

¥' +y=0

has the two solutions ez, ¢**, which are linearly independent, but it also
has the two linearly independent solutions cos , sin x. Sometimes it is more
convenient to express a solution in terms of the latter set of functions,
especially when we want to observe the oscillatory character of a real-valued
solution.

EXERCISES

1. The functions ¢,, ¢2 defined below exist for — » < z < . Determine
whether they are linearly dependent or independent there.

(a) ¢1(z) = z, Ppa(x) = €%, ris a complex constant

(b) ¢1(z) = cos z, Pp2(x) = sin z

(c) ¢1(z) = 7, ¢o(z) = 5a?

(d) ¢1(x) = sin z, ¢pa(z) = €**

(e) ¢1(z) = cos 7, () = 3(e™ + €~ %)

(f) ¢1(z) = =, da(x) = | z|

2. Are the following statements true or false? If the statement is true, prove
it; if it is false, give a counterexample showing it is false.
(a) “If ¢1, ¢ are linearly independent functions on an interval I, they are
linearly independent on any interval J contained inside I.”
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(b) “If ¢1, ¢z are linearly dependent on an interval I, they are linearly
dependent on any interval J contained inside 1.”

(¢) “If ¢1, P2 are linearly independent solutions of L(y) = 0 on an interval
I, they are linearly independent on any interval J contained inside 1.”

(d) “If ¢1, ¢2 are linearly dependent solutions of L(y) = 0 on an interval
I, they are linearly dependent on any interval J contained inside 1.”

3. (a) Show that the functions ¢, ¢2 defined by
¢1(z) = 2%, @) = x|z ],

are linearly independent for — « < 2 < =,

(b) Compute the Wronskian of these functions.

(¢) Do the results of parts (a) and (b) contradict Theorem 6? Explain your
answer,

4. Consider the equation
¥y’ + oy’ + ay = 0,
where a;, a; are real constants such that 4a; — af > 0. Let
a -+ 16, a — i3 (ex, B real)

be the roots of the characteristic polynomial.
(a) Show that ¢1, ¢2 defined by

¢1(x) = €** cos Bz, ¢2(z) = €% sin Bz

are solutions of the equation.
(b) Compute W(¢1, ¢2), and show that ¢1, ¢o are linearly independent on
any interval I. (Hint: See Ex. 4, Sec. 2.)

5. (a) Let ¢, be any function satisfying the boundary value problem

y'+nly =0, y0) =y@r), y'0) =y, ™
wheren = 0,1,2 «-++, Show that

2x
[; On(T)pn(z) dz = 0

if n s m. (Hint: —py = n%n, and —pp = m?*pp. Thus
(12 — Mpubm = Gupn — Gudn = [bndm — Prbal”-

Integrate this equality from 0 to 2w, and use the boundary conditions
satisfied by ¢, and ¢n.)

(b) Show that cos nz and sin nz are functions satisfying the boundary
value problem (*). The result of (a) then implies that

2 2%
[ cos nx cos mz dr = 0, f cos nz sin mz dz = 0,
0 0

2r
f sin nz sin mz dx = 0, (n = m).
0
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6. (a) Show that ¢,(z) = sin nz satisfies the boundary value problem
¥'+ny =0, y0) =0y =0,

wheren = 1,2, +--,
(b) Using (a) show that

n
/ sinnrsinmzdr = 0
0

if n # m. (Hint: See Ex. 5 (a).)

(¢) Prove that for any positive integer n, ¢1, *++, ¢, are linearly inde-
pendent on 0 £ z £ w. (Hint: Suppose aip1 + +++ + a.¢pn = 0. Muliiply
both sides of this equality by ¢« (k fixed between 1 and #) and integrate
from 0 to . Use (b).)

7. Determine all complex numbers  for which the problem
_y” = ly: y(O) = 0! y(l) = O:
has a non-trivial solution, and compute such a solution for each of these l.

8. Suppose ¢, ¢ are linearly independent solutions of the constant coefficient
equation
y'+ ey + ay =0,

and let W (1, ¢2) be abbreviated to W, Show that W is a constant if and only
if a1 = 0. (Hint: Compute W'.)

9. Let ¢1, ¢2 be two differentiable functions on an interval I, which are not
necessarily solutions of an equation L(y) = 0. Prove the following:
(a) If ¢1, @2 are linearly dependent on I, then W (¢, ¢2)(z) = Oforall zin I,
(b) If W(pi1, ¢2)(zo) > 0for some xpin I', then ¢y, ¢2 are linearly independent
on I.
() W(p1, ¢2)(x) = 0 for all x in I does not imply that ¢1, ¢2 are linearly
dependent on I. (Hint: Ex. 3.)
(d) W(p1,¢2)(xz) = Oforallzin I, and ¢2(x) 54 0on I, imply that ¢, 2 are
linearly dependent on I. (Hint: Compute (¢1/¢2)".)

5. A formula for the Wronskian

There is a convenient formula for the Wronskian of two solutions of
L(y) = 0, which results from the fact that W (¢, ¢.) satisfies a first order
linear equation.

Theorem 9. If ¢, ¢2 are two solutions of L(y) =0 on an inlerval 1
contarning a point X, then

W (¢1, ¢2) (z) = e~1=—0W (¢1, ¢n) (o). (5.1)
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Proof. We have
¢ + ady + azdy =0,
¢s + Wi, + s = 0,

and multiplying the first equation by — ¢,, the second by ¢, and adding we
obtain

(s — ¢ ¢2) + a1(drd; — di¢h2) = O.
We notice that if W = W (¢, ¢2),

W = ¢1d, — ¢1ds, and W' = ¢, — ¢, ¢u.
Thus W satisfies the first order equation

W 4+ a,W = 0.
Hence
W(x) = ce™o=,

where ¢ is some constant. Setting £ = zo we see that

W(xo) —_ w—olzo’
or
¢ = e* W (x9),
and thus
W(x) = e‘““’""“’W(xo),

which was to be proved.

6. The non-homogeneous equation of order two

We turn now to the problem of finding all solutions of the equation
L(y) =y" + ay’ + ay = b(z),

where b is some continuous function on an interval I. Suppose we know
that ¢, is a particular solution of this equation, and that ¢ is any other
solution. Then

L(‘P_‘I’p) =L(‘I’)_L('I’p) =b—b=0

on I. This shows that ¢ — ¢, is a solution of the homogeneous equation
L(y) = 0. Therefore if ¢;, ¢; are linearly independent solutions of L(y) =
0, there are unique constants ¢, ¢, such that

¥V — ¥p = Gy + Caghs.

In other words every solution ¢ of L(y) = b(x) can be written in the
form

'I"':'l’p""cl‘f’l"'%s
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and we see that the problem of finding all solutions of L(y) = b(a) reduces
to finding a particular cne ¢, and two linearly independent solutions
¢, ¢2 of L(y) = 0. Note that if

L(‘I/P) = b; and L(d’l) = L(¢2) = 07

and ¢y, ¢; are any constants, then

vV =¥, + cidr + 2
satisfies L(y) = b.

To find a particular solution of L(y) = b(x) we reason in the following
way. Every solution of L(y) = 0 is of the form ci¢1 + c:¢: where ¢, ¢,
are constants, and ¢, ¢» are linearly independent solutions. Such a function
cadr + c¢2 can not be a solution of L(y) = b(z) unless b(z) =0 on 1.
However, suppose we allow ¢, ¢; to become functions w1, us (not necessarily
constants) on I, and then ask whether there is a solution of L(y) = b(x)
of the form ;¢ + us¢p2 on I. This procedure is known as the variation of
constants. The remarkable thing is that it works. We argue in reverse.
Suppose we have a solution of L(y) = b(x) of the form w1 + sy,
where u,, 4, are functions. Then

(w1 + uade)”’ + a1(wadr + Uaghe)’ + @2 (wrdy + Uzde)
= wL(¢) + wL(gs) + (duy + dyuy’) + 2(yws + bos)
+a,(¢1uy + daus)
= (¢ + dpuy ) + 2(dyu + dyu;) + ar(yu; + dpu) = b,

and we notice that if
$1tty + dyity =0 (6.1)
then
0 = (dyu; + du)’ = (dyuy + du;) + (yuy + doup ),

and we must have
b1uy + dus = b. (6.2)

Looking at this reasoning in reverse we see that if we can find two func-
tions u;, u, satisfying (6.1), (6.2), then indeed wi¢ + uagp. will satisfy
L(y) = b(z).

The equations (6.1), (6.2) are two linear equations for u,, u,, with a
determinant which is just the Wronskian W (¢, ¢2). Since we assumed
é1, ¢2 to be linearly independent this determinant is never zero on I, and
there exist unique solutions u,, «,. Indeed, a little calculation shows that

. B . L
YT Wlen )’ Wi )
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In order to obtain u;, 4, all we have to do is integrate. For example, if o
is in I we may take for u,, u,

= a(8)b(2) 7 (D)D)
T e (0 0 W) =

The solution ¥, = w1¢1 + uz¢; then takes the form

[ Ta(0h@) — a@) a0 b
va(@) = [zo W (om0 ()

dt

w(z) = — 2 Wi, ¢2) (8)

dt. (6.3)

We summarize our results,

Theorem 10. Let b be continuous on an interval 1. Every solution ¢ of
L(y) = b(x) on I can be written as

¥ = ¥p + Cid1 + Ca¢e,

where ¥, 18 a particular solution, ¢, ¢2 are two linearly independent solulions
of L(y) = 0, and ¢, c; are constants. A particular solution ¢, is given by
(6.3). Conversely every such  ts a solution of L(y) = b(x).

As an example let us solve L(y) = b(x) in the case p(r) =2 + air +
a; has two distinct roots 71, r,. We may take

¢1(z) ==,  ¢a(z) = €%,
and then

W(¢l; 952) (x) = (7'2 - rl)g("l"H'I)z'
Also

d1(8) da(x) — @1(x) pe(t) = emrters= — erizemt,
Thus every solution ¢ of L(y) = b(z) in this case has the form

i [erl(z—t) —_ erz(z—-t)]b(t) dt,

Ty — Tadyg

¥(z) = cie"= + ce™ +

where x is a real number, and ¢,, ¢; are constants.
For a more concrete illustration of this method of solving & non-homo-
geneous equation consider the equation

y'—y — 2y = e
The characteristic polynomial is
t—r—2=(r+1)(r—2),

and therefore two linearly independent solutions ¢, ¢ of the homogeneous
equation are
o1(z) =€,  ¢o(z) = €*.
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A particular solution ¥, of the non-homogeneous equation is of the form
¥p(2) = w(z)e™ + w(z)e?,
where u;, u, satisfy the equations (6.1), (6.2), thatis,
uy (x)e== + u, (2) e = 0,
—u (z)e=® + 2u,(z)e= = =
Solving these for u,, u, we find that

u(z) = -4,  u(z) =i,
and for w, u, we can take

wu(z) = —g, ug(x) = —ge 3=,

Thus ¢, is given by

x
1[/,(:1:) = —-ée"’ — je2,

We note that — (¢=%/9) is a solution of the homogeneous equation, so that
we may take — (xe~2/3) as a simpler particular solution of the non-homo-
geneous equation. The most general solution ¢ of the non-homogeneous
equation then has the form

¥(z) = —ge“z + aie™® + ce®,

where ¢, ¢; are any two constants.

EXERCISES

1. Find all solutions of the following equations:
(a) y"+ 4y = cos x
(b) ¥"" + 9y = sin 3=z
) ¥+ y=tanz, (—n/2 < z < 7/2)
@y +2iy+y==x
(&) " — 4 + 5y = 3¢ + 227
(f) y/— Ty + 6y = sinzx
® yv"+ y=2sinzsin 2z
Gh)y'+y=secz (—r/2< z< 1/2)
Q) 44" —y=¢
(G) 6"+ 5y — by ==
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2. Let L(y) = 9" + ary’ + asy, where a,, a; are constants, and let p be the
characteristic polynomial p(r) = 2 + ayr + a..
{a) If A, a are constants, and p(a) = 0, show that there is a solution ¢ of

L(y) = Ae*® of the form ¢(z) = Be**, where B is a constant. (Hint: Compute
L(Be*=).)

(b) Compute a particular solution of L(y) = Ae** in case p(a) = 0. (Hint:
If B, r are constants compute L(Bz¢=), and then let r = a.)

(¢) If ¢, ¢ are solutions of

L@y) = bhi(z), Ly) = ba(a),
respectively, on some interval I, show that x = ¢ -+ ¢ is a solution of
L(y) = bi(z) + ba(x) on I.

(d) Suppose A1, A2, a1, s are constants, and p(a;) = 0, p(az) = 0. Find a
solution of

L(y) = A1en® + Age*”,
3. Consider
L(y) = y" + o’ + o,

where @,, a; are real constants. Let 4, w be real constants such that p(iw) »= 0,
where p is the characteristic polynomial.

(a) Show that the equation L(y) = Aei“* has a solution ¢ given by

e t(wr—a)

¢(x) =

H

| p(iw) |
where p(iw) = | p(iw) | e*. (Hint: Ex. 2 (a).)

(b) If ¢ is any solution of L(y) = Ae*“, show that ¢; = Re ¢, d2 = Im ¢,
are solutions of

L(y) = A coswz, L(y) = A sin wz,

respectively.
(¢) Using (a), (b) show that there is a particular solution ¢ of

1
Ly" + Ry’ + Ey = F ¢os wrz,

where L, R, C, E, w are positive constants, which has the form ¢(x) ==
B cos (wx — a). (Note: L is a constant here, and not a differential operator.)
(d) Suppose that R*C < 2L in (c). For what value of w is B a maximum?
(Note: This w is often referred to as the resonance w.)

4. Consider the equation
v’ + vy = A coswz,

where A, w are positive constants.
(a) Find all solutionson 0 £ z < =,
(b) Show that every solution ¢ is such that | ¢(z) | assumes arbitrarily
large values as 2 — .
(c) Sketch the graph of that solution ¢ satisfying ¢(0) = 0, ¢'(0) = 1.
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5. Consider the equation
L(y) = ¥ + ey’ + aay = b(x),
where a,, ag are constants, and b is & continuous function on 0 § z < o.
Suppose that the roots ry, r; of the characteristic polynomial
p(r) = P+ arr + a2

are distinct, and Rer; < 0, Re rs < 0.
(8) Suppose b is bounded on 0 £ z < o, that is, there is a constant & > 0
such that
@) | sk, (OSz< =)

Show that every solution of L(y) = b(z) is bounded on 0 < z < . (Hint:
Use the formula for a solution ¢ which was developed just after Theorem 10.)
(b) If b(z) — 0, a8 * —> o, show that every solution of L(y) = b(z) tends
to zeroas r— .

7. The homogeneous equation of order n

Everything we have done for the second order equation can be carried
over to the case of the equation of order n. Now let L(y) be given by

L(y) — y(ﬁ) + aly(’l-l) + azy(ﬂ"z) + ene + anY,

where a,, az, + <+, a, are constants. We try to solve L(y) = 0 as before by
trying an exponential ¢=. We see that

L(e=) = p(r)ew, (7.1)
where
p(r) =rm +ar a4 o0 4 a,.

We call p the characteristic polynomial of L. If 1 is a root of p, then clearly
L(e) = 0, and we have a solution er=, If 7 is a root of multiplicity m, of
p, then

p(r) =0, p'(r) =0, 0, pm—(r) =0,
If we differentiate the equation (7.1) & times with respect to r, we obtain*

ok
ark

Jk

() = L) = Lizhe)

k(k — 1)
2!

* If f, g are two functions having k derivatives, then

k(k — 1)
21

- [p20) + Bz + PRI () + e+ plr)a o

(fg) %) o f(k)g + kft-t)g! JEDG" 4 0o +jg(#),
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Thus fork =0, 1, «--, m; — 1, we see that z%™= is a solution of L(y) = 0.
Repeating this process for each root of p we arrive at the following result.

Theorem 11. Let 1y, +++,1s be the distinct roofs of the characteristic
polynomial p, and suppose ri has multiplicity m; (thus my + my + +++ +
m, = n). Then the n functions

erlz, :BG"’, soe, xm:-—leuz;

T oTIZ ... 1722 o0e
er¥, rerr, i *%s

ef'z, xeflz, P ., xm.—lenz
are solutions of L(y) = 0.

The n functions ¢y, -+, ¢» on an interval I are said to be linearly
dependent on I if there are constants ¢;, - - -, ¢, not all zero, such that

cip1(z) + <+ + cagu(z) =0

for all z in I. The functions ¢,, +++, ¢ are said to be linearly independent on
I if they are not linearly dependent on 1.

Theorem 12. The n solutions of L(y) = 0 given tn Theorem 11 are
linearly independent on any tnterval 1.

Proof. Suppose we have n constants

Cij (i=1;"';s;j=0:"')mi_1)
such that

me—1

2 2 cipier =0 (7.2)

=] j=0
on I. Summing over j for fixed 7, we let

mi—1

Piz) = 2 cir!
=0
be the polynomial coefficient of e"= in (7.2). Thus we have

Pi(x)ens + Py(x)er + «++ + Py(z)es =0 (7.3)

on I. Assume that not all the constants ¢;; are 0. Then there will be at
least one of the polynomials P; which is not identically zero on I. By re-
labeling the roots r; if necessary we can assume that P, is not identically
zero on I. Now (7.3) implies that

Pl(x) + Pz(x)e("r'fl)z + see + Pa(a-;)e("l—fl)z = 0 (7‘4)

on I. Upon differentiating (7.4) sufficiently many times (at most m, times)
we can reduce Pi(z) to 0. In this process the degrees of the polynomials
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multiplying e+792 remain unchanged, as well as the non-identically
vanishing character of any of these polynomials. We obtain an expression
of the form

Qz(x)e(rz—rl)z 4 oo 4 Q,(x)e("‘”)‘ = 0’
or

Qa(z)em™ + ++o 4 Qy(x)em= = C

on I, where the @, are polynomials, deg @; = deg P;, and @, does not vanish
identically. Continuing this process we finally arrive at a situation where

R.(z)erz= =0 (7.5)

on I, and R, is a polynomial, deg R, = deg P,, which does not vanish
identically on I. But (7.5) implies that R,(z) = 0 for all z on I. This con-
tradiction forces us to abandon the supposition that P, is not identically
zero. Thus P,(z) = 0 for all z in I, and we have shown that all the con-
stants ¢;; = 0, proving that the n solutions given in Theorem 11 are linearly
independent on any interval I.

If ¢1, <+, ¢m are any m solutions of L(y) = O on an interval I, and
1, **+, Cm aTe any m constants, then

¢ =ch1+ *c° + Cndm

is also a solution since

L(¢) = e1L(¢1) + ++* + cmL(¢pm) = 0.

Asin the case n = 2 every solition of L(y) = 0 is a linear combination of
n linearly independent solutions. The proof of this fact depends on the
uniqueness of solutions to initial value problems, which we shall establish
in Sec. 8, Theorem 17.

As an example consider the equation

y" —3y' +2y =0.
The characteristic polynomial is
p(r) =r —3r + 2,

and its roots are 1, 1, —2. Thus three linearly independent solutions are
given by
e, xe®, et

and any solution ¢ has the form

#(z) = (&1 + cx)e® + ce %,

where ¢y, ¢, c; are any constants.
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EXERCISES

1. Are the following sets of functions defined on — @ € # € o linearly inde-
pendent or dependent there? Why?

(@) ¢1(z) = 1, ¢a(z) = z, ¢s(x) = 2*

(b) ¢1(z) = €%, ¢pa(z) = 8in z, P3(x) = 2 cos z

(c) ¢1(z) = =, Pa(z) = €%, ga(z) = | z|

2. Prove that if p;, pe, ps, P« are polynomials of degree two, they are
linearly dependent on — «» < z < .

3. Are the following statements true or false? If the statement is true, prove it;
otherwise give a counterexample.
(a) “If ¢1, **-, ¢n are linearly independent functions on an interval I,
then any subset of them forms a linearly independent set of functions on 1.”
(b) “If ¢1, <<, pn are linearly dependent functions on an interval I, then
any subset of them forms a linearly dependent set of functions on I.”

4. Find all solutions of the following equations:

@) y"—8 =0 (b) y® + 16y =0

(c) " — 54"+ 6y =0 @ y" —y'+ 44— 4iy=0
(e) ¥ 4 100y = 0 @) v+ 5"+ 4y=0

() y — 16y = 0 h)y"—38y—2y=0

(1) yu/ — 3?:1[” —_ 3yl‘ + zy =0

5. (a) Compute the Wronskian of four linearly independent solutions of the
equation y® + 16y = 0.
(b) Compute that solution ¢ of this equation which satisfies

$0) =1, ¢'(0) =0, ¢”(0) =0, ¢"'(0) =0.
6. Find four linearly independent solutions of the equation
¥+ =0,
in case:
@A=0 MIA>0 (c)A<O
7. Suppose the constants @, ++*, a, in

L@) = ¢y + ay™ P + <o+ + any

are all real.
(8) Show that if ¢ is a solution of L(y) = 0 then so are

¢1= Re¢p and ¢ = Im ¢.

(b) If @ + 18 (e, B real) is a root of the characteristic polynomial of L show
that the functions

e cos fr, €**sinfz

are solutions of L(y) = 0.
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8. Suppose all roots of the characteristic polynomial for the equation

Yy 4 ayD 4 cee Fay =0
have negative real parts. Show that every solution tends to zero asz— + «.
9. Suppose all roots of the characteristic polynomial for the equation

YW+ ay D 4 eee fay =0

have non-positive real parts, and those roots with zero real parts have multi-
plicity one. Show that all solutions are bounded on 0 £ z < . (Nole: A
solution ¢ is bounded on 0 < 2 <  if there is a constant & > 0 such that

|¢@)| =k for 0 <2< =)

8. Initial value problems for r-th order equations

An “tnitial value problem for L(y) = 0 is a problem of finding a solution
¢ which has prescribed values for it, and its first » — 1 derivatives, at some
point zo (the initial point). If ay, «« -, as are given constants, and x, is some
real number, the problem of finding a solution ¢ of L(y) = 0 satisfying

¢(xﬁ) = ay ¢’ (xﬂ) =a **°, d’("_l) (xﬂ) = O,
is denoted by

L(y) =0, y(xo) = ar, ¥ (%) = ag <+, Yy V() = an.

There is oenly one solution to such an initial value problem, and the demon-
stration of this will depend on an estimate for the rate of growth of a solu-
tion ¢ of L(y) = 0, together with its derivatives ¢’, <+, ¢* D, We define
|| #(=) || by

l¢(2) || = [l ¢(@)* + -+ + | s ()],
the positive square root being understood, and give the analogue of
Theorem 3.
Theorem 13. Let ¢ be any solution of
Liy) =y +ay" + oo +ay =0
on an inderval I containing a point x,. Then for all x in I

[| ¢(z0) || e*1==0l < || p(z) || = || P (o) || €¥l==dl, (8.1)
where

k=14]a]|+ s +|aa].
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Proof. Letting u(z) = || ¢(z) ||* we have
U = ¢+’ + -+ + ¢ VED,
Hence _
W =¢'¢+ ¢"¢ + o0 + pWpir—D
+ ¢4 + ' + cor + VG,
and therefore
| w/(z) | < 2| (@) ¢ (x)| + 2| ¢'(z)|] " (x)| + -

+ 2| ¢V (2)|| ™ (2)|. (8.2)
Since ¢ satisfies L(¢) = 0 we have

¢ = — [ap® + <+ + a,p],
and
| (z) | S |ar|| o™ D@E) |+ <+« + | aa]| ¢(2) |. (8.3)

Using (8.3) in (8.2) there results
| w'(2) | £2| ¢ ()| &' (2)| +2 | ¢'(2)]| ¢” ()| + ---
+2| 602 ()| ¢ ()| +2 | s || 9 ()]
+2]a: || g2 ()| 6D (2)| + -+ + 2] an || $(2)]] $*V ()
We now apply the elementary inequality
2(b|lel =[0I+ ]c]?
to obtain
|W'(2) | = A +aa]) [6(2) P+ @A |ana]) [¢'(2) |?
+ o @+ e) |92 () |2
+ (L +2]ai| +ax| + oo +|aa]) | ¢ (2) |2

Therefore
| ' (z) | <2ku(z),

and the remainder of the proof is the same as the steps following (3.8) in
the proof of Theorem 3.

Theorem 14. (Uniqueness Theorem) Let cy, +++, an be any n constants,
and let xo be any real number. On any tnterval 1 containing x, there exists at
most one solution ¢ of L(y) = O satisfying

¢(x0) = ap, ¢l(x0) = a, e, d)("_l)(xo) = Ua.

Proof. The proof is the same as that of Theorem 4. Suppose ¢, ¢ were
two solutions of L(y) = 0 on I satisfying the above conditions at z,. Then
x = ¢ — ¢ satisfies L(x) = 0 and

x (o) = x'(20) = »+ = x"V(x) =0,
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Thus || x(x0) || = 0, and applying (8.1) to x we obtain || x(z) || = 0 for
all z in I. This implies x(z) = OforallzinI,or¢ = .

The Wronskian W (¢y, »++, ¢.) of n functions ¢, «++, ¢, having n — 1
derivatives on an interval I is defined to be the determinant function

é1 ces bn
¢; ese ¢"l
W(pr, «»+, ¢n) = . . ,
¢£7:—1) cee 7‘;’:_1)

its value at any z in I being W (¢, =+ -, ¢n) ().

Theorem 15. If ¢y, +«+, ¢, are n solutions of L(y) = 0 on an tnterval 1,
they are linearly independent there if, and only if, W(dy, +++, ¢n) () # 0
Jor all x in 1.

The proof is entirely similar to the proof of Theorem 6 (the casen = 2),
and so will be omitted. The result and the proof do not depend on the fact
that L has constant coefficients. See the proof for a more general case in
Chap. 3, Theorem 6.

Theorem 16. (Existence Theorem) Let ay, -+, an be any n constants,
and let X, be any real number. There exists a solutton ¢ of L(y) =0 on
- <z < o salisfying

$(z0) = ar, ¢'(x0) =y, +++, " V(x0) = an. (8.4)

Proof. Let ¢y, -+, ¢, be any set of n linearly independent solutions of
L(y) =0o0on — » <z < =, for example these could be the solutions
obtained in Theorem 11. It will be shown that there exist unique constants
i, *++,Cy such that

¢ =cl¢1+ ¢e +cu¢n

is a solution of L(y) = 0 satisfying (8.4). Such constants would have
to satisfy '

C1g1(Zo) + * ¢+ + Cadn(m) =
C1éy (20) + +++ + Cudy(20) =
: (8.5)
1™V (20) + o0+ €™V (20) = am,

which is a system of n linear equations for ¢, « «+, ¢,. The determinant of
the coefficients is just W (¢, *++, ¢a) (o) which is not zero, by Theorem 15.
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Therefore there is & unique set of constants ¢, «- -, ¢, satisfying (8.5).
For this choice of ¢, -+ +, ¢, the function

¢ = 61¢1 + il +cn¢n
will be the desired solution.

The results of Theorems 14 and 16 allow us to describe all solutions of
the homogeneous n-th order equation with constant coefficients L(y) = 0.

Theorem 17. Let ¢y, -+, ¢n be n linearly independent solutions of
L(y) = O on an tnterval 1. If ¢y, »  +, ca are any constants

¢ =cCd1+ *c* + Cudn (8.6)
1s a solution, and every solution may be represented in this form.

Proof. We have already seen that

L(¢) = ciL(¢1) + <+« + caL(¢s) = 0.
Now, let ¢ be any solution of L(y) = 0, and let 2, be in I. Suppose

¢(x0) =, ¢'(m) =a <++, ¢ V(%) = an

In the proof of Theorem 16 we showed that there exist unique constants

C1, **+, C, sSuch that ¢y = c1¢1 + +++ + ca¢n is a solution of L(y) =0 on I
satisfying

Y(®) = a1, V() =ay <+-, ¢ (20) = an.

The uniqueness theorem (Theorem 14) implies that ¢ = y, proving that
¢ may be represented as in (8.6).
A simple formula exists for the Wronskian, as in the case n = 2.

Theorem 18. Let ¢y, +++, ¢n be n solutions of L(y) = 0 on an interval 1
containing a point Xo. Then

W1, +++, du) (x) = e1E0W (¢, <=+, pn) (Z0). (8.7)

This result is a corollary of a more general result concerning the
Wronskian of n solutions of a linear homogeneous equation with variable
coefficients; see Theorem 8, Chap. 3. We therefore omit the proof here,

Corollary to Theorem 18. Let ¢,, + -+, ¢n be n solutions of L(y) =0
on an interval I containing x,. Then they are linearly independent on 1 if
and only if W(dy, +++, ¢a) (X0) # 0.

Proof. The proof is an immediate consequence of Theorem 15 and the
formula (8.7).
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As a simple illustration of the use of (8.7) consider a homogeneous
equation of order 3 which has a root r; with multiplicity 3. Its characteristic
polynomial is

p(r) = (r —n)® =1 — 3rv? + 3rir — r}.
Hence
L(y) =y — 3ry" +3ry’ — 11y,
and we have @ = —3r.. We take

$1(x) = e, d2(z) = xens, ds(z) = z%em=,

and then obtain
enz Ten=s x2erlz

W(¢l) o2, ¢3) (x) =| re* (1 -+ 7‘13;) ez (2:1: -+ T1$2) er=

riens (2r + riz)en= (2 + drnix + riat)ens

This becomes a little involved to evaluate directly, but using (8.7) with
2o = 0 we obtain
1 0 0

W1, ¢z, $3) (0) =|n 1 0= 2,

rf 2ry 2
and hence
W(¢l) @2, $3) (23) = 2%,

EXERCISES

1. Consider the equation
ylll — 4y1 = 0.

(a) Compute three linearly independent solutions.
(b) Compute the Wronskian of the solutions found in (a).
(¢) Find that solution ¢ satisfying

$0) =0, ¢'0) =1, ¢"(0)=0.
2. Consider the equation
yO@ -y —y' +y=0.

(a) Compute five linearly independent solutions.
(b) Compute the Wronskian of the solutions found in (a), using Theorem 18.
(¢) Find that solution ¢ satisfying

¢(0) =1, ¢'(0) = ¢”(0) = ¢"(0) = $**(0) = 0.
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3. Suppose ¢ is a solution of
y(’l) + aly("l—n + ss e + any = O,

and Y(z) = ¢(x) exp (aiz/n). Show that ¢ satisfies a linear homogeneous
equation with constant coefficients

y(ﬁ) + bly(ﬂ_n + sese + bny = 0,

with by = 0. (Note: The Wronskian of any n» linearly independent, solutions of
the latter equation is a constant; see (8.7).)

4. Consider the constant coefficient, equation
y™ + ay P + eo0 + ay =0,
and suppose ¢,, ***, ¢, are solutions satisfying for some real zg
¢ V(x) = 8y, (G, =1,+,n),

where 6;; = 1if ¢ = j, and 8;; = 0if ¢ = j.
(a) Show that ¢,, <+, ¢, are linearly independent.
(b) If ¢ is a solution satisfying

¢V (z0) = ey, (=1, )
show that

¢ = aip1 + aspa + o + a.p..

(Nole: This shows that ¢ is a linear function of its initial conditions oy,
e we , au.)

9. Equations with real constants

Suppose that the constants a;, ++ -, a, in
L(y) =y™ 4+ ay®P + -+ + any
are all real numbers. The characteristic polynomial
p(r) =r 4 ay™ ™+ -0 +a,
then has all real coefficients. This implies that

p(r) = p(F) (9.1)

p(r) = +ar "+ - +an
=rtart 4 e 43
=7+ @it e + @
=m+taft+ 0 +an
= p(7).

for all r, since
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From (9.1) it follows that if 7, is a root of , then so is 7. Thus the roots of
p whose imaginary parts do not vanish occur in conjugate pairs. A slight
extension of this argument shows that if r, is a root of multiplicity m,; then
» is a root with the same multiplicity m,. If there are s distinct roots of p,
let us enumerate them as follows:

T, T1, T2y Toy #2257V Thy T2541, *°*5 T,y
where
T = or + ‘l:'rk, (k = 1, . ‘,j; Oky Tk real; T 7 0),

and rgj4, *++, 7, are real. Suppose that . has multiplicity m.. Then we
have

2(my + ¢+« +my) + Moz + 000 +my = 0.

Corresponding to these roots we have the n linearly independent solu-
tions

eflz, xenz, see, xml—lenz; e'l”, xenz, N x‘ml—le"lz; cees ercz, xe"’, coe, xm-—-lgnz
(9.2)

of L(y) = 0. Every solution is a linear combination, with constant coeffi-
cients, of these. Wenownote thatif 1 < k <j7,0=<h S m — 1,

zhemhz = pheloktidz = yheokz(cos 7,2 + ¢ sin 7x),
(9.3)

xhervr = ghelr—iMz = ghe"kz(cos Tz — 7 sin 7;x).

Thus every solution is a linear combination, with constant coefficients, of
the n functions

e°1% COS 71T, Le”1* COS T1T, * * +, L™ 1”1 oS 71T}

€°1? sIn T1x, Te°\* sin 11, + « ¢, 2™ e”% §in 717;

-

. (9.4)

*

er;z, mer.z, cee, zm.—ler.z.

Each of the functions in (9.4) is a solution of L(y) = 0 since, from (9.3),
1 _
LhetF COS TXx = 5:1:"(3"*== + =),
(9.5)
. 1 —
xhe™* sin 1 = 2—1:151'(6"" — ),

The solutions in (9.4) are all real-valued, and they are linearly independent.
For suppose we have a linear combination of these functions equal to
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zero. Let us denote the terms in this sum which involve
xhe’*= cos T, zhe” * sin 1%

by

czhe® cos 1z + dxhe’® sin 1.z,

where ¢ and d are constants. Using (9.5) we find that we have a linear com-
bination of the functions (9.2) equal to zero, and the terms involving
zhet=, rhems= will be

(c—z’d)“z (¢ + id)
o zhe'® +—2 x

Since the functions (9.2) are linearly independent we must have all the
coefficients in this sum equal to zero. In particular

APz,

c+1id =0, ¢c—id =0,

from which it follows that ¢ = 0, d = 0. Thus the solutions (9.4) are
linearly independent.

If ¢ is any real-valued solution of L(y) = 0, then ¢ is a linear combina-
tion of the real solutions (9.4) with real coefficients. Indeed, if we denote
the solutions in (9.4) by ¢1, «++, ¢, we have

¢ =cCi1+ *** + Cadn,

for some constants ¢, «++, ¢,. Since ¢, ¢y, »++, ¢» are all real-valued, we
have

0=Imo¢=(Ome)g1 + +++ + (Im ¢,) ¢a,
and since ¢y, + » +, ¢n are linearly independent we must have
Ime =Imes = ++» =Ime, =0.

This shows that ¢, - - -, ¢, are all real numbers.
We remark that if ¢ is a solution of L(y) = 0 which is such that

¢(x) = a1, ¢'(x0) =z +°+, ™ V(2) = am, (9.6)

where a, *«+, an are real constants, then ¢ is real-valued. One way to see
this is to note that since

—_—

L(¢) = L(¢) =0,

@ is also a solution, and hence so is

y = (1/20) (¢ — ¢) = Im¢.
But, from (9.6) we see that

Y(z) =0, ¢(z0) =0, oo, ¢ D(z) =0.
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The uniqueness theorem implies that ¢ (x) = 0 forall z, or Im ¢ = 0, show-
ing that ¢ is real-valued.

We summarize in the following theorem.

Theorem 19. Suppose the constants a,, « - +, aq 1n the equation
L(y) = y(fl) + aly(’l—l) + oo + anlYy = 0

are all real. There exists a set of n linearly independent real-valued solutions
(9.4), and every real-valued solution is a linear combination of these with real
coeflicients. If a solution satisfies real initial condittons, it s real-valued.

The importance of Theorem 19 is that in many practical problems differ-
ential equations are encountered with real coefficients, and the real solutions
are the ones sought. For example, the equation

y® +y =0 9.7)

arises in the study of the deflection of beams. The characteristic polynomial
is given by

p(r) =+ 1,
and its roots are

LSNP

1 . 1 . 1 )
\_/j(l_'—z)’ \/2(1_1')1 \/2(_1""7'): v

Thus every real solution ¢ of (9.7) has the form
¢(x) = "¢ cos (2/V2) + ¢xsin (z/V2) ]
+ e~="%cs cos (x/VZ) + cysin(z/V2) ],

where ¢, + -+, ¢4 are real constants.

EXERCISES

1. Find all real-valued solutions of the following equations:
@) y'+y=0 ®y' —y=0
) 9 —y=0 d)y®+2y=0
) yW — 5"+ 4y =0

2. Find the solution ¢ of the initial-value problem
yv'+y= 0, y(0) =0, ¥'©0) =1, y"”(0) = 0.

8. Determine all real-valued solutions of the equations:
@y -ty —wy=0 b) y" — 2" —y=0
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4. Show that if there exists a non-trivial solution of the problem

Yy 4 ay® D + oo + any = 0, (a1, **, an real),

y*P0) = y* (1), (*k=1,--2,n),
then there exists a non-trivial real-valued solution.
5. Consider the equation
v — iy =0,
where k is a real constant.
(a) Show that cos kz, sin kz, cosh kz, sinh kz are solutions if & = 0. (Note:

cosh u = (¢* -+ €7*)/2, sinh u = (¢* — ¢%)/2.)
(b) Show that there are non-trivial solutions ¢ satisfying

$0) =0, ¢'(0) =0, ¢(1) =0, ¢'Q) =0,

if and only if cos k cosh &k = 1 and k& » 0.
(¢) Compute all non-trivial solutions satisfying the conditions in (b).
(d) For what values of k will there exist non-trivial solutions satisfying

¢P0) = ¢¥(1), (7=0,1,23)?
(e) Compute all non-trivial solutions satisfying the conditions in (d),
6. Suppose the characteristic polynomial p of
Ly) = y™ + ay™ P+ «+o + a2y =0

has a real root r with multiplicity m, and —r is also a root of multiplicity m.
Show that

cosh rz, zcoshrz, e«ee, 2™ cosh rz,
sinh rx, z sinh rz, <»+, 2™ 1sinh rz
are 2m linearly independent solutions which can be used to replace
e pers, eee, gmlers

e—rz, xe—rz, vee, xm—le—rz

in a set of n linearly independent solutions of L(y) = 0.

10. The non-homogeneous equation of order n
Let b be a continuous function on an interval I, and consider the equa~
tion
L(y) —_ y(’l) + aly(’l—l) + azy("—z) + ce o + AnlY = b(x),

where a,, az, + - -, an are constants. If ¢, is a particular solution of L(y) =
b(z), and ¢ is any other solution, then

LW — ;) = L) — L{¥p) =b—b=0,
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Thus ¢ — ¢, is a solution of the homogeneous equation L(y) = 0, and
this implies that any solution ¢ of L(y) = b(zx) can be written in the form

¥ =yp+ Cd1 + Cops + *+° + Cnodn,

where ¥, is a particular solution of L(y) = b(xz), the functions ¢1, ¢z, -,
¢n are n linearly independent solutions of L(y) =0, and ¢y, « -+, ¢, are
constants.

To find a particular solution ¢, we proceed just as in the case n = 2,
that is, we use the variation of constants method. We try to find n functions
Uy, ** ¢, Un SO that

'pp = u1¢1+ cee +uu¢u

is a solution. Taking our cue from Sec. 6 we see that if

Ui + *+ o + U = 0,

then

Yy = Uiy +  + Undy,
and if

iy + o0+ + Uy, =0,
we have

U, = wd + e+ g,
Thus, if uy, -+, u, satisfy
U + o0 + Uda =0
uidy + o0 + gy =0
(10.1)

UPmD A oo -y D =0
W™ + e + U™V = b

we see that
¥p = W1 + *** + Unn

¥y = Ud; + o+ + Und,
. (10.2)

¢z(’""‘1) = u1¢§."—1) + em e + u”¢7(l."_1)

¥V = wi® + v e + tag” + b
Hence
L(¥p) = wmL(¢) + <=+ 4+ uaL(¢n) + b = b,
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and indeed ¢, is a solution of L(y) = b(x). The whole problem is now re-
duced to solving the linear system (10.1) for u,, -+, u,. The determinant
of the coefficients is just W (¢, «++, ¢a), which is never zero when ¢y, +- -,
¢» are linearly independent solutions of L(y) = 0. Therefore there are
unique functions u,, -« -, u, satisfying (10.1). It is an easy exercise to see
that solutions are given by

Wi(x)b(zx)
W(d’l: T ¢ﬂ) (x) ’

where Wi is the determinant obtained from W (¢, ¢+, ¢s) by replacing
the k-th column (that is, ¢i, ¢, **+, ¢* ) by 0,0, ++-,0, 1.
If o is any point in I, we may take for u, the function given by

Y W (£)b(t) _ .
e = fzo Won - om(n v BT Lo

The particular solution ¥, now takes the form

* W ()b(t)
'[zo W(¢17 Tty ¢n) (t) a. (10.3)

Theorem 20. Let b be continuous on an inlerval 1, and let ¢1, *++, ¢n

be n linearly independent solutions of L(y) = 0 on 1. Every solution ¢ of
L(y) = b(x) can be wrilten as

V=vyYp+ 1+ *** + Couthn,

where ¥, 1s a parficular solution of L(y) = b(x), and cy, *++, cq are con-
stants. Every such ¥ ts a solution of L(y) = b(x). 4 particular solution y, is
given by (10.3).

It is left as an exercise for the student to show that the particular
solution ¢, given by (10.3) satisfies

u(z) =

(k=1,---,n),

Vo(z) = 3 tul2)

kexl

¥o(®0) = ¥, (20) = o+ = Y{" P () = 0. (10.4)
As an example let us compute the solution ¢ of
ylll +ylr + yl + y _ 1 (10.5)
which satisfies
¥(0) =0, ¢'(0) =1, ¢"(0) =0. (10.6)
The homogeneous equation is
y'+y"'+y +y =0, (10.7)

and the characteristic polynomial corresponding to it is
p(r) =r+r2+r+ 1.
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The roots of p are 7, —%, and —1. Since we are interested in a solution
satisfying real initial conditions we take for independent solutions of (10.7)

$1(x) =cosx, ¢u(x) =sinz, a(z) =€

To obtain a particular solution of (10.5) of the form wuip; + Usps + usehs

we must solve the following equations for u;, ug, u,:
Uid1 + Ugde + Uy = 0
Uiy + Usy + gy = 0
uidy + gy’ + gy’ =1,
which in this case reduce to
(cos z)u; + (sin x)uy + e—=us =0
(— sin z)u, + (cos z)uy — e—=u; =0
(— cos z)u, — (sin z)u, + e~=u, = 1.
The determinant of the coefficients is

cosS T sin z e *

W (s, b2, #3) (x) =| —sinz  cosz —e~=

—cosz —singz e
Using (8.7) we have

W(¢1; o, ¢3) (x) = e_zW(‘bl; ¢, ¢3) (0)’

gince a@; = 1 in this case. Now

1 0 1
W(¢1; ¢2’ ¢3) (0) = 01 —-1|= 2,
-1 0 1

and thus
W(¢l; ¢2; ¢8) (x) = 23—’.

Solving (10.8) for w; we find that

0 sin x e*

u(z) = 3|0 cosx —e=|= — }(cosz + sin z).

|1 —sinz e€e*

(10.8)

(10.9)
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Similarly we obtain
u, () = 3(cos 2 — sin x), (10.10)

us(z) = §e=. (10.11)
Integrating (10.9)—(10.11), we obtain as choices for u,, uz, us:
u(x) = $(cos z — sin z),
uz(z) = %(sin 2 + cos z),
us(x) = %=
Therefore a particular solution of (10.5) is given by
() ¢1(z) + w2(2) $2(z) + us(z) p3(z)
= 3 (cos z — sinz) cos x + 1(sin z + cos x) sin z + 3e%e*
= 1,

(Note: There are simpler ways of discovering such a particular solution;
see Sec. 11. We are interested in illustrating the general method here.)
The most general solution y of (10.5) is of the form

Y(z) =1+ cicoszx + casin  + cze™™,

where ¢, ¢;, ¢; are constants. We must choose these constants so that the
conditions (10.6) are valid. This leads to the following equations for
€, €2, C3:

& +c=—1, C2— C3 = 1, cp— ¢ =0,
which have the unique solution
a=-% a=% oa=-i
Therefore the solution of our problem is given by
Y(z) =14 3(sinx — cos z — ¢*).

The solution corresponding to that given in (10.3), with z, = 0, is
easily seen to be

¥p(z) =1 —3(cosz + sinz + ¢7),
and this satisfies

¥»(0) =0, ¢,(0) =0, ,'(0) =0.
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EXERCISES

1. Find all solutions of the following equations:
@) y"—y =2
(b) y"' — 8y = e*
(¢) y® + 16y = cos z
@)y — 4@+ 6y -+ y=e¢
(e) y9 — y = cos x
) vy'— 2ty —y = el — 2¢7 1=

2. Let
Ly) = y™ + ag®™ ™V + <o+ + awy,
and let p be the characteristic polynomial
p@r) =1+ ap™ 14 ooo + @,

(a) If A and o are constants, and p(a) 5= 0, show that there is a solution of
L(y) = Ae*® of the form Be**, where B is a constant. What is B?

(b) Compute a solution of L(y) = Ae** in case ais a simple root of p (that
is, a root of multiplicity one). (Hint: If B and r are any constants show that

BL(ze™) = B[p'(r) + zp(r)le™=.

Let r = a.)
(¢) Compute a solution of L(y) = Ae** in case « is a root of p of multi-
plicity k.

8. Prove that the solution , given by (10.3) satisfies the initial conditions
(10.4). (Hant: Use (10.2).)

4. Let g(z, t) be defined by

Z k() Wi(t)

= e

where W(t) = W(ps, **°, ¢n)(t) is the Wronskian of n linearly independent

solutions of L(y) = 0. For any continuous function b on any interval I con-
taining xo, let G(b) be the function given by

z, l) =

6@ = [ g 050

Thus G(b) is just the Y, of (10.3), and hence L(G(b)) = b.
(a) Show that g, as a function of z for each fixed ¢, is a solution of L(y) = 0
which satisfies

u—2 an—lg

¢!
a 7 2( ) axn—l
(Note: This shows that g(z, ¢) is mdependent of the functions ¢1, **+, ¢a
used to define it.) (Hini: The functions u, = Wi/W, k = 1, +++, n, satisfy
(10.1) with b(z) = 1 for all z in 1.)

gt, t) =0, @(t, t) = 0, sae, ¢t = 1.
Jz
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(b) Prove that g(z, ) = g(x — ¢, 0). Thus g is a function of x — ¢ alone,
and if h(z) = g(z, 0), g(x, t) = h(zx — t). (Hint: Let for fixed t, ¢+(z) = g(z, t),
Yi(z) = gz — ¢, 0) = ¢o(z — ). Prove that L(¢:) = L(¥:) = 0, and that
¢, ¥, satisfy the same imtial conditions at z = 1)

(c¢) Show that g(z, t) = sin (z — ¢) for the case y”’ -+ y = 0.

(d) Compute h(z) for the case

L@y) = y" + 2ky’ + ¥,
where k and w are positive constants.

5. The formula (10.3) for a particular solution ¢, of L(y) = b(z) makes sense
for some discontinuous functions b. Then ¥, will be a solution of L(y) = b(x)
at the continuity points of 6. Find a continuously differentiable solution of the

equatio
Anation y" 4y = b),
where
b(z) = —1, (—r=£2<0),
=1, 0=z=m),
= 0, (lz|>m).

6. Consider the equation L(y) = b(z), where b is continuous on an interval I.
If @y, *+, an are any n constants, and zo is a point in I, show that there is
exactly one solution ¥ of L(y) = b(x) on I satisfying

V(xo) = a1, ¥ (20) = as, *++, ¥ V(x) = ay.

(Hint: Let ¢ be the solution of L(y) = 0 satisfying the same initial conditions.
Let ¢ = ¢ -+ y¥p, wherey, is given by (10.3). Show that  is unique.)

7. Consider the equation

y(’l) + aly(n_l) + cesn + any = b(x)’

where a;, -+, a, are real constants and b is a real-valued continuous function
on some interval 1. Show that any solution which satisfies real initial conditions
is real-valued.

11. A special method for solving the non-homogeneous equation

Although the variation of constants method yields -~ solution of the
non-homogeneous equation it sometimes requires more labor than necessary.
We now give a method, which is often faster, of solving the non-homogene-
ous equation L(y) = b(x) when b is a solution of some homogeneous equa~
tion M(y) = 0 with constant coefficients. Thus b(z) must be a sum of terms
of the type P(z)e*, where P is a polynomial and a is a constant.

Suppose L and M have constant coefficients, and have orders n and m
respectively. If ¢ is a solution of L(y) = b(z), and M(b) = 0, then
clearly

M(L(y)) =M(@®) =0.
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This shows that ¢ is a solution of a homogeneous equation M (L (y)) =0
with constant coefficients of order m + n. Thus ¢ can be written as a linear
combination with constant coefficients of m + n linearly independent
solutions of M (L (y)) = 0. Not every linear combination will be a solution
of L(y) = b(z) however. Thus, to find out what conditions must be satis-
fied by the constants, we substitute back into L(y) = b(z). This always
leads to a determination of a set of coefficients; see Sec. 12, Theorem 22, for
a justification.

We give an example to show the usefulness of this method. Suppose
we consider

L(y) =y — 3y + 2y = 2~

Since 2? is a solution of M (y) = y'"" = 0, we see that every solution y of
L(y) = 2* is a solution of

M(L (y)) = y® — 3y® + 2y® = 0.

The characteristic polynomial of this equation is 7#(r? — 3r + 2), just the
product of the characteristic polynomials for I and M. The roots are 0, 0,
0, 1, 2, and hence ¢ must have the form

P(x) = co + oz + c22? + cze® + cee®.

We notice immediately that cse* + cqe?= is just a solution of L(y) = 0. Since
we are interested only in a particular solution ¢, of L(y) = z? we can as-
sume ¥, has the form

¥o(x) = cg + a1 + 2t

The problem is to determine the constants ¢, ¢, ¢ so that L(y,) = =2
Computing we find

vo(2) = a1+ 262, ¢, (2) = 20,

and
L(Yp) = (2c: — 3c1 + 2¢0) + (—6c; + 2c1)x + 2¢0® = 22
Thus
2c2 =1, or e =%, and —6c; + 2¢;, =0,
or
e =%, and 2¢ — 3¢, + 2¢ = 0,
or
Co = 1.
Therefore

¥o(2) = $(7 + 62 + 22%)
is a particular solution of L(y) = 22
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We call this method the annihilator method, since to solve L(y) = b(z),
we find an M which makes M (b) = 0, that is, annihilates b. Once M has
been found the problem becomes algebraic in nature, no integrations being
necessary. Actually, as we have seen from the example, all we require is the
characteristic polynomial ¢ of M. The following is a table of some functions
together with characteristic polynomials of annihilators. In this table a is
constant, and % is a non-negative integer.

Characteristic Polynomial of an

Funclion Annihilator
(a) e r—a
(b) ke (r —a)kh
(c) sinaz, cosaxr (areal) r2 4 a?
(d) 2«*sin azx, z¥cosaxr (a real) (r2 4 a?)*H!

The validity of this table is a consequence of Theorem 11.
Let us consider another example of the annihilator method. Consider
the equation

L(y) = Ae=, (11.1)

where L has characteristic polynomial p, and A, a are constants, We as-
sume that a is not a root of ». The operator M given by M (y) =y’ — ay,
with characteristic polynomial »r — a, annihilates Ae*t. The characteristic
polynomial of ML is (r — a)p(r), and a is a simple root (multiplicity 1)
of this. Thus any solution ¢ of (11.1) has the form

¥ = Be** + ?,
where L(¢) = 0, and B is a constant. Placing y back into (11.1) we obtain
L(Y) = BL(e**) + L(¢) = Bp(a)e*s = Ae=.

Since p(a) # 0 we see that B = A/p(a). Therefore we have shown that,
if a is not a root of the characteristic polynomial of L, there is & solution
¢ of (11.1) of the form

A
¥(2) = ——e
p(a)
The example
yIH +yll +yl+y =1
considered in Sec. 10 illustrates this situation. The right side is of the form
Ae* with 4 =1, a = 0. The characteristic polynomial is p(r) = r3 4
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12 + r + 1, with roots 7, —7, —1. Therefore a solution of this equation is
given by

¥(x) =

10(0)60 b
a result which we found with considerably more effort using the variation
of constants method.

Lest the reader feel, after this example, that the variation of constants
method is of little importance, we stress that the annihilator method de-
pends very much on the fact that b is a solution of a homogeneous equation
with constant coefficients. If b(z) = tan z, for example, the method does
not work, and we must use something like the variation of constants
method. Moreover, as we shall see in Chap. 3, the variation of constants
method is valid for linear equations with variable coeflicients.

EXERCISES

1. Using the annihilator method find a particular solution of each of the
following equations:

(a) ¥y’ + 4y = cos z

(b) ¥’ + 4y = sin 2z

(¢) ¥ — 4y = 3¢ + 4¢=

d)y'—y —2y =2+ cosz

(e) ¥’ + Yy = 2%

) ¥+ y = =ze* cos 2z

(&) v’ + iy + 2y = 2 cosh 2z + ¢72* (Note: cosh u = (e* 4 ¢7%)/2.)

(h) y" =224+ e*sinz

(t) ym + 3y// + 3yl + y = xze—z

2. Let L be a constant coefficient operator, and suppose ¥ is a solution of
L{y) = bk(x); k=1, »+,m,

where the b, are continuous functions on some interval I. Show thaty = ¢, +
o++ + Yy, is a solution of

Liy) =bk), b="bi+ =+ bn

3. Suppose b = by + +-+ 4+ b,, where b; is annihilated by the constant
coefficient operator M. Show that b is annihilated by M = M, Mg +++ M.

4, Consider the constant coefficient operator L with characteristic polynomial
p. Consider the equation L(y) = ¢°%, where a is a constant. If a is a root of p
with multiplicity &, show by the annihilator method that a solution is given by

ket
' (a)’

Y(z) =
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5. (a) If cosh u = (e* 4+ ¢7*)/2 and sinh u = (¢* — ¢7*)/2, show that if a is
a real constant cosh ax and sinh ax satisfy y’/ — o% = 0.
(b) Show that the constant coefficient operator M with characteristic
polynomial g(r) = (r* — a?)**+! annihilates both z* sinh az and z* cosh az.

12. Algebra of constant coeflicient operators

In order to justify the annmihilator method we study the algebra of
constant coefficient operators a little more carefully. For the type of equa-
tion we have in mind

ay™ + a4 oo + ay = b(2),

where a9 # 0, a,, « + -, a, are constants, and b is a sum of products of poly-
nomials and exponentials, every solution ¢ has all derivatives on — « <
z < . This follows from the fact that Y has n derivatives there, and

¢(") = .2. —_— -a—llp(”_l) [ Y - 22

Qo Qo

where b has all derivativeson — © <z < «,

All the operators we now define will be assumed to be defined on the set
of all functions ¢ on — ®© <z < o which have all derivatives there. Let
L and M denote the operators given by

’

L($) = aod™ + 0™ + « v + aug,
M($) = bop™ + bigp™™ + +++ + bug,

where ag, a1, + ¢, an, by, by, <+, bn are constants, with a, # 0, by # 0.
It will be convenient in what follows to consider ay, by which are not neces-
sarily 1. The characteristic polynomials of L and M are thus

p(r) = ao™ + ar™! + oo + an,
and
g(r) = bgr™ + by™! 4+« + b,
respectively.
We define the sum L + M to be the operator given by

(L + M) (¢) = L(¢) + M(4),
and the product M L to be the operator given by

(ML) (¢) = M(L(¢)).

If « 1s a constant we define oL by

(aL) (¢) = a(L(4)).
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We note that L + M, M L and «L are all linear differential operators with
constant coefficients.
Two operators L and M are said to be equal if

L(¢) = M(¢)

for all ¢ which have an infinite number of derivatives on — © < 2 < «,
Suppose L, M have characteristic polynomials p, ¢ respectively. Since
e, for any constant r, has an infinite number of derivatives on — « <
z < o, we see that if L = M then

L(e=) = p(r)e = M(e) = q(r)er,

and hence p(r) = g(r) for all . This implies that m = n, and a;, = b,
k=0,1,+<s,n Thus L = M if and only if L and M have the same order
and the same coefficients, or, what is the same, if and only if p = ¢.

If D is the differentiation operator

D(¢) = ¢/,
we define D? = DD, and successively
Dk = DD (k=2,3,+°).

For completeness we define D® by D°(¢) = ¢, but do not usually write it
explicitly. If « is a constant we understand by « operating on a function ¢
just multiplication by «. Thus

a(¢) = (aD%) (¢) = ag.
Now, using our definitions, it is clear that

L = aoD” + alD”‘l + - 4 A,
and
M = bD™ + by D™t + «oo 4 b,

Theorem 21. The correspondence which assoctales with each
L =aD"+ a,D"' + +++ + an
its characteristic polynomial p given by
p(r) = ar® + ar* + --- + an

18 a ane-to-one correspondence between all linear differential operalors with
constant coefficients and all polynomials. If L, M are associated with p, q
respectively, then L + M is assoctated with p + q, ML %s assoctated with
pq, and al. s associated with ap (o a constant).
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Proof. We have already seen that the correspondence is one-to-one since
L = M if and only if p = q. The remainder of the theorem can be shown
directly, or by noting that

(L + M) (e*) =L(e?) + M(e=) = [p(r) + q(r) Je,
(ML)(e=) = M(L(e=)) = M(p(r)e=) = p(r)M(e*) = p(r)q(r)es,
(aL)(e=) = a(L(e™)) = ap(r)e=.

This result implies that the algebraic properties of the constant coeffi-
cient operators are the same as those of the polynomials. For example, since
LM and ML both have the characteristic polynomial pg, we have LM =
ML.* If the roots of p are ry, +++, r», then

p(r) = ao(r —m) «o+ (r —14),
and since the operator
a(D —1y) +++ (D —1y)
has p as characteristic polynomial, we must have
L=a(D—1r) s (D—r).

This gives a factorization of L into a product of constant coefficient opera-
tors of the first order.

We apply Theorem 21 to give a justification of the annihilator method.

Theorem 22, Consider the equation with constant coefficients
L(y) = P(x)e%, (12.1)
where P 1s the polynomial given by
P(z) = box™ + biz™t + + o+ + bn, (bo = 0). (12.2)

Suppose a is a root of the characteristic polynomial p of L of multiplicity j.
Then there is a unique solution Y of (12.1) of the form

Y(z) = z¥cr™ + az™t + <+o + cm)e®,
where ¢y, 1, ** +, C are constanis determined by the annihilator method.

* We remark that if L and M are not constant coefficient operators, then it may not
be true that LM = ML. For example,

if L@®)@) =¢'(@), M@)@) =z6(x), then (LM — ML)($)(z) = $(z).
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Proof. The proof makes use of the formula

L@e) = [p(r)a + b ()1 + L gy

+ ooo + kp®D(r)z + p"‘)(r)]e" (12.3)
which we proved in Sec. 7. The coefficient of p?(r)z*! in the bracket is the
binomial coefficient

(k) _ k!
U (k= Dur

p@e = | £ (pomail

l=0

Thus we may write

where we understand 0! = 1.
An annihilator of the right side of (12.1) is

= (D - a)m.H';
with characteristic polynomial given by

g(r) = (r — a)h.

Since a is a root of p with multiplicity j, it is a root of pg with multiplicity
J + m + 1. Thus solutions of M L(y) = 0 are of the form

Y(z) = (cox™™ + cxt™ 1+ coo 4+ cim)e*® + ¢(x),

where L(¢) = 0, and ¢ involves exponentials of the form e*z, with s a root
of p, s # a. Since a is a root of p with multiplicity j, we have that

(cm-}-lx‘i_l + Cm,.*.ng_z + cevoe + Cm+j)€u

is also a solution of L(y) = 0. Consequently we see that there is a solution
¥ of (12.1) having the form

Y(z) = z7(cex™ + izt 4 o0 4 Cm)e* (124)

where ¢, ¢, **+, ¢cm are constants.
We now show that these constants are uniquely determined by the
requirement that ¢ satisfy (12.1). Substituting (12.4) into L we obtain

L(y) = cL(zfme*) + ¢ L(z#™1e%2) + <+« 4 cuL(z%e%?). (12.5)
The terms in this sum can be computed using (12.3). We note that
p@) = p'(a) = +++ = p¥D(a) =0, p(a) 50,
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since a is a root of p with multiplicity j. Thus, if & = j,

L(z*e=) = [(k ij)pm(a) o (k _: _ l)p‘f‘“’(d)x""*"

+ soe + p(b)(a)]eas.
We then have
L) = (7 Mpo@an + (1 Mpom (@yam

4 eee + pm—m)(a)]eaz,

L(z#tm1e2) = [(-7 ;’i: l)pm(a)xm-x 4 oo p(Hﬂ-l)(a)]e",

L(zie*) = (g)p‘”(a)e“ = pP(a)e™.

Using these computations in (12.5), and noting (12.2), we see that ¢ satis-
fies (12.1) if and only if

co(J ; m)pm(a) = by,

I+ m\ (j+'m— 1) N(g) =
CO(m _ l)p @ +eal”,  _ JpP@ =by

cap ™ (a) 4 cpFHmd(a) + c+o + Cnp?(a) = bm.

This is a set of m + 1 linear equations for the constants ¢, ¢, +++, Cm.
They have a unique solution, which can be obtained by solving the equa-
tions in succession since p’(a) # 0. Alternately, we see that the deter-
minant of the coeflicients is just

(j+m)(j+m—1
m m — 1

) eor 1[pP(a) ™1 == 0.

This completes the proof of Theorem 22.
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The justification of the annihilator method when the right side of

L(y) = b(x)

is 2 sum of terms of the form P(x)e** can be reduced to Theorem 22, by
noting that if ¢, ¥» satisfy

L) = b, L) = by
respectively, then ¥ + . satisfies
Ly + ¢2) = by + b

EXERCISES

1. (a) Show that if f, g are two functions with % derivatives then
k

D*(fg) = X (’;)D‘(f)DH(g),

l=0

(k)__ k!
ik — Dul’

(b) Show that if g has & derivatives, and r is a constant,
D*(e™g) = e=(D + r)*(g)-

2. Let L be a linear differential operator with constant coefficients with
characteristic polynomial p(r) = (r — p)%, that is L = (D — a)*. Using the
result of Ex. 1 (b) show that any solution ¢ of L(y) = 0 has the form

¢(z) = “P(x),

where P is a polynomial such that deg P < k — 1. Also show that any such ¢
is a solution of L(y) = 0.

where

3. Let b be a continuous function on an interval I, and let xq be a fixed point
in I. Show that the ¢ given by

— * (x — t)k—l —a¢
¢(z) = 2= me b(t) dt
zp

satisfies

(D - a)k(d’) = b;
and

d(x0) = ¢'(To) = +» = ¢D(xg) = 0,
Here a is a constant. (Hint: From Ex. 1 (b),
(D — aY¥(p) = 2D¥(e™%¢).
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To differentiate a function F of the form

B(x)
F(z) = Jz, t) dt,
a(z)

where «, 8, f are “nice” functions, use the formula

B(z) af
F'(z) = f(z, B(=)B'(x) — f(z, alz))'(z) + —(z, t) dt.

a(z) oz

A proof of this formula for appropriate «, 8, f may be found in most texts on
advanced calculus.)

4, Let b be a continuous function on some interval I, and let o be a fixed point
in I. Define (D — a)~*(b) to be the function ¢ given in Ex. 3, that is

z — )1
(D — a)y k@) (z) = e** %—_——)l)le—“‘b(t) dt

for x in I. Thus (D — a)~* is an operator which is defined for eontinuous fune-
tions b on I. Show that

(D — a)[(D — a)~*(b)] = b, *
and

(D — a) (D — a)*@)] = ¢, (**)

for any continuous b on I, and function ¢ on I which has k& continuous deriva-
tives there, and satisfies

(o) = ¢'(x0) = v = ¢*V(z) = 0,
(Hint: The relation (*) follows from Ex. 3. For (**) let
b= (D— a)¢), and ¢ = (D — a)~*b.

Then from (*) (D — a)*@) = (D — a)*(p). Thus (D — a)*@ — ¢) = 0.
Show that ¢ = ¢.) (Note: Let @ denote the set of all continuous functions on I,
and let C* denote the set of all functions ¢ on I which have k continuous deriva-
tives there and satisfy

¢(x0) = ¢'(zg) = +++ = ¢*D(zg) = 0.

Then (D — a)* takes each ¢ in @* into a function in €, and (D — a)~* takes
each b in @ into a function in €*. The relations (*) and (**) show that (D — a)™*
is both a right and a left reciprocal of (D — a)% and therefore the eorre-
spondence between C* and @ given by (D — a)* is one-to-one.)
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5. (a) Let p be a polynomial with leading coefficient one with n distinet roots
Ty, ***, Tn. Show that

11 1 1 1
pr) plr—mn p'(rn) 7 — Ta
if » is not any of the roots of p. This is the partial fraction decomposition of

1/p.
(b) Let p be as in part (a), and let

L=[D—r)D—ry) e+ (D— ry).
If b is a continuous function on an interval I, show that a solution ¢ of
Ly)=1b
is given by
¢=2
k=1 D'(Tk)

where (D — r)~!is defined as in Ex. 4.

(D — 7 10),

6. For any polynomial p with leading coefficient one, let 71, -+, r, be the
distinet roots, with r; having multiplicity m,. Then

p("') = (‘f‘ —_ 7'1)"‘!(7‘ —_ 7-2)"‘2 ese (1- — r')m,,

and there is a partial fraction decomposition

1 2 il ck:‘

;(;5 - & = (r — 1)’
where the c;; are certain constants. Let
L= D= r)™(D— ra)™ eee (D — 15)™s,

and let b be a continuous function on an interval I. Corresponding to the
partial fraction decomposition for 1/p show that a solution of L(y) = b is
given by

s Mk

¢ = 2 2 cki(D — m)yih).

k=1 j=1

7. Let Ly, Ly be two constant coefficient differential operators with char-
acteristic polynomials p1, ps respectively. Assume that p; and p; have no
common roots. Let L be the operator with characteristic polynomial p = p1p.,
that is L = LiL,. Prove that every solution ¢ of L(y) = 0 can be written
uniquely as a sum

¢ =d + ¢2,
where Li(¢1)= 0, La(¢p2) = 0.






CHAPTER 3

Linear Equations with
Variable Coefficients

1. Introduction

A linear differential equation of order n with variable coefficients is an
equation of the form

a(2)y™ + @)y + +o0 + aa(2)y = b(=),

where ag, a1, **+, @s, b are complex-valued functions on some real interval
I. Points where ao(z) = 0 are called singular poinis, and often the equation
requires special consideration at such points. Therefore in this chapter we
assume that ap(z) »< 0 on I. By dividing by a0 we can obtain an equation of
the same form, but with a, replaced by the constant 1. Thus we consider the
equation

y('l) + al(x)y(ﬂ"l) + con + an(x)y = b(x). (1.1)

As in the case when ay, + -+, a, are constants we designate the left side of
(1.1) by L(y). Thus

L(y) = y™ + ai(2)y™ ™" + -+ + aa(2)y, (1.2)

and (1.1) becomes simply L(y) = b(z). If b(z) = 0 for all z on I we say
L(y) = 0is a homogeneous equation, whereas if b(z) # 0 for some z in I,
the equation L(y) = b(z) is called a non-homogeneous equation.

We give a meaning to L itself as an operator which takes each function
¢, ‘which has n derivatives on I, into the function L(¢) on I whose value
at z is given by

L(¢) (z) = ¢™(2) + a1(2)6" V() + +++ + an(z)$(2).

Thus a solution of (1.1) on I is a function ¢ on I which has n derivatives
there, and which satisfies L(¢) = b.

103
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In this chapter we assume that the complex-valued functions
a1, +*+, a4, b are conlinuous on some real interval 7, and L(y) will always
denote the expression (1.2).

Most of the results we developed in Chap. 2 for the case when ay, <+, an
are constants continue to be valid in the more general case we are now
considering. Sections 2, 3, 4, and 6 of this chapter are devoted to showing
this, and can thus be considered as a review. The major difficulty with
linear equations with variable coefficients, from a practical point of view, is
that it is rare that we can solve the equations in terms of elementary func-
tions, such as the exponential and trigonometric functions. Thus there is
no analogue of the rather powerful Theorem 11 of Chap. 2. However, in
case ay, ***, a,, b have convergent power series expansions the solutions
will have this property also, and these series solutions can be obtained by a
simple formal process.

2. Initial value problems for the homogeneous equation

Although in many cases it is not possible to express a solution of (1.1)
in terms of elementary functions, it can be proved that solutions always
exist. In fact we assume for now the following result, which includes
Theorem 16 of Chap. 2 as a special case. A proof is given in Chap.
6, Theorem 8.

Theorem 1. (Existence Theorem) Let a4, -+ -, a, be continuous functions
on an interval 1 containing the point Xo. If oy, -+ +, an are any n constants,
there extsts a solution ¢ of

L(y) =y + ax(z)y®D + +-+ + an(x)y =0
on I satisfying
o(x) =1, ¢ (W) =g, +++, ¢ V(;m) = an

We stress two things about this theorem: (i) the solution exists on the
entire interval I where q,, «- -, a, are continuous, and (ii) every initial value
problem has a solution. Neither of these results may be true if the coefficient
of y* vanishes somewhere in I. For example, consider the equation

zy' +y =0,

whose coefficients are continuous for all real z. This equation and the initial
condition y(1) = 1 has the solution ¢;, where

1
¢1(x) = 2
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But this solution exists only for 0 < x < «. Also, if ¢ is any solution, then
z$(z) = ¢,

where ¢ is some constant. Thus only the trivial solution (¢ = 0) exists at the
origin, which implies that the only initial value problem

zy +y =0, y(0) =a,

which has a solution is the one for which «; = 0.

Just as in the case where the coefficients a; (7 =1, +<+,n) are con-
stants, the uniqueness of the solution ¢ given in Theorem 1 is demon-
strated with the aid of an estimate for

@) Il = Clo() |24+ ¢ (x) |2+ oo + | ¢ V() | 2]

Theorem 2. Let by, ««+, by be non-negaiive constants such that for all x
tn I
Iai(x) | ébi; (j= 1)“';"’)7
and define k by

Ek=1+4Db+ +«+ + b,
If xois a point in 1, and ¢ is a solution of L(y) = Oon I, then
|| ¢(za) || e¥===d = || (@) || = [| $(z0) || 1=l (2.1)
Jor all x in 1.

Proof. Since L(¢) = 0 we have
6™ (2) = —ai()¢"D(z) — o+ — au(2)$(2),
and therefore
|6 (2) | = lax(@)[ | 62 (@)| + -+ + | aa(2)] | 6(2)]
= by | ¢ (@) + 200 + ba| B(2)] .

The proof of Theorem 13, Chap. 2, now applies if we substitute b; every-
where in place of | a;|.

We remark that if I is a closed bounded interval, that is, of the form
a <z =) with q,b real, and if the a; are continuous on I, then there
always exist finite constants b; such that | a;(z) | < b;on I.

Theorem 3. (Uniqueness Theorem) Let Xy be in 1, and let oy, +++, an be
any n constants. There is at most one solution ¢ of L(y) = 0 on I satisfying

¢(x0) =a, ¢' (xﬁ) =0Qg **° ¢(n-—l) (xﬁ) = QOn. (2.2)
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Proof. Let ¢, ¢ be two solutions of L(y) = 0 on I satisfying the condi-
tions (2.2) at z,, and consider x = ¢ — ¢. We wish to prove x(z) =0
for all z on I. Even though the functions a; are continuous on I they need
not be bounded there.* Therefore we can not apply Theorem 2 directly.
However, let = be any point on I other than zo, and let J be any closed
bounded interval in I which contains x, and z. On this interval the func-
tions a; are bounded, that is,

|ai(x)| < b = 1"";"’):

on J for some constants b;, which may depend on J. Now we apply Theorem
2 to x defined on J. We have L(x) = 0 on J, and || x(z0) || = 0. There-
fore (2.1) implies that || x(z) || = 0, and hence ¢(z) = ¢(z). Since z was
chosen to be any point in I other than z, we have proved ¢(x) = ¥ (z)
for all z on 1.

3. Solutions of the homogeneous equation

If ¢1, *++, ¢m are any m solutions of the n-th order equation L(y) =0
on an interval I, and ¢, « -+, ¢ are any m constants, then

L(61¢1 + eeo +cm¢m) = clL(¢1) + b + cmL(¢m),

which implies that ¢i¢1 + ¢+ + cndn is also a solution. In words, any linear
combination of solutions is again a solution. The trivial solution is the func-
tion which is identically zero on I.-

As in the case of an L with constant coefficients, every solution of
L(y) = 0 is a linear combination of any n linearly independent solutions.
Recall that n functions ¢y, « -+, ¢, defined on an interval I are said to be
linearly independent if the only constants ¢y, ««+, ¢, such that

C191(x) + <o+ + Capu(z) =0
for all z in I are the constants
01=62= oo e =c”=0.

Using Theorem 1 we construct n linearly independent solutions, and show
that every solution is & linear combination of these. In Sec. 4 we show that
every solution is a linear combination of any n linearly independent solu-
tions.

Theorem 4. There exist n linearly independent solutions of L(y) =0
onl.

* For example, a;(z) = z is not bounded on 0 £ z < «; and a:(z) = 1/z is not
boundedon 0 <z S 1.
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Proof. Let zo be a point in I. According to Theorem 1 there is a solution
¢ of L(y) = 0 satisfying

¢1(x0) = 1; d’:(xo) = 07 * ¢§u-1)(xo) = 0.
In general for each ¢ = 1, 2, <« -, n there is a solution ¢; satisfying
o (m) =1, ¢ P(m) =0, j=i. (3.1)

The solutions ¢, « -, ¢, are linearly independent on I, for suppose there are
constants ci, ¢z, *+, ¢, such that

c11(x) + Caha(x) + - + Capn(z) =0 (3.2)
for all z in I. Differentiating we see that
€161 () + Cady(2) + =+ + €ud,(z) =0
C1d; (7)) +.Cady (x) + + o+ + catp)'(z) =0
: (3.3)
"V () + iV () + o0 + CapimV(2) =0

for all z in I. In particular, the equations (3.2), (3.3) must hold at .
Putting ¢ = 2o in (3.2) we find, using (3.1), thate;1 +0 + «-- +0 =0,
or ¢; = 0. Putting x = 2y'in the equations (3.3) weobtain¢c, =¢; = -+ =
¢n = 0, and thus the solutions ¢, « -+, ¢, are linearly independent.

Theorem 5. Let ¢, «« -, ¢ bethe n solutions of L(y) = 0 on I satisfying

(3.1). If ¢ s any solution of L(y) = 0 on I, there are n constants cy, <+, Ca
such that

¢ = 1+ *** + Coda.
Proof. Let
¢(z0) = a1, ¢'(T) =@, +++, V() = au,
and consider the function
VY = a1 + cpe + *c° -+ andn
It is a solution of L(y) = 0, and clearly

¥(x0) = (o) + aggpa(mo) + *++ + angpn(®m) =,

since
$1(20) =1, ¢a(m) =0, =+, u(xs) = 0.
Using the other relations in (3.1) we see that

V(Zo) =1, Y (T) = ¢+, YO V(1) = an.
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Thus ¢ is a solution of L(y) = 0 having the same initial conditions at z,
as ¢. By Theorem 3, we must have ¢ = ¢, that is

¢ = cadr + e + ¢+ + Unn.
We have proved the theorem with the constants

61=a1, c2=a2, oo-} cn=an-

A set of functions which has the property that, if ¢1, ¢. belong to the
set, and c1, ¢c; are any two constants, then ci¢: + cz¢2 belongs to the set also,
is called a linear space of functions. We have just seen that the set of all
solutions of L(y) = 0 on an interval I is a linear space of functions. If a
linear space of functions contains n functions ¢y, - -, ¢, which are linearly
independent and such that every function in the space can be represented
as a linear combination of these, then ¢, +- -, ¢.'is called a basis for the
linear space*, and the dimension of the linear space is the integer n. The
content of Theorem 5 is that the functions ¢y, -« -, ¢, satisfying the initial
conditions (3.1) form a basis for the solutions of L(y) = 0 on I, and this
linear space of functions has dimension .

EXERCISES

1. Consider the equation
1 1
'y !
’ - = 0
v+ ;y ;;y

forz > 0.
(a) Show that there is a solution of the form z7, where r is a constant.
(b) Find two linearly independent solutions for z > 0, and prove that they
are linearly independent.
(c¢) Find the two solutions ¢1, ¢2 satisfying

$1(1) =1, ¢2(1) =0,
¢1(1) =0, (1) = 1.
2. Find two linearly independent solutions of the equation
Bz —1)%" + 9z — 3)y' — 9 =0
for z > %. (Hint: See Ex. 1(a), with z replaced by 3z — 1.)
3. Consider the equation
L(y) = ¢ + ax)y’ + aslzly = 0,

* A basis is sometimes called a fundamental set, and a linear space is often called a
vector space. The dimension of a linear space does not depend on a choice of basis.
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where a1, a; are continuous on some interval I, and a, has a continuous deriva-
tive there.
(a) If ¢ is a solution of L(y) = 0let ¢ = w}, and determine a differential
equation for » which will make ¥ the solution of an equation in which the
first derivative term is absent.
(b) Solve this differential equation for .
(c) Show that ¢ will then satisfy the equation

¥y’ + a(@)y =0,
where

2 I}
a Q)

a = Qa3 — —, — .,

4 2

4. The equation ¥’ + a(z)y = 0 has for a solution

¢(x) = exp[ —fz a(t) dt]

Zo

(Here let @ be continuous on an interval I containing x.) This suggests trying
to find a solution of

Ly) =9’ + ai(x)y’ + as(z)y = 0

(@) = exp[ [ s dt],

o

of the form

where p is a function to be determined. Show that ¢ is a solution of L(y) = 0
if, and only if, p satisfies the first order non-linear equation

¥y = -y — ailz)y — ax(x).
(Remark: This last equation is called a Riccats equation.)
5. Let
L(y) = ™ + arlz)y™™ + <o+ + a,(2)y,

where a1, * -+, a, are continuous real-valued functions on an interval I.
(a) Show that if ¢ is a solution of L(y) = 0, then so are Re ¢ and Im ¢.
(b) Let ¢ be a solution of L(y) = 0 satisfying

d’(xo) = 0, ¢,(x0) =g °*** ¢(u—l)(x0) = Oy,

where x, is some point in I, and e, *++, o, are real constants, Prove that ¢
is real-valued.

(¢) Show that there is a basis for the solutions of L(y) = 0 consisting of
real-valued functions. (Hint: Consider the basis ¢1, -, ¢, satisfying

¢£f—l)(x0) = 63'7'7 (7".7 =1, -, n)r
where
o; =1 if ¢ =], 6:; =0 if 73j)
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€. Consider the equation

¥’ + a1@)y’ + ax(z)y = 0,

where aj, a; are continuous functions on — o < z < o of period § > 0,
that is,

aiz + &) = a1(x), a2z + §) = ax(x),
for all z.
(a) Let ¢ be a non-trivial solution, and let ¢(z) = ¢(x 4 £). Prove that ¢
is also a solution.
(b) Show that ¢ is a periodie solution of period £ if, and only if,

$(0) = ¢(8), ¢'(0) = ¢'(8).
(c¢) Let ¢1, ¢2 be the two solutions satisfying
$1(0) =1, ¢2(0) =0,
$1(0) =0,  ¢5(0) = L
Show that there are constants a, b, ¢, d such that
p1(z + §) = agi(z) + bepa(z),
P2z + £) = ch1(x) + dps(x),

- for all z. (Hwnt: See (a).)
(d) Compute the constants a, b, ¢, & in (b) by considering the point z = 0

7. Let ¢1, * ++, $n be n continuous functions on the intervala < z 5 b. Let

b ————
wi = [ 8@ 6@ dn,  Gj =100,

and let A denote the determinant

Q13 Al *** Qin

Qg1 Qg2 *°* gy
A F—J L) L]

Qnl Qpp *** Oyy

Prove that ¢y, *++, ¢, are linearly independent on @ < z < b if, and only if,
A = 0. (Hint: Suppose

A =0, and cd1 + *o° + Cupn = 0.
Multiply this equation in turn by ¢1, ¢z, +*+, ¢, and integrate to obtain
cion + a1z + *cc + Cparn = 0,

: ™

€101 + C20n2 + *** + Caotny = 0.
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The only solution of theseis¢cy = ¢z = *++ = ¢, = 0. Conversely, if ¢1, *+*, ¢n
are linearly independent and A = 0, then there are ¢y, « -+, ¢, satisfying (*) not
all zero. Multiply the first equation by ¢1, the second by ¢, ete., to obtain

0= iiaaii"i=]:

j=1 =l

n

Z C,‘¢i($)

=]

2
dz.

Show that this implies cip1 + *++ + Cups = 0.
. The determinant A is called the Gramian of ¢y, +++, ¢pn. Note that o;; =
ayi.)

4. The Wronskian and linear independence

In order to show that any set of » linearly independent solutions of
L(y) = 0 can serve as a basis for the solutions of L(y) = 0, we consider
the Wronskian W (¢, *«+, ¢n) of any n solutions ¢, +++, ¢.. Recall that
this is defined to be the determinant

¢l ¢2 eee ¢”

Y M Y
W(¢1; ** ¢'l) = * * *

$in D pin D Lo, v
Theorem 6. If ¢1, <« -, ¢n are n solutions of L(y) = 0 on an interval 1,
they are linearly independent there if, and only 1f,
W(pyy *ee,da)(x) #0 forallzinl.

Proof. First suppose W (g1, +++, ¢n) () # 0 for all = in I. If there are
constants ¢, -« +, ¢, such that

cld’l(x) + oo + cud’u(x) =0 (4'1)

for all z in I, then clearly
ed1(z) + o0 +eg,(z) =0
(4.2)

ep{* () + ++- + e " (z) =0

for all z in I. For a fixed z in I the equations (4.1), (4.2) are n linear homo-
geneous equations satisfied by ¢, « « +, ¢a. The determinant of the coefficients
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is just W (¢, *++, ¢») (z), which is not zero. Hence there is only one solu-
tion to this system, namely

61=02='°° =c”=0,

Therefore ¢y, * - +, ¢, are linearly independent on I.

Conversely, suppose ¢y, * -+, ¢, are linearly independent on I. Suppose
there is an zo in I such that

W(d’l: °t% ¢n) (xo) = 0.

Then this implies that the system of n linear equations
cip1(x0) + ++ + Cadn(z0) =0
erby (z0) + +o+ + Cud, () =0
: "(4.3)

61" (2g) + oo + Cupy" P (xo) =0

has a solution ¢, + -+, ¢,, where not all the constants ¢, « -+, c. are zero. Let
¢, ***, Cs be such a solution, and consider the function

¥ =cC¢1+ *** + Catpn.
Now L(y) = 0, and from (4.3) we see that

¥(x0) =0, ¢'(z0) =0, <+, ¢ () =0.
From Theorem 3 it follows that y(z) = 0 for all x in I, and thus

c1p1(x) 4 coc + cagpn(z) =0

for all =z in I. But this contradicts the fact that ¢, « -+, ¢, are linearly in-

dependent on I. Thus the supposition that there was a point z; in I such
that

W(g1, <+, ¢n)(z) =0

must be false. We have consequently proved that

W{d1, =+, ¢n)(z) # 0 forallzinl.

Theorem 7. Let ¢y, <<+, ¢a be n linearly independent solutions of
L(y) = 0 on an tnterval 1. If ¢ ts any solution of L(y) = 0 on 1, it can be
represented in the form

¢ =¢Cpr+ - +cn¢n;

where ¢y, « + +, Cy are constants. Thus any set of n linearly independent solutions
of L(y) = 0onI1s a basts for the solutions of L(y) = Oon 1.
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Proof. Let x, be a point in I, and suppose

¢(xo) = a1, ¢ (z) =y, <++, ¢ V(2) = a,.

We show that there exist unique constants ¢, « - -, ¢, such that

Vv =CcCd1+ ¢+ + Can
is a solution of L(y) = 0 satisfying

"p(xo) = o, "p’ (xo) = oy e, 'p(u--l) (xO) = Un.

By the uniqueness result Theorem 3 we then have ¢ = y, or

¢ =cl¢l+ e +cn¢n

The mitial conditions for ¢ are equivalent to the following equations for
cl; co e , c”:
c1p1(z0) + *++ + eapn(T0) = e

cld’;(xo) + eee + C,.¢,:(xo) =
(4.4)

01¢§"—n(xo) + e 4 c,,d;,(l’"")(xo) = Oy

This is a set of n linear equations for ¢y, « + -+, ¢,. The determinant of the
coefficients is W (¢, * -+, ¢n) (20), which is not zero since ¢y, ++-, ¢, are
linearly independent (Theorem 6). Therefore there is a unique solution
c1, ** +, G, Of the equations (4.4), and this completes the proof.

The analogue of Theorem 18, Chap. 2, is the following result.

Theorem 8. Let ¢, +«+, ¢ be n solutions of L(y) = 0 on an inferval 1,
and let X be any point in 1. Then

W (1, **, ¢a) (z) = exp [— [z ax(?) dt]W(d’l, *oe, @n) (20). (4.5)

0

Proof. We first prove this result for the simple case » = 2, and then give
a proof which is valid for general . The latter proof makes use of some gen-
eral properties of determinants.

Proof for the case n = 2. In this case

W (1, $2) = 1002 — $195
and therefore

W (1, d2) = b1 + b1dbs — b1 b2 — b1
= ¢1¢;’ - ¢;’¢2-
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Since ¢1, ¢2 satisfy ¥’ + a1(x)y’ + a2(x)y = 0, we obtain
¢£’ = _a'l¢; — Aoy,

b, = —ad; — Gaa.
Thus

W' ($1, ¢2) = $1(— 10, — Gae) — (—a1dy — Gad) by
= —a,($16, — d1y) = —aW (1, ¢a).
We see that W (¢1, ¢2) satisfies the linear first order equation
¥ + ai(z)y =0,

W (1, ¢2) (z) = ¢ exp [— [ " a(t) dt]

0

and hence

where ¢ is a constant. By putting z = z,, we obtain
c= W(¢1; ¢2) (:I?o),

thus proving (4.5) in casen = 2.
Proof for a general n. We let W = W(¢y, -

of n determinants
W’ = V1+ e +V?l,

Chap.

*, ¢n) for brevity. From the
definition of W as a determinant it follows that its derivative W’ is a sum

where V, differs from W only in its k-th row, and the k-th row of V; is

obtained by differentiating the k-th row of W. Thus

!

¢1 ¢1: ¢1 ¢n
é1 ¢ $1 vt
W' = ¢1" .o ¢’:’ ¢1” ¢;’
¢§n—l) ¢’(lu—1) ¢§n—l) e r(lu—-l)
h
$1
+ eee o
L $§™

P

1

é.

(n)
n
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The first n — 1 determinants V., - -+, V,_1are all zero, since they each have
two identical rows. Since ¢, ++ , ¢, are solutions of L(y) = 0 we have

oM = —a,pir D — oo — a.y (t=1,¢0,n),
and therefore

é1 oo $n
'Y oes ¢
W =
¢iu.—-2) N ¢,(:u—2)

fi—] n—l

—T an i vt =3 Gl
F=0 Ful)

The value of this determinant is unchanged if we multiply any row by a
number and add to the last row. We multiply the first row by a., the second

by a.,—, +++, the (n — 1)-st row by a,, and add these to the last row,
obtaining

¢l e e %
’ ’
¢l sew ¢n
* [ ]
W’ = [] = _adW
.
¢’(.n—2) ves r(‘71‘—2)
—ayg{" D see —ay0

Therefore W satisfies the linear first order equation ¥ + a;(x)y = 0, and
thus

W(x) = exp [— fz a1(?) dt]W(xo).

Z9

Corollary. If the coefficients ax of L are constants, then

W (g ==+, @a) () = =W (g, + -+, ¢a) (20).

Note that this corollary is just Theorem 18, Chap. 2.
A consequence of Theorem 8 is that n solutions ¢y, *++, ¢» 0f

L(y) =0
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on an interval I are linearly independent there if and only if

W(‘bl; % ¢n) (m) # 0

for any particular z, in 1.

EXERCISES

1. Consider the equation
L@y) = y” + ai(x)y’ + ax(z)y = 0,

where a), a; are continuous on some interval I. Let ¢1, ¢ and ¥, 2 be two
bases for the solutions of L(y) = 0. Show that there is a non-zero constant %
such that

W, ¥2)(x) = kW (s, ¢2)(x).

2. Consider the same equation as in Ex. 1. Show that ¢; and a; are uniquely
determined by any basis ¢,, ¢ for the solutions of L(y) = 0. (Hint: Try solving
for a;, az from the equations

L) =0, L(¢2) = 0.

Show that
b1 oo 1 o2
a=_¢'{¢'z’ a=¢i’¢'z')
' W (g1, $2)’ LT W, 69

3. Consider the equation
¥y’ + alx)y =0,

where « is a continuous function on — » < z < « which is of period £ > 0.
Let ¢1, ¢2 be the basis for the solutions satisfying

$1(0) = 1, ¢2(0) = 0,
$1(0) =0, ¢3(0) = 1.

(a) Show that W (1, ¢2)(x) = 1 for all z. .
(b) Show that there is at least one non-trivial solution ¢ of period £ if,
and only if,

$1(§) + $2() = 2.
(Hint: Ex. 6, Sec. 3.)
(¢) Show that there exists a non-trivial solution ¢ satisfying

¢z + £) = — ¢(2)
if, and only if,
¢1(E) + ¢a2(§) = -2
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(Hint: Show that such a ¢ exists if, and only if,

¢(£) = —¢(0) and ¢'(§) = —¢(0).

See Ex. 6, Sec. 3.)
(d) If ¢1(§) + ¢3(§) = —2 show that there exists a non-trivial solution of
period 2£. (Hint: Use (c). Alternately, use (b) with £ replaced by 2¢.)

4. (a) Let ¢ be a real-valued non-trivial solution of
¥’ + alzly =0
onag <z <b,and let y be a real-valued non-trivial solution of
y' +B(x)y =0
ona < z < b. Here , 3 are real-valued continuous functions. Suppose that
Bx) > ax), (@ <z <Dd)

Show that if x, and =z, are successive zeros of ¢ on a < z < b, then ¢
must vanish at some point £, 21 < & < zs. (Hint: Suppose ¥(z) > 0 for
Z1 § £ < T2, and assume ¢(z) > 0 forz; < z < 2. Then

Wo' — &) =¥d" — ' = B - a)gy,
and an integration yields
Y(z2)d' (z2) — ¥(z1)¢'(z1) > 0,

since ¢(z1) = ¢(x2) = 0. Show that ¢'(z2) < 0 and ¢'(z1) > 0.)
(b) Show that any real-valued solution ¢ of

y' +ay =0

on 0 < £ < « has an infinity of zeros there. (Hznt: Consider the equation
¥y’ 4+ y = 0, and use (a) with

a@) =1, p) =2  ¢() = cosz.)
5. Let ¢ and ¢ be two real-valued linearly independent solutions of
y' +al@y =0

ona < z < b, where « is real-valued. Show that between any two successive
zeros of ¢ there is a zero of . (Hint: Use the method of Ex. 4(a). Alternately,

suppose
o) =¢(x) =0, and ¢Y(z) >0 for z £z < z;.
Let x = ¢/, and show that
., =W ¥
X = T;

Apply Rolle’s theorem to x on ; < £ < z;. Note that ¢ and y cannot vanish
simultaneously for W(g, ¢)(z) = 0.)

(z1 £z S ).
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6. One solution of 1
Ly) = y" +2? =0

for x > 01is ¢(x) = x'/% Show that there is another solution ¢ of the form
Y = ugp, where u is some function. (Hint: Try to find u so that L(ug) = 0.
This is a variation of the variation of constants idea.)

7. Consider the equation
y' + alx)y =0,

where « is a real-valued continuous functionon 0 < z < .
(a) If a(z) = efor 0 < x < =, where ¢ is a positive constant, show that
every real-valued solution has an infinity of zeros on 0 < x < o, (Hint: Ex. 4.)
(b) Show that this coneclusion is not valid if « just satisfies a(z) > 0 for
0 <z < o, (Hint: Ex. 6.)

8. Consider the equation
¥’ + a(z)y =0,

where « is a real-valued continuous function fora < z < b.
(a) If ¢ is a non-trivial solution which has a zero at x, show that ¢ (xo) = 0.
(Remark: Such a zero is called a simple zero.)
(b) Show that the zeros of a non-trivial solution ¢ are isolated, that is, if
¢(z0) = 0, there is no sequence of distinet x, — zo, (R — ), such that
o(xn) = 0. (Hint: If ¢(z,) = 0, z, — xo, show that ¢'(z¢) = 0.)

5. Reduction of the order of a homogeneous equation

Suppose we have found by some means one solution ¢, of the equation

L(y) = y™ + a(x)y™™ + « -+ + aa(z)y = 0.

It is then possible to take advantage of this information to reduce the order
of the equation to be solved by one. The idea is the same one employed in
the variation of constants method. We try to find solutions ¢ of L(y) =0
of the form ¢ = u¢,, where u is some function. If ¢ = ug; is to be a solution
we must have

0 = (ugr)™ + ar(ugy) ™™ + + o + ana(ugs)’ + an(ud)
= umgy 4 «o o + upl® + autr D¢, + oo+ + auei™?
oo
+ Gn'ér + a,_ ud,

+ antihr.
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The coefficient of u in this equation is just L(¢1) = 0. Therefore, if v = W/,
this is a linear equation of ordern — 1inv,

e+ voo + [+ a1 (n — 1) ¢ + coe + auagn]v = 0. (5.1)

The coefficient of v is ¢;, and hence if ¢;(z) = 0 on an interval I this
equation has n — 1 linearly independent solutions vy, <+, v, on I. If z is
some point in I, and

w@ = [ @ d, (k=2 -m),

then we have u, = v, and the functions

1, Updy, **°, Und (5'2)

are solutions of L(y) = 0. Moreover these functions form a basis for the
solutions of L(y) = 0 on I. For suppose we have constants ¢, -+, ¢,
such that

a1 + Cilady + oo+ Cattar = 0.
Since ¢;(z) # 0 on I this implies
¢t Ctta + oo+ Cattn = 0, (6.3)
and differentiating we obtain

P ’
Couy + -+ +chu, =0,
or
CVs + <+ + cuvn = 0.

Since v,, + + «, v, are linearly independent on I we have
62=03= L) =C”=0,
and from (5.3) we obtain ¢; = 0 also. Thus the functions in (5.2) form a

basis for the solutions of L(y) = O on I.

Theorem 9. Let ¢, be a solution of L(y) = 0 on an interval I, and sup-
pose ¢1(x) #= 0 on I, If vy, «--, v, 18 any basts on I for the solutions of the
linear equation (5.1) of order n — 1, and ©f

vk:ullc; (k=2"'°;n)s
then ¢1, Vs, * =+, Unghr 28 a basts for the solutions of L(y) = Oon 1.
The case n = 2 of Theorem 9 merits further discussion, since in this case

the equation for v is linear of the first order, and therefore can be solved
explicitly (Chap. 1). Here we have

Ly) =y + a(2)y + a:(x)y =0,
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and if ¢; is a solution on I we have
L(u¢1) = (ué¢1)”’ + ai1(ug1)’ + az(udy)
= w1 + 2u'¢y + ud)’ + a'éy + ag + audy
= u¢1 + u' (2¢] + a11).
Thus, if v = ¥/, and u is such that L(u¢,) =0,
o’ + (2¢1' + a;¢;)v = 0. (5.4)
But (5.4) is a linear equation of order one, and can always be solved ex-
plicitly provided ¢:(x) £ 0 on I. Indeed v satisfies
o7’ + (2¢,¢; + a,9])v =0, (5.5)
which is just (5.4) multiplied by ¢1. Thus

(¢10)’ + ar(¢i) =0,
which implies that

$i(z)v(z) = cexp [— f a1 (t) dt],

0

where z, is a point in I, and c is a constant. Since any constant multiple of a
solution of (5.5) is again a solution, we see that

1 z
o = g o |- [[ oo o]

is a solution of (5.5), and also of (5.4). Therefore two independent solutions
of

L(y) =y + ai(2)y + a(x)y =0 (5.6)
on I are ¢, and ¢., where

$1(z) = i(2) fzo o (ls)]z exp [— f o (f) dt] ds.  (57)

Theorem 10. If ¢ is a solution of (5.6) on an interval I, and ¢1(x) #= 0
on I, a second solution ¢; of (5.6) on I is given by (5.7). The funclions ¢., ¢o
Jorm a basis for the solutions of (5.6) on 1.

As a simple example consider the equation

2
' —5¥=0, (0<z< =),

It is easy to verify that the ¢, given by ¢:(z) = z%isasolutionon0 < z <
o, and since this function does not vanish on this interval there is another
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independent solution ¢: of the form ¢; = u¢r. If v = ¥’ we find that v
satisfies

2 + 42w =0, or a + 4 =0.
A solution for this is given by
v(x) = x4, 0 <z < =),

and therefore a choice for v is

u(zx) = ~ 35 (0 <z < ).
This leads to
1
¢2($) = _3_112', (0 <z < °°):

but since any constant times a solution is a solution, we may as well choose
for a second solution ¢:(x) = z~*. Thusz?, z~! form a basis for the solutions
onl <z < o,

EXERCISES

1. A differential equation and a function ¢; are given in each of the following.
Verify that the function ¢ satisfies the equation, and find a second independent
solution.

() 2%'" — Tzy’ + 15y = 0, d1(z) = 2% (z > 0).

(b) z%" —zy' +y = 0,p1(z) = z, (z > 0).

(©) ¥’ — 4dzy’ + (42% — 2)y = 0, $u(z) = e,

d) zy —(x+ 1)y +y =0,¢1(z) = ¢ (x > 0).

(e) (1 — 2y’ — 2z + 2y =0, p1(z) =2, (0 <2 < 1).
) ' —2zy + 2y = 0, 4u(2) =z, (z > 0).

2. One solution of
xsy”’ _ 31:2'_11” + nyl -6y =0
forz > 0is ¢1(z) = z. Find a basis for the solutions for z > 0.

3. Consider the equation

L@y) = ¢ + ai(x)y” + asx)y’ + as(z)y = 0.

Suppose ¢1, ¢, are given linearly independent solutions of L(y) = 0.
(a) Let ¢ = u¢;, and compute the equation of order two satisfied by ' in
order that L(p) = 0. Show that (¢o/¢1)’ is a solution of this equation of
order two.
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(b) Use the fact that (¢o/¢1)’ satisfies the equation of order two to reduce
the order of this equation by one.

4. Two solutions of
2y — 3xy’ 4+ 3y =0, (z > 0),

are ¢1(z) = z, ¢2(x) = . Use this information to find a third independent
solution, (Hint: See Ex. 3.)

5. Consider the equation
¥’ + a@)y’ + axx)y =0,

where a,, a; are continuous on some interval I containing x,. Suppose ¢; is a
solution such that ¢;(z) = 0 for all x in I,
(a) Show that there is a second solution ¢ on I such that

W(d1, ¢2)(x0) = 1.

(b) Compute such a ¢z in terms of ¢1, by solving the first order equation

d1(z)po(x) — P1(z)Pa(z) = exp[— f a1(t) dt];

]

for ¢s.

6. The non-homogeneous equation

Let ay, <+, a,, b be continuous functions on an interval I, and consider
the equation

L(y) = ¢y + ai(z)y™™D + <+ + a.(z)y = b(x). (6.1)

We have already seen that, in the case where the a; are all constants, this
equation may be solved using the variation of constants method (Sec.
10, Chap. 2.). The method does not depend on the fact that the a; are con-
stants, and is therefore valid for the equation (6.1). We outline briefly the
results.

If ¢, is a particular solution of (6.1), any other solution y has the form

¢=¢P+Cl¢1+“' +Cu¢n,

where ¢y, « -+, ¢, are constants, and ¢,, ** +, ¢, is a basis for the solutions of
L(y) = 0. Every such ¢ is a solution of L(y) = b(x). A particular solution
¥» can be found which has the form

¥Yp = w1 + o+ + Undy,
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where uy, **-, u, are functions satisfying
Uy + +o0 + U, =0

uigy + 0+ + ug, =0

’
“;‘f’f"—z) 4 oeee uu‘b’('u._z) =0
! — ’ —
ul¢§n D4 oo 4 ,L”¢£n D = p,

If z, is any point of I we may take for u; the function given by

_r We()b() 1 ..
WO = ] Won e o T L),

and then ¢, has the form

WL (0b()
T () & (62)

Here W (¢, ***, ¢u) is the Wronskian of the basis ¢, +++, ¢, and W; is
the determinant obtained from W (¢, « -+, ¢») by replacing the k-th column

(s, ¢;: *t*y ¢£u~1)) by (0,0, ---,0, 1).

Volz) = g: o4(z)

Theorem 11. Let b be continuous on an interval I, and let ¢y, »++, ¢n be a
basts for the solutions of L(y) = 0 on L. Every solution ¢ of L(y) = b(x)
can be writlen as

"‘ = 'I/p + 11 + .. -+ Cadn,
where ¥, 18 a parlticular solution of L(y) = b(x), and cy, +++, Ca are con-
stants. Every such ¢ is a solution of L(y) = b(x). A particular solution ¢,
18 given by (6.2).
As an illustration let us find all solutions of the equation

2
y" —;y=x, (0 <z < ). (6.3)

We have already seen in Sec. 5 that a basis for the solutions of the homo-
geneous equation is given by

$1(z) = 2°, u(z) = 27!
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A solution ¢, of the non-homogeneous equation has the form

Vo = wz® + ur, (6.4)
4 14 .
where u,, u, satisfy
2, + zluy =0

/ — 14
2zuy — 27U, = .

Now W (¢1, ¢2) (x) = —3, and we find that

’ ! xs
wy(r) = g, ug(xr) = “"3‘-
For u;, u; we may take
s
'u1($) =.§; u2(x) = _E;

and from (6.4) we see that

Every solution ¢ of (6.3) then has the form
3
¢(z) = % + az? + ez

where ¢, ¢; are constants.

Since we can always solve the non-homogeneous equation L(y) = b(x)
by using algebraic methods and an integration, we now concentrate our
attention on methods for solving the homogeneous equation.

EXERCISES
1. One solution of
2y’ -2y =0
on <z < o is¢i(r) = % Find all solutions of

gy’ — 2 =2¢ — 1
onf <z < o,

2. One solution of
2y -z +y=0, (x>0
is ¢1(x) = z. Find the solution ¢ of
2y’ -y +y =3
satisfying ¢(1) = 1,¢/(1) = 0.
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(a) Show that there is a basis ¢, ¢2 for the solutions of

oy’ +4xy + 2+ 22y =0, (z>0),
of the form

Yi(z) ’ do(z) = 'Pzaf:?)

¢1(x) =

z2

(Hint: If ¢ is a solution, let ¢ = v/22.)
(b) Find all solutions of

2" + day’ + (2 + 2Py = 2?
forz > 0.

(a) Consider the equation
L(y) = y" 4+ ai(x)y’ + a:(x)y = b(z),

where aj, a3, b are continuous on some interval I. Suppose ¢ is a solution of
L(y) = 0such that ¢1(x) > 0for all z in I. Show that there is a particular
solution ¥, of L(y) = b(z) of the form ¥, = uxp,, where v, = u,, is a par-
ticular solution of the first order equation

d1(z) + [201(z) + ai(@)p1()v = b(z).
(b) Use the idea in (a) to find all solutions of
" —zy 4y =2

for z > 0. (Hint: From Ex. 2 one solution of 2%’ — zy’ 4+ y = Ois given by
1(z) = z.)

5. Show that the function ¥, given by (6.2) satisfies

¥p(@0) = Yp(®) = <=+ = Pf»V(m) = 0.

6. Let g(z, t) be defined by

_ i di(x)Wil(t)

g(z, t) = W) )

where W = W(gy, *+*, ¢n) is the Wronskian of n linearly 1ndependent solu-
tions of L(y) = 0, Then the ¥, of (6.2) can be written as

bo@) = [ ot b0 a.

zp
(a) Prove that
k(z, £)

gz, t) = Wy
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where
$1(8) G2f)  eoc Palt)
$1(t) EY () NEETTI ()
k(z, 1) = . . .

"R $TRE) eer P

b1(z) Pa(z) eer Pnu(2)
(b) Show that
dg ™% i
g, t) =0, ax(t;t)=02 . anz(t‘) anl(t‘)

7. Consider the equation
¥y’ +y = b)),
where b is a continuous functionon 1 £ ¢ <  satisfying

fmlb(t)ldt< .
1

(a) Show that a particular solution y, is given by

¥o(z) = f ’ sin (z — L)b() dt.
1

(b) Show that any solution is boundedon 1 € z < .

7. Homogeneous equations with analytic coefficients

If g is a function defined on an interval I containing a point z,, we say
that g is analytic at x, if g can be expanded in a power series about x; which

has a positive radius of convergence. Thus ¢ is analytic at xe if it can be
represented in the form

g(z) = ; e(z — 2t (7.1)

where the c: are constants, and the series converges for |z — zo| < 1o,
ro > 0. Recall (Sec. 5, Chap. 0) that one of the important properties of a
function g which has the form (7.1), where the series converges for
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|z — zo| < 7o, is that all of its derivatives exist on |x — z0] < 7o, 2nd they
may be computed by differentiating the series term by term. Thus, for
example

g (z) = i kew(z — 20)*,
k==1
and

g’ (x) = i k(k — Vex(z — zo)*2,

]

and the differentiated series converge on |z — x| < 7o also.

If the coefficients a;, - - +, a, of L are analytic at z, it turns out that the
solutions are also. In fact solutions can be computed by a formal algebraic
process. We illustrate by considering the example

L(y) =y" —ay =0.

Here a,(z) =0, a;(xz) = —=z, and hence a,, a; are analytic for all real x,.
We try for a solution the series

o(x) =+ ax + cx® 4+ <--.

Then
¢ (x) = 2¢2 + 3-2c;x + 4+3cax? + oo
=’ i (k + 2) (k + 1)cryaz®.
k=0
Also

zp(x) = cox + €1x? + cox® + 00 = i Cr1TE,

¢ (z) — v(z) = 26 + i [k + 2) (k + 1)eess — cesla®.

In order for ¢ to be a solution of L(y) = 0 we must have

¢" () — z¢p(x) =0,
or

2 4+ S [0k + 2)(k + Dewss — o le* = 0,

k=1
and this is true only if all the coefficients of the powers of x are zero. Thus
20 =0, (k+2)(k+1esa—a1=0, (k=1,2--+).

This gives an infinite set of equations, which can be solved for the ¢i. Thus,
for k = 1, we have

Co
3+2c3 = ¢y, OF C3 = 53—2-
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Putting k = 2 we find

oo o=
4 4.3.
Continuing in this way we see that
0_0_2_00_03_ Co _6’4_ C1
“T 54 ®T 65 6532 776 7643
It can be shown by induction that
Co
Om = 5.85:6 ++- (3m — 1)3m’ (m =1,2, ),
c
Cimpt = : (m=1,2, ),

3:4:6-7 «+- 3m(3m + 1)’
Camsz = 0, (m=0,1,2, ¢¢+).

Thus all the constants are determined in terms of ¢; and ¢;. Collecting to-
gether terms with ¢; and ¢, as a factor we have

x® x8 z! x’
¢(z) = 00[1 + 3.3 + 55.3.2 + ] + cl[x + 1.3 + 76.43 + ]
Let ¢1, ¢ represent the two series in the brackets. Thus
o0 x3m
=1
¢1(2) + ,E 2:3:5:6 «++ (3m — 1)3m’
(7.2)
o0 x3m+1
¢o(x) =2+ 2

ot 3:4:67 ++- 3m(3m + 1)~
We have shown, in a formal way, that ¢ satisfies '’ — zy = 0 for any two
constants ¢y, ¢;. In particular the choice ¢ = 1, ¢, = 0 shows that ¢, satis-
fies this equation, and the choice ¢, = 0, ¢; = 1 implies ¢, also satisfies the
equation.
The only question that remains concerns the convergence of the series
defining ¢,(x) and ¢:(z). It is readily checked by the ratio test that both

series converge for all finite . For example, let us consider the series for
¢é1(z). Writing it as

¢i1(z) =1+ idm(‘”)»

m=]

we see that
mi1(2) Zomt3
dn(z) ~ 2:3:5:6 <+« (3m — 1) (3m) (3m + 2) (3m + 3)
« 2:3:5:6 +++ (3m — 1)(3m)

x!m
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and therefore
At (T) _ | « |3
dm () (3m + 2)(3m + 3)'

which tends to zero, as m — «, provided only that | z | < .

Summarizing, we have found in a purely formal way two series, which
are convergent for all finite z, and thus represent two functions ¢, ¢z, and
from the way we obtained ¢,, ¢ it is apparent that they are solutions of the
equation ¥y’ — 2y = Oon — o < x < «, They are linearly independent
solutions for it is clear from the series (7.2) defining ¢, and ¢. that

¢:1(0) =1,  ¢:(0) =0,
$1(0) =0,  ¢:(0) =1,

and therefore
W (g1, ¢2) (0) =1 0.

The method illustrated by this example works in general when the
coefficients are analytic, and always yields a convergent power series solu-
tion for any initial value problem. We state this result formally, and
devote Section 9 to its justification.

Theorem 12. (Existence Theorem for Analytic Coefficients) Let X, be a
real number, and suppose that the coefficients a,, ++ -, a, tn

L(y) =y + ai(2)y" ™ + -+ + aa(2)y
have convergent power series expansions in powers of X — X on an interval
lz— 2| <7, 1>0.
If ay, » =+, an are any n conslants, there exists a solution ¢ of the problem
L(y) =0, y(x) =ay, =+, Yy () = o

with a power series expansion
¢(x) = 2 cr(z — m)* (7.3)
k=0

convergent for | x — xo | < ro. We have
ke = apy, (k=0,1,:++,n— 1),

and cx for k = n may be compuled tn terms of co, €1, *+ 4, Cacy by substituting
the series (7.3) into L(y) = 0.

It follows from Theorem 12, and the Uniqueness Theorem 3, that any
solution ¢ of L(y) =0 on |z — x| < ro has a convergent power series
expansion there of the form (7.3).
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EXERCISES

1. Find two linearly independent power series solutions (in powers of z) of the
following equations:

@) y" —zy' +y =0 (b) " + 3% — =2y =0
(c) y*" —2% =0 d) y” +2% +2% =0
@ y'+y=0

For what values of x do the series converge?

2. Find the solution ¢ of

V' + @ -1 - -1y =0
in the form

]

o) = D alz — 1),

k=0

which satisfies $(1) = 1, ¢(1) = 0. (Hint: Let 5 — 1 = £
8. Find the solution ¢ of

A+22"+y=0
of the form

6@ = 3 a*,
k=0

which satisfies ¢(0) = 0, ¢'(0) = 1. (Note: When the equation is written in the
form

1
/! = O
vt 1 + 2? ¥="5
it is one with analytic coefficients at x = 0, since
1 ©
—-—-—=1—x2+x4—zo+ono = (_l)ksz,

which eonverges for | z| < 1. However to compute ¢ it is best to substitute
the series for ¢ directly into the given equation.) What is the largest r > 0
such that the series for ¢ converges for |z | < r?

4. The equation
y' + ey =0
has a solution ¢ of the form

6@) = 3 et
k=0

which satisfies ¢(0) = 1, ¢’(0) = 0. Compute ¢, ¢1, 2, 3, €4, cs. (Hint: cx =
¢*(0)/k! and ¢”(z) = —e¢p(z).)



Sec. 7 Linear Equations with Variable Coefficients 131

5. Compute the solution ¢ of

1!

y'"' —zy =0
which satisfies ¢(0) = 1, ¢'(0) = 0, ¢ (0) = 0.
6. The equation
(1 = 2" — 22y’ + ale + 1)y =0, (*)

where « is a constant, is called the Legendre equation.
(a) Show that if it is written in the form

¥’ + a@)y + axz)y = 0,

then ai, as have convergent power series expansions (in powers of z) on
lz| < 1.

(b) Compute two linearly independent solutions for | z | < 1. (Hint: Leave
the equation in the form (*).)

(¢) Show that if « is a non-negative integer n there is a polynomial solution
of degree n.

7. The equation
A — 2y — 2y’ + oy =0,

where « is a constant, is called the Chebyshev equation.
(a) Compute two linearly independent series solutions for [z | < 1.
(b) Show that for every non-negative integer « = n there is a polynomial
solution of degree n. When appropriately normalized these are called the
Chebyshev polynomials.

8. The equation
y"' ~ 2zy’ + 2oy =0,
where « is a constant, is called the Hermite equation.
(a) Find two linearly independent solutionson — o < z < o,
(b) Show that there is a polynomial solution of degree n, in case @ = nisa
non-negative integer.
(¢) Show that the polynomial H, defined by

H 1) &2 _d_"_ —z
@) = (-1 e’ —
is & solution of the Hermite equation in case @ = n is a non-negative integer;
This solution H, is called the n-th Hermite polynomial. (Hint: If u(z) = e=
show that u/(z) + 2zu(z) = 0. Differentiate this equation » times to obtain

2

Hut1(z) — 2zHa(z) + 2nHna(z) =0 *)

for n = 1. Differentiate H, to obtain
Hi(z) = 2zH,(z) ~ Huti(z) (**)
for n = 0. Use (*) and (**) to show H, is a solution of the Hermite equa-

tion.)
(d) Compute Ho, H1, Hg, Hz.
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8. The Legendre equation

Some of the important differential equations met in physical problems
are second order linear equations with analytic coefficients. One of these is
the Legendre equation

Ly) = (1 -2y’ — 2z + a(a + 1)y =0, (8.1)

where « is a constant. If we write this equation as

2z ala + 1)

i N —
TV T =g ¥v=0

we see that the functions a;, a; given by

-2z a(a + 1)

al(x)“l_xzw a'2(x)"' 1 — 22 ’

are analytic at x = 0. Indeed,

=1+x2+x4+"'= ixu’
k=0

1 — 22

and this series converges for | z| < 1. Thus a; and a, have the series ex-
pansions

a(z) = 2 (—2)a4,  ay(z) = g ala + 1)z,

which converge for | z | < 1. From Theorem 12 it follows that the solutions
of L(y) =0 on |z| <1 have convergent power series expansions there.
We proceed to find a basis for these solutions.

Let ¢ be any solution of the Legendre equation on | z| < 1, and sup-

pose
o) =co+ oz + cx? + <00 = i crTk. (8.2)
k=0
We have

¢'(x) = &1 + 2602 + Begz? 4 ++¢ = i kepz®1,
Py

—2x¢’ (x) f: —2kcrxk, (8.3)

=)

¢ () = 2c + 3+2c3x + -+ = g k(k — 1)ciz*3,

—z%"(z) = X, — k(k — 1)cizt. (8.4)

fry
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Note that ¢’ (x) may also be written as

¢ (z) = ’g (k + 2) (k + 1)expant. (8.5)
From (8.2)-(8.5) we obtain
L(¢) (z) = (1 — 20)¢"(2) — 2z¢'(z) + ala + 1)¢(z)

- g [k +2) (k + Dewgs — k(k — 1)ex — 2ke + a(a + 1)e 2t

- 2 [+ 2)(k + Dewa + (@ + &k + 1) (« — ke Ta*

For ¢ to satisfy L(¢) = 0 we must have all the coefficients of the powers
of z equal to zero. Hence

(k+2)(k+ 1o+ (e +k + 1) (e — K)o =0,

8.6
(k=011121"')- ( )

This is the recursion relation which gives cx42 in terms of ¢;. For k = 0 we
obtain
(¢ + e
€ = —————0y,

2
and for k = 1 we get

(et 2)(a— 1)
3.2 i

C3 = 1s

Similarly, letting ¥ = 2, 3 in (8.6) we obtain
_ _(a+3)(a —2) o = (¢ + 3) (e + DNa(a — 2)

= 1.3 : 4-3-2 =
o = _(a+4)(a—3)c _ (ar+4)(cv-|-2)(a—1)(0!—3)c
: 5-4 ’ 5432 -

The pattern now becomes clear, and it follows by induction that for m =
1, 2, LI I ) )

(@+2m—1) (a+2m—=3) «++ (a+1)a(a—2) - (cr—21'n+2)ao

an= (D)7 (2m) 1 )
Cami1
- (_l)m(a"l'zm) (a+2m—2)+«« (a+2) (a—1) (a—3)+ - (a—2m+1)"1

(2m+1)!
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All coefficients are determined in terms of ¢; and ¢;, and we must have

¢(z) = cod1(x) + crpe(),

where
1 -
¢1(x)=1_Mx2+(a+3)(a+l)a(a 2)x4_.",
2! 4!
or

o(z) =1+ i (—1)m

% (a4+2m—1) (a+2m—3) - (a+1)a(a—2) - (a—2m+2)x2m

(2m) ! )
(8.7)
and
¢2(x)
(a+2)(a—1) (a+4)(a+2)(a—1)(a—3) |
T 3! =+ 51 o
or
$r(z) =z + >§ (=1)m
y (ok2m) (ak2m=2) -+ (at2) (a=1) (=) -+ (= BmrD) . 35)

(2m + 1)!

Both ¢; and ¢ are solutions of the Legendre equation, those corresponding
to the choices

=1 ¢ =0, and =0 c=1,
respectively. They form a basis for the solutions, since
¢ (0) =1, ¢:(0) =0,
$1(0) =0, ¢,(0) =1
We notice that if « is a non-negative even integer
n = 2m, (m=0,1,2,+.+),

then ¢ has only a finite number of non-zero terms. Indeed, in this case ¢,
is a polynomial of degree n containing only even powers of z. For example,

$i(z) =1, (@ =0),
$i(z) =1 — 3%, (a =2),
$pi(z) =1 —1022 + Pt (a=4).
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The solution ¢, is not a polynomial in this case since none of the coefficients
in the series (8.8) vanish.

A similar situation occurs when « is a positive odd integer n. Then ¢
is a polynomial of degree n having only odd powers of z, and ¢, is not a
polynomial. For example,

¢:(2) = 7z, (a = 1),
4’2(37) =x—§-m’, (a=3);
ta2(z) =z —F2+5F25 (a=05).

We consider in more detail these polynomial solutions when o = n,
a non-negative integer. The polynomial selution P, of degree n of

(1 =2y — 2z +n(n+ 1)y =0, (8.9)

satisfying P,(1) = 1 is called the n-th Legendre polynomial. In order to
justify this definition we must show that there is just one such solution
for each non-negative integer n. This will be established by way of a slight
detour, which is of interest in itself.

Let ¢ be the polynomial of degree n defined by

dn
¢(z) = —— (2* — )™
X

This ¢ satisfies the Legendre equation (8.9). Indeed, let
u(z) = (a2 — 1),

Then we obtain by differentiating

(22 — 1)u' — 2nzu = 0.
Differentiating this expression n 4 1 times yiclds
(22 — 1)u™d 4 2z(n + 1)u™ 4+ (n + 1)nut»

— 2nzu"t) — 2n(n 4+ D)u™ =Q.

Since ¢ = u™ we obtain

(1 — 2*)¢"(z) — 22¢'(z) + n(n + 1)¢(x) =0,

and we have shown that ¢ satisfies (8.9).
This polynomial ¢ satisfies

$(1) = 20 1.
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This can be seen by noting that
¢(r) = [(z? — )"]™ = [(z — 1)*(z + 1)*]™
= [(z — 1)*]™(z 4+ 1) + terms with (z — 1) as a factor
=n!(z+ 1) 4+ terms with (z — 1) as a factor.

Hence ¢(1) = n !2, as stated.
It is now clear that the function P, given by

1
a(Z) = == — (28 — 1)" :
Pa@) = = (2 = 1) (8.10)
is the n-th Legendre polynomial, provided we can show that there is no
other polynomial solution of (8.9) whichis1 at z = 1.

Suppose ¢ is any polynomial solution of (8.9). Then for some constant
¢ we must have ¢ = ¢¢, or ¢ = c¢s, according as n is even or odd. Here
¢1, 2 are the solutions (8.7), (8.8). Suppose = is even, for example. Then,
for [z| <1,

¥ = cé1 + do

for some constants c, d, since ¢;, ¢ form a basis for the solutions on |z] < 1.
But then ¢ — c¢1 i1s a polynomial, whereas d¢, is not a polynomial in case
d = 0. Hence d = 0. In particular the function P, given by (8.10) satisfies
P, = c¢, for some constant ¢, if n is even. Since

1 = Pa(1) = cu(1),

we see that ¢:1(1) 5 0. A similar result is valid if » is odd. Thus no non-
trivial polynomial solution of the Legendre equation can be zero at z = 1.
From this it follows that there is only one polynomial P, satisfying (8.9)
and P, (1) = 1, for if P, was another, then P, — P, would be a polynomial
solution, and

P,(1) — P,(1) =0.
The first few Legendre polynomials are
Py(x) =1, Pi(z) = =z, Pz(x) = %x’ -4
Py(z) =g32*— 3z, Puz) = T2+ 3

EXERCISES

1. Show that the series defining the functions ¢, ¢2 in (8.7), (8.8) converge for
| x| < 1. (Hint: Use the ratio test.)

2. Show that P,(—z) = (—1)"Py(z), and hence that P,(—1) = (=1)".
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3. Show that the coefficient of ™ in P,(x) is

(2n)!
27 (nl)?”

(Hint: Use (8.10).)
4. Show that there are constants aq, a1, ***, oy such that
z" = aoPo(z) + a1P1(z) + *+* + aaPalz).
(Hint: Forn = 0,1 = Py(z). Forn = 1,z = Py(z). Use induction.)
5. Show that any polynomial of degree n is a linear combination of Py, Py,
sos, P,. (Hint: Ex. 4.)
6. Show that
fll P.(2)Pr(z) dz = 0, (n = m).

—

(Hint: Note that
[(1 - ;z;z)PrIl]’ = —nn 4+ 1)P,,

[Q = 2?)Pr)’ = —m(m + 1)Pp.
Hence

Pl — 2)P,]" = Pa[Q — 2)Pn)’ = {(1 — a®)[PnPn — PuPal}’

= [m(m + 1) — n(n 4 1)]PnPa.
Integrate from —1 to 1.)

7. Show that

1 2
f Pi(z) dz = .
1 2n 41

(Hint: Let u(x) = (z? — 1)™. Then from (8.10)

1
P.(z) = -2”—.71,' u™ ().

Show that u® (1) = u®(—1) = 0if 0 £ k¥ < n. Then, integrating by parts,

/ : u™ ()u™ (z) dr = ur(x)u"D(z)

-1

1 1
—_ f wntl) (x')u(n-—l) (27) dz
—1

-1

1
= — ] uHD (z)u =0 (z) dx

-1

1
= eee = (=1)® f1 ul@® ()u(z) dz.

1
@n)! [ - )" dz.
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To compute the latter integral let x = sin 8, and obtain
2(2"nl)?

2n + 1)1')

1 x/2
1 ~2)"de =2 f cos+10 df =
-1 0

8. Let P be any polynomial of degree n, and let
P = coPy + c1P1 + *++ + ¢. Py, ™
where ¢, ¢1, ***, ¢, are constants. (Such constants exist by Ex. 5.) Show that

2k + 1

Cr = P(x)Pk(x) dz, (k=0,1,-,n).

(Hint: Multiply (*) by P and integrate from —1 to 1. Use the results of Exs.
6 and 7.)

9. Using the fact that Py(z) = 1 is a solution of

(1 -2y’ — 22y’ =0,
find a second independent, solution by the method of See. 5.
10. (a) Verify that the function @, defined by

1 4+ =z

1_)"1, (|x|<1)’

Qi(z) == log(

is & solution of the Legendre equation when o = 1.
(b) Express @, as a linear combination of the solutions ¢1, ¢2 given by
(8.7), (8.8) with & = 1. (Hint: Compute Q, (0) and Q1(0).)

%k 9. Justification of the power series method

We now consider the proof of Theorem 12. In order not to complicate
matters too much we shall give a proof for the case whenn = 2and z, = 0.
All the essential ideas appear in this case. We shall make use of two results
concerning power series. The first is that if we have two power series

o o]

2 art, D Cuh,

om0 k=0
and we know that

lex| = Cy, C: 20, (k=0,1,2,.-.),

and that the series

D, Gt

]
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converges for | x| < r, for some » > 0, then the series

0

> et

k=0

also converges for | | < r. This is usually calicd the comparison test for
convergence. The second result we require is that if a series

g ak:c" (9.1)

is convergent for | | < m, then forany z, | x| = r < 7, there is a constant
M > 0 such that

TklakléMa (k=0;1721"')' (92)

This is not difficult to show. Since the series (9.1) is convergent for |z | = r
its terms must tend to zero,

lawd*} = | ax | £ — 0, (k— ).
In particular there is an integer N > 0 such that
lae | <1, (k> N).
Let M be the largest number among
las|, |aa|r, <+, |an|r¥, L

Then clearly (9.2) is valid for this M.
We now conisider the equation

L(y) =y" + a(2)y’ + b(z)y =0, (9.3)

where a, b are functions having expansions

a(z) = g wrt,  b(z) = g B, (9.4)

which converge for | 2| < ) for some 7, > 0. Given any constants a1, a:
we want to preduce a solution ¢ of (9.3) satisfying

¢(0) =a, ¢°(0) = a,
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and which can be written in the form

¢(z) = i crzk, (9.5)

k=0

where the series converges for | | < 7. If this series is convergent we
must have

Co = oy, €1 = Qg

and the-constants ¢, (k = 2) must satisfy a recursion relation, which we now
compute. We have

o' (x) = i (k + 1)cezt,
k=

and
8" (z) = z:o (k + 2) (k + 1)crsaz® (9.6)

Now from (9.4) we obtain

a(z)¢’'(z) = (g akz")(kz; (k + 1)c,,+1:c")

(9.7)
g (Zk: ar—i( j + 1)6:+1)

e = (S ) 5 o)

2 (E ,Bk_,c,) (9.8)

Adding (9.6), (9.7), and (9.8) we get

and

L(¢)(z) = 3. [(k + 2)(k + 1)cese + Z ar—i(J + 1)cin

k=0
+ Z Br—iC; ¢ = 0.
50 d
Thus the ¢; must satisfy
k
(B +2)(k+ ey = — § Lar—i(J + D)eir + Be—iesl, (9.9)

(k=012 --.).



Sec. 9 Linear Equations with Variable Coefficients 141

Our job now is to show that if the ¢, for £ = 2, are defined by (9.9),
then the series

S ot (9.10)

Py}

is convergent for | 2| < 7. To do this we make use of the two results con-
cerning power series we mentioned earlier. Let r be any number satisfying
0 < r < 7. Since the series in (9.4) are convergent for | z | = r we have a
constant M > 0 such that

|aj|T-’.§M, |,3,'|7".§M, (j=0)1;2;"')-
Using this in (9.9) we find that

M & ]
(k4 2)(k + 1) | 6ry2 | é;;}:[(i‘i'l) | eir | + | €5 |1r?

M & )
S =2 [+ lcial +lei|I + M| cepa]|r. (9.11)
=0

Now let us define
Co=|00|, Cl=|cll,
and Ci for k = 2 by

- M & ; .
(k + 2)(k + 1)Crys = g 2 [+ 1DCih+ Cidri + MChyar, (9.12)
=0

(k=0,1,2,+-°).
Comparing (9.12) with (9.11) we see that an induction yields
| e | = Cs, Cv 2 0, (k=0,1,2,..+). (9.13)

We now investigate for what z the series
3 Gyt (9.14)
Jouml)

is convergent. From (9.12) we find that

M k—1 . .
(k + DkCpn = 5= 2 [(§ + 1)Ca + Cilr + MCur,
ey
and
M k=2 .
k(k — 1)Ch = —= > [(j + 1)Cia + Cil + MChr,

rb—2’._a
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for large k. From these expressions we obtain

k—2

M .
r(k + 1)kCryy = prars § [(j+ 1)Cia + Cilr?
+ M[kCy + CruaJr + MCys?
=k(k — 1)Cr — MCjr
-I- Mkar + MC;..]" + MCH"
= [k(k — 1) + Mkr + M»*]C;.

Hence
Crpzrt! _ Ck(k — 1) + Mkr + Mr’]'zl
Cix* r(k + 1k ’

which tends to | z | /r as k — . Thus, by the ratio test, the series (9.14)
converges for | z| < r. This implies that the series (9.10) converges for
| | < r, and since r was any number satisfying 0 < r < ro, we have shown
at last that the series (9.10) converges for | z | < ro.

This completes our justification of Theorem 12.




CHAPTER 4

Linear Equations with Regular

Singular Points

1. Introduction

In this chapter we continue our investigation of linear equations with
variable coefficients

ao(2)y™ + a1(z)y™ P 4 ¢ - an(z)y = 0. (1.1)

Weshall assume that the coefficients ao, ay, + + +, a. are analytic at some point
zo, and we shall be interested in an important case when ao(z) = 0. A
point xo such that ay(x,) = 0 is called a singular point of the equation (1.1).
In this case we can not apply directly the existence result Theorem 1,
Chap. 3, concerning initial value problems at xo. Indeed, it is usually rather
difficult to determine the nature of the solutions in the vicinity of such
singular points. However there is a large class of equations for which the
singularity is rather “weak,” in the sense that slight modifications of the
methods used for solving equations with analytic coefficients in Chap. 3
serve to yield solutions near the singularities.

We say that z, is a regular singular point for (1.1) if the equation can be
written in the form

(& — @)™y + by(2) (& — 2) YD 4 s £ hu(2)y =0  (1.2)

near z,, where the functions b,, -« -, b, are analytic at zo. If the functions
by, * -, b, can be written in the form

bk(x) = (x - xO)kﬂk(x); (k = 17 ety n))
where 8y, ¢+ -, B. are analytic at x,, we see that (1.2) becomes

y® + Bi(z)y*™ P + -+ + Bu(z)y =0 (1.3)
143



144 Linear Equations with Regular Singular Points Chap. 4

upon dividing out (z — 2o)”. Thus (1.2) is a generalization of the equation
with analytic coefficients considered in Chap. 3, Secs. 7-9.
An equation of the form

Co(x) (2 — 20)"y™ + cu(2) (2 — 2)"Y" P + o+ +ea(2x)y =0

has a regular singular point at zo if ¢y, ¢, + -, ¢» are analytic at z,, and
co(zo) # 0. This is because we may divide by ¢ (z), for z near z,, to obtain
an equation of the form (1.2) with b.(2) = cx(z)/co(x), and it can be shown
that these b are analytic at .

We first consider the simplest case of an equation, not of the type (1.3),
having a regular singular point. This is the Euler equation, which is the case
of (1.2) with by, -+, bs all constants. Next we investigate the general equa-
tion of the second order with a regular singular point, and indicate how
solutions may be obtained near the singular point. For x > z, such solutions
¢ turn out to be of the form

¢(x) = (z — 2)70(2) + (x — 20)%0(2) log (z — x0),

where r, s are constants, and o, p are analytic at z,. As an example the solu-
tions of the important Bessel equation are computed in detail. Regular
singular points at infinity are briefly discussed.

The method used is to show that the coefficients of the series for the
analytic functions o, p can be computed in a recursive fashion, and then to
indicate that the series obtained actually converge near the singular point.
Fortunately many of the equations with singular points which arise in
physical problems have regular singular points.

To mdicate how lucky we are in this situation consider the equation

' —y —fy=0. (1.4)

The origin z, = 0 is a singular point, but not a regular singular point since
the coefficient —1 of ¥’ is not of the form z b,(x), where b, is analytic at 0.
Nevertheless we may formally solve this equation by a series

Z ckx" ) (1.5)

k=0

where the coefficients ¢ satisfy the recursion formula

(k + l)ck+l = (kg - N %)ckv (k = 07 17 21 "')' (16)
If ¢ # 0, the ratio test applied to (1.5), (1.6), shows that
Cr 41T+ k2 — k — %
= | izl
Crr* k+1
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as k — oo, provided | # | # 0. Thus the scries (1.5) will only converge for
z = 0, and therefore does not represent a function near x = 0, much less a
solution of (1.4).

2. The Euler equation

The simplest example of a second order equation, not of the type con-~
sidered in Chap. 8, having a regular singular point at the origin is the Euler

equation
L(y) = z%" + azy’ + by = 0, (2.1)

where a, b are constants. We first consider this equation for 2 > 0, and ob-
serve that the coefficient of ¥ in L(y) is a constant times z*. If r is any con-
stant, " has the property that its k-th derivative times z* is a constant times
z', For example

z(z")' = ra, 22(z")" =r(r — 1z
This suggests trying for a solution of L(y) = 0 a power of z. We find that
L{z) = [r(r — 1) + ar + b]z".
If q is the polynomial defined by

q(r) =r(r—1) +ar+ 0,
we may write
L(z7) = gq(r)a", (2.2)

and it is clear that if r, is a root of ¢ then
L(zn) = 0.

Thus the function ¢, given by ¢:1(z) = zm is a solution of (2.1) for z > 0.
If 72 is the other root of ¢, and 2 # r,, we obtain another solution ¢; given by

$2(x) = ™.
In case the roots 1, r; of ¢ are equal we know that
Q(Tl) = 0; ql(rl) = 0;
and this suggests differentiating (2.2) with respect to r. Indeed
—QL( r) = L(a ') = L(z" log z)
5, L&) = Liza") = L(z" log

r
= [d'(r) + ¢(r) log z]z",
and if r = r; we see that
L(ztlogz) =0.
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Therefore ¢2(2) = 2m log z is a second solution associated with the root r,
m this case.

In either case the solutions ¢, ¢2 are linearly independent for z > 0.
The proof is easy. If 1 # r: and ¢, ¢; are constants such that

iz + ezt = 0, (x> 0),
then
e + ez =0, (z > 0). (2.3)

Differentiating we see that
Co(rs — m)zrrml =0,

which implies ¢; = 0, and from (2.3) we obtain ¢, = 0 also. In caser; = ry,
and ¢, ¢, are constants such that

aizt + cxnt log z = 0, (z > 0),
then

&+ clogz =0, (z > 0), (2.4)

and differentiating we obtain
- = 0’ (x > 0),

or ¢z = 0. From (2.4) we see that ¢; = 0.

We have glossed over one point in the above calculations, and that is
the definition of z* in case r is complex. This possibility must be taken into
account since the roots of g could be complex. We define z" for » complex by

xr = e loz::, (x>0)_
Then we have

(xr)' = r(log x)fer log z — rxlgr =17 xr—-l,
and

a ad
5;("") = é;(e' lez) = (log z)er €= = 2 log 7,

which are the formulas we used in the calculations.
Solutions for (2.1) can be found for z < 0 also. In this case consider
(—z)7, where r is a constant. Then we have forz < 0

[(=2)) = —r(—2), [(—2)]) =r(r—1)(—2)"%
and hence
z[(—2)] =r(—2), [(—=2)] =r(r—1)(-2)"

Thus
L((—2z)") = q(r)(—2)", (z <0).
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Also 3
SL(—2)] = (—2)"log (=2), (< 0),

as can be easily checked. Therefore we see that if the roots ry, r; of ¢ are
distinct two independent solutions ¢, ¢» of (2.1) for z < 0 are given by

¢1(.'E) = (_x)n; ¢2(x) = (_x)"a (:C <O):
and if r; = r; two solutions are given by
du(z) = (—=z), ¢u(®) = (—2)tlog (—2z), (2<0).

These are just the formulas for the solutions obtained for £ > 0, with z
replaced by —z everywhere. Since |z| = zforz > 0, and |z | = —=z for
z < 0, we can write the solutions for any = # 0 in the following way:

eu(x) =|z|",  d(z) =|2z|m (z = 0),
in case r, # r, and

¢i(z) = |z[",  ¢u(x) =|z["log|z|, (z+#0),
in case r; = r,.

Theorem 1. Consider the second order Euler equation
%" +axy + by =0, (a, b constants),
and the polynomial q given by
g(r) =r(r—1) 4+ ar +d.

A basis for the solutions of the Euler equation on any tnterval not containing
x = 0 s given by

d(z) =z, a(x) = |z,
in case 1y, Iy are distinct roots of q, and by
di(z) =|z]",  ¢o(x) =|z|]log|z],

1if 148 a root of q of multiplicity two.

As an example let us consider the equation
2y +zy +y=0
for z 3£ 0. The polynomial q is given by
g(r) =r(r— 1) +r+1=r+1,
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and its roots are r, = 7, r, = —1. 'Thus a basis for the solutions is furnished
by
¢i(z) =|z|%, ¢o(z) =2z~ (x#0),
where we have
|x|‘ =ei‘aﬂ|£|.

Note that in this case another basis , 2 is given by

¥a(z) =cos (log|z|),  ¥o(z) =sin(log|z|), (z#0).

The extension of the result of Theorem 1 to the Euler equation of the
n-th order

L(y) = z"y™ + ayz* Yy 4+ -+v 4 ay =0, (2.5)

where @, -+, a. are constants, is straightforward. We have for any con-
stant

2 |z|"]® =r(r=1)eee (r—k+1) | 2|, (z #0),
and hence
L(|z|7) =q(r) ||, (2.6)
where ¢ is now the polynomial of degree n
g(r) =r(r—1) eee (r—n+1) fapr(r—1) eee (r—=n-4+2)
+ e+ a..

This polynomial is called the ndicial polynomial for the Euler equation
(2.5). Differentiating (2.6) k times with respect to r we obtain

a* ok

m L2 = L35 1e) = L(l = I logt | 2 )

ork

k(k — 1)

T g logt 2] (27)

= [q(k) (r) + kg®V(r) log |z | +

+ oo+ a0 Togt 2|21

If r1 is a root of g of multiplicity m; then
g(r) =0, ¢(r) =0, eev, g™ D(r) =0,
and we see from (2.7) that
lz|m, |z|mlog|z|, -+, {z|logm™|z]

are solutions of L(y) = 0. Repeating this process for each root of ¢ we ob-
tain the following result.
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Theorem 2. Let ry, ««-, r, be the distinct roots of the indicial polynomial
q for (2.5), and suppose r; has multiplicily m;. Then the n funclions

|x|'1,|:z;|'llog|x|,---,|:c|'110g"'1“1|x|;|x|",|:c|"log|x|,

z|m|z|log|z|, -, | 2| logm| 2]

H

z|rtlogret [z ;-e;

form a basts for the solutions of the n-th order Euler equation (2.5) on any
interval not containing x = 0.

A proof of the linear independence of the above solutions can be given
along the lines of the proof of Theorem 12 of Chap. 2, and hence will be
omitted. Note the similarity between Theorem 2 above and Theorem 11,
Chap. 2.

EXERCISES
1. Find all solutions of the following equations for z > 0:
(a) x%" 4 2zy’ — 6y =0 (b) 22%" 4z —y =0
() %" 4+ 2y -4y =z d) z%" — Sxy’ + 9y = a®

(e) xsynl + 21?2'_![” — zyr + Yy = O

2. Find all solutions of the following equations for [z | > 0:
(8) 2% +ay +4y =1 (b) %" — 3zy’ + 5y =0
) %" — @ +d)zy + 3y =0 (d) 2%’ +2y —dny =2z

3. Let ¢ be a solution for z > 0 of the Euler equation
=y’ +azy’ + by =0,

where ¢, b are constants. Let y(1) = ¢(e).
(a) Show that  satisfies the equation

V) + (@ — DY) + W) =0.

(b) Compute the characteristic polynomial of the equation satisfied by ¢,
and compare it with the indicial polynomial of the given Euler equation.
(¢) Show that ¢(z) = Y(log ).

(d) Using (a), (b), (¢), and similar facts for z < 0, prove Theorem 1.

4. Suppose the constants a, b in the Euler equation
o%y" +azy’ +by =0

are real. Let ry, rs denote the roots of the indicial polynomial g.
(@) If ry = ¢ 4 97 with 7 > 0, show that ry = f; =0 — 7.
() If r; = ¢ + 97 with 7 3 0, show that the functions y,, {2 given by

Y1(z) = |z " cos (7 log | z |),
Y2(2z) = | z["sin (rlog |z ),
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form a basis for the solutions of the Euler equation on any interval not
containing 2 = 0.

5. The logarithm of a negative number can be defined in the following way.
If z < 0, then —z > 0, and we have

z = (~2)(=1) = (—2)e'".
We define

log z = log [(—x)e’*] = log (—%) + log e~
= log (—z) + tm, (x <0).
Thus log z, for z < 0, is a complex number. Using this definition, let
Tr o= v loEZ
forz > 0 andforz < 0.

(a) Show that
T = e’*r l z [r, (x < 0).

(b) Let ry, rs be the roots of the indicial polynomial for the Euler equation

2y’ +azy +by = 0.
Show that two independent solutions for | z| > 0 are given by

zr!., xrx
if ry % 15, and by
zm, zlog z
if ry = re,
(¢) Obtain the linearly independent solutions of Theorem 1 from the
linearly independent solutions of (b).

6. Let
L{y) = z%" 4 azy’ + by

where a, b are constants, and let g be the indicial polynomial
glr) = r(r — 1) 4 ar + .

(a) Show that the equation L(y) = z* has a solution y of the form y/(z) =
exk if q(k) = 0. Compute c. (Hint: L(cz*) = cL(z*) = cq(k)z*.)

(b) Suppose k is a root of ¢ of multiplicity one. Show that there is a solution
¥ of L(y) = z* of the form

Y(z) = cz* log =.
Compute c.
(c) Find a solution of L(y) = z* in case & is a double root of g.

(d) Do Ezxercises 1(c), 1(d), 2(a), 2(d), using the results of (a), (b), (c)
above.
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3. Second order equations with regular singular points—an example

A second order equation with a regular singular point at xz, has the form
(z — 20)%" +a(z) (x — z)y +b(x)y =0, (3.1)

where a, b are analytic at zo. Thus a, b have power series expansions
a(z) = 2 a(z — m)*,  b(x) = 2 Bz — )k,
k=0 Jrm0

which are convergent on some interval |z — x| < ro, for some 75 > 0.
We shall be interested in finding solutions of (3.1) near . In order to
simplify our notation we shall assume z, = 0.

If 2o # 0 it is easy to change (3.1) into an equivalent equation with a
regular singular point at the origin. Welet § = 2 — 2o, and

a(l) = a(zo + 1) = g att, (1) = b(ze + 1) = g Bulk.

The power series for @, b converge on the interval | ¢| < r about ¢ = 0.
Let ¢ be any solution of (3.1), and define ¢ by

B(t) = §(zo + ).

Then

2, _ 3, _ ¥

£ = 2w+, S0 = am+o),
and we see that ¢ satisfies

2" +a)tu +b()u =0, (3.2)

where now »’' = du/dt. This is an equation with a regular singular point at
t = 0. Conversely, if ¢ satisfies (3.2) the function ¢ given by

¢(z) = é(xz — x0)

satisfies (3.1). In this sense (3.2) is equivalent to (3.1).
With 2, = 0 in (3.1) we may write (3.1) as

L(y) = z%" + a(z)zy’ + b(z)y = 0, (3.3)

where a, b are analytic at the origin, and have power series expansions

a(z) = g wzt,  b(z) = § B, (3.4)

which are convergent on an interval | z | < 7, 70 > 0. The Euler equation
is the special case of (3.3) with a, b constant. The effect of the higher order
terms (terms with x as a factor) in the series (3.4) is to introduce series
into the solutions of (3.3). We illustrate by an example.
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Consider the equation

L(y) =2%" + 3=y’ +zy =0, (3.5)

which has a regular singular point at the origin. Let us restrict our attention
to z > 0. Since it is not an Euler equation we can not expect it to have a
solution of the form z' there. However we try for a solution

6(z) =2 3 att = i 4 e + eee, (e %0), (3.6)

k=0

that is, 2" times a power series. This simple idea works. We operate formally
and see what conditions must be satisfied by r and ¢, ¢, ¢z, ++« in order
that this ¢ be a solution of (3.5). Computing we find that

¢'(z) = corz™! + al(r + 1)z + e(r + 2)2™ + ..o,

¢ (z) =cr(r — 1)z + er(r + 1)rz™t + co(r + 2) (r + 1)2" + «ov,
and hence

2" (z) = eor(r — 1)2" + ex(r + 1)rzt + ea(r + 2) (r + 1)+ + «ooy
§2¢' (z) = Jeora” + 3ei(r + 1)z + foo(r + 2) 22 4 aee,

z¢(z) = coz™ + Gz 4 oo,

Adding we obtain
L(¢)(z) = [r(r — 1) + $rdeez” + {[(r + )7 + 3(r + 1) Jer + co}z#

+ {[(r +2)(r + 1) 4+ 3(r + 2) Jez + er}xm2 4 o0,
If we let

g(r) =r(r—1) +4r =1r(r + 1),
this may be written as
L(¢) () = g(r)ex” + [g(r + 1)er + codztt + [g(r + 2)c2 + ex]er??
+ [N )

= g(rea’ + 27 3. [a(r + K)ox + et

k=1
If ¢ is to satisfy L(¢) (z) = 0 all coefficients of the powers of z must vanish.
Since we assumed ¢, ¥ 0 this implies

Q(T) =0,

(3.7
q(r+k)c;,+ck_1 =0, (’C = 1,2,-").

The polynomial ¢ is called the indicial polynomial for (3.3). It is the coeffi-
cient of the lowest power of z appearing in L(¢) (2), and from (3.7) we see
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that its roots are the only permissible values of r for which there are solu-
tions of the form (3.6). In our example these roots are

rl=0’ T2=_%-

The second set of equations in (3.7) delimits ¢y, ¢z, +++ in terms of ¢
endr. If g(r + k) #0fork =1,2, +--, then

Cr—1
= ==, k=1,2’ooo .
“= 4B )
Thus
(—1)*co
= , k=12 ).
o g(r + k)g(r +k — 1) <<« q(r 4+ 1) ( )
If1'1=0,

giri+ k) =q(k) #0 for k=1,2 eee;
since the other root of gis rs = — %. Similarly if s = — 3,
g(r: + k) =q(—%+k) #0 for k=12 .-,

Letting ¢¢ = 1 and r = r; = 0 we obtain, at least formally, a solution
¢1 given by

fi(z) =1+ 3 (Z1)%"
‘ & qlkygle — 1) - q(1)°
and letting ¢o = 1 and r = r, = —3 we obtain another solution

(—1)kz*
i gtk — 3)aglk — 3) --- q(3) ]

These functions ¢, ¢ will be solutions provided the series converge on some
interval containing z = 0. Let us write the series for ¢; in the form

d1(z) = a4 g1

$1(z) = 2 di(x).
=0
Using the ratio test we obtain

dk+1(x) _ le — le -0
de () lgtk +1)| (k4 1)k + $)

as k — o, provided | £ | < «. Thus the series defining ¢, is convergent for
all finite . The same can be shown to hold for the series multiplying z~'/2
in the expression for ¢,. Thus ¢, ¢; are solutions of (3.5) forall z > 0.

To obtain solutions for z < 0 we note that all the above computations go
through if 2" is replaced everywhere by | z | , where

| |7 = erloalal, (3.8)




154 Linear Equations with Regular Singular Points Chup. 4

Thus two solutions of (3.5) which are valid for all z = 0 are given by

_ o (—1)kg*
w@) =14 2 k=1 )

and

oy 4§ (=14 ]
= 1/2
w0 = Iz & s |
Note that the definition (3.8) implies that | z | ¥2 is the positive square root
of | z | . It is left as an exercise for the student to show that ¢;, ¢: are linearly
independent on any interval not containing z = 0.

The above example illustrates the general fact that an equation (3.3)
with a regular singular point at the origin always has a solution ¢ of the
form

o0

¢(z) = |z | 2 et (3.9)
k=0
where r is a constant, and the series converges on the interval |z | < ro.
Moreover r, and the constants c;, may be computed by substituting (3.9)
into the differential equation.

EXERCISES

1. Find the singular points of the following equations, and determine those
which are regular singular points:

@) z%" 4+ (z + 2y —y =0

(b) 3z%" + 2%’ + 2zy = 0

(c) 2%y — &y’ + 3%y = 0

d) zy”’ +4y =0

) A —2)y" —2zy’ +2y =0

) E+z—2)%" +3+2)y + -1y =0

() 2%" + (sinz)y’ + (cosz)y =0

2. Compute the indicial polynomials, and their roots, for the following equa-
tions:

@) %" + (@ +2)y -y =0

b) 2y + 2y + (@ -y =0

(c) 4z’ + (4z* — 5z)y’ + (@ +2)y =0

d) 2" + (z — 327y + ey =0

(e) =% 4 (sin z)y’ + (cosz)y =0
3. (a) Show that —1 and 1 are regular singular points for the Legendre equa-

tion

(1 — 29y" — 22y’ + ala + 1)y = 0.

(b) Find the indicial polynomial, and its roots, corresponding to the point
r =1
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4. Find a solution ¢ of the form
ofx) = z7 Z crxF, (z > 0),
k=0
for the following equations:
@) 22%" 4+ (@ —2)y +y =0 (MY +@ -2y +y=0
4. Second order equations with regular singular points—the general case

Let us verify the last statement in Sec. 3 for z > 0. Suppose we have a
solution ¢ of the form

o) =2 3o axt, (a5 0), (4.1)
k=0
for the equation
2y + a(z)zy’ + b(z)y = 0, (4.2)
where - o
a(z) = 2, az*, b(z) = 2 Bt (4.3)
k=0 k=D

for |z | < ro. Then

#'(z) = &1 3 (k + r)aat,
k=0

$"(@) =22 3 (k + 1)k + r — 1)at,
ku=()
and hence

b(z)¢(z) = x'(f: cka:")(g ﬁkx")

k)

o _ k
- $ bt (8 = 32 ot
k=0

1

ra(z)¢’'(z) = o (g (k + r)ck:c")(i akx")

k=)

[¢]

k
=z D sk, (&k =2+ T)C:'ak—:');
=0

]
229" (z) =z’ i (k4 r)(k + 1 — 1)azx.
k=0
Thus
L(¢) (z) = ' g [k 47k +r — e + & + Bele?,
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and we must have
[ ]" = [(k + T)(k +r - l)ck + au +Ek] = 0; (k = 0; 172; "')'
Using the definitions of &, B we can write the bracket [ 7 as
k

[ Jo=(k+mk+r— Do+ g".; (3 + emcs + 32 oo

=[(k+nrk+r—1)+ (k+ r)ao + Bole

k—1

+ ,§ L(J + r)ar—s + Bi—iles
For k = 0 we must have
r(r — 1) + rapo + 8o = 0, (4.4)
since ¢y # 0. The second degree polynomial ¢ given by

g(r) =r(r = 1) 4+ ra0 + Bo

is called the indicial polynomial for (4.2), and the only admissible values of
r are the roots of g. We see that

[ ]k =Q(T+k)ck+dk =0; (k=1,2,“'), (4'5)
where
k—1

de = ,g LCT + r)eaw—i + Br—iles, (k=1,2, ). (4.6)

Note that di is a linear combination of ¢, ¢, «++, cx—1 with coefficients
involving the known functions a, b, and r. Leaving r and ¢ indeterminate
for the moment we solve the equations (4.5), (4.6) successively in terms
of ¢o and r. The solutions we denote by Ci(r), and the corresponding d, by
D,(r). Thus

Du(r) = (rea + Bi)eny,  Ca(r) = '&%’
and in general
Du(r) = "g:: [CG + s + Bes1Ci(r), @)
_ D) _
Ci(r) = a(r + k) ) (k 1,2, ). (4.8)

The C; thus determined are rational functions of r (quotients of poly-
nomials), and the only points where they cease to exist are the points »
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for which ¢(r + k) = 0 for some k = 1,2, ---. Only two such possible
points exist. Let us define ® by

Bz, 1) = ez’ + 2 3. Culr)zh. (4.9)

k=1

If the series in (4.9) converges for 0 < z < 7o, then clearly
L(®)(z,r) = ewq(r)z". (4.10)

We have now arrived at the following situation. If the ¢ given by (4.1)
is a solution of (4.2) then r must be a root of the indicial polynomial ¢, and
the ¢, (k = 1) are determined uniquely in terms of r and ¢, to be the Ci(r)
of (4.8), provided ¢(r + k) = 0,k = 1,2, - - -. Conversely, if r is a root of
g, and if the Ci(r) can be determined (that is, ¢(r + k) # 0 for
k=1,2, +.-) then the function ¢ given by ¢(z) = ®(z, r) is a solution of
(4.2) for any choice of ¢y, provided the series in (4.9) can be shown to be
convergent.

Let r, 2 be the two roots of ¢, and suppose we have labeled them so that
Rer, = Rer. Then ¢(ri + k) 20 for any k¥ =1,2,+-.. Thus Ci(n)
exists for all k = 1,2, ««+, and letting ¢o = Ce(r1) = 1 we see that the
function ¢, given by

mm=ﬂ§QW% (Co(r) = 1), (4.11)

is a solution of (4.2), provided the series is convergent. This will be proved
in See. 5.

If r; is a root of ¢ distinet from 7y, and g(rs + k) # 0 fork =1,2, -+,
then clearly Ci(r.) is defined fork = 1, 2, -- -, and the function ¢; given by

Mﬂ=w§mmw,<mm=n, (4.12)

is another solution of (4.2), provided the series is convergent. The condition

q(rs+k) =0 for k=1,2---
is the same as
7'1?57'2+k fOI‘ ’C=1,2,--u’
or ry — 73 is not a positive inleger.

Notice that since oy = a(0), 8o = b(0), the indicial polynomial ¢ can be
written as

g(r) = r(r — 1) + a(0)r + b(0).
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Theorem 3. Consider the equation
2" + a(z)zy’ + b(z)y = 0,
where 8, b have convergent power series expansions for
2| < 7o, ro > 0.
Let 1, r: (Re 11 2 Re r3) be the roots of the indicial polynomial
g(r) =r(r — 1) + a(0)r 4 b(0).

For0 < | x| < rythere 15 a solution ¢, of the form

2]

¢l(x) = ]xln Z ckxk: (Co = 1)’

k=0

where the sertes converges for | x| < ro. If ry — 12 is not zero or a positive in-
teger, there ts a second solution ¢s for 0 < | 2| < ro of the form

#a(z) = |z|* 3 82k, (&= 1),
k=)

where the series converges for | x| < 7.

The coefficients cx, €« can be oblained by substitution of the solutions inio the
differential equation.

As we have seen in (4.11), (4.12), the coefficients ¢, & appearing in the
solutions ¢1, ¢2 of Theorem 3 are given by

a=C(rn), &=0C), (=012-:-),

where the Ci(r), (k = 1,2, -+), are the solutions of the equations (4.7),
(4.8), with Cy(r) = 1.

It is easy to check, as in the case of the Euler equation, that the calcula-
tions made for £ > 0 remain valid for # < 0 provided 2" is replaced every-
where by | z | *. Thus all that remains to be proved in Theorem 3 is the
convergence of the series involved in ¢1 and ¢,. This will be done in Sec. 5.

If 7y — 7, 1s either zero or a positive integer we shall say that we have an
exceptional case. The Euler equation shows that if r = 7, we must expect
solutions involving log z. It turns out that even in the case when .r, — 7
is a positive integer log £ may appear. In Sec. 6 we show how to obtain a
solution associated with r; in the exceptional cases.
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EXERCISES

1. Find all solutions ¢ of the form

(o]

@) = |z|" D azk, (z]| >0),

k=0

for the following equations:
(a) 32%"" 4 5zy’ + 3zy =0 (b) 2" + 2y + 2% =0
) #%" +zy + @ -y =0

Test each of the series involved for convergence.

2. Consider the equation
2%y’ + xe®y’ +y = 0.
(a) Compute the indicial polynomial, and show that its roots are —1 and 3.

(b) Compute the coefficients ¢, ¢z, ¢s in the solution

[v2]

@) =2 D axk, (e = 1)

k=0

3. (a) Find a solution ¢ of the form

o

$@ =z — 1] 2 alx — 1

k=0

for the Legendre equation
A -2y’ - 2zy +al@+ 1)y =0.

For what values of x does the series converge? (Hini: Do not divide by z 4 1
and multiply by x — 1, but note that x = (z — 1) 4 1. Express the co-
efficients in terms of powers of z — 1.)

(b) Show that there is a polynomial selution if « is a non-negative integer.
4. The equation
" + (1 -2y +ay =0,
where « is a constant, is called the Laguerre equation.
(a) Show that this equation has a regular singular point at x = 0.

(b) Compute the indicial polynomial and its roots.
(¢) Find a solution ¢ of the form

d(r) = z' i crz”.
k=0

(d) Show that if @ = n, a non-negative integer, there is a polynomial solu-
tion of degree n.
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5. (a) Let L, denote the polynomial

L.(x) = ¢* gx—n (z™e™2).

Show that L, satisfies the Laguerre equation if & = n. This polynomial is
called the n-th Laguerre polynomial. (Hint: See the treatment of the Legendre
polynomials on p. 135.)
(b) Compute Lq, L1, Lo.

% 5. A convergence proof

The proof that the series involved in Theorem 3 converge for | z | < 7o
is similar to the proof of Theorem 12, Chap. 3 (Sec. 9, Chap. 3). Under
consideration is the equation

z%y" + a(z)zy’ + b(z)y =0,
with
a(z) = D, azt, b(x) = D Bk, (5.1)
k=) k=0
where these series converge for | x| < ry for some 7, > 0. The indicial
polynomial ¢ is given by
g(r) =r(r — 1) + aor + B, (5.2)

and its two roots are r, r, with Re n, = Re r,.

The series we must show to be convergent are determined from

’g C (r) 2%, (5.3)

where the Ci(r) are given recursively by
Co (1‘) = 1,

a(r + k) Ca(r) = — E [+ Naws + BgICir),  (54)

(k=1,2 +-2);

see (4.7), (4.8). We must prove that the series (5.3) converges for| z| < 7o
ifr = r,and if r = 7y, provided 1 — 72 is not a positive integer.
We note that
g(r) = (r—mn)(r —n),
and hence that

g(n + k) = k(k 4+ — ),
g(rs+ k) =k(k+r—m1).
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Therefore
lg(n+k) | Z k(k—|mn—r)),

lg(ra + k) | Z k(k — | rs — 7] ).

Now let p be any number satisfying 0 < p < 7. Since the series in (5.1)
are convergent for | £ | = pthereis a constant M > 0 such that

lejlp =M, |BilprsM, (i=0,12---). (5.6)
Using (5.5) and (5.6) in (5.4) we obtain

(5.5)

k(k —|rn—=r|)|CH)| =M kZ: (7414 [rDe*| Ci(r) |, (5.7)

(k=1,2 ).
Let N be that integer satisfying
N—-1=2|n—n|<N,
and let us define g, 71, *++ by
Yo = Co(r) =1, e = | Ci(m) |, (k=1,2,+--,N=1),

and
k—1

k(k = |n—rn)w=MX (j+1+]|nl)s "y, (5.8)

=0
(k=N,N +1,--).
Then comparing the definition of the v, with (5.7) we see that
| Ce(r) [ Sw, (B=0,1,2,---). (5.9)
We show that the series

g Ve (5.10)

is convergent for | | < p. Replacing k by k& -+ 1 in (5.8) we obtain
plk+1)(k+1—|rn—r|)vma =[k(k—|r— 7))
+MEk+14]|n])In
for k =z N. Thus
'y,,+1x"+1 _ [k(k — |7'1 - 7'2‘)+M(k+1+|7'1| )]lxl
7zt plk + 1)k + 1~ |n —rl) ’

which tends to | | /p as k — «. Thus, by theratio test, the series (5.10)
converges for |z | < p.
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Using (5.9) and the comparison test we see that the series

g Culr)zh,  (Co(m) = 1),

converges for | z | < p. But since p is any number satisfying 0 < p < ro we
have shown that this series converges for | z | < 7.
The same computations with 7, replaced by . everywhere show that

g Ci(r)zt,  (Colr) = 1),

converges for | z | < 7y, provided 7, — 7, is not a positive integer.

6. The exceptional cases

We divide the exceptional cases into two groups according as the roots
r1, 2 (Rer = Rer;) of the indicial polynomial satisfy

(i) n= T2,
(i) m — r, is a positive integer.

We try to find solutions for 0 < z < r,. We are going to work in & purely
formal way in order to discover the form that the solutions should take.
For such z we have from (4.9), (4.10)

L(®)(z, r) = ag(r)z, (6.1)
where & is given by
&(z, 1) = er” + z* Y, Ci(r)zk. (6.2)
k=1
The Ci(r) are determined recursively by the formulas
Co(r) = ¢ # 0,
g(r + k) Ce(r) = —Di(r), (6.3)

k—1

Dk(r) = E E(j + T)ak,_,' + ﬁk-—i:lci(r); (k = 1; 2; "');

see (4.7), (4.8).
In case (i) we have

g(rn) =0, ¢'(n) =0,

and this suggests formally differentiating (6.1) with respect to r. We
obtain

d od
'a-; L(@) (x, T) = L(‘é;)(x; T)
= col¢'(r) + (log z)q(r) Ja",
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and we see that if r = 1 = 3, ¢ = 1, then

#(@) = 2 (2,m)

will yield a solution of our equation, provided the series involved converge.
Computing formally from (6.2) we find

$1(2) = o 32 CLlr)* + (log 2)z 3 Chlr)at
k== k=0

= zn 3, Ci(n)z* + (log z)¢1(z),
k=0
where ¢ is the solution already obtained:

Mm=w§mmw,(mm=n.

Note that C, (1) existsforallk = 0, 1, 2, -« -, since C} is a rational function
of r whose denominator is not zero at r = . Also Cy(r) = 1 implies that
Cs(r1) = 0, and thus the series multiplying 2z in ¢; starts with the first
power of z.

Let us now turn to the case (ii), and suppose that r, = r, + m, where
m is & positive integer. If ¢y is given,

Ci(re), *++, Cnaa(re)
all exist as finite numbers, but since
q(r + m) Cu(r) = — Du(r), (6.4)
we run into trouble in trying to compute Cn (). Now

g(r) = (r —n)(r —r),
and hence
g(r+m) = (r—r)(r+m—r).

If D,.(r) also has r — 7, as a factor (i.e., D,(r2) = 0) this would cancel the
same factor in ¢(r + m), and (6.4) would give C,.(72) as a finite number.
Then

Cut1(r2), Chaya(m),

all exist. In this rather special situation we will have a solution ¢. of the
form

mm=w§mmw,(mm=u

We can always arrange it so that D, (r;) = 0 by choosing

Co(r) =7r — 15
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From (6.3) we see that D,(r) is linear homogeneous in
Co(r), =+, Cea(r),

and hence Di(r) has Cy(r) = r — r; as a factor. Thus C,(72) will exist as a
finite number. Letting

W(z, r) = zr ’g Ce()z*,  (Co(r) =1 — 1), (6.5)
we find formally that
L(¥)(z,7) = (r — ro)q(r)z". (6.6)
Putting r = r, we obtain formally a solution ¢ given by
p(z) =¥(z, r2).

However Cy(r;) = Ci(r2) = +++ = Cp_(ry) = 0. Thus the series for ¢
actually starts with the m~th power of z, and hence ¢ has the form

¥(z) = a™me(z) = 270 (),

where ¢ is some power series. It is not difficult to see that  is just a constant
multiple of the solution ¢, already obtained.

To get a solution really associated with r, we differentiate (6.6) with re-
gpect to 7, obtaining

1@ 0 = f )@

= g(r)z + (r — r)[¢'(r) + (log z)q(r) Jar.
Now letting r = r; we find that the ¢, given by

4’2(:5) = %I’; (x; rﬁ)

is a solution, provided the series involved are convergent. It has the form

do(z) = 2 3o Cl(r)z* + (log )z 3o Ci(ra)z¥,
k=0 kw0

where Cy(r) = r — 7. Since
Co(re) = eoe = Cpa(re) =0,
we may write this as

$u(z) = o 2 Cl(r)2* + ¢ (log z) 1(z),

where ¢ = C,, ().
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The method used in this section to obtain solutions is called the
Frobenius method. All the series obtained converge for | z| < 7, and the
¢ computed formally will be a solution in both the cases (i) and (ii). This
requires justifying the differentiating of the various series term by term
with respect to r, and this can be done.

Another approach which leads to a justification of the results is the
following. Once we have discovered what form a second solution ¢; should
take, we can substitute this back into the equation and compute the coeffi-
cients of the various series involved. Then & proof of the convergence of
these series can be patterned after the convergence proof in Sec. 5. We omit
this proof.

Solutions for 2 < 0 can be obtained by replacing

7, 27, logz
everywhere by
lz|m, |zl?, log|=z|

respectively. We summarize our results in the following theorem.

Theorem 4. Consider the equation
z%" + a(z)zy’ + b(zx)y =0,

where a, b have power series expansions which are convergent for | x| <
ro > 0. Let 1, r, (Re r; = Re ry) be the roots of the indicial polynomial

q(r) =r(r—1) +a(0)r + 5(0).

If 11 = 1 there are two linearly independent solutions ¢, ¢2 for 0 < | x| < 1o
of the form

$1(z) = |2["n1(x),  2(z) = |z |™e(z) + (log|z| ) (),

where o1, 02 have power series expansions which are convergent for | x| <y,
and a,(0) = 0.

If r1 — r2 is a postiive inleger there are two linearly independent solutions
é1, 92 for 0 < | z| < ry of the form

$1(2) = [z |0 (2),
¢2(2) = |z ["02(z) +c(log|z| )¢ (),
where a1, 02 have power series expanstons which are convergent for
lz] <, a1(0) #0, o:(0) %0,

and c is a constani. It may happen that ¢ = 0.
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The proof of the linear independence of ¢, ¢ will be left as an exercise
for the student.

In our reasoning before the statement of Theorem 4 we have shown how
the coefficients in the power series o1, . may be computed in each of the
exceptional cases. In trying to solve a particular equation, an alternate
procedure is to determine the appropriate form of the solutions (by analys-
ing the roots of the indicial equation), and then to substitute these back
into the equation to determine the required constants. We illustrate this
method with an important equation in the next two sections.

EXERCISES

1. Consider the following three equations near z = 0:

(i) 2z%"” + (5z + 2%y’ + (2 — 2)y = 0

(i) 4x2%" — 4xe®y’ + 3(cosz)y = 0
(i) (1 - 292%" 4+ 3@ + 2% +y =0
(a) Compute the roots ry, r, of the indicial equation for each relative to
z =0.
(b) Describe (do not compute) the nature of two linearly independent
solutions of each equation near x = 0. Using the notation of Theorem 4, de-
termine the first non-zero coefficient in o2(z) if r1 = r,, and determine
whether ¢ = 01in case r, — rqis a positive integer.

2. Consider the equation
2y +zy’ + (2 —aP)y =0,

where « is & non-negative constant.
(a) Compute the indicial polynomial and its two roots.
(b) Discuss the nature of the solutions near the origin. Consider all cases
carefully. Do not compute the solutions.

3. Obtain two linearly independent solutions of the following equations which
are valid near x = 0:

(a) %" +3zy’ + (1 +2)y =0

(b) %" + 22% — 2y =0

(c) 2" + 52y’ + 3 — 2%y =0

d) 2% = 2z(z + 1)y’ + 2 + )y =0

(e) 2% + 2y’ + (22 - 1)y =0

() %' — 2% + (dz - 2)y =0

4. Show that the solutions ¢, ¢; in Theorem 4 are linearly independent for
0 <z <.

5. Show that ¥(z, r;), where ¥ is given by (6.5), is a constant times ¢i(z),
where ¢, is given by

o) = 2 30 Chtr)zt,  (Colry) = 1).
k()
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6. Consider the equation

zy' + a(x)y =0,
where

a(z) = 2 oz,
par,
and the series converges for [z | < 7o, g > 0.
(a) Show formally that there is a solution ¢ of the form

=]

@) =27 D azk, (o = 1),

k=0

wherer + ay = 0,and z > 0.
(b) Prove that the series obtained converges for [ x| < ro. (Hint: Use the
method of Sec. 5.)

7. Consider the equation
2y + a(@)zy’ + bzly = 0, *)

where a, b have power series expansions which are convergent for [z | < g,
rg > 0. Let ry, 7, be the roots of the indicial polynomisal, Re r1 = Re r,. Let ¢
be a solution for > 0 corresponding to ry:

$1(z) = z"ei(z), (1(0) = 1),

where g1 has a power series expansion valid for |z | < ro.

(a) Let ¢ be any other solution of (*), and suppose ¢ = u¢. Show that
v = u' satisfies the equation

zv + [2r1 + a(z) + 2”'(x)]v = 0. (**)
o1(z)

(b) Since ¢y/0) has a power series expansion on some interval |z | < o,
fo > 0, show that the v satisfying (**) has the form

o(z) = 2o 3~ dpxt,
k=0

where the power series converges for | | < po, where pg is the smaller of
the two numbers, ry, 7. (Hind: Ex. 6.)

(¢) Using the results of (a), (b) show that a second solution ¢ of (*) exists
of the form

¢2(z) = c (log z)¢1(x) + z'02(z), (z > 0),

where c is a constant, and ¢, has a power series expansion which converges
for |z] < po.
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7. The Bessel equation

If @ is a constant, Re a = 0, the Bessel equation of order a is the equation

22" + xy + (22 — Py = 0.
This has the form

2" + za(x)y' + b(z)y =0,
with

a(z) =1, b(z) = 22 — oA

Since a, b are analytic at x = 0, the Bessel equation has the origin as a regu-
lar singular point. The indicial polynomial g is given by

g(r) =r(r—=1) +r — a® = r2 — o,
whose two roots r, 72 are
"= q r, = — a.
We shall construct solutions for z > 0.

Let us consider the case e = 0 first. Since the roots are both equal to
zero in this case it follows from Theorem 4 that there are two solutions ¢, ¢.
of the form

$1(z) = a1(z), $2(z) = zo2(x) + (log z)¢:i(x),

where ¢, 02 have power series expansions which converge for all finite z.
Let us compute o3, 02. Let for the moment

L(y) = 2" +zy + 7%,
and suppose

o0

a(z) = 2 azt, (0 0).

k=0
We find
0';(37) = ch’cxbﬂl,
k=]
o'(z) = > k(k — 1)ezt,
k=9
and hence

el (z) = 3o k(k — 1)ax”,
k=t

zo|(z) = i ke = cix + i keixk,

%0y (2)

i Grht? = i Cr_gh.
k=0 k=2
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Thus
L(o) (z) = ez + E; {[k(k — 1) + kJex + exa}z* = 0.

We see that
& =0,

k(e —1) +kla+a2=0, (k=23,:).

The second set of equations is the same as

or = _%Z’ (k=23 ).
The choice ¢y = 1 implies
1 Co 1
L TR TLA
and in general
(=N~ _ (=~

On = pg .. (2m) % (m )2’

Since ¢; = 0 we have

ca=65=.ll =0'

Thus o1 contains only even powers of z, and we obtain

a(z) = i'(—-l)mx%

— 22m(m!)2’

where as usual 0! = 1, and 2° = 1. The function defined by this series is
called the Bessel function of zero order of the first kind and is denoted by Jo.
Thus

I = 5

It is easily checked by the ratio test that this series indeed converges for ali
finite z.

We now determine a second solution ¢, for the Bessel equation of order
zero. Letting ¢, = J, this solution has the form

¢2(z) = kg azt + (log z)di(x), (e = 0).
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We obtain

¢1( )

di(z) = ikc 1 B (log 7) 8l (2),

¢1(3)

o (2) = gk(k — Dot — + wz) + (log z)¢]' ().

Thus
L(¢2) (x) = 2%, (z) + zd5(x) + 22%¢a(x)
= ¢ + 2%cx? + f_: (k% + cr—s)z*
k=3

+ 22¢;(z) + (log z) L(¢y) (x),
and since L(¢1) (z) = 0 we have

1 m2 2m
az + 2%x* + E (k2 + cps)a® = —2 E (=1)r2mz

= 22m(m|)2
Hence
61=0, 2202=1’ 3268+cl=0, ooo’

and we see that since the series on the right has only even powers of z,
cl=ca=cﬁ= sss =0.

The recursion relation for the other coefficients is
(—1)m+m
22m—2(m 1 ) 2 "

1 1 1 1 1 1
“=g “= z(‘as - 2.22) = - 2‘@(1 + 5)’
1] 1 1 1 (/1 1 1 1
%= &[22 42(1 + 5) + 22-42(5)] = 224262(1 ta T 5)’ T

and it can be shown by induction that
_ (—1)m1
T ot ()2

The solution thus determined is called a Bessel function of zero order of the
second kind, and is denoted by K. Hence

(2m)2cﬂﬂl + c2m—-2 = m = 27 37 '..)'

We have

1
(1+l+ LN ] +-——), (m=1,2,"')-
2 m

1

Ko(z) = Z (= 1,)): (1 + -;— + .ee + ;)(g)m + (log z) Jo().

Using the ratio test it is easy to check that the series on the right is con-
vergent for all finite z.
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EXERCISES

1. Prove that the series defining J, and K, converge for [ 2| < o,

2. Suppose ¢ is any solution of
" +zy 42y =0
for z > 0, and let Y(x) = x!/%(x). Show that { satisfies the equation

2y’ + @@+ 3y =0
forz > 0.

3. Show that Jg has an infinity of positive zeros. (Hini: If Yo(2) = 22 4(2),
then y satisfies

1
47
The function x given by x(x) = sin z satisfies ¥’ 4+ y = 0. Apply Ex. ¢ of

Sec, 4, Chap. 3, to show that there is a zero of Jy between any two positive
zeros of x.)

4. (a) If A > 0 and ¢)\(z) = zV2J;(\x), show that

y"+[1+ ]y=0, (z > 0).

1
¢+ o —Néa. *)

(Hint: NV (z) = Yo(Az), where , is defined in Ex. 3.)
(b) If A\, u are positive constants, show that

1
% — 1) [ en@ute) dx = DAL — SO
0
(Hint: Multiply (*) by ¢,, and multiply
.1
¢,’. + E‘f’u = —p’py
by ¢», and subtract to obtain

@by — duh)’ = A — pird,. (**)
Integrate from 0 to 1.)

() If A 5 p and Jo(\) = 0, Jo(u) = 0, show that
1 1
_/; o (z)pu(z) dx = fo zJoAz)Jo(uz) dz = 0.

5. Using the notation of Ex. 4 show that if Jo(A) = 0 then

1 1 i
[ #@dn = [ oriow) a TP
0 0
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‘Hint: Relation (**) in Ex. 4, (b), is valid for any positive A and x. Differentiate
this with respect to A, and then set u = \ to obtain

64”‘ , é?ﬁ VT) _ .
[W* B qu(ax)_l = 2

Integrate from 0 to 1.)

6. If A > 0is such that Jo(\) = 0, prove that JoQ\) = 0. (Hint: If Jo(\) =
Jo(\) = 0 the uniqueness theorem would imply Jo(z) = 0 for z > 0. Alter-
nately, use Ex. 5.) (Remark: The result of this exercise can be used to show
that the positive zeros of Jy are denumerable, that is, they may be put into
a one-to-one correspondence with the positive integers.)

7. Show that J; satisfies the Bessel equation of order one
2y +ay + @ - 1)y =0.

8. Since Jy(0) = 1, and Jo is continuous, Jo(z) # 0 in some interval 0 <
z < a,forsomea > 0. Let 0 <z, < a.
(a) Show that there is a second solution ¢, of the Bessel equation of order
zero which has the form

z 1
¢2(z) = Jo(x)f [th(t)-J d, (0 <z <a)).
g

(b) Show that Jo and ¢ are linearly independent on 0 < z < a.

8. The Bessel equation (continued)

Now we compute solutions for the Bessel equation of order «, where
a7 0,and Rea = 0:

L(y) =2+ 2y + (22— o?)y = 0.

As before we restrict attention to the case £ > 0. The roots of the indicial
equation are

= a, T2 = — a.

First we determine a solution corresponding to the root r, = a. From
Theorem 3 such a solution ¢; has the form

d1(z) = z= i crxk, (e = 0).
pr)
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We find, after a littie calculation, that

L(¢1) (x) = 0-cox* + [(a + 1)? — a?]erz="

=]

+ 2= D {[(a + k)2 — ?Jax + crs}zt = 0.

=2

Thus we have
a = 0,

[(a+k)2— ol +62=0, (k=23,¢--).
Since
(a+k)?—a? =k(2a+k) %0 for k=23,---,

and ¢ = 0, it follows that

G =C==¢ =+ = (.

We find
- & &
= T2@a+2) 2(a+ 1)
= — Co — Co
! 42« +4) 22 a+ D(a+2)’
Cs Co
Cs =

TB82a+6) 28l a+ D(a+2)(a+3)’
and, in general,
_ (=1)"e

2mml(a 4+ D(a+2) o« (a+m)’

Our solution thus becomes

Com

$1(x) = cox* + cox® f} (—1)mg2m (8.1)
H2mml (a4 1) coc (@ +m)’ ’
For a = 0, ¢o = 1, this reduces to Jo(z).
It is usual to choose
1
= — 8.2
= era+1)’ (8.2)

where T is the gamma function defined by

r(z) = f: e=dz, (Rez > 0).

It is readily seen that
I'(z+1) =20(2). (8.3)
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Indeed, integrating by parts, we have
T

F(z+ 1) = lim e~*x* dx
T ¥
T T
= lim [—:r:'e‘z + 2 / R dx]
T+ 0 0

T
z lim / e l1de = 2T (2),
Q

Teren

since 7% T — 0 as T — «. Also, since
ra) = ["eedn =1,
0

if z is a positive integer n,

r(n+1) = nl.
Thus the gamma function is an extension of the factorial function to num-
bers which are not integers.

The relation (8.3) can be used to define I'(z) for z such that Rez < 0,

provided z is not a negative integer. To see this suppose N is the positive
integer such that

—N<Rez=-—-N-+1
Then Re (z + N) > 0, and we can define I'(2) in terms of I'(z + N) by

r(z+ N)
z2(z+1) +-- (z4+ N =-1)

provided z # —N + 1. The gamma function is not defined at 0, —1, —2,

I'(z) = (Rez < 0),

Returning to (8.1), if we use the ¢, given by (8.2) we obtain a solution
of the Bessel equation of order « which is denoted by J., and is calied the
Bessel function of order a of the first kind:

Jo(z) = @3) 3 (=) E)2'" (Rea = 0). (8.4)
A Smr(m+ a+1) ’ =T
Notice that this formula for J, reduces to Jo; when a = 0, since
'(m+1) = ml

There are now two cases according as ry — 72 = 2« is a positive integer
or not. If 2« is not a positive integer, by Theorem 4 there is another solution
¢2 of the form

d2(x) = ™= i cxx*.
&=0
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We find that our calculations for the root 7, = « carry over provided only
that we replace « by —« everywhere. Thus

Ja(z) = (%)—a,g m!I‘(n(z_—l):'+ 1) E)h

gives a second solution in case 2« is not a positive integer.

Since I'(m — o + 1) exists for m =0, 1,2, «++, provided « is not a
positive integer, we see that J_, exists in this case, even if 1y — 1 = 2«
is a positive integer. This is the rather special case we mentioned in the
proof of Theorem 4. Thus, if « is not zero or a positive integer, J. and
J_« form 8 basis for the solutions of the Bessel equation of order « for
z > 0.

The only remaining case is that for which « is a positive integer, say
a = n. According to Theorem 4 there is a solution ¢; of the form

o

$2(2) = 2z D cxx* + ¢ (log z) J.(x).

k=0

We find that

L(¢2) (z) = 2%,' () + 7¢5(2) + (22 — n?) ()
= 0-cix™ + [(1 — n)? — n?ezt™

+ z™ g {[(k —n)? — n?lex + crs}zt
+ 2¢cxJ.(z) + ¢ (log z) L(J,) () = 0,

and since L(J,) () = 0 we have, on multiplying by z»,

(1 — 2n)ex + g [k(k — 2n)ck + Crz)z*

(-]

= —2 3 (@m + m)daztvn, (85)

m=
Here we have put

Jn(x) = i dzmx2m+a,
1m0

and hence
_ (=~
2mtnpl(m 4 n) 1’

The series on the right side of (8.5) begins with 2%, and since n is a positive
integer we have ¢, = 0. Further, if n > 1,

k(k - 2%)6}, + Cr—g = 0, (k = 2, 3, o, 2n — 1),

d2m

(8.6)
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and this implies
01=03=05="' =c2n—1=01
whereas

R S o
2n—1)" ' 20n—1D(n—2)’

C

and in general

— €o
25ln — 1) -+ (n—j)'

(j=1’2:"':n_1)' (87)

Caj

Comparing the coefficients of 2?* in (8.5) we obtain

B ¢
2~ 1(p — I’

On the other hand from (8.7) it follows that

Con—2 — —2C‘ndo =

Gt = ga(n — 1)l(n — 1)1
and therefore
Co

Since the series on the right side of (8.5) contains only even powers of =
the same must be true of the series on the left side of (8.5), and this impiies

Coinyl = C2nyg = **° = 0.
The coefficient ¢z, is undetermined, but the remaining coefficients
Con42, Cent4, e

are obtained from the equations

2'm(2n + 2m) Coni2m + Conyom—2 = — 26(" + 2m)d2m1 (m = 11 2’ e ')'

For m = 1 we have

Cdz 1 C2n
o = <5 (1 4+ 257) " ATy

We now choose c,, so that

__on __ cd
4(n+1) 2

rgeesd)
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Since 4(n + 1)d; = —d,,

_ Cio( 1 1)
cﬂn - 2 1 + 2 + + n .
With this choice of ¢;, we have
cd; 1 )
Conpa = (1+1+ + - n+1_'
For m = 2 we obtain
Cy Cony2
Comit = (2+n+2) 2.2-(n +2)

Since 22-2: (n + 2)ds = —dy,

Con4a Cd4
2.2.(n + 2) 2

1
(1+1+ o)

and therefore

cd 1
= =212+ 145 +---+n—+—2).

It can be shown by induction that

cdom 1 1 1 1
Consom = ——2-[(1 +§+ +E)+(1 +§+ +n+m)]’

(m =1,2,--).

Finally, we obtain for our solution ¢, the function given by

n—1 x2i

¢2(x) —com'n+co$‘"22,,|(n_1) c(n—3

cdo 1
~GliHg e+

c & 1 1 1 1 Y]
5,,; [(1+§+”'+;z)+(1+§+”'+n+m)Jx+2
+ ¢ (log z) Ju(2),

where ¢, and ¢ are constants related by (8.8), and d,, is given by (8.6).
When ¢ = 1 the resulting function ¢, is often denoted by K,. In this case

e = — 2~ (n — 1!,
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and therefore we may write

K.(z) = _% "ﬁ)""i‘ (n — ,7 -1 V:Yi

§‘1+ +o )G
—_(2) - m!((m {I?-'n)‘[(l +%+ +-7%z_)

1 1 r\m
g+ )G + v s,
This formula reduces to the one for'Ky(x) when n = 0, provided we inter-
pret the first two sums on the right as zero in this case. The function K,
is called & Bessel function of order n of the second kind.

EXERCISES

1. (a) Prove that the series defining J, and J_, converge for | 2| < .
(b) Prove that the infinite series involved in the definition of K, converges
for|z| < =.

2. Let ¢ be any solution for £ > 0 of the Bessel equation of order &
2y’ +xy ‘[‘_(:52 —at)y =0,
and put ¥(z) = zV%p(z). Show that { satisfies the equation

v’ +[1 42 —az]y =0
zt
forxz > 0.
3. (a) Show that

23] y19(z) = % sin .
(b) Show that
B2 p(x) = —‘g— COS Z.

ra)

(Hint: From Ex. 2, y(z) = x"’Jm(a:) satisfiesy” + ¢y = 0 for z > 0, and
hence ¥(x) = c1 cos £ + ca sin x, where ¢, c: are constants. Show that

= 0and c; = VZ/T'(}).) (Note: It can be shown that T'(}) = 4/7.)

4. (a) Show that Jg(z) = —Ji(z).
(b) Show that Kq(z) = —Ki(z).
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5. Prove that between any *wo positive zeros of J there is a zero of Jy. (Hint:
Use Ex. 4(a), and Rolle’s tl. rem.)

6. Show that if « > 0 then J, has an infinity of positive zeros. (Hini: If
¥(z) = 2% ,(z) theny satisfies

y"' + 8(=x)y = 0, *
where

Ba) =1 452,
] +x”

see Ex. 2. For all large enough z, say z > x;, 8(z) > %. Compare (*) with the
equation
'+ =0
satisfied by x(z) = sin (z/2). Apply the result of Ex. 4 of Sec. 4, Chap. 3.)
7. For « fixed, @ > 0, and\ > 0, let pa(z) = zV2J,(\z). Show that

1 -
&' + [4 = ]du = —N\¢).

(Hint: N\YV2¢r(z) = Y(Az), where ¥ is defined in Ex. 6.)
8. If \, u are positive, show that

1
O — ) j; r@D)du@) dz = er(LBL(L) — Su(LIgi(D).

(Hint: Use Ex. 7 to show that

ordy — dud = b — ud) = A — @by, ™
and then integrate from 0 to 1.)

9. If @ > 0, and A, u are positive zeros of J ., show that
_/; ) or(2)pu(z) dz = ‘/n. 1 2J ((A2)J () dz = 0,
if X\ 5 u. (Hint: Ex. 8.)
10. If ¢ > 0,\ > 0, and J,(\) = 0 show that
/01 $a(x) dz = /;l 2o (Ax) dz = FU LV
(Hint: Differentiate (*), in Ex. 8, with respect to A\ and then put g = A to

obtain
0 ()] o
[ i D — P an = 2\

Integrate from 0 to 1.)
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11. Define 1/T'(k), when k is a non-positive integer, to be zero. Show that if
n is a positive integer the formula for J_,(2) gives

J—n(x) = ( - I)an(x)-

12. (a) Use the formula for J.(z) to show that

(qun)’(m) = wa']a—l(x)-
(b) Prove that
(xS (®) = —27%J ep1(2).

13. Show that
Jam1(®) = Japa(z) = 2J4(x),
and
Ja—1(2) + Jap(z) = 2027V o (z).

(Hint: Use the results of Ex. 12.)

14. (a) Show that between any two positive zeros of J, there is a zero of
Jat1. (Hint: Use Ex. 12(b), and Rolle’s theorem.)

(b) Show that between any two positive zeros of J.,41 there is a zero of
Jo. (Hint: Use Ex. 12 (a), and Rolle’s theorem.)

9. Regular singular points at infinity
Often it is of interest to investigate solutions of an equation

L(y) =y + a1(2)y’ + ax(2)y =0 (9.1)

for large values of | z | . A simple way of doing this is to make the substitu-
tion x = 1/{, and study the solutions of the resulting equation near ¢ = Q.
Then, for example, the results on analytic equations and equations with a
regular singular point at ¢{ = 0 can be applied.

If ¢ is a solution of (9.1) for | | > 7, for some ry > 0, let

50 =o() a0 =af}) a0 =af)

These functions will exist for | | < 1/r,, and

Pofl\ &
da:”(t—) =t W+

dé

m (1),
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Since from (9.1)

o)+ CEE) o (M) <o

1" () + [28 — a4 (1) 1¢' (1) + &(1)é(f) =0,

where now the prime denotes differentiation with respect to {. Thus ¢
satisfies the equation

L(y) =ty +[288 — 28, () ' + G2(f)y = O. (9.2)

Conversely, if ¢ satisfies L(y) = 0 the function ¢ will satisfy L(y) = 0.
The equation (9.2) is called the induced equation associated with L(y) =0
and the substitution 2 = 1/1.

We say that infinily is a reqular singular potnt for (9.1) if the induced
equation (9.2) has the origin ¢ = 0 as a regular singular point. Writing
(9.2) as

we have

M)ty'+wy = 0

" _
o+ (2 -2 :
we see that I(y) = 0 has ¢ = 0 as a regular singular point if and only if
a1/t and @,/ are analytic at { = 0. This means that

@) =t at, @) =23 6t
k=0 k=0

where the series converge for | t| < 1/r, ro > 0. Translated into & condi-
tion involving a,, @, this means that
1 & o 1 & B
a = - -, = — -,
1(z) = = gz,, w(z) == 2.5
where these series converge for | z | > 7. Thus infinity is a regular singular
point for (9.1) if and only if (9.1) can be written in the form

2" + a(z)zy’ + b(z)y =0,

where a, b have convergent power series expansions in powers of 1/x for
| | > ro for some ry > 0.
The simplest example of an equation with a regular singular point at
infinity is
" +azy +by =0,

where a, b are constants; namely, the Euler equation. Thus this equation
has the origin and infinity as regular singular points, and it is clear that there
are no other possible singular points.
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An example of an equation with three regular singular points (and no
others) is the hypergeometric equation

(z~2DNy" +[vy—(a+B+1)zly — aBy =0,

where a, 8, ¥ are constants. It is readily checked that 0, 1, and infinity are
regular singular points.

EXERCISES

1. Show that infinity is not a regular singular point for the equation
yll +ayl + by = O,

where a, b are constants, not both zero.

2. Show that infinity is not a regular singular point for the Bessel equation
Yy +xy + (@ -y = 0.
3. (a) Show that infinity is a regular singular point for the Legendre equation

(I —2)y"” — 22y’ +ale + 1)y =0.

(b) Compute the induced equation associated with the Legendre equation
and the substitution z = 1/1.

(¢) Compute the indicial polynomial, and its roots, of the induced equation.

4. Find two linearly independent solutions of the equation

(1 -2y’ —2zy’ +2y =0
of the form

[»2]
T ozt
k=0

valid for | z | > 1. (Hint: Use Ex. 3 witha = 1.)
B. (a) Suppose ¢ is a solution of the Legendre equation of order p
(1 - 2)y" - 22y’ +p(p + L)y =0,
and let ¢(t) = ¢(2¢t — 1). Show that ¢ satisfies the equation
¢ -y + 0 -2ty +plp +1)y =0 *
(b) Verify that the equation (*) is a hypergeometric equation with

amp+1l, pf=-p =L
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6. (a) Compute the indicial polynomial relative to the origin for the hyper-
geometric equation.
(b) Obtain a solution ¢ of the hypergeometric equation of the form

¢(x) =z i iz,

k=0

if v is not zero or a negative integer.
7. Consider the equation

2% + 2zy’ — n(n + )y = 0,

where 7 is a non-negative integer.
(a) Show that infinity is a regular singular point.
(b) Compute a solution ¢ of the form

o(z) =2 i k.
pary






CHAPTER 5

Existence and Uniqueness
of Solutions to First

Order Equations

1. Introduction

In this chapter we consider the general first order equation
y =f(z,y), (1.1)

where f is some continuous function. Only in rather special cases is it possible
to find explicit analytic expressions for the solutions of (1.1). We have al-
ready considered one such special case; namely, the linear equation

¥ = g(x)y + h(x), (1.2)

where g, h are continuous on some interval I. Any solution ¢ of (1.2) can
be written in the form

¢(x) = eQ(z) fz e—Q'(l)h(t)dt + ceQ(z), (1‘3)

Zy
where

) = [ o) a,

Zo is in I, and ¢ is a constant (see Chap. 1). In Secs. 2 and 3 we indicate
procedures which can be used to solve other important special cases of
(1.1).*

* An excellent compendium of special equations and.their solutions appears in the
book by E. Kamke, * Differentialgleichungen— Losungsmethoden und Lésungen, vol. I,
reprinted by J. W. Edwards, Ann Arbor, Mich. (1945).

185
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Our main purpose is to prove that a wide class of equations of the form
(1.1) have solutions, and that solutions to initial value problems are unique.
If f is not a linear equation there are certain limitations which must be ex-
pected concerning any general existence theorem. To illustrate this consider
the equation

Here f(x, y) = %, and we see f has derivatives of all orders with respect to
z and y at every point in the (z, y)-plane. A solution ¢ of this equation
satisfying the initial condition

¢(1) = —1

is given by
1
¢($) = =7,
x

as can be readily checked. However this solution ceases to exist at x = 0,
even though fis a nice function there. This example shows that any general
existence theorem for (1.1) can only assert the existence of a solution on
some interval near-by the initial point.

The above phenomenon does not occur in the case of the linear equation
(1.2), foritis clear from (1.3) that any solution ¢ exists on all of the interval
I. This points up one of the fundamental difficulties we encounter when we
consider nonlinear equations. The equation often gives no clue as to how
far a solution will exist.

We prove that initial value problems for equation (1.1) have unique
solutions which can be obtained by an approximation process, provided f
satisfies an additional condition, the Lipschitz condition. We-first concen-
trate our attention on the case when f is real-valued, and later show how
the results carry over to the situation when f is complex-valued.

2. Equations with variables separated
A first order equation
y' = f (xi y)

is said to have the variables separated if f can be written in the form

fzy) = %—%
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where g, h are functions of a single argument. In this case we may write our
equation as

r) 2 = g(a), (21)

or
h(y)dy = g(x)dz,

and we readily see the origin of the term ‘‘variables separated”.

For simplicity let us discuss the equation (2.1) in the case g and & are
continuous real-valued functions defined for real z and y, respectively. If
¢ is a real-valued solution of (2.1) on some interval I containing a point
xo, then

h(¢(2))¢' (z) = g(2)

for all x in I, and therefore

[ we@ewa= [ o0 a (22)

for all z in I. Letting v = ¢(¢) in the integral on the left in (2.2), we see
that (2.2) may be written as

¢ (2) z
f h(u) du = / o(t) di.
#(zyg) zo

Conversely, suppose x and y are related by the formula

f " h(u) du = f " o) dt, (2.3)

and that this defines implicitly a differentiable function ¢ for zin I.* Then
this function satisfies

fm) h(u) du = [ a(t) dt

Vo

for all z in I, and differentiating we obtain

h(¢(z))¢'(z) = g(2),

which shows that ¢ is a solution of (2.1) on I.
In practice the usual way of dealing with (2.1) is to write it as

h(y)dy = g(x)dx

* We say that a relation F(z, y) = 0 defines a function ¢ implicitly for z in some
interval I, if for each z in I there is a y such that F(z, y) = 0; this y being denoted by
().
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(thus separating the variables), and then integrate to obtain

fh(y) dy = fg(:v) dz + ¢,

where c is a constant, and the integrals are anti-derivatives. Thus

HG) = [ ) dy,  G@) = [ 9(2) d,

represent any two functions H, G such that
H' = h, G =g.

Then any differentiable function ¢ which is defined implicitly by the rela-
tion
H(y) =G(z) +¢ (2.4)

will be a solution of (2.1). Therefore it is usual to identify any solution
thus obtained with the relation (2.4). We summarize in the following
theorem.

Theorem 1. Let g, h be continuous real-valued functions for a < x < b,
¢ £y = d respectinely, and consider the equation

h(y)y' = g(x). (2.1)

If G, H are any functions such that G’ = g, H' = h, and c ¢s any constant
such that the relation

H(y) =G(z) ¢

defines a real-valued differentiable function ¢ for x in some tnterval 1 contained
tn a < x < b, then ¢ will be a solution of (2.1) on 1. Conversely, if ¢ is a
solution of (2.1) on 1, it satisfies the relation

H(y) =G(z) +c¢
on I, for some constant c.*
The simplest example is that case in which A(y) = 1. Theny’ = g(x),
and every solution ¢ has the form

¢(z) = G(x) +c, (2.5)

where G is any function on a < z < bsuch that G’ =, g, and c is a constant.
Moreover, if ¢ is any constant, (2.5) defines a solution of ¥’ = g(z). Thus
we have found all solutionsof y’ = g(z) ona < x < b.

* The function ¢ will be a solution of ' = g(x)/h{(y) on I, provided h(¢(z)) # 0
forall z in I.
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Another simple case occurs when ¢g(x) = 1, for then we have
1
!

= m y (2.6)

or
h(y)dy = dz.
Thus, if H’ = h, any differentiable function defined implicitly by the re-

lation
H(y) =z +e¢, (2.7)

where ¢ is a constant, will be a solution of (2.6). As an example, let us con-
sider the equation

y =y (2.8)
Here h(y) = 1/4% which we note is not continuous at y = 0. We have
dy
-;/—5 = dx,
and thus the relation (2.7) becomes
l =z -+ or = 1
=z + ¢, y = Py
Thus, if ¢ is any constant, the function ¢ given by
—1
= — 2.9
¢(x) 7T (2.9)

is a solution of (2.8), provided = # —ec.

It is important to remark that the separation of variables method of
finding solutions may not yield all solutions of an equation. For example,
it is clear from (2.8) that the function y which is identically zero for all
is a solution of (2.8). However, for no constant ¢ will the ¢ of (2.9) yield
this solution. Careful attention to the possibilities of dividing by zero will
often alert the student to missing solutions.

Let us consider one more example:

y' = 3y?3, (2.10)
This leads to
dy
yTls = 3 dm

if y # 0, and hence to
yr==z+¢, or y=(z+40¢)3
where ¢ is a constant. Thus the function ¢ given by
¢(z) = (z +¢)? (2.11)
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will be a solution of (2.10) for any constant ¢. Again we note that the

identically zero function is a solution of (2.10) which can not be obtained
from (2.11).

The example (2.10) illustrates one more difficulty we encounter when
we deal with nonlincar equations; namely, there may be several solutions
satisfying a given initial condition. Thus the two functions ¢ and ¢ given by

o(z) =28 Y(2) =0, (- = <z<=»),

are solutions of (2.10) which pass through the origin. Actually the situation
is much worse than appears, for there are infinitely many functions which
are solutions of (2.10) passing through the origin. To see this let k be any
positive number, and define ¢, by

d’k(x) =O) (_ ® <$§’G),
oe(z) = (x — k)3, (k<z< ).
Then it is not difficult to see that ¢ is a solution of (2.10) for all real z,

and clearly ¢:(0) = 0. It might be instructive for the student to make a
sketch of these solutions.

EXERCISES

1. Find all real-valued solutions of the following equations:

(a) ¥y = 2% ®)yy' ==
z + 2* eV
c) y = d) yf = ——
(e) y m— @y =7 pe
(e) ¥ = 2% — 42®
2. (a) Show that the solution ¢ of

y =9

which passes through the point (z,, 7o) is given by
Yo
z) = .
¢ 1 — yo(z — o)

(Note: The identically zero solution can be obtained from this formula by
letting yo = 0.)

(b) For which z is ¢ a well-defined function?
(¢) For which z is ¢ a solution of the problem

¥ =9  y®o) = yo!
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3. (a) Find the solution of y* = 2y2 passing through the point (z,, yo), where
yo > 0.
(b) Find all solutions of this equation passing through (z, 0).

4. A function f defined for real z, y is said to be homogeneous of degree k it

Sz, ty) = tkf(xv 1))

for all £, z, y. In case fis homogeneous of degree zero we have

fltz, ty) = f(=z, ¥),

and then we say the equation ¥’ = f(z, y) is homogeneous. (Unfortunately this
terminology, which is rather standard, conflicts with the use of the word
homogeneous in connection with linear equations.) Such equations can be
reduced to ones with variables separated. To see this,let y = uziny’ = f(z, ).
Then we obtain

zu’ + u = f(z, vx) = f(1, u),
and hence

’ f(l;u)""u
U =
x

which is an equation for » with variables separated.
Find all real-valued solutions of the following equations:

, T4y , ¥
(@) y — (b)y—xy_”,2
z + zy + g~ 2vl=

5. The equation
/= ar + by + a
ast + by + ¢’

where a3, by, 1, a2, b, ¢z are constants (¢1, ¢z not both 0) can be reduced to a homo-
geneous equation. Assume we do not have the simple equation 3’ = ¢;/¢s,
andlet z = £ 4 b,y = n + k, where h, k are constants. Then (*) becomes

dn  aif + b + (@h + bk + o)

dt  ast + b + (azh + bok + c2)

*)

If h, k satisfy
ath + bik + a1 = 0, ash 4 bk + ¢2 = 0, (**)

the equation becomes homogeneous. If the equations (**) have no solution, then
abs — ashy = 0, and in this case either the substitution

u=ar+by +c or u=ax+by+cy,

leads to a separation of variables.
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Solve the following equations:

'::a:-y+2 ,=2cx+3y+l
(@) y 4ty -1 (b) ¥ T —2w 1
'=x+y+1
© ¥ = oy -1

6. (a) Show that the method of Ex. 5 can be used to reduce an equation of the
form

, (alx + by + Cl)
Yy =1
ax + by + c2

to a homogeneous equation.
(b) Solve the equation

, 1(”__+_@"_1)2
Y=o\ z+2 /-

7. Suppose there is a family F of curves in a region S in the plane with the
property that through each point (z, y) of S there passes one, and only one,
curve C of F, and that the slope of the tangent of C at (z, y) is given by f(z, ),
where f is continuous. If a curve in F can be written as (z, ¢(z)), where = runs
over some interval I, then ¢ is a solution of ¥’ = f(z, ). If ¥ is any solution of
the equation 3’ = —1/f(z, y), then the curve CL given by the points (z, ¥(z))
will have a tangent at each of its points (z, y) which is perpendicular to the
curve in F passing through (z, y). The set G of all curves CL is called the set
of orthogonal trajectories to the family F.

The following relations determine a.family of curves, one curve for each
value of the constant ¢. Find the orthogonal trajectories of these families.

(@) @ +y* =¢, (c > 0) (b) y =cx
z?

(¢) y = cr? (d)—+y—2=c,(c>0)
2 3

e 22—yt =c¢c (f)y=ce"

3. Exact equations

Suppose the first order equation 3’ = f(z, y) is written in the form

y _ ~Mz y)
N(z,y) ’

or equivalently
M(z,y) + N(=z,y)y’ =0, (3.1)
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where M, N are real-valued functions defined for real z, ¥ on some rectangle
R. The equation (3.1) is said to be exact in R if there exists a function F
having continuous first partial derivatives there such that

=M, —=N, (32)

in R.
If (3.1) is exact in R, and F is a function satisfying (3.2), then (3.1)
becomes

aF aF .,
2 (%, v) + oy (z,y)y = 0.
If ¢ is any solution on some interval I, then
oF aF , _
o (@ 8@) + 5 (@ 6(@)¢ (@) =0 (33)

for all z in I. If &(z) = F(z, ¢(z)), then equation (3.3) just says that
®'(z) = 0, and hence
F(x) ¢(x)) = G,

where ¢ is some constant. Thus the solution ¢ must be & function which is
given implicitly by the relation

F(z,y) =c. (34)

Looking at this argument in reverse we see that if ¢ is a differentiable
function on some interval I defined implicitly by the relation (3.4) then

F(.’.C, ¢($)) =C
for all z in I, and a differentiation yields (3.3). Thus ¢ is a solution of (3.1).

Theorem 2. Suppose the equation

M(z,y) + N(z,y)y’ =0 (3.1)
¢s exact in a rectangle R, and F s a real-valued function such that
aF aF
— =N (3.2)

3 dy
tn R. Every differentiable function ¢ defined implicitly by a relation
F(z,y) = ¢, (¢ = constant),

18 a solution of (3.1), and every solution of (3.1) whose graph lies in R arises
this way.
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The problem of solving an exact equation is now reduced to the problem
of determining a function F satisfying (3.2). If (3.1) is exact and we write it
as

aF oF

we recognize that the left side of this equation is the differential dF of F.
This is the explanation of the term “exact’’; the left side is an exact differen-
tial of a function F.

Sometimes an F can be determined by inspection. For example, if the
equation

(3.5)
is written in the form
zdxr +ydy =0,

it is clear that the left side is the differential of (x? -+ 42)/2. Thus any
differentiable function which is defined by the relation

22 +yt=¢ (¢ = constant),

is a solution of (3.5). Note that the equation (3.5) does not make sense
when y = 0.

The above example is also a special case of an equation with variables
separated. Indeed any such equation is a special case of an exact equation,
for if we write the equation as

g(z)dz = h(y)dy,
it is clear that an F is given by
F(z,y) = G(z) — H(y),

where G’ = g, H' = h.
How do we recognize when an equation is exact? To see how, suppose

M(z,y)dz + N(z,y)dy =0

is exact, and F is a function which has continuous second derivatives such
that

Q
Xy
Q
& |~y

Then
oF oM a*F oN

—— T —

== em——

dyoxr dy dxdy oz’
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and, since for such a function

aF a*F
dydx  ozdy’
we raust have
oM oN
oy o’

This is the condition we are looking for, since it is true that if this equality
is valid, the equation is exact.

Theorem 3. Let M, N be two real-valued functions which have continuous
Jirst partial derivatives on some reclangle

R: |z — x| = q, ly — yo| 0.
Then the equation
M(z,y) + N(z,y)y' =0

s exact in R if, and only if,
= (3.6)

n R.
Proof. We have already seen that if the equation is exact, then (3.6)
is satisfied.
Now suppose (3.6) is satisfied in B. We need to find a function F satis-
fying
oF
F oF
oz dy
To see how to do this, we note that if we had such a function then

F(z,y) — F(zo, ) = F(z,y) — F(2,y) + F(2o, y) — F(2o, %)

= QF v3F
=f — 8 9) ds+fv03&(xo,t) dt

zp OZ

= /;zM(s, y) ds + fu N (zo, t) dt.

Similarly we would have
F(z,y) — F(xo, %) = F(z,y) — F(z, %) + F(z, y0) — F(zo, o)

voF z QF
= f a-—-(x, t) dt + f —(s, yo) ds
vo OV ca 0T

= f" N(z,t) dt + f M (s, o) ds. (3.7)
Yo =



196 Solutions to First Order Equations Chap. 5

We now define F by the formula
z v
Flz,y) = [ M(s,v) ds + [ Niaw, 1) (3.8)
zo Vo
This definition implies that F(xo, %) = 0, and that
aF
E_(xv y) = M(x) y)
x
for all (z, ¥) in R. From (3.7) we would guess that F is also given by
v z
Fz,g) = [ N0 di+ [ M(s, ) ds. (3.9)
Vo g

This is in fact true, and is & consequence of the assumption (3.6). Once
this has been shown, it is clear from (3.9) that

2 @ = Na)
Y

for all (z, ) in R, and we have found our F.
In order to show that (3.9) is valid, where F is the functiongiven by
(3.8), let us consider the difference

Flz,y) — [f: N(z, {) dt + f M (s, 1) ds]

- f [M(s,y) — M(s, yo)]ds — f [N(z, ) — N(zo,2)] dt
=f [f iﬂ{(s,t)dt]ds j::fz%(s,t)dS]dt
-[[

Zo
Zp " Vo

[—— (s, t) — ?——AI (s, t) ds di,

which is zero by virtue of (3.6). This completes our proof of Theorem 3.
As an example let us consider the equation
322 — 2zxy
= 3.10
y xz _ 2y H ( )

which we write as
(322 — 2zy)dx + (2y — 2®)dy = 0.

Here
M(z,y) =3z*—2zy, N(z,y)=2y—2,
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and a computation shows that

oM oN
'317 (.’E, y) = _a'; (2‘2, y) = _237)

which shows that our equation is exact for all z, y. To find an F we could
use either of the two formulas (3.8) or (3.9), but the following way is often
simpler. We know there is an F such that

?E M’ a_F_' — N
or Yy
Thus F satisfies
oF
o = 2
9 (z,y) = 32 — 2xy,

which implies that for each fixed y,

F(z,y) =2 — 2% + f(y), (3.11)
where f is independent of x. Now dF/dy = N tells us that

—z + () = — 2

I'(y) = 2.

Thus a choice for f is given by f(y) = %2 and placing this back into (3.11)
we obtain finally

or that

F(z,y) =2 — 2y + 9~
Any differentiable function ¢ which is defined implicitly by a relation
» — 2% + y? = c, (3.12)

where ¢ is a constant, will be a solution of (3.10), and all solutions of (3.10)
arise in this way. Often the solutions are identified with the relations (3.12).
It is proved in advanced calculus texts that (3.12) will define a unique
differentiable function ¢ near, and passing through, a given point (zo, yo)
provided that
F (20, 30) = ¢,
and that

oF _
-bz(xo, yo) # 0.
Notice that the only points (z, o) satisfying (3.12) for which

oF
‘55(130, %) =0
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are those satisfying

_xg + 2y, = 0,
and these are precisely the points where the given equation (3.10) is not
defined. Thus, if (xo, ¥0) is a point for which (32® — 2zy)/(2? — 2y) is
defined, there will be a unique solution of (3.10) whose graph passes through
(xoy yo) .

EXERCISES

1. The equations below are written in the form M (z, y) dz 4+ N(z, y) dy = 0,
where M, N exist on the whole plane, Determine which equations are exact
there, and solve these.

(a) 2zydz + (#* 4+ 3y®) dy = 0

(b) (& +zy)ds +zydy =0

(¢) efdr + (¢*(y + 1)) dy = 0

(d) coszcos’y dr —sinzsin2y dy =0

@) zfdr — 28 dy = 0

) @+y)ds + (= —-y)dy =0

(8) (Que** + 2z cosy) dz + (¢** — z¥siny)dy =0
(h) B?log|z| +2* +y)ds +zdy =0

2. Even though an equation M (z, y) dv + N(z, y) dy = 0 may not be exact,
sometimes it is not too difficult to find a function u, nowhere zero, such that,
u(x, Y)M(z, y) dr + u(z, Y)N@, y) dy = 0
is exact. Such a function is called an integraiing factor. For example,
yde —zdy =0

is not exact, but multiplying the equation by u(z, y) = 1/3?% makes it exact
for y = 0. Solutions are then given by y = cz.

Find an integrating factor for each of the following equations, and solve
them.

(@) (2 4+ 2)dr 4 3z’ dy = 0

(b) coszcosydr —2sinzsinydy =0
(c) (5z%°® + 2y) dz + (3z*y + 2z)dy = 0
d) (e 4 ze*)dx + 2e¥dy = 0

(Note: If you have trouble discovering integrating factors, do Exs. 3-5
first.)

3. Consider the equation
M(z,y) dx + N(z,y) dy = 0,

where M, N have continuous first partial derivatives on some rectangle R.
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Prove that a function % on R, having continuous first partial derivatives, is an
integrating factor if and only if,

oM ON ou Ju
ul\l— - —)=N—-—-M —
dy oz dz dy
on R. (Hint: Theorem 3.)

4. (a) Under the same conditions as in Ex. 3, show that if the equation
Mz, y)dz + N(z,y)dy =0
has an integrating factor «, which is a function of x alone, then
1 (aM aN )

P‘-‘-"'ﬁ

dy ox
is a continuous function of z alone.

(b) If p is continuous and independent of y, show that an integrating factor
is given by
u(z) = eF@,

where P is any function satisfying P’ = p.

5. (a) Under the same conditions as in Ex. 3, show that if
M(z,y)dz + N(z,y)dy = 0

has an integrating factor «, which is a function of y alone, then

1 (aN ?_ﬂﬁ)

qgﬂ E—ay

is a continuous function of y alone.

(b) If ¢ is continuous, and independent of z, show that an integrating factor
is given by
u(y) = gQ(v)’

where @ is any function such that @' = q.

6. Consider the linear equation of the first order

¥ + a(@)y = b(z),

where a, b are continuous on some interval I.
(a) Show that there is an integrating factor which is a function of = alone.
(Hint: Ex. 4.)
(b) Solve this equation, using an integrating factor. (Compare this pro-
cedure with that followed in Chap. 1, See. 7.)
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4. The method of successive approximations

We now face up to the general problem of finding solutions of the
equation

¥y =f(=z,y), (4.1)
where f is any continuous real-valued function defined on some rectangle
R: Ix—a:oléa, Iy_y0]§ba (a, 0> 0),

in the real (z, y)-plane. Qur object is to show that on some interval I con-
taining x, there is a solution ¢ of (4.1) satisfying

¢(xa) = Yo- (4.2)
By this we mean there is a real-valued differentiable function ¢ satisfying
(4.2) such that the points (z, ¢(z)) arein R for zin I, and
¢'(z) = f(z, ¢(2))

for all z in I. Such a function ¢ is called a solution to the initial value
problem

y' = f(x) y) ’ y(xﬂ) = Yo, (43)
on I.
Our first step will be to show that the initial value problem is equivalent
to an integral equation, namely

v=vo+ [ 1t y) d (4.4)

on I. By a solution of this equation on I is meant a real-valued continuous
function ¢ on I such that (z, ¢(z)) isin R forall zin I, and

s(@) = v+ [ 1t (1)) d (4.5)
for all z on I. °
Theorem 4. A function ¢ is a solution of the initial value problem (4.3)
on an interval 1 if and only if it s a solution of the integral equation (4.4) on 1.
Proof. Suppose ¢ is a solution of the initial value problem on I. Then
¢’ (8) =St ¢(8)) (4.6)

on I. Since ¢ is continuous on I, and f is continuous on R, the function F
defined by

Ft) =1t (1))
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is continuous on I. Integrating (4.6) from z, to £ we obtain

8(x) = 8(z) + [ 1t 6(0) b,

and since ¢(2;) = yo we see that ¢ is a solution of (4.4).
Conversely, suppose ¢ satisfies (4.5) on I. Differentiating we find, using
the fundamental theorem of mmtegral calculus, that

¢'(x) = f(z, ¢(x))

for all x on I. Moreover from (4.5) it is clear that ¢(x) = ., and thus ¢
is a solution of the initial value problem (4.3).

We now turn our attention to solving (4.4). As a first approximation to
& solution we consider the function ¢, defined by

#o(x) = Yo

This function satisfies the initial condition ¢o(z) = ¥, but does not in
general satisfy (4.4). However, if we compute

ai(@) = w+ [ 16 n®) a

= % + [ £t yo) dt,
zg
we might expect that ¢, is a closer approximation to a solution than .
In fact, if we continue the process and define successively

$o(x) = ¥,
(4.7)

(@) = w0+ [ F o) (k=10,1,2, 1),

we might expect, on taking the limit as k — «, that we would obtain

¢k (.‘.C) — ¢(.’E) ]
where ¢ would satisfy

s@) = o+ [ f(t,60) at

Thus ¢ would be our desired solution.

We call the functions ¢, ¢1, - - - defined by (4.7) successive approzima-
ttons to a solution of the integral equation (4.4), or the initial value problem
(4.3). One way to picture the successive approximations is to think of a
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machine 8 (for solving) which converts functions ¢ into new functions S(¢)
defined by

S@) (=) = w+ [ 1 6(0) at

A solution of the initial value problem (4.3) would then be a function ¢
which moves through the machine untouched, that is, a function satisfying
S(¢) = ¢. Starting with ¢o(z) = y,, we see that S converts ¢o into ¢y, and
then ¢; into ¢2. In general S(¢x) = ¢i41, and ultimately we end up with a
¢ such that S(¢) = ¢; see Fig. 5.

Figure 5. The ‘‘S-machine”

Of course we need to show that the ¢x merit the name, that is, we need to
show that all the ¢ exist on some interval I containing o, and that they
converge there to a solution of (4.4), or of (4.3). Before doing this let us
consider an example:

y =zy, y(0) =1 (4.8)
The integral equation corresponding to this problem is

v=1+ [ wa,
0

and the successive approximations are given by

¢0(x) = 1)

doa(®) = 1 + [ () dt,  (k=0,1,2 ).

Thus
z x2
$1(2) =1+f0 vat=1+%,
z tz x! m‘
¢2(z) = 1 + i 5(1+§)dt—1+5+2_.4,
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and it may be established by induction that
xz 1 .'132 2 1 m?\k
wi®) =1+ () +55) + - +l5)-
We recognize ¢, (z) as a partial sum for the series expansion of the function
¢(x) = el
We know that this series converges for all real z and this just means that

¢k(x) —)d’(x)) (k_') °°))

for all real z. The function ¢ is the solution of the problem (4.8).

Let us now show that there is an interval I containing z, where all the
functions ¢i, k = 0, 1,2, - -+, defined by (4.7) exist. Since f is continuous
on R, it is bounded there, that is, there exists a constant M > 0 such that

| f(z,y) | £ M
for all (2, ¥) in B*. Let a be the smaller of the two numbers a, /M. Then
we prove that the ¢, are all definedon |z — x| = «.

Theorem 5. The successive approximations ¢x, defined by (4.7), exist as
conlinuous functions on.

I: |z — 20| £ @ = mintmum {a, b/M},
and (X, ¢x(x)) s in R for x in 1. Indeed, the ¢\ satisfy
| ée(z) — | S M|z — z (4.9)

for all x in 1.

Note: Since for x in I, | x — 20| < b/M, the inequality (4.9) implies
that

| ¢e(z) —yo|l =B
for z in I, which shows that the points (z, ¢x(x)) are in R for z in I. The

precise geometric interpretation of the inequality (4.9) is that the graph of
each ¢y lies in the region 7 in R bounded by the two lines

Y—Yh=MEz—2), y—y=—-Mz-—m),

and the lines

see Figs. 6 and 7.

* 'I"his result is usually proved in advanced calculus texts. The student may assume
that f satisfies the additional condition | f(x, ) | S M if he wishes.
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Yo+b

y—Yo=—M(x—xp)

Yo—b

Figure 6. The region T'(a = a)

Proof of Theorem 5. Clearly ¢y exists on I as a continuous function, and
satisfies (4.9) with k¥ = 0. Now

(@) = o+ [ 16w d,

and hence

10@) —wl = | [ st a|s| [ 15000 || s M|z~ 2],

Yo+b

y~Yo=M{x~xq)

Xo—a x9+8

Figure 7. The region T(a = b/M)
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which shows that ¢, satisfies the inequality (4.9). Since f is continuous on B
the function Fy defined by

Fo(t) = f(t: yﬂ)

is continuous on I. Thus ¢,, which is given by

$1(z) = yo + /z Fy(t) dt,

is continuous on I.

Now assume the theorem has been proved for the functions ¢, ¢,
<o+, ¢y We prove it is valid for ¢;41. Indeed the proof is just a repetition of
the above. We know that (Z, ¢:(¢)) isin R for ¢ in I. Thus the function F;
given by

Fr(t) =J(, (1))

exists for ¢ in I. It is continuous on [ since f is continuous on R, and ¢; is
continuous on I. Therefore ¢i+1, which is given by

srn(n) =0+ [ Ful0)
zp
exists as a continuous function on I. Moreover

| $r4a(x) — 90| S =S M|z —ml,

[ 1Py 1

which shows that ¢, satisfies '(4.9). The theorem is thus proved by
induction.

Our next step is to show that the successive approximations converge on
I to a solution of our initial value problem. In order to do this we must im-
pose a further restriction on f. We discuss such a restriction in the next
section.

EXERCISES

1. Consider the initial value problem
v =3 +1 90 =2
(n) Show that all the successive approximations ¢o, ¢1, ¢+ exist for all
real .
(b) Compute the first four approximations ¢q, ¢1, @2, ¢s to the solution.

(c) Compute the solution by using the method of Chap. 1.
(d) Compare the results of (b) and (c).
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2. For each of the following problems compute the first four successive a pproxi-
mations ¢, ¢1, P2, Ps:

(@ ¢ =2 +9% y0) =0 )y =142y, y0) =1
€ v =¢%, y0) =0 d) ¥ =4, y0) =1

3. (a) Show that all the successive approximations for the problem
¥ =94, y0) =1,

exist for all real .

(b) Find a solution of the initial value problem in (a). On what interval
does it exist?

(e¢) Assuming there is just one solution of the problem in (a), indicate why
the successive approximations found in (a) can not converge to a solution
for all real z.

4. Consider the problem

?]’ =x2+y2, y(O) =0,
on
R: Jz|=1 J|y|lsL

(a) Compute an upper bound M for the function f(z, ¥) = z* 4 y*on R.

(b) On what interval containing £ = 0 will all the successive approximations
exist, and be such that their graphs are in B?

5. Let f be a real-valued continuous function defined on the rectangle
R: |$—$o|§a, |y—y0|§bv (a;b>0)-

Let ¢ be a real-valued function defined on an interval I containing zo.

(a) Define carefully what it would mean to say that ¢ is a solution on I of
the initial value problem

¥ =19, y@) =1y, y(x) = . *)

(b) Define carefully what it would mean to say that ¢ is a solution on I of
the integral equation

v=vt @2+ [ @ =060 d 4

(c) Show that ¢ is a solution of the initial value problem (*) on I if and
only if ¢ is a solution of the integral equation (**) on I. (Hint: In proving
the statement one way it is useful to use the rule that

d (= Z9F
?d;‘/; F(t,a:)dt=F(x,x)+/; B;(t)x)d“‘w
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if F and 9F/dz are eontinuous, In proving the statement the other way, let
F(z) = f(z, ¢(x)), and solve

y' =F@), y@)=w, ¥@) =1,

by the variation of constants method.)

Let f be the same as in Ex. 5.

(a) Define a sequence of successive approximations ¢, ¢1, @2, *++ for (*),
or (**), in Ex. 5. (Hint: Let ¢o(z) = y0.)

(b) Prove Theorem 5 for the sequence {¢x} of (a), where now & = minimum
{a, b/M\}, with My = | 1| + (Ma/2).

(a) Find a sequence of successive approximations for the problem
y” =r -1, y(0) =1, ¥'(0) =0,

and show that the sequence tends to a limit for all real z. (Hint: Ex. 6.)

(b) Compare the limit obtained in (a) with the solution of this problem
obtained by the methods of Chapter 2.

. Let f be a real-valued continuous function defined on the strip

8: |x|§a, |y|<°°l (@ > 0),

and let I denote the interval | z | < a. Suppose ¢ is a real-valued function on I,

(a) Define what it would mean to say that ¢ is a solution on I of the initial
value problem

¥’ + )\Zy = f(x; y), y0) =0, y'(O) =1, A > 0). *)

(b) Show that ¢ is a solution of (*) on I if and only if ¢ is a solution of the
integral equation

sin Az Z sin N(z — 1)
REICED

N N I, y) at (**)

y=

on I. (Hint: See the Hint in Ex. 5, (c).)

(¢) Define a sequence of successive approximations ¢, ¢1, ¢2, *+ for the
initial value problem (*), or the integral equation (**), and show that each
¢x is defined as a continuous function on I. (Hint: Let ¢o(x) = 0. It is a
result in advanced calculus that if a function ¢ is continuous in (¢, ), then

./;z g(t, =) dt

is continuous in z.)
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5. The Lipschitz condition

Let f be a function defined for (z, ¥) in a set S. We say f satisfies a
Lipschitz condition on S if there exists a constant X > 0 such that

| f(z,41) — f(z,92) | = K|y — 2

for all (z, y1), (x, ¥2) in S. The constant K is called a Lipschitz constand.

If f is continuous and satisfies a Lipschitz condition on the rectangle
R, then the successive approximations converge to a solution of the initial
value problem on | z — z | £ @ Before we prove this, let us remark that a
Lipschitz condition is a rather mild restriction on f.

Theorem 6. Suppose S is either a rectangle

|x_x0'éa: |y_y0|§b7 (a7b>0)a
or a sirip
Ix—xoléa, 'y|<°°’ (a>0)’

and that f s a real-valued function defined on S such that of/dy exists, 18
continuous on 8, and

Zen|sk  (@nins),
Y

for some K > 0. Then { satisfies a Lipschitz condition on S with Lipschitz
constant K.

Proof. We have
f@, ) = fm ) = [ Lim b a

v Oy
flll
v

2

and hence

(@ p) — f(2,3) | =

for all (z, 1), (z, ¥.) in 8.
An example of a function satisfying a Lipschitz condition is

of
;.,—;x,z)(dz{ézclm-yn,

f(z,y) = xy?
on

R: Jz|=x1, |yl=L
Here

af _
15§<x,y>|—|2xy|§z
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for (z, y) on R.This function does not satisfy a Lipschitz condition on the

strip

since

S: |x|§1, |y|<°°’

f(xv yl) — f(xv 0)

el EETIPAY

which tends to infinity as |y, | — «, if | 2| = 0.
An example of a continuous function not satisfying a Lipschitz condi-
tion on a rectangle is

on

f(z,y) = y**

R: lz|l=1 |yls1l

Indeed, if /51 > 0,

|f(y) —f(=,0)| 4" _ 1
|y1—0| U yllls’

which is unbounded as y; — 0.

EXERCISES

1. By computing appropriate Lipschitz eonstants, show that the following
functions satisfy Lipschitz conditions on the sets S indicated:

2.

(@) flz,y) =422 + 2, on8: [z =1, ]yl =1
(b) Sz, y) = P cos’y +ysin®z,on8: |z| =1, |y| < =
) flz,y) =% onS: 0sz=galy| < », (@ >0)

(d) f(z, ) = a(x)y® +b(x)y +c(z),onS: |[z|=<1,|y| =2 (a,b,care
continuous functionson |z | < 1)

e) fz,y) = alz)y +b(x),onS: |z|=51,|y| < =, (a, bare continuous
functionson [z | 5 1)

(a) Show that the function f given by
f(z,y) =y
does not satisfy a Lipschitz condition on
R: |zj=1l O0sysl

(b) Show that this f satisfies a Lipschitz condition on any rectangle R of
the form

E: |z|se bsyse (@bc>N0).

3. (a) Show that the function f given by

f(z1y) =$z|y|
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satisfies a Lipschitz condition on
R: J|z|s1, |ylsl
(b) Show that 3f/0y does not exist at (z, 0) if z = 0.
4. Show that the assumption that 3f/dy be continuous on S is superfluous in
Theorem 6. (Hint: For each fixed x the mean value theorem implies that

d
1@, 1) — f(@, 42) = 5—; & ) — u9),

where # (which may depend on z, ¥, ¥2) is between y; and y3.)

6. Convergence of the successive approximations
We now prove the main existence theorem.

Theorem 7. (Ezxistence Theorem). Let { be a continuous real-valued func-
tion on the rectangle

R: |z —z|=Za, |y—w|=b (a,b>0),
and let

|f(z9) | = M
Jor all (x,y) tn R. Further suppose that { satisfies a Lipschilz condilion with
constant K in R. Then the successive approrimalions

bo@) =t o) =0+ [ S n) d (K =0,1,2,0),
converge on the inlerval
I: |z — z,| £ « = min {a, b/M}
to a solution ¢ of the tnitial value problem
¥ =f(z,9), y(x) =

on 1.

Note: If f is just continuous on R it is possible to show that there is a
solution of the initial value problem on I. Since more sophisticated methods
from advanced calculus are required for the proof of this, we shall forego
such a proof. However, in order to show that the successive approximations
converge to a solution, something more than the continuity of f must be
assumed ; see Ex. 3.

Proof of Theorem 7. (a) Convergence of {¢x(x) }. The key to the proof is
the observation that ¢ may be written as

de = o+ (¢1— ¢0) + (¢2— 1) + ==+ + (d — br)s
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and hence ¢, (2) is a partial sum for the series

$0(2) + 3 [6s(z) — bpa(2) ] (6.1)

=1

Therefore to show that the sequence {¢x(x)] converges is equivalent to
showing that the series (6.1) converges. To prove the latter we must
estimate the terms ¢,(x) — ¢p_1(z) of this series.

By Theorem 5 the functions ¢, all exist as continuous functions on I,
and (z, ¢p(x)) is in R for z in I. Moreover, as shown in Theorem 5,

| 1(z) — @o(z) | S M |2 — 20| (6.2)

for z in I. Writing down the relations defining ¢, and ¢, and subtracting,
we obtain

#u@) — ai(@) = [ LI 60) = 7 o(t)) T d.
Therefore

| po(2) — u(z) | =

[ 176,00 =it o) 142,
zp
and since f satisfies the Lipschitz condition

|f(x» yl) _f(x7 yz) I = Klyl - yzl»
we have

| ¢2(x) — d1(2) | = K

ledu(t) — ¢o(2) Idt‘.

Using (6.2) we obtain

| $2(x) — ¢1(z) ;, < KM

j | ¢ —xoldtl.
o
Thus, if x = =,

(z — 2)2

| 62(z) — (@) | gKM]:o(t—xo) it = KM=

The same result is valid in case £ < .
We shall prove by induction that

MK |z — 2o |7
p!

forzin I. We haveseen that thisis truefor p = 1 and p = 2. Let us assume
T Z %y; the proof is similar for z < . Assume (6.3) for p = m. Using the

|¢p(x) — ¢p-1(2) | = (6.3)
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definition of ¢m41 and ¢ We obtain

dmir(2) = gn(@) = [ L1t on(®) = (b dma(®) 1t
E
and thus

| bmia(®) — 6@ | S [ 150t gn(®)) = (8, dmes(D)) |
]
Using the Lipschitz condition we get

b (®) = ¢n(@) | S K [ 1n®) — () | d.

Since we have assumed (6.3) for p = m this yields

MKm™ r= MKm |z — x|+
— bm < — / —_ m =
This is just (6.3) for p = m + 1, and hence (6.3) is valid forall p =1, 2,
«»+, by induction.
It follows from (6.3) that the infinite series

so(z) + 2 [0s(2) = bp(2)] (6.1)
=
is absolutely convergent on I, that is, the series
|¢0(x) | + Zl | ¢p(x) - ¢p—l(x) | (6'4)
—

is convergent on I. Indeed, from (6.3) we see that

MKplx—:colp
K p! ’

which shows that the p-th term of the series in (6.4) is less than or equal to
M /K times the p-th term of the power series for eX!*—=0l, Since the power
series for eXl=—=0l ig convergent, the series (6.4) is convergent for z in I.
This implies that the series (6.1) is convergent on I. Therefore the k-th
partial sum of (6.1), which is just ¢x(x), tends to a limit ¢(x) as k — o,
for each z in I.

(b) Properties of the limit ¢. This limit function ¢ is a solution to our
problem on I. First, let us show that ¢ is continuous on I. This may be
seen in the followmg way. If 1, z; are in

| pp(2) — $pa(z) | = —

| prs1(21) — dua(z) | =

[xlf(t) <351t(t))t:lt| = Mlxl - xﬁlr
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which implies, by letting k — o,

| ¢(z1) — ¢(m2) | = M |21 — 22 |. (6.5)

This shows that as z, — 21, ¢(x2) — ¢(x1), that is, ¢ is continuous on I.
Also, letting 21 = z, 22 = 2o in (6.5) we obtain

|¢(x) —w| EM|z—2]|, (zinl),

which implies that the points (z, ¢(z)) arein R forallzin I.
(c) Estimate for | $(z) — ¢(z) |. We now estimate | ¢(z) — ¢u(x) |.
We have

6(2) = ¢o(z) + 2 [6(2) — bpr(x)],

p=1

and
k
de(z) = ¢olz) + gl [¢(z) — ¢p(m)].

Therefore, using (6.3), we find that

R v]

| ¢(x) — () | = Z [¢p(x) — ¢p—l(x)3!

p=k+1

= Z | $p(2) — ¢par(2) |
p=k-+1
M & (Ka)?

< —

- K phzk;ﬂ p!

g (Ka)**' & (Ka)?
T K&k +1)!5 p!
_ M (K™ o,
K (k+ 1)t

Letting ¢ = (Ka)**'/(k 4+ 1)!, we see that ¢, — 0 as k — «, since ¢
is a general term for the series for eX 2. In terms of ¢, (6.6) may be written as

(6.6)

|¢(x) — () | = 'A‘é‘ ekag, (e« — 0, k— o). (6.7)

(d) The limit ¢ s a solution. To complete the proof we must show that

o) = vo+ [ 1t 6(0)) dt (6:8)

for all  in I. The right side of (6.8) makes sense for ¢ is continuous on I, f
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is continuous on R, and thus the function F given by

Fct) = fQ2, ¢(2))
is continuous on I. Now

(@ = vo + [ 1t ou(t)) at,

and ¢i1(z) — ¢(2), as k — . Thus to prove (6.8) we must show that
for each z in T

[ 1o~ [ s o0y dt (ko). (69)
We have

[1wew)a— [ 1o a|

=

[ 15, 6@) = 1, 6x(0) | at

=K

Lo = a], (6.10)

using the fact that f satisfies a Lipschitz condition. The estimate (6.7) can
now be used in (6.10) to obtain

L1 s@) d = [ 16, 60) &t 5 Mo a| s - ]

which tends to zero as k — «, for each 2 in I. This proves (6.9), and hence
that ¢ satisfies (6.8). Thus our proof of Theorem 7 is now complete.

The estimate (6.6) of how well the k-th approximation ¢» approximates
the solution ¢ is worthy of special 4ttention.

Theorem 8. The k-th successive approximalion ¢x to the solulion ¢ of
the initial value problem of Theorem 7 salisfies

M (Ka)kt

KE+D1o

| ¢(z) — u(x) | =
Jorallxin 1.
EXERCISES

1. Consider the problem
v =1-2zy, y0) =0.

(a) Since the differential equation is linear, an expression can be found
for the solution. Find it.
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(b) Consider the above problem on
R: |zl=s3% lylsi
If f(z, y) = 1 — 2xy, show that

| fz,9)| =2, ((z,y)inR),
and that all the successive approximations to the solution exist on | z| < %,
and their graphs remain in R.

(c) Show that f satisfies a Lipschitz condition on R with Lipschitz constant
K = 1, and therefore by Theorem 7 the successive approximations converge
to a solution ¢ of the initial value problemon | z | 5 %.

(d) Show that the approximation ¢s satisfies
| (z) — ¢alz) | < .01

for|z| = 4.

(e) Compute ¢s.

2. Consider the problem
Y =149 y@0) =0.

(a) Using separation of variables, find the solution ¢ of this problem. (It is
not difficult to convince oneself that the separation of variables technique
gives the only solution of the problem.) On what interval does ¢ exist?

(b) Show that all the successive approximations ¢o, ¢1, ¢z, **+ exist for all
real z.

(¢) Show that ¢x(x) — ¢(x) for each = satisfying | z | < 4. (Hint: Consider
f(x) y) = 1 +y2 on

R: |=z|s3 lylsi
Show that & = %.)

3. On the square

R: |z|ls1, |ylsy,
let f be defined by
flz,y) =0, if =0, ly] =1,
= 2r, if 0<|z| =1, -1 sy <0,
4y .
=2a:—-:-c—, if 0<|z| =1, 0sy s
- 2, if 0<|z| =1, gy 1.

(a) Show that this f is continuous on R, and | f(z, ¥) | < 2 on R. (It might
help to make a sketch.)

(b) Show that this f does not satisfy a Lipschitz condition on B.
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(¢) Show that the successive approximations ¢, ¢1, ¢z, * * * for the problem
y’ = f(x: ?/), y(O) = 0:
gatisly
4)0(2:) = 0; ¢2m_1(1') = xg, ¢2m($) = —zzl (m = 1) 27 ** °)'

(d) Prove that neither of the convergent subsequences in (¢) converge to a
solution of the initial value problem. (Note: This problem has a solution,
but the above shows that it can not be obtained by using successive ap-
proximations.)

4. Consider f, R as in Theorem 7. Let ¢ be any continuous function on
| 2 — xo| < asuch that the points (z, ¢o(z)) arein Rfor | z — 2o | < a. Let

b = vo + [ 10,0 b,
and
dr+1(z) = yo + [z I, ¢k(t)) dt, (B =1,2 2).

(a) Show that all the functions ¢i, ¢, *++ exist and are continuous for
| 2 — %o | £ e, and satisfy

ld’k(x)_yﬂléMlx—zﬂl) (B =1,2 ).

(b) Show that ¢x(z) = ¢(x) on |z — x| < «, where ¢ is a solution to the
initial value problem

Y =1y, ylz) = o

(Hint: Show that the proof is a repetition of most of the proof of Theorem 7.)
(Note: This shows that we may start our successive approximation pro-
cedure with any function ¢ with the above properties, instead of with the
particular one ¢o(z) = yo.)

(c¢) Show that an estimate like that in Theorem 8 is valid, namely

2M (Ka)®
K k!

B. Let f satisfy the conditions of Theorem 7. Show that the successive ap-
proximations

.

|p(z) — du(z) | =

¢0(x) = Yo,

Prt1(z) = yo + (@ — Zo)1 + fz (x — OfC, dx@) dt, (6 =0,1,2 00,
Fq

converge on the interval

I: |z ~ 2¢| £ ¢ = minimum {a, b/M1},
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where M; = | y1| + (Ma/2), to a solution of the initial value problem

y" = f(.'.t, '!/), y(xo) =Y y’(xo) = Y1

(Note: From Exs. 5, 6 of Sec. 4 it follows that each ¢ exists, is continuous on I,
and that (z, ¢x(x)) isin R for all zin I.)

7. Non-local existence of solutions

Theorem 7 is called a local existence theorem since it guarantees a solu-
tion only for z near the initial point x;. There are many cases when a solu-
tion to the initial value problem exists on the entire interval | z — 24| = a,
and in such cases we say that a solution exists non-locally.

As seen in Sec. 1, an example of non-local existence is furnished by the
linear equation

¥y + g(x)y = h(x). (7.1)

The solutions exist on every interval where g and & are continuous. Suppose
g and h are continuous on |z — 2| < a, and that K is a positive con-
stant such that

lgz) | = K, (|z— x| =a).

Then if we write (7.1) as

¥y =f(z,y) = —g(x)y + h(2),
we see that

[ f(z, ) — f(z,p) | = —g@)(h—v) | S Kloya— 12,
forall (z, 1), (%, ¥2) in the strip
8: Jz—zm|=Zae |y|l< .

By looking carefully at the proof of Theorem 7 we can show that if
satisfies a Lipschitz condition in a strip S, instead of in a rectangle R, then
solutions will exist on the entire interval.

Theorem 9. Let f be a real-valued continuous funciton on the strip
S: |z — 20| £ a, ly| < o, (a > 0),

and suppose that { satisfies on S a Lipschilz condition with constant K > 0.
The successive approximations {¢x} for the problem

v =f(z,y), y(®) =y (7.2)

exist on the entire inlerval | x — Xo | < a, and converge there to a solution ¢ of
(7.2).
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Proof. The successive approximations are given by

¢0(x) = Yo,
(@) =g+ [ S au®) dt,  (k=0,1,2,--5).

An induction argument establishes the existence of each ¢, for

|z — x| = a;
see the proof of Theorem 5.
Since f is continuous on S, the function Fy given by

Fo(z) = (2, 1)

is continuous for | z — 2y | = a, and hence bounded there. Let 3/ be any
positive constant such that

f,y) | =M, (|lz—x]|=a). (7.3)

The proof of the convergence of {¢x(z)} now follows that of part (a) of the
proof of Theorem 7, once we note that

i) — o) | = | [ 706,900 |

=|f If(t.yo)ldt‘ <Mz -2,
zg

due to (7.3).
The limit function ¢ need no longer satisfy the inequality (6.5) for the

M given in (7.3). However, we note that (6.3) is valid, and this implies
that

k
612) = 00| = | S 16,@) = @ ]| 5 3 16500) = 40a(a) |
MEKr|iz —z|? M & Kr|lz — 2|7
§E,§ p! 5?,2 p!
M
for |z — 20| < a. If we let
M
b=E(e" - 1),

we see that the approximations satisfy

|u(x) —%|=b, (lz—m]| = a),
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and taking the limit as ¥ — « we obtain
l6(z) —pl b, (|z— 2] = a).
Now since f is continuous on
B: |z-m|sa |y—wpl=h,
it is bounded there, that is, there is a positive constant N such that

| f(z,9) | S N

for (z, ) in R. The continuity of ¢ may now be exhibited just as in part (b)
of the proof of Theorem 7. Indeed, for 2, 22 in our interval | z — 2, | < q,

| pps1(21) — Prpa(z2) | =

/:uf(t, () dtl < N|zm— 2,

which implies, on letting k — «,
| ¢(m) — ¢(x2) | S N[22 — m|.
The remainder of the proof is a repetition of parts (¢) and (d) of the proof
of Theorem 7, with « replaced by a everywhere.
Corollary. Suppose f is a real-valued continuous function on the plane
2| < w, |y]<e,
which satisfies a Lipschitz condilion on each strip
Sa: |z| < a, ly| < =,

where a s any positive number.* Then every initial value problem
¥ =f=y) Y@ =,

has a solution which exists for all real x.

Proof. If x is any real number there is an @ > 0 such that x is contained
inside an interval | # — z, | £ a. For this a the function f satisfies the condi-
tions of Theorem 9 on the strip

|x—xo|§a, 'y'<°°’
since this strip is contained in the strip
lz| S |2| + a, ly| < =.

Thus {¢:(x)} tends to ¢(x), where ¢ is a solution to the initial-value prob-
lem.

* The Lipschitz constant K, for f in S; may depend on a.
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An example of a nonlinear equation satisfying the conditions of this
corollary is

y’ _ y3e=
1 4 y?
If we let f(z, y) denote the right side of (7.4) we see that f is continuous on
the plane. Since

+ 2% cos y. (7.4)

of _ (¥ +35)

—(z,y) = e — z%sin y,
y( v) (1+y9)? Y

d
we have

of 2
‘ay(x,y)‘§3e“+a

for all {z, y) in the strip
8:  lz[=a, |yl<o.

Hence, by Theorem 6, f satisfies a Lipschitz condition on S, with Lipschitz

constant K, = 3e¢* 4 a’ Therefore equation (7.4), together with any initial

condition ¥ (%;) = ¥, is & problem which has a solution existing for all real z.
Note that the function f given by

f(x,y) =9

does not satisfy a Lipschitz condition on any strip S,, although it satisfies
one on any rectangle B. As we have seen in Sec. 1 the problem

Y =yt y() =-—1,

has a solution ¢ which exists only for z > 0.

EXERCISES

1. Consider the equation
y' = (322 + 1) cos® y + (2 — 2z) sin 2y
on the strip S;: |z| < a (& > 0). If f(z,’y) denotes the right side of this

equation, show that f satisfies a Lipschitz condition on the strip S,, and hence
every initial value problem

y, = f(x; y)) y(zO) = Yo,
has a solution which exists for all real z.

2. Let

(lz| < 1.
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(a) Show that f satisfies a Lipschitz condition on every strip Sa: | z| = a,
where 0 < a < 1.
(b} Show that every initial value problem

v =fy)h  y0 =y, (wnl< =)
has a solution which exists for |z | < 1.
3. Consider the equation
y' = f(x)p(cos y) + g(z)g(sin y),

where f, g are continuous for all real z, and p, ¢ are polynomials. Show that
every initial value problem for this equation has a solution which exists
for all real =.

4. Let f be a real-valued continuous funetion on the strip
8: |lz-—m|se |lyl<e (@>0),

and suppose that f satisfies on § a Lipschitz condition with constant K > 0.
Show that the successive approximations

do(x) = yo,
¢k+l(x) = Yo + (x - xO)yl + f (z - t)f(t; ¢k(t)) dt; (k = Ol 1; 2; "');

exist as continuous functions on the whole interval 7 :|{z — z| = @, and
converge on I to a solution ¢ of the initial value problem

Y’ =f@9), y@) =1, Y'®)=un.

5. Prove the Corollary to Theorem 9 for the initial value problem
¥ =f,y), y@®) =y, ¥®)=uy.

6. Let f be a real-valued continuous function on the strip
S: Jz|se |yl < o, (@ > 0),

and suppose f satisfies a Lipschitz condition on 8 with constant K > 0. Show
that the successive approximations

do(x) = 0,

riae) = mAT f ) %‘t) e d, > 0),
0

A
(k = 0, 1, 2, C.C),

exist as continuous funetionson I: |z | £ a,and converge there to a solution
¢ of the initial value problem

v + Ny =f(=,y), y@0 =0, 0 =1
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(Hint: See Ex. 8, Sec. 4.) (Note: The existence of a solution to the initial value
problem can also be demonstrated by applying Ex. 4 to the problem

y" =f ) - Ny, 90 =0, ¢0) =1)
7. Prove the Corollary to Theorem 9 for the initial value problem
'+ Ny =Sz, ), y0) =0 0 =1

8. Let ¢ be a real-valued continuous function on I: |z| < a, wherea > 0.
Consider the initial value problem

v' + Ny =q(zly, (\Nz20), 90 =0 ¢0) =1 *)
(a) Show that there is a solution ¢ of (*) on I, and give an integral equation

which ¢ also satisfies.

(b) If ¢ is continuous for all real z, show that there is a solution of (*) for
all real . (Hint: See Exs. 4, 5, 6, 7.)

8. Approximations to, and uniqueness of, solutions

Under the same assumptions as in Theorem 7 we can show that the
solution obtained there is the only one satisfying the initial value problem
on I. The method of proof can be adapted to yield other important informa-

tion concerning approximations to solutions. Suppose we have two initial
value problems

Y =f(z,y), ylx) =n, (8.1)
and

v =9=9), y@) =y (8.2)
where f, g are both continuous real-valued functions on
R: Ix—xoléa, |y_y0|§b; (a;b>0)’

and (xo, ¥1), (%o, y2) are points in K. We shall show that if ¢ is close to f, and
Y2 close. to ¥, then any solution ¢ of (8.2) on an interval I containing z,

is close to a solution ¢ of (8.1) on I. Suppose there exist non-negative con-
stants ¢, 8 such that

| f(z,9) —g(z, ) |S¢ ((z,9) in R), (8.3)
and

|1 —92] < 8. (8.4)
Then we have the following result.

Theorem 10. Let f, g be continuous on R, and suppose f salisfies a
Lapschitz condition there with Lipschitz constant K. Let ¢, ¢ be solutions of
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(8.1), (8.2) respectively on an interval I containing xo, with graphs contained
tn R. If the inequalities (8.3), (8.4) are valid, then

|6(@) = ¥(@) | S BeFle—stl 4 —(eFlenl — 1) (8.5)
for all x in 1.

Before proving Theorem 10 let us note some consequences of this in-

equality (8.5). If we take ¢ = f and y, = ;1 = y2 we see that we may
choose ¢ = 0, & = 0, and we have

Corollary 1. (Unigqueness theorem) Let f be continuous and saiisfy a
Lipschitz condition on R. If ¢ and ¢ are two solutions of

Y =f(z,y), y(x) =y
on an interval I containing X, then ¢ (x) = Y(x) for all x in 1.

We remark that some restriction on f, in addition to continuity, is re-
quired in order to guarantee uniqueness. The initial value problem

yl = 3y2,89 y(O) =0,

considered in Sec. 2, illustrates this. Here f(z, y) = 3y%3 and thus f is
continuous for all (z, ). The two functions ¢, ¥ given by

¢(z) =2, yY(@) =0, (=« <z< ),

are both solutions of this problem. Of course, as we have seen in Sec. 5,
this f does not satisfy a Lipschitz condition on any rectangle containing
the origin.

Intuitively, if we have a sequence of functions g — f on E, and a se-
quence ¥, — ¥, we would expect that the solutions y; of

Y =0®,9), y@) =y (8.6)
would tend to the solution ¢ of
y’ = f(x; y); y(xo) = Yo. (87)

This is a direct consequence of (8.5). Suppose the gi are contnucus ou R
and there are constants ¢ such that

| f(z,9) — gz, ) | S &  (all (z,9) in R), (8.8)



224 Solutions to First Order Equations Chap. 5

and constants §; such that

lye — %0 | S 8,
where ¢, and §; tend to 0 as k — «. Applying (8.5) we obtain

Corollary 2. Let f be continuous and sattsfy a Lipschitz condition on R.
Let the gx (k = 1,2, «++) be conttnuous on R and satisfy (8.8) for some
constants

a—0 (ko ), and let Ye— Y (k— ).

If i 15 a solution of (8.6) on an interval I containing x,, and ¢ is the solution
of (8.7) on I, then Y (x) — ¢(x) on L
Proof of Theorem 10. From (8.1), (8.2) we see that

82 = wi + [ 04, 000)) b,

W@ =+ [ 9t vw)

and hence

8 —¥(@) =m— e+ [ LI s) — ot w(0)1ds
=u—w+ [ LI6e®) — ¢ ¥@)1d

T f L@, () — g, ¢(2))]dt.

Using (8.3), (8.4), and the fact that f satisfies a Lipschitz condition with
constant K, we obtain for z = x,

|aw—¢unga+xlyun—¢m|m+4x—m. (89)
If
E@ = [ 1o —v) lat
we see that (8.9) may be written :\s
E'(z) — KE(z) < 8 + e(z — ). (8.10)

This is a first order differential inequality which we may ‘solve” in the
same way we solve first order linear differential equations. Multiplying
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(8.10) by e~X(=—=0) we get, after changing z to ¢,
[e—x(:—:o) Ejf (t) < Se~K(t—=z9 | e(t —_ xo) e—K(t—zy)

An integration from z, to z yields*

e-—K(z—:o)E(x) < _;{.[1 — e—-—-K(z*—-zo)]

+ f;—z[—K(x — zp) — 1] K= 4 %

Multiplying both sides of this inequality by eX=—=0 we find
L) € €
() S 2 [ — 1] = S [K(z ~ 20) + 1] + = 5,
and using this in (8.9) we obtain finally

| (z) ~ ¥(z) | S seK—=0 4 _I% [eKE—=0 — 1].

This is just (8.5) for £ = . A similar proof holds in case < .

EXERCISES

1. Consider the initial value problem
y =2y +9° 90 =15 *)

(a) Show that a solution y of this problem exists for | z | < 4. (Hint: Con-
sider this problem on

R: |z|=23 Ily-tlsSre
If g(z, y) = zy + Yy show that

lg(z, 9) | <%

for (z, y) in B, and hence that the & of Theorem 7 may be taken to be 4.)
(b) For small | y | the problem (*) can be approximated by the problem

Y =zy, 90 =5

Compute a solution ¢ of this problem, and show that its graph is in R for

lz| = .

* Recall that if ¢ 18 a constant (¢ % 0)
1
[te“ dl = ;(ct — 1)ect.

We have also used the fact that E(zo) == 0.
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(¢) Show that
2
16@) ~ V@) | & o5 e — 1)

for |z | < %. (Hint: Apply Theorem 10 with f(z, y) = =y on R.)
(d) Prove also that

1
| o) —¥@) | = 510 (e —1).

2. Consider the problem
Y =y +Nsiny, y0) =1,

where \ is some real parameter, |\ | < 1.
(a) Show that the solution y of this problem exists for |z | < 1.

(b) Prove that
| (z) — e | s |\] (el —1)
for|z| < 1.

3. Let f be a continuous function for (z, g, \) in
R: |z-m|se |y-wnlsd [A-hlsg
where a, b, ¢ > 0, and suppose there is a constant K > 0 such that

| 72, y1, ) — f(z, y2,\) | = K |41 — 92|

Chap. 5

for all (z, 11, A), (%, ¥2, A) in R. Further suppose that df/d\ exists and there is

a constant L. > 0 such that

of
’ Py (=, ¥, \)

=L

for all (z, , \) in R. If ¢» represents the solution of

Yy = f(z, ¥, \), y(xo) = Yo,
show that

IA

LI —
| ¢a(z) — du(x) | = -“—I‘(—#l (eKl==0l — 1)

for all z for which ¢, ¢, exist.

4. (a) Apply Ex. 3 to the initial value problem

y’ + >‘2y = Q(x)y; y(xn) = Yo,

where A is real, and ¢ is continuous for | z — x| = a.
(b) Solve (*) using the method of Chap. 1.

*
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5. Let f, g be as in Theorem 10, and consider the two initial value problems
v’ =, y), y@) =y, Y'@) =, *)
y' =g@,y), y@) =z, Y'(@) =2, **

Suppose ¢, ¥ are solutions of (*) and (**), respectively, on an interval I
containing xo. State, and prove, analogues of Theorem 10, and Corollaries 1
and 2. (Hint: From Ex. 5, Sec. 4,

¢@) = Yo + (= — zo)wn +f (= — )¢, ¢) dt,

V(@) =20 + ( — z0)21 + / (x — t)g(t, ¥(@)) dt.
£ ]
If | Yo — 20| < 8, | ¥1 — 21| S 81, show that the estimate (8.5) is valid with
6 = o, K replaced by Ka, € replaced by 8; + (ea/2).)
6. Let f be a real-valued continuous function on the strip
S: |z|=2e |yl< e, (a>0),

and suppose f satisfies a Lipschitz condition on S. Show that the solution of the
initial value problem

¥ + Ny =Sz, y), 90 =0, 0 =1 (\>0),

is unique. (Hint: Apply Ex. 5.) (Note: From Ex. 6, Sec. 7, it follows that a
solution exists on | z| < a.)

7. Let ¢ and ¢ be solutions of the two problems
'+ Ny =f,y), ym) =y, Y(x) =y,
y” + )‘Zy = g(ﬂ:, y); y(xﬁ) = 20, y,(xo) =21,

respectively, with A > 0. State and prove analogues of Theorem 10, and
Corollaries 1 and 2, for this situation. (Hint: Apply Ex. 5.)

9. Equations with complex-valued functions

We now consider equations of the form

y' =f($, y);

where f is complex-valued. In this case we must admit complex-valued
solutions, and therefore f must be defined for complex y. Thus suppose f
is a complex-valued continuous function in

R: |z — 20| £ q, ly — v | =0, (a, b > 0).
Here z, 2, are real, and y, yo are complex. The set of points y satisfying
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| ¥ — o | = b is now a circular disk with center y and radius b, and there-
fore R is no longer a rectangle. A solution of the initial value problem

v =f(z,9), y(x) = yo

on an interval I containing z, is now a complex-valued differentiable func~
tion ¢ on I for which (z, ¢(z)) is in R for z in I, and such that

¢'(z) = f(=z, ¢(x)), (zinl)
¢(70) = .

With these interpretations for R, f, and ¢, all the results of Secs. 4-8, and
their proofs, remain valid in case f is complex-valued.
The proof of Theorem 6 requires an integration

[ Lz, a
va OV

where {, 31, ¥, are now complez. This can be given a meaning, but it is easy
to modify the proof of Theorem 6 so as to avoid this issue. For fixed z,
Y, Yo, let

F(s) =f(z,ys +s(pn — ), (0=s=1).

Then if 9f/dy exists the function F will be differentiable, and

F(s) = ( — ) {:% (2, 32 + s(31 — ).

If | 3f/0y | < K, as in Theorem 6, then

|F'(s) | £ Kfyn—y2|, (0=s=1).
Thus

£z, ) — @) = F(1) ~ F(©) = [ F'(s) ds

and hence
| f(z, ) — f(z, 1) | S K|yi— 92|

We shall henceforward assume that the results of Secs. 4-8 are valid for
complex-valued f defined for real z and complex y. The student is urged to
check that the proofs do carry over to this case.



CHAPTER 6

Existence and Uniqueness of
Solutions to Systems and

n-th Order Equations

1. Introduction

In this chapter we shall see how most of the general results of Chap. 5
remain valid for a wide class of systems of equations and n-th ocder equa-
tions. The type of system we have in mind has the form

y; =f1(x; Y, ¢ ¢, yﬂ);
y; =f2(x; Yy, ° 2, yﬂ);

(1.1)

y’: =fﬂ(x; Y, **, yn)-

This is a system of n ordinary differential equations of the first order where
the derivatives y;, -« -, y. appear explicitly. It is the analogue of the single
equation

y =Sz, y)

which was studied in Chap. 5. In (1.1) fi, + -+, fa are given complex-valued

functions defined in some set R in the (z, 11, +++, ¥y») space, where z is

real and y,, ¢+ +, ¥, are complex. The equations (1.1) are just shorthand for
229
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the problem of finding n differentiable functions ¢y, «« -, ¢, on some inter-
val I such that

(a) (z, ¢1(x), +++, Pu(2)) isin B, forzin I,
(b) i) = fi(z, (), +++, u(2)),

¢a(x) = fulz, $1(2), +=-, ¢a(zx)), for all z in I.

If n such functions exist we say (¢4, * -+, ¢n) is & solution of (1.1) on I. Thus
a solution is 2 set of n» functions.

One of the most famous systems of the type (1.1) results from Newton’s
second law of motion for a particle of mass m. Using rectangular coordinates
(z, y, 2) this law is usually written as

mx' = X, my"’ =Y, mz' = Z. (1.2)

Here differentiation is with respect to the time ¢, and 2", 3/, 2’’ represent
the acceleration of the particle in the z, y, 2 directions respectively, whereas
X, Y, Z represent the forces acting on the particle in these directions. In
general X, Y, Z are functions of ¢, x, y, 2, 2, ¥/, 2’. To see how (1.2) can be
viewed as a system of the type (1.1), let us make the following substitu-
tions in (1.2):

l—zx, Ty, Y—Y, 2Z2—Ys
Ty, YU, 2 Y.

Then (1.2) is equivalent to the system of six equations

1 = Y
y; = Ys,
Ys = Ys,

1
y; = —X(x; Y, °°°, yﬁ);
m

1
— Y(x; Y, ", yﬂ),
m

=
il

1
Ys = _Z(x; Y, *°*, yﬁ)!
m

which is of the type (1.1)
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An equation of the n-th order
Y™ =iz, 9,9, -,y ) (1.3)
may also be treated as a system of the type (1.1). To see this let in (1.3)
h=y, %=y, 5 Y=y
Then (1.3) is equivalent to the system

4
Y1 = Ys
Yy = ¥,
, [ ]
yn—l = yﬂ)

y:: = f(x’ Yy, Y2y 2, yﬂ)v

which is of the type (1.1).

In Sec. 2 we discuss an interesting example of a system of equations
which has historical interest. This is the system which gives a model for
the motion of the planets about the sun. Sec. 3 is devoted to some special
equations which are either solvable, or can be easily reduced to first order
equations. The remainder of the chapter is devoted to showing how the
arguments used in Chap. 5 can be adapted to prove existence and unique-
ness of solutions to initial value problems for systems of the type (1.1),
and for n-th order equations of the type (1.3). It is just & matter of intro-
ducing a convenient notation in order to see that this is possible.

2. An example — central forces and planetary motion

In this section we give an example of a system of equations which arise
in the study of dynamies. Suppose a particle of mass m moves in a plane,
and is subjected to a force which is directed along the line joining the par-
ticle to the origin, and which has a magnitude depending only on the distance
between the particle and the origin. We then say we have a central force.
The functions z, y (of the time ¢) which describe the path the particle
takes satisfy, according to Newton’s second law,

mz'’ = %F(r),
(2.1)
my" = 2F(r),
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wbere r = v/2% + 42, and | F(r) | represents the magnitude of the force on
the particle when it is at the distance r from the origin.

The system (2.1) is equivalent to a system of four first order equations
inz, y, 2/, y'. However, since F is a function of r alone, it is advantageous
to introduce polar coordinates

Z = rcos b, y =rsind

It is shown in caleulus texts that the components of acceleration in the radial
and angular directions are given by

P — (@), 20 + g

respectively. Since the components of the force in these directions are
F(r) and 0, equations (2.1) are replaced by

m[r" — r(6')?] = F(r),
‘ (2.2)
m[28' + r8"] = 0.

Upon multiplying the second equation in (2.2) by »/m, this equation
becomes
()’ =0,
and hence
r%6’ = h, (2.3)

where h is a constant. (For some reason or other this constant is almost
always denoted by 2 !) The equation (2.3) has an interesting geometrical
meaning. The area A (f) traversed by thé line segment from the origin to
(r(s), 0(s)) as s goes from {; to ¢ is given by

AQ) = j‘ “3r2(s) (s) ds,

since the element of area in polar co-
ordinates is

il
o T
3 i5}
L i
f

see Fig. 8. Since 7%’ = h we see that

AQ) = 3h(t— ). (24) '

(r(ty), 6(tp))
Thus, if A # 0, the line segment from
the origin to the particle sweeps out 0“
equal areas in equal times. Figure 8




Sec. 2 Existence and Uniqueness of Solutions to Systems 233

Now, supposing that » > 0, let us analyse the first equation in (2.2).
We introduce a function v defined for 8 of the form 6(Z) by*

1
v(0()) = s (2.5)
Then
@) = ——t | ® ) = —p %
PO = — 5w 2@ O = -2 6w,
and
P = —h S )W) = ~RR0w) % 00),

where we have used (2.3). Thus the first equation in (2.2) becomes the
following equation for v:

d% _F(1/)

T T e
Now let us assume that F(r) is inversely proportional to 72, and that the
force is directed toward the origin (the inverse square law of Newton).
Thus let & be a positive constant such that

(2.6)

F(r) = —k—@, or F(l/v) = —km?

7'2
Then (2.6) becomes
dx k
(‘iﬁ 4+v = "?2. (27)

All solutions of this linear equation may be written in the form
k
v(0) = iz + Beos (6 — w),

where B, w are constants. Returning to the definition of v in (2.5) we see
that r is related to 6 in the following way:

_ (h*/k)
1 +ecos (6 — w)’

(2.8)

where ¢ = Bh*/k. For h?/k > 0 and ¢ = 0 the equation (2.8) is the equa-
tion of a conic with the focus at the origin and with eccentricity e. The
conic is an ellipse, parabola, or hyperbola accordingas0 = e <1, e =1,
or ¢ > 1 respectively.

* The equation (2.3) implies that 8 is an increasing function, if r # 0, and this in turn
implies that v exists.
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Let us analyse further the case when the conic is an ellipse having major
and minor semi-axes a and b; see Fig. 9. Then 2a must be the sum of the
largest and smallest values that r can assume, namely,

2a—’—"—2(1 " 1)__ 2h2
T k\l—e¢ ' 14e¢ k1l ~eé)
The eccentricity is related to a, b via
2 — 2 —_ p2
b = a?(1 — ¢?), \ r.8)
and hence
k2 o)
bt = % (2.9) /( e
k .
o)
Now the area of the ellipse is rab, and /
this is related to the time 7 required for a
the particle to traverse the ellipse once
by
1hT = mab; Figure 9
see (2.4). Thus, using (2.9) we obtain
T = % ad. (2.10)

Kepler, on the basis of observations of Tycho Brahe on the motions of
the planets about the sun, deduced his famous three laws of planetary
motion:

(1) the line segment from the sun to a planel sweeps out equal areas in
equal ttmes,

(2) the planets move along ellipses with the sun as a focus,

(8) the squares of the periods are proportional lo the cubes of the major
azes of the ellipses.

If we idealize the motion of a planet about the sun as a plane motion, with
the sun fixed at the origin and exerting an attractive central force on the
planet (thought of as a particle of mass m), then we see that Newton’s
second law implies that the motion of the planet is governed by the system
of equations (2.2). Kepler’s first law is a consequence of the central force
assumption. His second and third laws then result from the assumption
that the central force is proportional to 1/72

Newton discovered that Kepler’s first two laws imply the inverse square
law. Indeed, it was this that led Newton to the formulation of his famous
law of universal gravitation. The first law

9 =h
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implies that there is no force acting perpendicular to the line segment
from the origin to the particle, i.e., the second equation of (2.2) is valid.
Hence the particle is acted on by a force which acts in the radial direction
only. If F(r, 8) is the radial component of this force at (r, 8), we have the

equation
m[r” — r(6")?] = F(r, ) (2.11)

as the analogue of the first equation in (2.2). Introducing v as in (2.5),
we see that (2.11) implies the following equation for v:
d* F(1/v, 6)
7 + v = T (2.12)

Now Kepler’s second law implies that r is related to  via an equation of the
form (2.8) with 0 < ¢ < 1, and then v will satisfy the equation (2.7).
A comparison of equations (2.7) and (2.12) then shows that

F(l/v, 0) = —kmv?,
or that

F(r,0) = _{c_nz'

r2

Thus F depends only on r according to Newton’s inverse square law.

EXERCISES

1. A particle of mass m moves in a plane, and is attracted to the origin with a
force proportional to its distance r from the origin. Thus if

F(r) = —kmr, (k > 0),
in (2.1) the equations (2.1) become
g = -k, y' = -k

(a) Show that the path of the particle is an ellipse, if it satisfies the initial
conditions z(0) = a, 2'(0) = 0, y(0) = 0,y%'(0) = b, (a, b > 0).
(b) Compute the period of the motion.

2. A particle of mass m moves in a vertical plane near the surface of the earth,
and is acted on by the force of gravity alone. The equations for the motion
assume the form

mli = 0’ my” - _mg,
where g is a constant.
(a) Find the solution of these equations satis{ying

2(0) =0, y0) =0, z'(0) =wvcosa, y'(0) = wosine,

where vy > 0 and & are constants, 0 < o < 7/2.
(b) Show that the particle path is a parabola,
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(¢) Compute the vertex of this parabola, and the time required to reach
this vertex.

(d) Compute z(T") for that 7' > 0 for which y(T) = 0. (This is called the
horizontal range.) For what « is this range a maximum?

3. Suppose a particle moves on a circle through the origin, and is acted on by a
central force F(r). Show that F(r) is proportional to 5.

4. (a) Determine the equations of motion of the particle in Ex. 2, given that
the resistance of the air is proportional to the velocity of the particle. For
simplicity express the constant of proportionality as em.

(b) Find the solutions of these equations satisfying

2(0) =0, y(0) =0, 2'(0) =wvcosa, ¥(0) = vosin o,

where v > 0 and « are constants.
(e) Show that for each fixed ¢ the solutions of (b) approach the solutions
of Ex. 2(a) as ¢ — 0.

5. What initial conditions are sufficient to completely determine the solutions
of the equations (2.2)? Give a reason for your answer.

3. Some special equations

There are a number of problems which lead to rather special types of
second order equations, or systems of such equations. We consider two of
these types in this section.

(a) The equation y'' = f(x,y'). This second order equation has an f
which is independent of ¥, and is hence really a first order equation in y'.
Indeed this equation is equivalent to the system of two equations of the
first order

y' =2, 2 =f(z2), (3.1)

in that ¢ will be a solution of '’ = f(z, ¥') on an interval 7 if, and only if,
the functions ¢, ¢’ satisfy the system (3.1) on I. Now the system (3.1)
can be solved by first solving the first order equation

2 =f(z,2)

for ¢/, and then integrating to obtain ¢.
As a simple example consider the equation

' —y =0, (z>0).

Letting ' = z we obtain the first order linear equation
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which has as solutions
¢'($) = (%, (x > 0)’

where ¢ may be any constant. Thus
sz
¢(x) =_2'+d; (SC>0),
where ¢, d are constants. Note that for z > 0 the equation is equivaient to

" —zy =0,
which is an Euler equation.

(b) The equation y'' = f(y, y’). Here f is independent of z, and the
strategy is somewhat different than in (a). Suppose we have a solution ¢
of ¥/ = f(y,y'), and there is a differentiable function ¢, defined for all y
of the form y = ¢(x), such that

¢’ (z) = ¥(o(2)).

Then ¢ would be a solution of the first order equation

dy
d_:c = ¢¥(y). (3‘2)
Also
&"(3) = ¢ (=) j—‘; (6(@) = ¥(s()) % (6()),

and moreover

¢ (z) =f(o(z), ¢'(2)) = f(o(z), ¥($(2)).
Thus ¢ must satisfy the equation

dy
v(y) &y (¥) = f(y, ¥(v))

for all y = ¢(z), and hence must be a solution of

dz
7 = (3.3)

The argument can be reversed. If ¢ is a solution of (3.3), then any solu-
tion ¢ of (3.2) will be a solution of the given equation ¥ = f(y, ¥’). Thus
solutions to the original equation can be found by first solving (3.3) to
obtain ¢, and then solving (3.2).

As an example consider the equation

w' o= (y')3
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and suppose we seek a solution ¢ satisfying

¢(0) =1, ¢'(0) =2.

The equation (3.3) becomes in this case

dz 22
— = —
dy y’
which has for solutions functions ¢ given by
v(y) =cy,
where ¢ may be any constant, The equation (3.2) then becomes
dy _
dx
which has for solutions
¢(x) = de~,

where d may be any constant. The solution satisfying the given initial
conditions is given by
o(z) = €=

EXERCISES

1. Solve the following equations:

@y +y =1 ®) ¢y + ey’ = ¢

(c) vy’ +4@)’ =0 Ay +Fy =0 (>0
e) v =yy €) =y — 2y =22

@ ' =y

2. Find the solution ¢ of

y' =14 )P
which satisfies ¢(0) = 0, ¢’(0) = 0.
3. Find a solution ¢ of

satisfying ¢(0) = 1, ¢’(0) = —1.
4. Suppose that f is a continuous function on an interval

|z —z0| S @
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Show that the solution ¢ of the initial value problem
y' =fz), yw) =a,  Y'(zx) =B,

can be written as
be) = +B@ — 20 + [ (@ - 070 &
zy

8. (a) Let f be a continuous function for |y — yo | £ b, (b > 0), and consider
the equation

yll = f(y).
Show that the equation (3.3) has a solution , in this case, given by

#a) = v +2 [ 10 .
¥o

(b) Consider the special case
y' +siny =0,

which is an equation associated with the oscillations of a pendulum. If ¢ is
& solution satisfying

$0) =0, ¢'(0) =8>0,
show that ¢ satisfies the equation
¥ = BV1 — B sin’(y/2), ™

where &k = 2/8.
(c) Solve the equation (*) in the case k = 1.
(d) Can you solve this equation if k& » 1?

4. Complex n-dimensional space

It is clear that one of the main differences between the one equation

y =Jf(=z,9),
and the system of n equations

yl' = fl(xi Y, *° yn),

yr: =fﬂ(x» Yy, *°°, yﬂ),

is that instead of one complex number y we have now to deal with n such
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numbers yi, « -+, ¥a. Let us call such an ordered n-tuple of complex numbers
1, *++, Yn 8 vector and denote it by y, and write*

Y= (y1, 2, Yn).

The complex number y; is called the k-th component of y. The set of all such
vectors we call the complex n-dimensional space, and denote it by C,. This
certainly is a nice abbreviation, but in order to make use of this abbrevia-
tion we must define how to operate with such vectors. We define the zero
vector 0 (also called the origin in C,) by

0 = (0, ...,()),
and the negative of y by

=y = (=yy *+*, —¥n).
If ¢ is any complex number ¢y is the vector
cy = (cy1, ==+, cyn).

Two vectors y = (y1, *++,ya) and zZ = (2}, -+, 2z,) in C, are said to be
equal, and we write y = z, provided that

Yi =2, Ya=2, °***, Yn = 2n
The sum y + z is defined by
Y+z=(n+ta,- ¥ +2),
and the difference y — z by
y—z=y+ (-2).
Suppose, for example, that in C;

y= (1;7:); z = (_2;1 +7:)°
Then

iy = (1, —1), y+z=(-11+2), y—z=(3 —1).
The set of all vectors y in C, of the form
Y= (yl; '°°7yﬂ);

where y1, « -+, y» are all real numbers, is called real n-dimensional space,
and denoted by R.. If y, z are in R, then so are y + z, and cy for any real
number c.

* A convenient way of writing the bold-face y is to write y with a bar beneath it,
like ¥.
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The magnitude of a vector y, denoted by | y | , is defined by

[yl =lwnl+-+|y].
For example, in C; the vector y = (83 — 4, 1 +4) has the magnitude
| ¥ | = v/10 + V2. This magnitude has the nice properties that the magni-
tude of a complex number has, namely
(a) |y| 20,and |y | = 0 if and only if y = 0,
(b) |ey| = | c¢|| y|, for any complex number c,
() ly+z|=|yl+ Iz

The first two properties are obvious from the definition of | y |, and prop-

erty (c) follows from the corresponding property for complex numbers.
Indeed

ly+z|=|nn+z|+ < +|yn+ 2|
Syl +lal+ o +yal +|2a]

=|yl+]z].
From (b) and (c) it follows that
lyl=1z[l=s|y+z]. (4.1)
Indeed
lyl=Ily+z+(-2)|sS|y+z|+]|z],
and hence

lyl—lz|=ly+z]
for all y, z. Similarly
lz| - |yl =]y +z|

for all y, z, and these two inequalities imply (4.1).
We define the distance between y and ztobe | y — z | . It readily follows
from the properties (a), (b), (c) that the distance satisfies

(i) |y—2z|20, and|y—2z|=0 ifandonlyif y =z,
i) |ly—z|=|z-y],
(i) |ly—z|=|y—-w|+|w—2z].

Indeed (i), (ii) result from (a), (b) respectively, whereas (iii) follows from
(c) by replacing y, z there by y — wand w — z.

Using this distance we can define the concept of convergence of a se-
quence of vectors. We say that a sequence {yn}, (m = 1,2, ++-), converges
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(or tends) to a limit vector y, and write

Y=Y, (m— o),
if
|y — 3| >0, (m— =). (4.2)
If
Yn = (ylmr"'yynm); (m= 1'27"'),
and

y=(n -, yﬂ);
then (4.2) says that

| 9m — y1| + | y2m —ya] + <o+ 4+ | Yum — ¥a| =0, (m— ).
But this is true if, and only if,

| yim — 1| —0, (m— «),

| Yam — yn | =0,  (m— ).

Thus we see that a sequence of vectors {y.} tends to a limit vector y if,
and only if, for each k =1, .-+, n the sequence of complex numbers
{yim}, (m = 1,2, «++) tends to the complex number y,. It is this fact which
allows us to take over all results concerning limits of sequences of complex
numbers. Thus if

Yn—Y, Zm—2Z, (m— ®),
then

Ym +Zm—y + 2, (m— x),

An example of a convergent sequence of vectors in C; is furnished by
m-+1 1 )
ym:(T!'n_zé_z); (m=1;2;"')'
Clearly
Ymn—>y = (1: _i)i (m_) w)-

Now let us consider a function ¢ which is defined on some real interval

I and has values in C,. Thus to each z in I there is associated just one vec~
tor ¢(z) in C, which we may write as

b () = (d1(2), *++, $a(2)).
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Such functions are called vector-valued functions. For each such ¢ there are
associated n complex-valued functions ¢y, «+-, ¢» on I, the function ¢
is the one which associates with each z in I the k-th component of §(z).
The functions ¢y, + + +, ¢, are called the components of ¢, and we write

¢ = (¢1, ooo, ¢n).
An example in C; is given by

¢(x) = (o —1?), (0=z=s1). (4.3)
Here

¢i(z) =22 (0=<z2=1), and ¢o(zx) =z —12?, (0=<z2=1).

If ¢ is a vector-valued function defined on an interval I, we say that ¢
is continuous, or differentiable, on I if each of its components is. If ¢ is
differentiable on I we define its derivative ¢’ by

q” = (d’l’; ety ¢:.)
Thus the ¢ given by (4.3) is differentiableon0 £ z < 1, and
o'(2) = 22,1 — 32?), (0=z=1).

We define the tniegral of a continuous vector function ¢ which is de-
fined on an interval ¢ = # < d to be a vector

[x ¢(z) dz = (j:d é1(z) dz, -, f¢,,(x) dx),

i.e., the k-th component of the integral of ¢ is the integral of the k-th com-
ponent of ¢. The important inequality satisfied by the integral is

[ o@ a|s [e@an

The proof is easy since
/d on(x) dx

d d
< ji | $u(2) | dz + - +fc | én(z) | dz

qu;(x) dz -/c'dqsl(x) dx|+---+

= [ @ |+ o + 6@ T

=f|¢b(x) | de.
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As an example in C, the function ¢ in (4.3) has the integral

fol é(z) dz = (j: z? dz, /01 (x — iz?) dx)

_(_1_.1_ 1')
“\3’2 4/

and

1 5
st

‘f o(z) dz

EXERCISES

1. Suppose y, Z, w are the following vectors in Cj:
y=08+1¢3 -2), z=1(, —12), w=(2+101)

(a) Computey + z.
(b) Computey — z.
(¢) Show, for some number s, that w = z + s(y — 2).

2. If y, z, w are any vectors in C,, show that the following rules are valid:
@y+z=z+y b §+2)+wW=y+ (Z+W)
)y+0=y @y+(-y) =0

(Hint: These rules are valid for C..)

3. Foreachk, 1 < k < n, let ex be the vector with 1 asits k-th component and
0 for its other components. Thus

€ =(1,0,¢-,0), e2=(0:1)01"';0)7 ver, €, = (0,°°,0, 1).
(@) Ify = (y1, ***, yn) show that

Y =y1€1 + *** 4 Yaln.
(b) Show that
les| =1, (k =1,e,n).

4. Let ¢ be the vector-valued function defined for all real z by

o) = (z, &, izh).
Compute the following:

(a) &(1)
(b) ¢'(x), §'(2)

1
(c) g $(z) dz

@ Verifythat”:ﬂw)dw‘éf’ld’(x)ldx
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5. If ¢ is a continuously differentiable vector-valued function defined for real
z in an interval ¢ £ z < b, and the values of ¢ are in R, show that:
(a) ¢’ has values in R,

(b)f é(t) dtisin R, foreachz,a 2 < b

6. For eachy = (y1, ***, ya) in C, let
Uy Il = @ds + <+ + ynFn)*?,

the positive square root being understood. This is the Euclidean length of y
(a) Show that
Iyl = |yl s +v=llyll

Iyl syl s=llylP

Use the inequality 2 |a|[b]| = [a |2 + | b [2)
(b) Show that a sequence {ym}, (m = 1, 2, «++), of vectors in C, is such
that

(Hint: Show that

Iym—YI‘—’O; (m = =),
if and only if
lym =¥l =0, (m — =).

7. For any two vectorsy = (y1, ***, ¥n) 80d Z = (21, ***, 2,,) in C, define the
inner product y-Z to be the number given by

YZ =1yiZ1 + ¢ + Ynn

(a) Show thatz.y = (y-z).
(b) Show that (YI +y2)-z = (yrZ) + (Yz'Z).
(c) Show that if ¢ is & complex number

(cy)-z = c(y-2z) = y-(cz).

(d) Show that ||y [ = y-y.
(e) Prove that
ly-z| = llyllllzll.

This is called the Schwarz inequalily. (Hint: If Z = 0 the result is obvious.
Ifz «0letu =z/|[z]|. Then ||u || = 1. Use the fact that
ly - G-wul® 20)
8. Show that the Euclidean length satisfies the same rules as the magnitude,
namely:
G) ilyll 20,and ||y|| =0 ifandonlyify = 0,
) [leyll = lellly]l, for any complex number ¢,
(i) |ly +zIl =yl + 1z

(Hant: In terms of the inner product ||y |* = y-y. Use the Schwarz in-
equality of Ex. 7 (e).)
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5. Systems as vector equations

We return now to the first order system of equations

y; = fl(x; Yy, =, y");
y; = f2(x; Yy, * "7yﬂ);

(5.1)

yr: =fﬂ(x; Y, ¢»°, yn)

We assume that f, + -+, fa are given complex-valued functions defined for
Z, Y1, **, Yu in some set B, where zisreal and y, « + «, y» are complex. Using
the notations of Sec. 4 it is clear that we can consider f; as a function of
and the vector

y - (yl; ) o, yﬂ) in C".
Therefore we write

fl(x, Y) = fl(x) yl; ** yn)-

Also in (5.1) we have n functions fj, « -+, f» which may be considered as a
vector-valued function

f = (fl) °° °3fn)a
the value of f at (2, y) being given by

f(x; y) = (fl(x) y) y .t ';jﬂ(x: y))-
Y = (41, )
we see that the system (5.1) may now be written as
y =f(=,75). (5.2)

This vector differential equation has the same form as the equation ¥’ =
Sf(z,y) considered in Chap. 5.
As an example let us consider the system of two equations

If we let

¥y =2+ y% + y,,

Ya = 41 + Yo — Yy
Here y = (y1,¥2),
fi(z, ¥) = fi(z, 4, 42) = 2 + ¥} + sy

Jolz, ¥) = fo(Z, 1, ¥2) = 11 + Y2 — Y1y,
and thus

f(x,y) = (2 + ¥} + v, 41 + ¥, — Vi2).
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A solution of the system (5.2) may be described as a vector-valued fune-
tion

$ = (¢, ""°» $n)

which is differentiable on a real interval I and such that

(a) (z, ¢(z)) isin R, for z in I,

(b) ¢'(z) = f(z, $(x)), forall zin L.
Thus, for example, the system

=¥, Y= —Vn
has the vector-valued function ¢ given by
$(z) = (sin z, cos ), (—w <z< w®),

as a solution.

A vector-valued function f defined for (z,y) in some set 8 (z real,
y in C,) is said to be continuous on S if each of its components is con-
tinuous on 8.* The definition of a Lijgpschitz condition is formally the same
as before. We say that f satisfies g [ ipschitz condition on 8 if there exists
& constant K > 0 such that

| f(x,y) — f(z,2) | = K|y — z|

for all (z,y), (z,2) in 8. The cons#ant K is called a Lipschiiz conslani
for f on 8. For example, if

f(z,y) = 3z + 2y, 21 — ¥2) (5.3)
for

8:  Jzl<w, |¥]<w=,

then f satisfies a Lipschitz condition eon S with Lipschitz constant K = 3,
since

| f(z,¥) —=z,2) | = |2(p1—2) » (1 —21) = (y2— 29) |
=2|p—z| +l—2) — (y2—2) |
=2|ly—2z| tlyi—al+ly:—a]
=3y —z|.

The analogue of Thecrem 6, Chap, - 5 is the following result.

* See Sec. 3, Chap. 0, for the definition o©f continuity of complex-valued functions
defined on S.
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Theorem 1. Suppose £ is a vector-valued function defined for (x,y) on a
set S of the form

lz—m|=<a |y—W|=b (ab>0),
or of the form

lz—z|Sa, |y|<w», (a>0).
If of /oy, (k = 1, <+, n) exists, ts continuous on S, and there is a constant
K > 0 such that

= K, (=1, +,n), (54)

of

o (z,y)
for all (x,y) in S, then f satisfies a Lipschitz condition on S with Lipschitz
constant K.

Proof. The proof is a direct copy of the proof outlined in Sec. 9 of Chap.
5. Let (z,y), (z,z) be fixed points in S, and define the vector-valued
function F for reals,0 < s < 1, by

F(s) = f(z,z + s(y — 2)), (0=s=s1).

This is a well-defined function since the points (x,z + s(y - z)) arein S
for0 < s = 1. Clearly

|z — x| = aq,
and if

ly =Yl =b [z-W|=,
then
1z4+s(y—2) =%l =1 —28(2—y) +s(y —¥) |
=(1—-9)z—y|+s|ly— vl
= (1 —38)b-+ sb=nhb.
If|y] < »,|z] < o, then
lz+sy—2z2)| s (1 —s)fz|+s|yl =lz| +]|y]| < .

We now have
of
F@)=Wwm—2)—(z,z24+s(y—12)) +
ay1

of

o (z,2 + s(y — 7)),

see + (yn - zn)
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where y = (41, ***, Yn), Z = (2, *++, 2,). Using (5.4) we see that

|F'(s) | =K|y—2z|, (0=s=1).
Thus, since

f(z,3) — £z, 2) = K1) — K0) = [ "F(s) as,

we have
lf(xiy) —f(x,z) | éKly_z|;

which was to be proved.
In the example given in (5.3) we find that

of of
@:(x: y) - (2; 1); '6_y;(x’Y) = (0;_1)7

and

2 l laf ,
— (2, = 3, — (z, = 1.
6y1( y) ayz( y)

Thus, as we have seen directly, f satisfies a Lipschitz condition on S with a
Lipschitz constant K = 3.

EXERCISES

1. Let f be the vector-valued function defined on
R: |z[=1, |ylsl, (@inG),
by 2 2
f(x’ y) = (y2 + 11 z + yl)
(a) Find an upper bound M for | f(z, y) | for (z,y) in E.
(b) Compute a Lipschitz constant K for f on R.

2. Consider the system of two equations
y{ = oy + byzs

ys = ch + dys,

where a, b, ¢, d are constants.
(a) If this system is written in the form

y =1z, y),
what is £?

(b) Show that the f of (a) satisfies a Lipschitz condition for all (z, y) wheie
z is real and y is in C,.

(c) Show that the f of (a) is linear in y, that is,

f(xi oy + ﬁZ) = af(x: Y) + Bf(x; Z),
for all real z, complex numbers e, 8, and all y, z in C,.
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3. Find a solution & of the system

Y1 =y,
Y2 = Y1 + Ys,
which satisfies $(0) = (1, 2).
4. Find a solution ¢ of the system
y1 = Yz,
Y2 = 6y1 + ¥,
satisfying ¢(0) = (1, -1).
5. Find a solution ¢ of the system
y1 = 41 + vz,
Y2 = ¥1 + 2 + €,
satisfying ¢(0) = (0, 0). (Hint: Let z = y1 + ya2.)
6. Let f be a vector-valued function defined for (z, ¥) in a set 8, with z real,

yin C,.
(a) Show that f is continuous at a point (zo, yo) in S if, and only if,

If(z; y) —-f(xo, yO)l '—’0’
as
O0<|z-—m|+1y -Yl—>0

(b) Show that f satisfies a Lipschitz condition in S if, and only if, each
component of f satisfies & Lipschitz condition in S.

6. Existence and uniqueness of solutions of systems

Let f be a continuous vector-valued function defined on
R: Ix—xolga, ‘y_y0'§b7 (a;b>0)-
An initial value problem

y =f(z,y), ¥(@) =¥, (6.1)
is the problem of finding a solution ¢ of y¥ = f(z, y) on an interval I con-
taining o such that ¢(zy) = yo. If

Yo = (041, cee, an),
the problem (6.1) written out becomes
Yy = [z, 41, -+ Un),

yr: = fﬂ(x; Y, ***, yﬂ)’
yl(xo) =a, **°, yn(on = Olme
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If f is continuous on R the problem (6.1) always has a solution on some
interval containing x,. If, in addition, f satisfies a Lipschitz condition on &,
this fact may be demonstrated exactly as in Chap. 5 by introducing the
successive approrimations ¢g, ¢y, +++, Where

4’0(37) = Yo,

: (62)
() =yo+ [ 16 @@ d,  (k=0,1,2,--).

As an example, let us consider the problem
Y1 = Yo,
Yy = =y,
y(0) = (0, 1).
Here f(x,y) = (y2, —1), and
do(z) = (0, 1),

M@=&U+[@ma=mm

M@=&D+[mﬂwt

= (0,1) + (x, —%2) = (x, 1 - %2),

da(z) = (0, 1) +[:(1_t§2:_t)dt=(x—§-;,1_z_2)

It is not too difficult to show that all the ¢, exist for all real z, and that
o (z) — $(x) = (sin z, cos z),

where ¢ is the solution of the problem.
We summarize the main results for systems.

Theorem 2. (Local existence) Let £ be a continuous vector-valued function
defined on

R: Ix_x‘)‘éa; ly_yoléby (a;b>0)7

and suppose f salisfies a Lipschitz condition on R. If M is a constant such
that
[z, y) | =M

Jor all (x,y) in R, the successive approximations {¢}, (k =0,1,2, ),
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given by (6.2) converge on the interval
I: |z — x| £ @ = minimum {a, b/M},
to a solution ¢ of the initial value problem

yl = f(x; y); Y(zo) = Yo,
on 1.
The proof is the same as that of Theorems 5 and 7 of Chap. 5, with y,
f, ¢ replaced everywhere by y, £, .
Theorem 3. Iff satisfies the same conditions as in Theorem 2, and K s a
Lipschitz constant for f in R, then
M (Ka)k+

| §(z) — du(z) | = Eml

for all x in 1.

This is the analogue of Theorem 8 of Chap. 5, and the proof is the same.
The analogues of Theorem 9, Chap. 5, and its corollary are the following
results.

Theorem 4. (Non-local existence) Let £ be a continuous vector-valued
function defined on
S: Ix—xoléa, ‘Y|<°°; (a>0)7

and satisfy there a Lipschitz condition. Then the successive approximations
{dr} for the problem

y =1y, y@)=y  (yn]|<x),

extston | x — Xo | = a, and converge there to a solution ¢ of this problem.

Corollary. Suppose £ is a continuous vector-valued function defined on
|z| <o, |y]< e,
and salisfies a Lipschilz condition on each ‘‘strip”
|z|=a, |¥] <,
where & 18 any posilive number. Then every initial value problem
y =1(z,y), y(@) =,
has a solution which exists for all real x.

The proofs carry over directly from those for Theorem 9 and its corol-
lary in Chap. &.
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Theorem 5. (Approximation and uniqueness) Let £, g be two continuous
vector-valued functions defined on

R: I:c—xoléa, ly_YOléb, (a;b>0);

and suppose £ salisfies a Lipschitz condition on R with Lipschitz constant K.
Suppose ¢, ¢ are solutions of the problems

y =f(z,y), y(x0) =y,
y, = g(xl Y): Y(xﬂ) = Yo,

respeclively, on some interval 1 containing xo. If for ¢, 8 = 0

| f(z,y) — g(z,¥) | =¢  (all (z,5) in R),
and
lyl i £ l = 5:
then

| (z) — d(z) | S seXi=—=l +§ (eKlz—=ol — 1)

for all x in 1. In particular, the problem
y =1z75), y@) =1y,
has at most one solution on any interval containing x,.

This is the analogue of Theorem 10, Chap. 5, and the Corollary 1 to this
result. The proof carries over directly.

EXERCISES

1. Consider the initial value problem
i =¥z + 1,
¥z = 1,
v1(0) = 0,  .(0) = 0.
(a) If this problem is denoted by

yl = f(x) y)) Y(O) = Yo,

what are f and y,?
(b) Show that the f of (a) satisfies the conditions of Theorem 2 on

R: Jz|=1 |y|s1l

Compute a bound M, a Lipschitz constant X, and an a.
(¢) Compute the first three successive approximations dw, &1, ¢2.
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2. Consider the system
1 = 3u1 + 2y,
Y2 = Y2 + 2y,
¥s = 251 — Yo + €W

Show that every initial value problem for this system has a unique solution
which exists for all real z.

3. Suppose ¥, is a vector in R, and the function f considered in Theorem 2 has
values in R, for (z, ¥) such that y is in R,. Show that each of the successive
approximations ¢ has values in R,, and hence that the solution ¢ of

y =f@,y), ¥ =y

on I has values in R,.Thus, if ¢ = (¢, *+, ¢,), the functions ¢y, ** +, ¢, are real-
valued. (Note: If the above conditions hold it is sufficient, in Theorem 2, to
consider f defined on that part of R with y in R,, and to require f to be con-
tinuous, satisfy |f(z, y)| £ M, and satisfy a Lipschitz condition on that
part of E. Similar statements are valid for the other theorems and corollaries
in this and the preceding section.)

4. Consider the system
!

Y1 =% + ey

i

Yz = €1 + Y,

where ¢ is a positive constant.
(a) Show that every solution exists for all real x.
(b) Let ¢ be the solution satisfying $(0) = (1, —1), and let ¢ be the solu-
tion of

v1 = y; = U2
satisfying ¢(0) = (1, —1). Without solving the original system show that
[ () — ¢@=) | -0, (e —0),

for each real z.
(¢) Find all solutions of the original system. (Hint: If ¢ is a solution show
that x(z) = e “d(z) satisfies

2 = e, 23 = €z.)
(d) Find the solutions ¢ and ¢ of (b), and verify the conclusions in (b).

5. Show that all solutions with values in R, of the following system exist for
all real z:

y1 = a(z) cos y1 + b(z) sin ya,

y: = ¢(@) sin y1 + d(z) cos y,

where @, b, ¢, d are polynomials with real coefficients. (Hint: See the Note in
Exercise 3.)



Sec. 7 Existence and Uniqueness of Solutions to Systems 255

6. Prove Theorem 2.
7. Prove Theorem 4.

8. Show that the following modification of Theorem 4 is valid: Let f be a
continuous vector-valued function defined on

S: |z —z0| S0, |¥] < », (@>0),
and satisfy there a Lipschitz condition. The initial value problem

y = f(x’ Y) y(@1) = Yo,

where |21 — %o | < @, |Yo| < «, has a solution ¢ on |z — =z | < a, which
can be obtained as the limit of the successive approximations {¢.}. (Hint:
Consider the two intervals zp — ¢ <z < z1and z; < ¢ < zy 4 o separately.)

9. Show that the solution ¢ of Ex. 8 is unique.

7. Existence and uniqueness for linear systems

As an important application of the results of Sec. 5 we consider the case
of a linear system. This is a system

yl = f(x) Y)’
where the components fi, « «+, f, of f have the form

Ni(z,y) = an(x)n + an(@)ye + + - + an(x)y + bi(z),
(7.1)

fa(z, ¥) = am(x)y1 + @ma(x)ys + <<+ 4 ana(2)yn + ba(2).

Here the ayp, *++, @nn, by, +++, b, are complex-valued functions defined for
real z in some interval I. If all the a;; are continuous on an interval
|2 — 2z | = a, where a > 0, then the corresponding vector-valued func-
tion f satisfies a Lipschitz condition on the “strip”’

§: Je—m|=q |y|<e.

This can be seen directly, or we can invoke Theorem 1. Let K be any posi-
tive constant such that

ila,-k(:c) 1SK, (k=1 1),

for all x satisfying | # — 20| = a. Then from (7.1) we see that

f n
-a-‘?— (&7 | = | (@), -+, i) | = 2 as(a) | S
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Hence, by Theorem 1, f satisfies a Lipschitz condition on 8 witk a Lip-
schitz constant K. Theorems 4 and 5 are thus applicable to a linear system,
and we have the following result.

Theorem 6. Consider a linear system
y' = f(x’ y) )

where the components of f are given by

Ji(z, Y) =kEl a.ik(x)yk -+ bi(x)s (j = 1, ""n);
and the functions a;, b; are continuous on an interval I containing xo. If yo
is any vector in C, there exisis one, and only one, solution & of the problem

y = f(x’ y)’ Y(xo) = Yo,
on 1.

Actually the existence Theorem 4 only applies in case I consists of all
z satisfying | # — 2o | < afor some a > 0. However the proof of Theorem 4
applies in case this interval is replaced there by any interval I of the form
a = z < B containing 2, On such an interval the successive approximations
will converge to a solution of the initial value problem, which is unique by
Theorem 5. We can then apply this modification of Theorem 4 to prove
Theorem 6 in case I is any interval, containing xo, on which the aj, b; are
continuous. In particular, the interval I may be infinite in length.

EXERCISES

1. Show that if the functions e and b; in Theorem 6 are real-valued on I,
and the initial vector y, isin R,, then the solution ¢ has values in R,.

2. The linear system
, n
yi = 2 aa@um,  (F =1+, n), *)
k=1
with ¢ continuous on some interval I, is called a homogeneous linear system.

{a) Show that the function ¢, defined by {(z) = O for all zin I, is a solu-
tion of the system (*). This is called the trivial solutzon.

(b) Let K be a positive constant such that

_Z;;laik(x)l <K, (b=1,¢-,2),
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for all zin I. If ¢ is any solution of (*), and =, is any point in I, show that

| lx) | = | d(xo) | eXl=l,

for all x in I. (Hint: Use Theorem 5.)
(») Let ¢, {2 be two solutions of the system

yi = ,§ an@ye + bi@),  (F =1, ¢2,m),

on I. Show that ¢ = {1 — 2 is a solution of (*) on I.

3. Consider the linear system

y1 = ayr + byy,

yz = cyr + dyz,

where g, b, ¢, d are constants.
(a) Show that this system always has a solution ¢ of the form

$(@) = e,

where @ = (o, @2) > (0, 0) is a constant vector, and r is a constant,
(b) Show that the r of (a) must satisfy

a—7r b
= .

c d-—r»r
(¢) Compute a solution of the system
y1 = 3y1-+ 4y,
Y2 = 51 + 6ya

4. Consider the system
y{ = ay1 + by,

Y2 = —byn + ays,

where ¢, b are real constants.
(a) If @ = (¢1, P2) is any solution with values in R; show that

1) | = || $(0) || e,
6@ || = [bi) + $2@@)IM.
(b) Verify that the solution satisfying $(0) = (1, 0) is given by
é(z) = €** (cos bz, — sin bz).

where

(c) For the case a = —1,b = 1, plot the curve in the (y1, y2)-plane given
by the solution in (b), namely the curve

Y1 = €%cosz, Ya = —€ *sin z, (—o <z < =),
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Also plot the curves corresponding to the cases @ = 0,b = l,anda = —1,
b = 0in (b).

B. Consider the system
y1 = ay1 + by,

(*)

y; = cy1 + dy‘-’)
where a, b, ¢, d are constants.

(a) If ¢ = (¢1, P2) is any solution show that ¢y and ¢, satisfy the second-
order equation

v/ — (@ +d)y + (ad — be)y = 0. (**)

(b) Compute the characteristic polynomial p of the equation (**). Compare
this with Ex. 3 (b).

(¢) Find all solutions of (**). Consider separately the cases when p has
unequal, or equal, roots.

(d) Find all solutions of (*), by using (a), (b), (¢).
(e) Find all solutions of

y{ - 4?/1 - 31/2)
Yy = 251 — ¥
8. Suppose ¢, ¢ are two solutions of the system (*) in Ex. 5. Show that

% = ad + B is also a solution, for any two complex numbers , 8.

8. Equations of order n

An n-th order equation
y™ =f(@, 9,y 2o,y (8.1)
may be viewed as a system of n equations of the first order. Indeed, if
N=y Y=y, o Y =y",
we may associate with the equation (8.1) the first order systen
Y1 = Yz,

'
Y = Ys,

. (8.2)

’
yn—l = y"'

ys: = f(2, 41, ***, Un).
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This has the form y' = f(z, y) provided welety = (1, «+ -, ¥») and
fl(x’ Yy ° yu) = Y2
Ja(Z, 41, 0, Yn) = U3,

(8.3)

Faa(2, 4ty <= *5 Yn) = Yny
Ja(@y 41y o ooy yn) = S(2, 41, =2, Yn).
Moreover if ¢ is a solution of (8.1) then the vector
é = (¢, ¢ +++, )
is a solution of (8.2). Conversely if
& = (¢1, ***, én)

is a solution of (8.2) the first component ¢, is a solution of (8.1), since we
have

¢; = ¢, ¢:' = ¢; =3 °°° ¢§u—l) = ¢ny
¢ (2) = (%) = S(, $1(x), $,(%), +++, ${"V(x)).
1t is thus clear that all results proved for first order systems may be applied
to give results for n-th order equations of the type (8.1). In particular we
have the following existence and uniqueness result.
Theorem 7. Let f be a complex-valued continuous function defined on
R: Ix_xoléa’ Iy_y0|§b1 (a’b>0))

such that
| f(z,¥) | =N

Jor all (x,y) in R. Suppose there extsts a constant L > 0 such that
|f(x3Y) "f(x’z) l = Lly_ Zl
Jor all (x,y) and (x, Z) tn R. Then there extsts one, and only one, solution ¢ of

y(n) = f(x’ Y, y’a “*y y(”—n)
on the tnlerval

I:  |z— 2| <min {a,b/M}, M=N+b+|%wnl),
which salisfies
¢(m) = a1, ¢'(X) =0z -, ¢ V() = an,

(yo = ((21, "t aﬂ))-
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Proof. Consider the system y’ = f(z, y) with the components of £ given
by (8.3). Then

£z, 9) | = lwa| +ys|+ oo + 19| + (=, 9) |

S|yl+I[fzy)| =¥l +bd+N,
since
|¥| =¥ | =|y— Y| = b

It is clear that f is continuous on R, and
| £(z,7) — f(z,2) | = |y — 22| + ==+ + |40 — 24|
+ [ f(z,¥) — f(=z,2) |
=|ly—-z|+L|ly—z|
=(1+L)|y—z|.

Thus f satisfies a Lipschitz condition on £ with Lipschitz constant K =
1 + L. We can now apply Theorems 2 and 5 to this system, and the first
component of the vector solution is the solution required.

For linear equations of order n we have non-local existence.

Theorem 8. Let 84, +++,a,, b be continuous complex-valued functions
on an inlerval 1 conlaining a point Xo. If oy, -+, an are any n constants, there
exists one, and only one, solution ¢ of the equation

Y™ + ar(2)y™ D + oo + an(x)y = b(2)
on 1 satisfying
¢(m) = a1, ¢'(%0) = <o+, ¢ V(m) = an.

Proof. Let yo = (cu, <+ +. o), and consider the linear system

’
Y1 = Yo
y; = Ys,
' [ ]
yu—l = y'l’

3/-1: == an(x)yl — Qua(Z)Ys — *o° — al(x)y,. + b(zx).

According to Theorem 6 there is a unique solution ¢ = (¢y, **+, $a) of
this system on I satisfying

¢1($o) = oy, ¢z($o) = Qg *°*°, Pa(Z0) = an.
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But since
G2 =1, B3 =y =1, cce, ¢ = ${*Y,

the function ¢, is the required solution on 1.
Note that Theorem 8 includes Theorem 1 of Chapter 3.

EXERCISES

1. Consider the second order equation
¥’ + ey’ + ay =0, *)

where a;, a; are constants.
(a) What system of the first order is equivalent to this equation?
(b) If the system 1n (a) 1s denoted by

y =1G,y), **)
show that £ satisfies a Lipschitz condition on the set
8: [z]< o, |¥]< =
(c) Show that a Lipschitz constant for f on S can be chosen to be
K =14 |(11| -I-Iagl.

(d) Let ¢ be any solution of (*). Then ¢ = (¢, ¢’) is a solution of (**). Show
that if zo is any real number then

[$@) | < | dwo) | eXlz—=l,
(Compare this with Theorem 3, Chap. 2.)
2. Consider the linear equation
¥™ + ey + o0+ aal®)y = 0,

where a,, *+*, a, are continuous functions on some interval I. Suppose there
are non-negative constants by, *++, b, such that

lai@) | b5, (§=1,-2,mn)
for all z1n I. If ¢ i1s any solution of this equation on I, and
d =@ ¢, ¢"D),

show that

| $@) | s | o) | eXl===l,  (all zin D),
where x is a fixed point in 7, and

K=1+b 4+ + b,

(Compare this with Theorem 2, Chap. 3.)
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3. Show that all real-valued solutions of the equation
y"’ +siny = b(z),
where b i1s continuous for — » < £ < «, exist for all real z,

4. Let ¢, g, vo, a be positive constants. Consider the two systems

7 7
Yy = —€y,
2" = - ~ EZ',
and
y” = 07
"o
2 = -y,

each with initial conditions

y(0) = 2(0) =0, ¥'(0) = v cosa, 2z'(0) = vsin c.

Chap. 6

*

**)

(a) Determine first order systems (of four equations) which are equivalent
to the problems (*) and (**). Show that each of these has a unique solution

which exists for all real z.

(b) By solving the systems show that the respective solutions ¢ and

satisfy
| () - ¢(z)| -0, ¢ —0.
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