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Arc length and curvature
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The Arc Length Formula If /' is continuous on [a. b]. then the length of the

curve y = f(x),a=< x = b, 1s

L= Lb\/l + [ (%] dx
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5| Theorem If a curve C is described by the parametric equations x = £(¢),
v=g(t). « = t= . where " and g’ are continuous on [a. 8] and C is traversed
exactly once as ¢ increases from « to 3, then the length of C'is

L= \(%) + (%) g
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FIGURE 1

The length of a space curve is defined in exactly the same way (see Figure 1). Suppose
that the curve has the vector equation r(¢) = ( £(¢). g(¢). h(z)). a = t < b. or. equivalently.
the parametric equations x = f(¢), y = g(¢), z = h(t), where ', g', and i’ are continuous. If
the curve is traversed exactly once as rincreases from a to b. then it can be shown that its

length 1s
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3 L=r|r’(a‘)|dr

Parametrization of a curve with respect to the arc length

Now we suppose that C is a curve given by a vector function

I

r()) = ()i + g(0)j + MOk ast=s>h

where r’ is continuous and C is traversed exactly once as ¢ increases from a to b. We define
its arc length function s by

o [ldx\*  [dy\*  [dz\?
¢ , [V Z
6] s =['Irw]du= | \(d—) + (d—) + (d) N

Thus s(¢) 1s the length of the part of C between r(a) and r(¢). (See Figure 3.) If we differ-

entiate both sides of Equation 6 using Part 1 of the Fundamental Theorem of Calculus. we
obtain

ds ,
7 | N E—|l‘(f)|
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It 1s often useful to parametrize a curve with respect to arc length because arc length
arises naturally from the shape of the curve and does not depend on a particular coordinate
system. If a curve r(¢) is already given in terms of a parameter ¢ and s(¢) 1s the arc length
function given by Equation 6. then we may be able to solve for ras a function of s: t = (s).
Then the curve can be reparametrized in terms of s by substituting for ¢ r = r(#(s)). Thus,

if s = 3 for instance, r(#(3)) is the position vector of the point 3 units of length along the
curve from its starting point.

13-14 Reparametrize the curve with respect to arc length mea-
sured from the point where ¢+ = 0 in the direction of increasing t.

B.r(g=2¢i+(1 —39)j +(5+4nk

14. r(1) = ecos 2ti+ 2j + e*'sin2¢k
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FIGURE 4

Unit tangent vectors at equally spaced
points on C
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A parametrization r(f) is called smooth on an interval /if r' is continuous and r'(f) 7= 0
on [. A curve is called smooth if it has a smooth parametrization. A smooth curve has no
sharp corners or cusps; when the tangent vector turns. it does so continuously.
If C is a smooth curve defined by the vector function r, recall that the unit tangent vec-
tor T(¢) is given by
T(f) = '
|r'(0) |

and indicates the direction of the curve. From Figure 4 you can see that T(#) changes direc-
tion very slowly when C is fairly straight, but it changes direction more quickly when C
bends or twists more sharply.

The curvature of C at a given point is a measure of how quickly the curve changes direc-
tion at that point. Specifically. we define it to be the magnitude of the rate of change of the
unit tangent vector with respect to arc length. (We use arc length so that the curvature will
be independent of the parametrization.)

Definition The curvature of a curve is

dar
ds

K:

where T is the unit tangent vector.
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Theorem The curvature of the curve given by the vector function r is

') x "0
x(r} = |r’(t‘) |3

1w
il X = T (PP

We can think of the normal vector as indicating

the direction in which the curve is turning at
each point.

THE NORMAL AND BINORMAL VECTORS

FIGURE 6
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At any point where x # 0 we can define the
principal unit normal vector N(¢) (or simply unit normal) as

The vector B(7) = T(#) X N(¢) is called the binormal vector. It is perpendicular to both T
and N and is also a unit vector.

3008 Find the unit normal and binormal vectors for the circular helix

r(f) = cos ti + sintj + tk

-1 \x\ Figure 7 illustrates Example 6 by showing the
“\*HT vectors T, N, and B at two locations on the
% helix. In general, the vectors T, N, and B, start-
P—\ ing at the various points on a curve, form a set
N "I p of orthogonal vectors, called the TNB frame,
| / = that moves along the curve as ¢varies. This
B ,'fr T TNB frame plays an important role in the
— branch of mathematics known as differential
N ! geometry and in its applications to the motion
/ of spacecraft.
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Motion in Space: Velocity and Acceleration

Suppose a particle moves through space so that its position vector at time ¢ is r(f). Notice

- + Iy — ;
=4 L Ul ek U) from Figure 1 that, for small values of /1, the vector

r'(t) Qll" r(t + h) — ()

m h

approximates the direction of the particle moving along the curve r(#). Its magnitude mea-
sures the size of the displacement vector per unit time. The vector [1] gives the average

y - velocity over a time interval of length 4 and its limit is the velocity vector v({) at time ¢:
o) S
T
/ ¥ et -0
x (2] v(f) = %1_1}1% - =r'(t)
FIGURE 1
) ds : . . .
The speed = | v(z)| = |r'(z) | = — = mate of change of distance with respect to time
3

As in the case of one-dimensional motion, the acceleration of the particle is defined as the
derivative of the velocity:

alt) =v'() =1r"(0
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