DEPARTMENT OF MATHEMATICS, IIT - GUWAHATI

Odd Semester of the Academic Year 2021-2022
MA 101 Mathematics I

Problem Sheet 5: Line integrals, Multiple integrals and applications, Green's Theorem,
 Stokes Theorem and Divergence Theorem.
 Instructors: Dr. J. C. Kalita and Dr. S. Upadhyay

1. Calculate the line integral of the vector field along the path described:
(a) $f(x, y)=\left(x^{2}+y^{2}\right) \mathbf{i}+\left(x^{2}-y^{2}\right) \mathbf{j}$ from $(0,0)$ to $(2,0)$ along the curve $y=1-|1-x|$
(b) $f(x, y, z)=2 x y \mathbf{i}+\left(x^{2}+z\right) \mathbf{j}+(y+z) \mathbf{k}$ from $(1,0,2)$ to $(3,4,1)$ along a line segment
(c) $f(x, y, z)=x \mathbf{i}+y \mathbf{j}+(x z-y) \mathbf{k}$, along the path described by $\alpha(t)=t^{2} \mathbf{i}+2 t \mathbf{j}+4 t^{3} \mathbf{k}, 0 \leq t \leq 1$.
2. Find the line integral of $f(x, y, z)=z$ with respect to arc length of the curve given by $\mathbf{r}(t)=(t \cos t) \mathbf{i}+(t \sin t) \mathbf{j}+(t) \mathbf{k}, 0 \leq t \leq 1$.
3. For each of the following vector fields show that f is not a gradient vector in \mathbf{R}^{2}. Then for each of the following find a closed path C such that $\oint_{C} f \neq 0$ and if possible find a closed path C such that $\oint_{C} f=0$.
(a) $f(x, y)=y \mathbf{i}-x \mathbf{j}$
(b) $f(x, y)=\frac{y}{\left(x^{2}+y^{2}\right)} \mathbf{i}-\frac{x}{\left(x^{2}+y^{2}\right)} \mathbf{j}$, for $(x, y) \neq(0,0)$.
4. Show that each of the following functions F is a gradient vector and find an f for each F such that $F=\nabla f$.
(a) $F(x, y)=3 x^{2} y \mathbf{i}+x^{3} \mathbf{j}$
(b) $F(x, y)=(\sin y-y \sin x+x) \mathbf{i}+(\cos x+x \cos y+y) \mathbf{j}$.
5. Use Green's theorem to evaluate the line integral along the given positively oriented curve:
(a) $\int_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos y^{2}\right) d y, C$ is the boundary of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$
(b) $\int_{C} x y d x+2 x^{2} d y, C$ consists of the line segment from $(-2,0)$ to $(2,0)$ and top half of the circle $x^{2}+y^{2}=4$.
6. Use Green's theorem to find out the work done by the force $\mathbf{F}(x, y)=x(x+y) \mathbf{i}+x y^{2} \mathbf{j}$ in moving a particle from the origin along x-axis to $(1,0)$ and then along the line segment to $(0,1)$, and then back to the origin along y-axis.
7. Let D be a region bounded by a simple closed path C in the $x y$-plane. Use Green's theorem to prove that the coordinates of the centroid (\bar{x}, \bar{y}) of D are

$$
\bar{x}=\frac{1}{2 A} \oint x^{2} d y, \quad \bar{y}=-\frac{1}{2 A} \oint y^{2} d x \text { where } A \text { is the area of } D
$$

8. If $\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}$ and $r=|\mathbf{r}|$, let

$$
f(x, y)=\frac{\partial(\log r)}{\partial y} \mathbf{i}-\frac{\partial(\log r)}{\partial x} \mathbf{j}
$$

for $r>0$.
Let C be a smooth simple closed curve in the annulus $1<x^{2}+y^{2}<25$, then find all possible values of the line integral of f along C.

9. The exercise demonstrates a connection between curl vector and rotations. Let \mathbf{B} be a rigid body rotating about z-axis. The rotation can be described by the vector $\mathbf{w}=\omega \mathbf{k}$, where ω is the angular speed of \mathbf{B}, that is, the tangential speed at any point P in B divided by the distance d from the axis of rotation. Let $\mathbf{r}=<x, y, z>$ be the position vector of P.
(a) By considering the angle θ in the figure, show that the velocity field of B is given by $\mathbf{v}=\mathbf{w} \times \mathbf{r}$
(b) Show that $\mathbf{v}=-\omega y \mathbf{i}+\omega x \mathbf{j}$
(c) Show that $\nabla \times \mathbf{v}=2 \mathbf{w}$.
10. Use Stokes' Theorem to evaluate
(a) $\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}$ where $\mathbf{F}=x y z \mathbf{i}+x y \mathbf{j}+x^{2} y z \mathbf{k}$ and S consists of the top and the four sides (but not the bottom) of the cube with vertices $(\pm 1, \pm 1, \pm 1)$, oriented outward
(b) $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=2 z \mathbf{i}+4 x \mathbf{j}+5 y \mathbf{k}$ and C is the curve of intersection of the plane $z=x+4$ and the cylinder $x^{2}+y^{2}=4$.
11. Calculate the work done by the force field

$$
\mathbf{F}(x, y, z)=\left(x^{x}+z^{2}\right) \mathbf{i}+\left(y^{y}+x^{2}\right) \mathbf{j}+\left(z^{z}+y^{2}\right) \mathbf{k}
$$

when a particle moves under its influence around the edge of the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies in the first octant, in a counterclockwise direction as viewed from above.
12. Let S be the surface of the solid cylinder T bounded by the planes $z=0$ and $z=3$ and the cylinder $x^{2}+y^{2}=4$. Calculate the outward flux $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$ given $\mathbf{F}(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)(x \mathbf{i}+y \mathbf{j}+z \mathbf{k})$.
13. Use Divergence Theorem to evaluate $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$ where

$$
\mathbf{F}(x, y, z)=z^{2} x \mathbf{i}+\left(\frac{1}{3} y^{3}+\tan z\right) \mathbf{j}+\left(x^{2} z+y^{2}\right) \mathbf{k}
$$

and S is the top half of the sphere $x^{2}+y^{2}+z^{2}=1$.

