## Pressure distribution in a fluid:

$\checkmark$ There are many instances where the fluid is in stationary condition. That is the movement of liquid (or gas) is not involved.
$\checkmark$ Yet, we have to solve some engineering problems involving stationary liquids (similar to what you have studied in statics of the course Engineering Mechanics).
$\checkmark$ The condition of fluid, for such case is termed as hydrostatic.
$\checkmark$ Recall, a fluid at rest cannot resist shear.
$\checkmark$ Therefore, the normal stress on any plane through a fluid element at rest is called fluid pressure, p. (Recall you have studied normal stress \& shear stress in Solid Mechanics course).
$\checkmark$ This normal stress, when fluid is at rest, is taken positive for compression (conventionally taken through \& across various course).
$\checkmark$ To describe about this pressure, let us describe through equilibrium of forced in a small wedge of fluid at rest. ( again recall principles of statics)

$\checkmark$ For a body in static condition you should satisfy

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{x}}=0 \\
& \sum \mathrm{~F}_{\mathrm{y}}=0 \\
& \sum \mathrm{~F}_{\mathrm{z}}=0
\end{aligned}
$$

$\checkmark$ The above fluid element is also in static equilibrium.
$\checkmark$ As this element is isolated from its surroundings, we need to incorporate corresponding forces (Free body diagram).
$\checkmark$ By convention the compressive forces may be acting on the wall of the fluid element, i.e., forces act into the plane in respective directions.
$\checkmark$ Let $p_{x}$ be the force per unit area acting on the plane $b \Delta z$.
$\checkmark$ Let $p_{z}$ be the force per unit area acting on the plane $b \Delta x$.
$\checkmark$ Let $p_{y}$ be the force per unit area acting on the plane $\Delta x \Delta z$.
$\checkmark$ Let $p_{s}$ be the force per unit area acting on the plane $b \Delta s$.

For $\sum F_{x}=0$;

$$
\begin{equation*}
p_{x} b \Delta z-p_{s} b \Delta s \sin \theta=0 \tag{1}
\end{equation*}
$$

For $\sum F_{z}=0$;

$$
\begin{equation*}
p_{z} b \Delta x-p_{s} b \Delta s \cos \theta-\frac{1}{2} \rho g \Delta x \Delta z b=0 . \tag{2}
\end{equation*}
$$

For $\sum F_{y}=0$;

$$
\begin{equation*}
-\frac{1}{2} p_{y} \Delta x \Delta z+\frac{1}{2} p_{y} \Delta x \Delta z=0 . \tag{3}
\end{equation*}
$$

From (1),

$$
\begin{aligned}
& p_{x} b \Delta z-p_{s} b \Delta s \sin \theta=0 \\
& p_{x} b \Delta z=p_{s} b \Delta z \\
& p_{x}=p_{s}
\end{aligned}
$$

From (2),

$$
\begin{aligned}
& p_{z} b \Delta x-p_{s} b \Delta x-\frac{1}{2} \rho g \Delta x \Delta z b=0 \\
& p_{z}=p_{s}+\frac{1}{2} \rho g \Delta z
\end{aligned}
$$

For $\operatorname{limit}(\Delta \mathrm{z} \rightarrow 0 ; \Delta \mathrm{x} \rightarrow 0) \quad \mathrm{p}_{\mathrm{z}} \rightarrow \mathrm{p}_{\mathrm{s}}$

So, $\mathrm{p}_{\mathrm{z}}=\mathrm{p}_{\mathrm{s}}=\mathrm{p}_{\mathrm{x}}=\mathrm{p}_{\mathrm{y}}=\mathrm{p}=$ pressure

At a static point, pressure is a scalar property without any orientation. $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$

## Pressure force on fluid element:

Due to pressure, forces act on the respective plane of interest.
Let us consider a rectangular elemental prism of volume $\Delta x \Delta y \Delta z$


Net $x$ force on an element due to pressure variation
(Source: Fluid Mechanics by F.M. White)
$\checkmark$ Force due to pressure is called pressure force.
$\checkmark$ At any mathematical point pressure is described as $\mathrm{p}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$ as it is a scalar quantity.
$\checkmark$ Therefore, let us suggest that in $x$ direction there are two planes normal.
$\checkmark$ On the left plane, let p be the pressure.
$\checkmark$ On the right plane, pressure will be $p+\frac{\partial p}{\partial x} \Delta x$
So, net force due to pressure acting in the x direction will be:

$$
\begin{aligned}
\Delta F_{p x} & =p \Delta y \Delta z-\left(p+\frac{\partial p}{\partial x} \Delta x\right) \Delta \mathrm{y} \Delta \mathrm{z} \\
& =-\frac{\partial p}{\partial x} \Delta x \Delta y \Delta z
\end{aligned}
$$

Similarly, net force in y direction:

$$
\Delta F_{p y}=-\frac{\partial p}{\partial y} \Delta x \Delta \mathrm{y} \Delta \mathrm{z}
$$

Similarly, net force in z direction due to pressure

$$
\Delta F_{p z}=-\frac{\partial p}{\partial z} \Delta x \Delta \mathrm{y} \Delta \mathrm{z}
$$

Force is a vector \& the net pressure force is given by,

$$
\begin{aligned}
& \overrightarrow{\Delta F}_{p}=\Delta F_{p x} \hat{i}+\Delta F_{p y} \hat{j}+\Delta F_{p z} \hat{k} \\
& \quad=\left[-\frac{\partial p}{\partial x} \hat{\mathrm{i}}--\frac{\partial p}{\partial y} \hat{\mathrm{j}}-\frac{\partial p}{\partial z} \hat{\mathrm{k}}\right] \Delta x \Delta y \Delta z
\end{aligned}
$$

As the volume $\Delta x \Delta y \Delta z$ is arbitrary \& choosen by us, the net pressure force per unit volume

$$
\begin{aligned}
\vec{f}_{p} & =\left[-\frac{\partial p}{\partial x} \hat{\mathrm{i}}--\frac{\partial p}{\partial y} \hat{\mathrm{j}}-\frac{\partial p}{\partial z} \hat{\mathrm{k}}\right] \\
& =\nabla p \\
& =\text { gradient of pressure }
\end{aligned}
$$

i.e., it is the gradient of pressure that cause force in the fluid.

## Gage Pressure \& Vacuum Pressure:

In the physics classes, you might have already seen how pressure is expressed.
$\checkmark$ The units are $\mathrm{N} / \mathrm{m}^{2}$ or Pa or kPa etc.
$\checkmark$ Might have heard about 1. Absolute pressure,
2. Gage pressure,
3. Vacuum pressure

## Hydrostatic Pressure Condition:

- If a fluid is in rest, it will not have any shear force.
- Similarly, in a static liquid, there will not be any viscous force.
- For the same rectangular prism element of the fluid in rest (or static):

We should apply principles of statics
$\sum \mathrm{F}=0$

- As the fluid is in static, the forces acting on it will be $>$ pressure force
$>$ gravity force


$$
\vec{g}=0 \hat{i}+0 \hat{j}+g \hat{k}
$$

i.e. $\sum \mathrm{F}_{\mathrm{x}}=0$ means $-\frac{\partial p}{\partial x} \Delta x \Delta y \Delta z=0$

Or, $\frac{\partial p}{\partial x}=0$
Similarly, $\sum \mathrm{F}_{\mathrm{y}}=0$ implies $\frac{\partial p}{\partial y}=0$
Similarly, $\sum \mathrm{F}_{\mathrm{z}}=0$ means $-\frac{\partial p}{\partial x} \Delta x \Delta y \Delta z-\rho g_{z} \Delta x \Delta y \Delta z=0$
Or, $\frac{\partial p}{\partial z}=-\rho g_{z}$

It can be also expressed as,
$\overrightarrow{\sum F}=0,-\nabla \vec{p} \Delta x \Delta y \Delta z+\rho \vec{g} \Delta x \Delta y \Delta z=0$
$\vec{\nabla} p=\rho \vec{g}$
i.e., $\frac{\partial p}{\partial z}=-\rho g$
or $\vec{\nabla} p=\rho \vec{g}$

In hydrostatic condition, it is now clear that,

$$
\frac{\partial p}{\partial x}=0 \quad \text { and } \frac{\partial p}{\partial y}=0
$$

That is, there won't be variation of pressure in horizontal direction for the same fluid.

So, we can hence write $\frac{\partial p}{\partial z}$ as $\frac{d p}{d z}$ in static conditions.
$\frac{d p}{d z}=-\rho g_{z}$

$d p=-\rho g_{z} d z$
$\int_{A}^{B} d p=-\int_{A}^{B} \rho g_{z} d z$
$p_{B}-p_{A}=-\rho g_{z}\left(z_{2}-z_{1}\right)$

$p_{A}=p_{B}+\rho g_{z}\left(z_{2}-z_{1}\right)$

If $B$ is water surface, then $P_{B}=$ atmospheric pressure $=0$ (gage pressure)

So, $\mathrm{p}_{\mathrm{A}}=\mathrm{gg}_{\mathrm{z}}\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)=\rho \mathrm{gh}$, where $h=$ height of water surface level from surface.

