e
resistance to bending due to applied load
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Beams

* Long prismatic members
— Non-prismatic sections also possible

» Each cross-section dimension << Length of
member

* Loading 1" to the member axis

& AN % < {HHHHHH%
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Beams

* Determinacy

— Statically determinate beam

« Only equilibrium equations required to obtain support
reactions

N S— |

' W 0O

3 equilibrium egs. (1 redundant)

— Statically indeterminate beam
« Deformability required to obtain support reactions

L {41 41

i w—— — —
3 equilibrium egs. (insufficient)
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Types of Beams

« Based on support conditions

=t Gty

Simple

Continuous
Y 'l' ?‘ Propped
e Cantilever
Cantilever
End-supported cantilever
— |
Combination Fixed

Statically determinate beams Statically indeterminate beams |

MEZ101 - Division IlI Kaustubh Dasgupta 4



Types of Beams

« Based on pattern of external loading
— Concentrated load *

w W : _Q)
Simple

— Distributed load

* Intensity (w) expressed force per unit length of

beam ///
|
w

/ﬁ‘/'l""'rvvvm""
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Beams
Resultant force (R) on beams

- 7 — ~1./2—1
| R =wL | R =wL
2 | 2 |
I w I w
\BRRA! \(BRRR
| 7 L 2
< L - -« L - I I

R :: area formed by w and
length L over which the load is
distributed

: R passes through centroid of

L . i _ .
s L ' I~ L ' this area
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Beams

Distributed Loads on beams . L
: General Load Distribution "

Differential increment of force is
dR = w dx

|
I
|
|
|
|
|
|
|
i

Total load R is sum of all the differential forces
R = jw dx acting at centroid of the area under consideration

jxwdx
R

X =

Once R is known reactions can be found out from Statics

MEZ101 - Division IlI Kaustubh Dasgupta 7



Beams: Example

Determine the external reactions for the beam

~—4m > 6m—»
1200 N [TTTTTTTTT0LLL L L] | | [ 2800 /e
ALLIIITT] ARARAR
il w sy [
%(1600)(6)=4800N 12000 N 4800 N
B 8m 7 / ) _ ‘F ‘*
~——5m—> — 1600Nm < Sm—f=3m= .
1200 N/m 1200 N/m
A ¢ B R, R,

(1200) (10) = 12 000 N

R, = 6.96 kN, Ry = 9.84 kN

ME101 - Division Il
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Beams: Example

Determine the external reactions for the beam

Dividing the un-symmetric
triangular load into two parts
with resultants R, and R, acting
at point A and 1m away from
point A, respectively.

R, = 0.5x1.8x2 = 1.8 kN

R, =0.5x1.2x2 = 1.2 kN

15 kN YF.=0 > A,=1.5sin30 = 0.75 kN
I y
| ) |
190 | SM,=0 >
: L ——x 4.8xB,=1.5c0s30x3.6 + 1.2x1.0
‘ = B,=1.224 kN

Ay
12m |06| 12m |

1.8 m

e 1

ME101 - Division Il

B
5‘% YF,=0 >
o LZzm |B A, = 1.8+1.2+1.5c0s30-1.224

1Y
A, = 3.075 kN
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Beams: Example

Determine the external reactions for the beam

-1 m-—><—1.5m—=<—1.5m—>r<1m->
50 kNll
I o |
A A I [ r ) ‘ I b
40kNm / ——1 ]|
T e
Ll 60 kN/m
<1 m-—>r<—1.5 m— 1l.5m-—==-1m-=
50 kN
M
’ °
~A, 1 1 J( LAﬂ 1{ ]
A 40 kN-m /e TN
. 24 kN/m R R T -

ME101 - Division Il

Kaustubh Dasgupta

Dividing the trapezoidal load into two
parts with resultants R, and R,

R, =24x25=60kN @ 3.75m 2> A
R, = 0.5x2.5x36=45 KN@4.17m = A
(distances from A)

YM,=0 >
M ,-40+50x4.0-60x3.75-45x4.17=0
M, = 253 kNm

ZFy:O ->
A,-50+60+45=0
A, =-55 kN - Downwards

24 KN/m
36 kN/m

10



Beams — Internal Effects

 Internal Force Resultants

« Axial Force (N), Shear Force (V), Bending Moment
(M), Torsional Moment (T) in Beam

— Method of Sections is used

L G

| .
Shear

Bending

« — ROQG

] Torsion
Axial

MEZ101 - Division IlI Kaustubh Dasgupta



Beams — Internal Effects

 Method of Section:

Internal Force Resultants at B 2 Section a-a at B and use
equilibrium equations in both cut parts

P,

P,

|

A B

a
A}I MB MB
——-fm{l--— <
Ay k Np Npg
M, Vi

MEZ101 - Division IlI Kaustubh Dasgupta 12




Beams — Internal Effects
. 2D Beam )Ngmal force

C —» N
M

Y./

Bending moment

Shear force —
Z

Bending moment A
components

M
« 3D Beam I iy

The Force Resultants act l\
at the centroid of the section

I --‘2
ST
-
Y =

o

7 V.,
2 T e
- —— Shear force components

MEZ101 - Division Il X Kaustubh Dasgupta 13



Beams — Internal Effects

Sign Convention

N N
Positive Axial Force creates Tension -_> <_-

Positive shear force will cause the
Beam segment on which it acts to
rotate clockwise

Positive shear

ME101 - Division Il

Positive normal force

Positive bending moment will tend to
bend the segment on which it acts
in a concave upward manner
(compression on top of section).
D¢
Positive moment

@We Cney.
4 Vi

1g°) )
Oo-. . :
Sttive Bemé‘\">
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Beams — Internal Effects

Sign convention in a single plane +M M

Interpretation of Bending Couple v

g g H-section Beam bent by two equal

and opposite positive moments
+M +M .
$/: %,y applied at ends

Neglecting resistance offered by web

’ e Compression at top; Tension at
o l bottom

Resultant of these two forces (one tensile and other compressive) acting on any
section is a Couple and has the value of the Bending Moment acting on the section.

ME101 - Division llI Kaustubh Dasgupta 15



Beams — Internal Effects 4iN

Example: Find the axial force in the fixed bar at points B and C

Solution: Draw the FBD of the entire bar e C
4iN +12F,=0; A, —16kN+ 12kN-4kN=0 A, =8kN T]”{N
| Draw sections at B and C to get AF in the bar at B and C
12 kN Np A KN 1 16 kN
; @LB lD +I SR =i0; 8kN — Ny =0  Ng=8kN * B
16 kN Secr D( '
\/ A ¢ F . °
T +12F, = 0; Ne—4kN =0  N;=4kN A
T 8 kN Nc

>

y Alternatively, take a section at C and consider only CD portion of the bar
Then take a section at B and consider only BD portion of the bar
-> no need to calculate reactions

ME101 - Division llI Kaustubh Dasgupta 16



Beams — Internal Effects

Example: Find the internal torques at points B and C of the circular shaft
subjected to three concentrated torques

Solution: FBD of entire shaft

a¥a

N o N o 10N - m
A A 10N -m e 20N-m I5N-m

20N~m 15.N~m
SM,=0, —-10N:m +15Nm +20Nm — 7, =0
Tp =25N-m
Sections at B and C and FBDs of shaft segments AB and CD

—1ION-m +15N-m — T =0 Tg =5N-m

£ 3%
7

Y331 087

SM,=0; To—25N-m=0 Tr=25N-m

MEZ101 - Division IlI Kaustubh Dasgupta 17



Beams — Internal Effects

Example: Find the AF, SF, and BM at point B (just to the left of 6 kN) and
at point C (just to the right of 6 kN) )
Solution: Draw FBD of entire beam

6 kN
9kN -m
I 6 mj )
G +‘?‘MD =0: 9kN-m + (6 kN)(6m) — A,(9m) =0 D, need not be determined if only
A, = 5kN left part of the beam is analysed

ME101 - Division llI Kaustubh Dasgupta 18



Beams — Internal Effects

6 kN

6 m

Example Solution: Draw FBD of segments AB and AC !
and use equilibrium equations

Segment AB
-5 SF, = 0; Ng =0
+12F, = 0; SKN — Vg =0

C+3Mp=0; —(5kN)(3m) + Mz =0

16 KN Segment AC

Mc  S3F =0 Ne =0

AR CF /> Nc +15F, =0, SKN-6kN -V, =0
T 3m L!Vc C+ZMe=0; —(5kN)(3m) + M- =0
5 kN

MEZ101 - Division IlI Kaustubh Dasgupta

Vg = 5kN
Mg = 15kN-m
V. = —1 kN

Mg = 15kN+ m
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Beams — SFD and BMD

Shear Force Diagram and bending Moment Diagram

« Variation of SF and BM over the length of the beam
- SFD and BMD

« Maximum magnitude of BM and SF and their
locations is prime consideration in beam design

« SFDs and BMDs are plotted using method of section
— Equilibrium of FBD of entire Beam
- External Reactions
— Equilibrium of a cut part of beam
- Expressions for SF and BM at the cut section
Use the positive sign convention consistently

MEZ101 - Division IlI Kaustubh Dasgupta 20



Beams — SFD and BMD

Draw SFD and BMD for a cantilever beam supporting a point load at the free end

F
-
° L/4 ’ L/4 ‘ L/4 0 L/4 ’
i+F .E+F .E+F i+F +F
+V +F I SFD
-V :

MEZ101 - Division IlI Kaustubh Dasgupta 21



Beams — SFD and BMD

Shear and Moment Relationships

Consider a portion of a beam w=fx) " [
|solate an element dx ,-——-"'“'I/Lﬁlw 4 ]/ w
Draw FBD of the element 1YY A

' 7 ( % > M + dM

. b N— & — [—dv M l

Vertical equilibrium in dx - V+dV

av
V-wdx—(V+dV)=0 w=——

dx
Moment equilibrium in dx (> M@ the left side of the element)->

dM

M+wdx%+(V+dV)dx—(M+dM):O V:E

Terms w(dx)?/2 and dVdx may be dropped since they are differentials of higher order than
those which remains.
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Beams — SFD and BMD

Shear and Moment Relationships

Slope of the shear diagram = - Value of applied loading

Slope of the moment curve = Shear Force

Both equations not applicable at the point of loading because
of discontinuity produced by the abrupt change in shear.

MEZ101 - Division IlI Kaustubh Dasgupta 23



Beams — SFD and BMD

Shear and Moment Relationships v

Expressing V in terms of w by integrating w = —
X

_[VdV = —jx wdx OR V=V, + (the negative of the area under
Yo i the loading curve from x, to x)

V, Is the shear force at x, and V is the shear force at x

Expressing M in terms of V by integrating v :‘;ﬂ
X
jMdM = ["Vdx OR M =M, + (area under the shear diagram
My *o from x, to x)

M, is the BM at X, and M is the BM at x
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Beams — SFD and BMD

V =V, + (negative of area under the loading curve from X, to x)

M = M, + (area under the shear diagram from x, to x)

If there is no externally applied moment M, at x, = 0, I . . .
total moment at any section equals the area under o L4 , La | L4 | L4
the shear diagram up to that section +F 4F +F +F +F
+V = SFD

When V passes through zero and is a continuous

function of x with dV/dx # O (i.e., nonzero loading) " | |
> d_M =0 M "FLIA BMD

-FLI2
dx ‘ -3FLI4 ;

— ‘
-~ BM will be a maximum or minimum at this point

Critical values of BM also occur when SF crosses the zero axis discontinuously
(Example: Beams under concentrated loads)
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Beams — SFD and BMD

w:_Z_V Degree of V in x is one higher than that of w
X

_dM

V=42
dx

Degree of M in x is one higher than that of V

- Degree of M in x Is two higher than that of w

. | d’M
Combining the two equations -2 v =—W
X

- If w is a known function of x, BM can be obtained by
Integrating this equation twice with proper limits of

Integration.

- Method is usable only if w is a continuous function of x (other cases
not part of this course)
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Beams — SFD and BMD: Example

Draw the SFD and BMD.

 Determine reactions at
supports.

e Cut beam at C and consider
member AC,

V=+P/2 M=+Px/2

e Cut beam at E and consider
member EB,

V=-P/2 M=+P(L-x)/2

« For a beam subjected to
Maximum BM occurs concentrated loads, shear is
——— ‘(’j"l?géﬁ OSr:]eaI‘ changesthe  ~onstant between loading points
S and moment varies linearly.

2
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