Kinematics of Rigid Bodies :: Relative Acceleration

Relative velocities of two points A and B in plane motion in terms of nonrotating
reference axes:

(VA = vg + VA,.B] Differentiating wrt time: {HA = Bgov aA:'B]

—>Acceleration of point A is equal to vector sum of acceleration of point B and
the acceleration of A appearing to a nonrotating observer moving with B

Relative Acceleration due to Rotation
.. Observer moving with B perceives A to have circular motion about B

* Relative acceleration term will have both normal and tangential components

* Normal component of accln will be directed from A

a
towards B due to change in direction of v, ;. =

» Tangential component of accln will be perpendicular
to AB due to the change in the magnitude of v, 5

a, and ag are the absolute accelerations of A and B.
- Not tangent to the path of motion when the motion is curvilinear.
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Kinematics of Rigid Bodies :: Relative Acceleration

[aA o aB i p (aAIB)n aF (aA/B)!] (ﬂ‘A — dap 2 aAr’BJ

The magnitudes of the relative accln components:

(aAJ'B)n — UA','BZ/T' - r(l)z

(@qp) = Vap =T

Acceleration components in vector notations:

(ayp), = @ X (@ X 1)

(aAjB), =a Xr

r is the vector locating A from B
- Relative accln terms depend on the
absolute angular vel and angular acclin.

ap

Alternatively: ag = a, + ags
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Example on Relative Acceleration

The wheel of radius r rolls to the left without slipping and, at the instant con-
sidered, the center O has a velocity v, and an acceleration a, to the left. Deter-
mine the acceleration of points A and C on the wheel for the instant considered.

Angular velocity and angular accln of wheel:
w = vp/r and a = aglr
Accln of A in terms of given accln of O:

Ay = 8g T Ay, = 8y T (Ay0), T (@y,),
The relative accln terms are viewed as though O

were fixed. For circular motion of A @ O, magnitudes
of the relative accln terms:

‘ Vg \?
(aA/O)n = r()‘”z =Ty (7)

r
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Example on Relative Acceleration

w = Vplr and a = aplr

a, =8y T a,,=a, T (a,,), T (A,

; vo \?
(aAfO)n = r()wz =Ty (7)

Qo
(@q0) = rpx = 1y =

Adding the vectors head to tail will give a,
Magnitude of a, is given by: ’

f € q
ay = J(ay),? + (ay)?

= Jlag cos 8 + (ay0),)? + [ag sin 0 + (ay0)]? @40,

= J(ra cos 6 + row?)? + (ra sin 6 + roa)? @0

Direction of a, can also be computed.
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Example on Relative Acceleration

Acceleration for Point C

Point C is the instantaneous center of zero velocity
ac = ag + agp

The components of the relative acceleration are:
(@cio)n = ro® directed from C to O 0

lacip)y = re&  directed towards right
due to anticlockwise angular accln of
CO@O

> ac = w?

—>Accln of the instantaneous center of zero Iy
velocity is independent of a and is directed
towards the center of the wheel (Gsr0)- B THE

ao =ra
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Example on Relative Velocity and Acceleration

Crank CB oscillates about C through a limited arc, causing crank OA to
oscillate about O. When the linkage passes the position shown with CB
horizontal and OA vertical, the angular velocity of CB is 2 rad/s counter-
clockwise. For this instance, determine the angular velocities and angular
accelerations of OA and AB.

Solution;

V= Xr
a =w X (wXr)

B =0Ar

4 " } ,\ T
Vap —@WAXT . |
\ it L)
(" )
(aA."B)n =w X (wX7r) = 250 mm >

\ /
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Example on Relative Velocity and Acceleration

V= Xr VAI.-B=w)<r
Writing the relative velocity of A wrt B:
VA=Vt Vag

‘"OA = MOAk wCB — 2“. I'ad,"s
Substituting:
r, = 100j mm rgy = —75i mm r,p = —175i + 50j mm

Matching coefficients of respective i- and j-terms
~100wp, + 50wy =0 AN 95(6 + Tw,p) = 0
5 wyp = —6/Trad/s wp, = —3/7rad/s

Both angular velocities are acting clockwise (in the —ve k direction since
counter-clockwise direction was taken positive (+ve k) for angular
velocities).
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7 wyp= —6/Trad/s

Example on Rel Vel and Accln ; == R

-

X
V=wXr (agp), =0 X (w X r)

a,=a><r
. J

Writing relative accln of Awrt B: 84 = 8 + (a,5), + (A,,),
Writing absolute accln of A and B in their n-t comp:

A, =apy X Ty +wos X (Woy X T,) ag = aqp X T+ wep X (@Wpg X Iy)
= ag,k X 100j + (—3k) x (-2k x 100j) =0 + 2k x (2k x [—75i])
= — 10000 — 1003)"j mm/s? = 300i mm/s?
The relative acclns: dcg = 0, since mcg IS constant
(@yp), = Wap X (Wyp X Typ) (@yp), = app X Typ e
= Sk x [(-8K) x (—175i + 50§)] = a,pk X (—175i + 50j) vector
7 7 from
= (1751 — 50j) mm/s* = —50a,51 — 175a,,j mm/s? B1OA
Substituting and equating the coefficients:
—100a,, = 429 — 50« a
oA A ayp = —0.1050 rad/s®* @y, = —4.34 rad/s?

~18.37 = —36.7 — 175a,,
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Plane Kinematics of Rigid Bodies

Motion Relative to Rotating Axes

N\

N\

- 450 mm h N -

w=2rad/s

 Rigid body mechanisms constructed such that
sliding occur at their connections

* Analyzing motion of two points on a mechanism
that are not located on the same rigid body
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Plane Kinematics of Rigid Bodies

Motion Relative to Rotating Axes

Consider plane motion of two particles A and B
(moving independently of each other) in fixed Y
X-Y plane.

*Observing motion of point A from a moving
reference frame x-y (origin attached to B) that
rotates with w

w = ok = 0k

the vector is normal to the plane of the motion 0
(@ +ve z-direction using right hand rule)

The absol " £ A Reference Frame rotating with
e absolute position vector or A: some accln is known as non-

A=rg+r =rg+(Xi+yj) inertial or non-Newtonian

| and | are the unit vectors attached to the x-y reference frame

frame
r =r1,g = Xl +Yj :: the position vector of A wrt B
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Plane Kinematics of Rigid Bodies

Motion Relative to Rotating Axes

Differentiating the posn vector egn to obtain vel & accl egn:
« The unit vectors are rotating with the x-y axes
—> time derivatives must be evaluated.

When x-y axes rotate during dt through an angle d6 = wdt :
» Differential change ini - di

= di has direction of |

= magnitude of di = d@ x magnitude of i = d@

» Therefore, di = do |
» Differential change inj = dj

= dj has negative x-direction

» Therefore, dj =-dO i
Dividing by dt and replacing |
di/dt by 1, dj/dt by j, and do/dt by 6 = w '.

2> i = wj and j = —wi e ©
. : : : : Wxx ,
Using cross-product: o Xi = wj and w X | = - wi
\k/r/x
. = * . = . j .
9[1 w X i and j wXJ] i i
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Plane Kinematics of Rigid Bodies

Motion Relative to Rotating Axes

Relative Velocity Relations

Differentiating r, = rg + (Xi +yj) wrt time:

iy = b+ L@+ y)) =g+ ek +y)) + G+ 5)
The second term:
xityj=ooXxitoXyy=woX@+y)=wXr
Since the observer in x-y measures vel components x and y
Third term: x1 + yJ = v, = vel relative to x-y frame

- Relative Velocity Equation: (VA =vptwXr-+ vrel)

Comparing with the egn for non-rotating reference axes: 2 v g = ® X1 + Vv
-~ X r = difference betn the relative velocities as measured from non-rotating and

rotating axes.
v, = Absolute vel of A (motion of A observed from X-Y frame)
vg = Absolute vel of origin of x-y frame (motion of x-y frame observed from X-Y

frame)

o X r = Angular velocity effect caused by rotation of x-y frame (motion of x-y frame
observed from X-Y frame)

V¢ = Relative velocity of A wrt B (motion of A observed from x-y frame) 12



Plane Kinematics of Rigid Bodies

Motion Relative to Rotating Axes [ va=vs+oXr+ v,

Relative Velocity Relations

*The curved slot represents rotating x-y frame
*The x-y axes are not rotating themselves.
-VeI of A measured relative to the plate = v,

V.o Will be tangent to the path fixed in x-y plate
-Magnltude of v, will be ds/dt

Vo May also be viewed as the vel v, relative to
a point P attached to the plate and coincident with
A at the instant under consideration.
*w X I has dirn normal to r

= Vp,g Vel of P rel to origin B of non-rotating axes 0O

- P (fixed to path

and coincident

withA) -~
e

Comparison betn relatlve vel egns for rotating and non-rotating reference axes

YA =V T o XY Vv,
* Vpg IS measured from a non-rotating posn

Vy =Vg+ Vpp + Vyp °* Vp=absolute velocity of P and represent the effect of the
— : moving coordinate system (both translational @ rotational)
VA= Vp , t VA:'P‘ « Last egnis the same as that developed for non-rotating

P AXES wap =Vpp + Vap =@ X T + Vpq

VA=V¥g VA/B
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Plane Kinematics of Rigid Bodies

Motion Relative to Rotating Axes [ va=va+@Xr+ v,

Relative Velocity Relations Va=vgtwXr+vy
Transformation of a time derivative:
*These two eqns represent a transformation of the

VA=Vp+ Vpp * Vyp

=

time derivative of the position vector between Y= “Wa + Vap
rotating and non-rotating axes. ‘ ~ /
Va=V¥g VA/B

Generalized for any vector: V = V,i + V,]

The total time derivative wrt X-Y system: i
(i—:’)ﬂ— (Vi + V,j) + (V1 + V,j) \
First two terms represent that part of total derivative

of V that is measured relative to the x-y frame.

Second two terms represent that part of derivative

due to the rotation of the reference system.

Since : _ . i _ —dit ;
A wXxV represents the diff betn Physical Significance
AV dV time derivative of the vector
(ﬁ) 5 (E + @ XV | measured in fixed and in
XY . xy

rotating reference system
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