EE540 Advance Electromagnetic Theory & Antennas

Prof. Rakhesh S. Kshetrimayum

Dept. of EEE, IIT Guwahati, India

भारतीय प्रौद्योगिकी संस्थान गुवाहाटी INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

Helmholtz Wave Equation

- Spherical waves
 - Like in cylindrical waves case
 - We will consider TE^r and TM^r spherical waves
- For *TE*^{*r*} spherical waves

•
$$\vec{F} = F_r(r,\theta,\varphi)\hat{r}, \vec{A} = 0$$

- Note that $E_r = 0$ for TE^r modes since $\vec{E} = -\frac{1}{c} (\nabla \times \vec{F})$
- Solving the source free region, for this case,

•
$$\nabla \times \nabla \times \vec{F} - \omega^2 \mu \varepsilon \vec{F} = -j \omega \mu \varepsilon \nabla \Phi_m$$

• We get,

$$\nabla (\nabla^2 + \beta^2) \frac{F_r}{r} = 0$$

• Hence $\frac{F_r}{r}$ (not F_r) satisfies Helmholtz wave equation

 TE^r spherical waves $\vec{F} = F_r(r, \theta, \varphi)\hat{r}, \vec{A} = 0$

> For source free region, $\frac{F_r}{r}$ satisfies Helmholtz wave equation and find the fields $(\nabla^2 + \beta^2) \frac{F_r}{r} = 0$

- Solve $\frac{F_r}{r}$ by solving Helmholtz wave equation and find • \vec{E}
 - $\vec{E} = \vec{E}_F + \vec{E}_A = -\frac{1}{\varepsilon} (\nabla \times \vec{F}) + \frac{\nabla \times \nabla \times \vec{A}}{j \omega \mu \varepsilon}$ • \vec{H}

•
$$\vec{H} = \vec{H}_F + \vec{H}_A = \frac{\nabla \times \nabla \times \vec{F}}{j\omega\mu\varepsilon} + \frac{1}{\mu} \left(\nabla \times \vec{A} \right)$$

- Let us solve Helmholtz wave equation for
 - Scalar function Ψ which could be equated to
 - either $\frac{F_r}{r}$ or $\frac{A_r}{r}$
 - for TE^{r} and TM^{r} modes respectively

भारतीय प्रौद्योगिकी संस्थान गुवाहाटी INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

For source free region, solve Helmholtz wave equation for Ψ which could be equated to either $\frac{F_r}{r}$ or $\frac{A_r}{r}$ for TE^r and TM^r modes respectively

Find electric field (\vec{E}_A) and magnetic field (\vec{H}_A) as $\vec{E} = -\frac{1}{\varepsilon} (\nabla \times \vec{F}) + \frac{\nabla \times \nabla \times \vec{A}}{j\omega\mu\varepsilon}$ $\vec{H} = \frac{\nabla \times \nabla \times \vec{F}}{j\omega\mu\varepsilon} + \frac{1}{\mu} (\nabla \times \vec{A})$

Prof. Rakhesh Singh Kshetrimayum

भारतीय प्रौद्योगिकी संस्थान गुवाहाटी INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

- Wave equation:
 - $\nabla^2 \Psi + \beta^2 \Psi = 0$
 - Laplacian in General curvilinear coordinates

$$\nabla^2 \psi = \nabla \bullet \nabla \psi = \frac{1}{s_1 s_2 s_3} \left[\frac{\partial}{\partial a_1} \left(\frac{s_2 s_3}{s_1} \frac{\partial \psi}{\partial a_1} \right) + \frac{\partial}{\partial a_2} \left(\frac{s_1 s_3}{s_2} \frac{\partial \psi}{\partial a_2} \right) + \frac{\partial}{\partial a_3} \left(\frac{s_1 s_2}{s_3} \frac{\partial \psi}{\partial a_3} \right) \right]$$

- For Laplacian in spherical coordinates:
- Substitute
 - $s_1 = 1, s_2 = r, s_3 = rsin\theta$
 - $a_1 = r, a_2 = \theta, a_3 = \varphi$
- Wave equation becomes

•
$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\Psi}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\Psi}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\Psi}{\partial\varphi^2} + \beta^2\Psi = 0$$

14-09-2020

भारतीय प्रौद्योगिकी संस्थान गुवाहाटी INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

Helmholtz Wave Equation

- Multiplying by $r^2 sin^2 \theta$
 - $sin^2\theta \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Psi}{\partial r} \right) + sin\theta \frac{\partial}{\partial \theta} \left(sin\theta \frac{\partial \Psi}{\partial \theta} \right) + \frac{\partial^2 \Psi}{\partial \varphi^2} + \beta^2 r^2 sin^2 \theta \Psi = 0$
 - Applying method of separation of variables
 - Substitute $\Psi = R(r)\Theta(\theta)\Phi(\varphi)$
 - $\Theta \Phi sin^2 \theta \frac{\partial}{\partial r} \left(r^2 \frac{\partial R}{\partial r} \right) + R \Phi sin \theta \frac{\partial}{\partial \theta} \left(sin \theta \frac{\partial \Theta}{\partial \theta} \right) + R \Theta \frac{\partial^2 \Phi}{\partial \varphi^2} + \beta^2 r^2 sin^2 \theta (R \Theta \Phi) = 0$
 - Dividing by $\Psi = R(r)\Theta(\theta)\Phi(\varphi)$, we have

•
$$\frac{1}{R}sin^2\theta \frac{\partial}{\partial r}\left(r^2\frac{\partial R}{\partial r}\right) + \frac{sin\theta}{\Theta}\frac{\partial}{\partial \theta}\left(sin\theta \frac{\partial \Theta}{\partial \theta}\right) + \frac{1}{\Phi}\frac{\partial^2\Phi}{\partial \varphi^2} + \beta^2r^2sin^2\theta = 0$$

14-09-2020

Prof. Rakhesh Singh Kshetrimayum

भारतीय प्रौद्योगिकी संस्थान गुवाहाटी INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

- Since the third term is dependent of φ
- but all other terms of independent of φ

•
$$\frac{1}{\Phi} \frac{\partial^2 \Phi}{\partial \varphi^2} = -m^2$$

- where $-m^2$ is an arbitrary constant
- Hence,

•
$$\frac{1}{R}sin^2\theta \frac{\partial}{\partial r} \left(r^2 \frac{\partial R}{\partial r}\right) + \frac{sin\theta}{\Theta} \frac{\partial}{\partial \theta} \left(sin\theta \frac{\partial \Theta}{\partial \theta}\right) - m^2 + \beta^2 r^2 sin^2 \theta = 0$$

- Divide by $sin^2\theta$, we have,
- $\frac{1}{R}\frac{\partial}{\partial r}\left(r^2\frac{\partial R}{\partial r}\right) + \frac{1}{\Theta sin}\frac{\partial}{\partial \theta}\left(sin\theta\frac{\partial \Theta}{\partial \theta}\right) \frac{m^2}{sin^2\theta} + \beta^2 r^2 = 0$

14-09-2020

Prof. Rakhesh Singh Kshetrimayum

6

भारतीय प्रौद्योगिकी संस्थान गुवाहाटी INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

Helmholtz Wave Equation

- First and 4th term dependent on r
- + 2^{nd} and 3^{rd} term dependent on ϕ
- Can be converted into two equations as

•
$$\frac{1}{R} \frac{\partial}{\partial r} \left(r^2 \frac{\partial R}{\partial r} \right) + \beta^2 r^2 = n(n+1)$$

•
$$\frac{1}{\Theta \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Theta}{\partial \theta} \right) - \frac{m^2}{\sin^2 \theta} = -n(n+1)$$

- where n(n + 1) is an arbitrary constant
- Rewritten as
 - $\frac{\partial}{\partial r} \left(r^2 \frac{\partial R}{\partial r} \right) + \{ \beta^2 r^2 n(n+1) \} R = 0$
 - Spherical Bessel Equations

- First solution:
 - $R(r) = a_1 j_n(\beta r) + b_1 y_n(\beta r)$
 - Note the small letter symbol of j_n and y_n
 - They are called Spherical Bessel functions of first and second kind
- Spherical Bessel functions represent
 - radial standing waves
 - Related to regular Bessel function as

•
$$j_n(\beta r) = \sqrt{\frac{\pi}{2\beta r}} J_{n+\frac{1}{2}}(\beta r)$$

• $y_n(\beta r) = \sqrt{\frac{\pi}{2\beta r}} Y_{n+\frac{1}{2}}(\beta r)$

• Second solution:

•
$$R(r) = a_2 h_n^{(1)}(r) + b_2 h_n^{(2)}(r)$$

- They are called Spherical Hankel functions of first and second kind
- radial propagating waves
- Related to regular Hankel function as

•
$$h_n^{(1)}(\beta r) = \sqrt{\frac{\pi}{2\beta r}} H_{n+\frac{1}{2}}^{(1)}(\beta r)$$

• $h_n^{(2)}(\beta r) = \sqrt{\frac{\pi}{2\beta r}} H_{n+\frac{1}{2}}^{(2)}(\beta r)$

14-09-2020

Prof. Rakhesh Singh Kshetrimayum

9

🜔 भारतीय INDIAN II

Helmholtz Wave Equation

- Legendre's equations
 - $\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial\Theta}{\partial\theta} \right) + \left\{ n(n+1) \frac{m^2}{\sin^2\theta} \right\} \Theta = 0$
 - whose solutions are associated Legendre functions
 - $\Theta = e_1 P_n^m(\cos\theta) + f_1 Q_n^m(\cos\theta)$
 - where P_n^m and Q_n^m are associated Legendre functions of first and second kind
 - n is degree and m is the order
 - e_1 and f_1 are any arbitrary constants
 - Note that
 - $P_n^m(\cos\theta)$ is finite for $\theta = 0, \pi$ only if *n* is an integer
 - $Q_n^m(\cos\theta)$ tends to infinity for $\theta = 0, \pi$

भारतीय प्रौद्योगिकी संस्थान गुवाहाटी INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

- When *n* is an integer (*n=0,1,2,...*)
 - $P_n^m(cos\theta)$ also called as associated Legendre polynomial
 - can be obtained from Legendre polynomial $P_n(x)$ for $-n \le m \le n$ as

•
$$P_n^m(x) = (-1)^m (1-x^2)^{\frac{m}{2}} \frac{d^m}{dx^m} (P_n(x)) = \frac{1}{2^n n!} (1-x^2)^{\frac{m}{2}} \frac{d^{n+m}}{dx^{n+m}} ((x^2-1)^n)$$

- Note that *m* is the order of derivative of $P_n(x)$ w.r.t. *x* (*m=0*, it reduce to $P_n(x)$)
- Also Legendre polynomial can be obtained from Rodriguez formula as
 - $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} ((x^2 1)^n)$
 - Note that *n* is the degree of derivative of $(x^2 1)^n$ w.r.t. *x*
 - and $P_n(x)$ is a polynomial of degree n
 - and it can be obtained from recurrence relation as well
 - $P_n(x)$ form an orthogonal set of polynomials on [-1, 1]

14-09-2020

Prof. Rakhesh Singh Kshetrimayum

- Typical solutions of $\boldsymbol{\Psi}$
 - Fields inside a sphere
 - with finite fields for *r=0* and $\theta = 0, \pi$

•
$$\Psi(r,\theta,\varphi) = C_{mn1}j_n(\beta r)P_n^m(\cos\theta) \times (C_1\cos(m\varphi) + D_1\sin(m\varphi))$$

- Fields outside a sphere
- with finite fields for *r=0* and $\theta = 0, \pi$

•
$$\Psi(r,\theta,\varphi) = C_{mn2}h_n^{(2)}(\beta r)P_n^m(\cos\theta) \times (C_1\cos(m\varphi) + D_1\sin(m\varphi))$$

14-09-2020