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 We use mobile phones everyday
 Mobile phone converts our voice into electrical signal using 

microphone
 This signal is modulated and radiated to free space 
 by antennas as EM waves 
which is picked up by the base station antennas

 We generally use transmission line like tv cables 
 for transferring EM energy from one point to another 

within a circuit 
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 This mode of energy transfer is called guided wave 
propagation

 It basically means that wave inside transmission line like 
coaxial cable is guided inside it and 
will not come out from it into free space

 Hence antenna is also called as mode transformer which 
 transforms guided-wave field into a radiated wave field for 

transmitting antenna and vice versa
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 Fig. Antenna as mode transformer
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 An important property of antenna is its ability to 
transmit power in a preferred direction like in 
microwave towers 
where we align the transmitting antenna and receiving 

antenna 
 for line of sight (LOS) communication 
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 Fig. Microwave tower: LOS communication
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 Radiation pattern shows how power is radiated from the 
antenna in 3-dimension

 Unlike the previous case, ideally base station (BS) and 
mobile station (MS) antennas should radiate equally in all 
directions 
 as well as they can pick up signals from all directions

 Such isotropic antennas do not exist in practice 
 Omnidirectional directional antennas are used for such 

cases 
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 Fig. Mobile communication
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When does a charge radiates?
 accelerating/decelerating charges 

or 
 time-varying currents 
 in a conductor radiate EM waves

Fig. A giant sphere of radius r with a 
source of EM wave at its origin

Source

r
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 Consider a giant sphere of radius r which encloses the 
source of EM waves at the origin

 The total power passing out of the spherical surface is 
given by Poynting theorem,
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 This is the energy per unit time that is radiated into 
infinity and 
 it never comes back to the source

 The signature of radiation is irreversible flow of energy 
away from the source

 Let us analyze the following three cases:
CASE 1: A stationary charge will not radiate
 no flow of charge =>no current=>no magnetic 

field=>no radiation  (for EM waves we need both E 
and H)
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CASE 2: A charge moving with constant velocity will not radiate
 The area of the giant sphere is 4π r2

 So for the radiation to occur Poynting vector must 
decrease no faster than 1/r2

 power remains constant in that case
 irrespective of the distance from the source
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 From Coloumb’s law, electrostatic fields decrease as 
1/r2, 

whereas Biot Savart’s law also states that magnetic 
fields decrease as 1/r2

 So the total decrease in the Poynting vector is 
proportional to 1/r4

Hence power decreases as 1/r2 

 It dies out after some distance from the source
 implies no radiation
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CASE 3: A time varying current or acceleration (or 
deceleration) of charge will radiate

 To create radiation 
 there must be a time varying current or 
 acceleration (or deceleration) of charge 
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 Basic radiation equation:

where 
 L=length of current carrying element, m
 =time changing current, As-1(units)

Q=charge, C

 =acceleration of charge, ms-2

dt
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Fig. Fundamental law of radiation
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 For this case (we will show this later),
 a time varying field (both E and H) is produced 
which varies as 1/r

whose field direction is along       and 
 Hence the direction of Poynting vector is radially

outward
 Since Poynting vector varies as 1/r2, total power is 

always constant
 It can go to infinite distance

̂ ̂
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 Two conditions for EM waves:
 1) Fields produced by the EM source should have components 

varying as 1/r
 2) Field direction should not be radial but transversal so that 

the power flow or Poynting vector should be radial
 It can be shown that for an infinitesimally small current 

carrying element (Hertz dipole) 
which is the building block for antenna, 
 it indeed produces such fields 
when supplied with time varying currents 
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 But it is a difficult process to find such fields directly 
from current density and 
 calculations are highly complex

 A major simplification is possible when 
we find the magnetic vector potential first and 
 find the fields from it

 It is similar to 
 find electric field from electric potential than 
 directly finding electric field

 This way it is easier
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Wave equation for potential functions
 One of the Maxwell’s divergence equation

 Hence, we can write

 It means that we can find magnetic flux density 
 from the curl of magnetic vector potential
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Wave equation for potential functions
 Putting this in the following Maxwell’s curl equation

which can be rewritten as

 For time varying fields, 
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 Putting this in the following Maxwell’s divergence 
equation
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 Applying Lorentz Gauge condition

 Applying above condition
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 Another Maxwell’s curl equation

 Simplifies to
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 Applying Lorentz Gauge condition

 Applying above condition
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Wave equation for potential functions
 From Maxwell’s equations for time varying fields, 
 we have derived the two wave equations for potential 

functions
magnetic vector and 
 electric potentials
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Solution of wave equation for potential functions
 For time harmonic functions of potentials,

where
 To solve the above equation, we can apply Green’s 

function technique
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Solution of wave equation for potential functions
Green’s function G is the solution of the above 

equation with the R.H.S equal to a delta function

 Once we obtain the Green’s function, 
we can obtain the solution for any arbitrary current 

source by applying the convolution theorem
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 Since the medium surrounding the source is linear, 
we can obtain the potential for any arbitrary current 

input 
 by the convolution of the impulse function (Green’s 

function) with the input current
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 Notation:
 The prime coordinates denote the source variables
 unprimed coordinates denote the observation points

 The modulus sign in  is to make sure that 
is positive 

 since the distance in spherical coordinates is always 
positive
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Digression:
 LTI system
 For such system with an impulse response h(t) and input 

signal x(t), 
 the output signal is given by y(t)=h(t)*x(t)

 Note that is LTI system, 
we consider x(t), h(t) and y(t) are functions of time

 In magnetic vector calculation, 
 are functions of space 
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Sl. No.   System LTI Magnetic vector potential 
calculation

1 x(t)

2 h(t)

3 y(t)

Table: Analogy of LTI and Magnetic vector potential calculation
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 For radiation problems, 
 the most appropriate coordinate system is spherical 
 since the wave moves out radially in all directions

 Fig. An antenna radiating equally in all directions
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 It has also symmetry along θ and φ directions

 Hence, the above equation reduces to
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 Putting Ψ= G r,

 For r not equal to 0 (field should not be obtained at the 
source itself),

 Therefore, 
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 Since the radiation moves radially in positive r direction
 negative r direction is not physically feasible for a source 

of a field, we get,

 we can find the constant A and hence

which is magnetic vector potential produced by a delta 
source  
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