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 Let us find the fields of a small current carrying element 
of length dl

 The procedure involves
Determining the current on the antenna
 Then compute 
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 The infinitesimal time-varying current in the Hertz 
dipole is assumed as

where ω is the angular frequency of the current
 Since the current is assumed along the z-direction, 
 the magnetic vector potential at the observation point 

P is along z-direction
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 Note that for this case 

 For infinitesimally small current element at the origin
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 Fig. Hertz dipole 
located at the origin and 
oriented along z-axis 
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 Coordinate transformation
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 Using the symmetry of the problem (no variation in     ), 
we have, 
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 The Hertz dipole has only          component of the 
magnetic field, 

 i.e., the magnetic field circulates the dipole
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 The electric field for  (            in free space, we don’t 
have any conduction current flowing) can be obtained as

 Using the symmetry of the problem (no variation in      ) 
like before, we have, 
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 Note that Er has only 1/r2 and 1/r3 variation with r

 We see that electric field is in the (r, θ) plane 
whereas the magnetic field has       component only
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 Therefore, the electric field and magnetic field are
 perpendicular to each other 

 Points to be noted:
 Fields can be classified into three types
Radiation fields (spatial variation 1/r) 
 Induction fields (spatial variation 1/r2) and 
 Electrostatic fields (spatial variation 1/r3)
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1) Field variation with frequency  since
 Electrostatic fields (1/r3) are also inversely proportional 

to the frequency (       )

 Induction field (1/r2) is independent of frequency (     )  

 Radiation field (1/r) is proportional to frequency (       )
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2) Field variation with r
 For small values of r, 
 electrostatic field is the dominant term and 

 Induction field is the 
 transition from electrostatic field to radiation fields

 For large values of r, 
 radiation field is the dominant term
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 Near fields:
 We can show that Hertz dipole has reactive near field
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 It looks like the static magnetic field produced by a 
current carrying element using Biot Savart’s law

 It resembles the electric field produced by an electric 
dipole
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 Note that 1/r5 term in Poynting vector is purely reactive
 Note that the 1/r4 term in the Poynting vector is 
 due to induction fields 
which will die out after some distance from the source

 Far fields:
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 Note that the 1/r2 term in the Poynting vector 
 gives total power over a giant sphere always constant

 Hence such waves from the radiation fields 
will go to infinite distance in free space

 They also satisfy two conditions for EM waves:
 Transversal fields (Eθ and Hφ gives Poynting vector 

along radial direction)
 Fields vary as 1/r (Poynting vector varies as 1/r2)
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 We can also observe that the three types of fields are equal in 
magnitude when 

β2/r= β/r2=1/r3

=> r=1/β= λ/2π
 For r< λ/2π, 
 1/r3 term dominates

 For r>> λ/2π, 
 the 1/r term dominates
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 Near field region:

 For r<< λ/2π 
 in fact the near field region distance r= λ/2π is for 

D<<λ
 for an ideal infinitesimally small Hertz dipole 

 electrostatic fields dominate
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 as r<< λ/2π

 The magnitude of the near field is 
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 A polar plot of the near field can be generated by writing 
a MATLAB program for plotting 

 Maximum field is along 
 θ=00, θ=1800 and 

 minimum is along 
 θ=900, θ=2700 (see Fig. (a))
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 Fig. (a) Near field pattern plot of a Hertz dipole located at 
the origin and oriented along z-axis (maximum radiation 
along z-axis) 
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 Far field region:

 For r>> λ/2π (in between reactive near field and 
Fraunhofer far field region, there exists the Fresnel near 
field region that’s why we have chosen an r>> λ/2π),   
radiation field is the dominant term

 In other words kr>>1, we have,
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 The electric fields and magnetic fields are in phase with 
each other

 They are 90˚ out of phase with the current
 due to the (j) term in the expressions of Eθ and Hφ

 It is interesting to note that the ratio of electric field and 
magnetic field is constant
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 Hence, the fields have sinusoidal variations with θ
 They are zero along θ=0

 No radiation along z-axis unlike near field case
 They are maximum along θ=π /2 
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 Fig. (b) E-plane radiation pattern of a Hertz dipole in far 
field (H-plane radiation will look like a circle)
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 Power flow:

 Antenna power flows radially outward
 Power density is not same in all directions
 The net real power is only due to 
 the radiations fields (i.e. jβ2/r and jβ/r) of electric 

and magnetic fields
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 Total radiated power:

 The total radiated power from a Hertz dipole
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 Power radiated by the Hertz dipole is proportional to 
 the square of the dipole length and 
 inversely proportional to the dipole wavelength

 It implies more and more power is radiated as 
 the frequency and 
 the length 

 of the Hertz dipole increases
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 Radiation resistance of a Hertz Dipole:

 Hertz dipole can be equivalently modeled as a radiation 
resistance

Since W=1/2 I0
2 Rrad

 implies that Rrad = 80π2
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 Radiation pattern of a Hertz Dipole:

 F(θ )=sin θ for a Hertz dipole
 The 3D plot of sin θ looks like an apple (see Figure (c))
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 Fig. (c) A typical 3-D radiation pattern of a Hertz dipole in the far 
field
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 Two principal planes radiation patterns (2-D) are 
normally plotted
 E-plane (vertical cut)
H-plane (horizontal cut) radiations patterns 

 are sufficient to describe the radiation pattern of a Hertz 
dipole

 H-plane (xy-plane) radiation pattern is in the form of 
circle of radius 1 since F(θ,    ) is independent of

 E-plane (xz-lane) radiation pattern looks like 8 shape 
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 Fig. H-plane and E-plane radiation patterns of Hertz 
dipole
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 To get the 3-D plot from the 2-D plot 
 you need to rotate the E-plane pattern along the H-

plane pattern
 For this case it will give the shape of an apple

 Note that θ is also known as elevation angle and       as 
azimuth angle

 E-plane pattern for a dipole is also known as elevation 
pattern

 H-plane pattern as azimuthal pattern
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