EE540 Advance Electromagnetic Theory & Antennas

Prof. Rakhesh S. Kshetrimayum

Dept. of EEE, IIT Guwahati, India

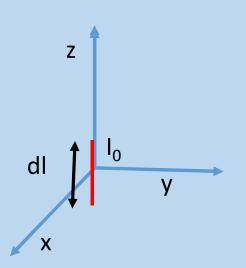


Fig. 1st case: A z-directed current carrying element carrying current I₀ of length dl at the origin

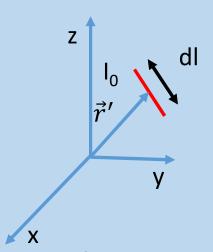


Fig. $2^{\rm nd}$ case: An arbitrary oriented current carrying element carrying current ${\rm I}_0$ of length dl at the position \vec{r}'

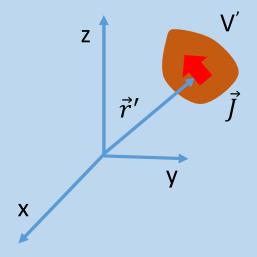


Fig. 3^{rd} case: An arbitrary oriented current density \vec{J} is flowing in a volume V' positioned at \vec{r}'

- Procedure to find the radiated fields:
- It involves three steps
 - Step 1: Solve \vec{A} from \vec{J} as

$$\vec{A}(\vec{r}) = \frac{\mu}{4\pi} \int_{V'} \vec{J}(\vec{r}') \frac{e^{-j\beta|\vec{r} - \vec{r}'|}}{|\vec{r} - \vec{r}'|} dv' = \int_{V'} \vec{J}(\vec{r}') G(\vec{r}, \vec{r}') dv'$$

• Step 2: Find magnetic field (\vec{H}_A) as

$$\vec{H}_A = \frac{1}{\mu} \big(\nabla \times \vec{A} \big)$$

• Step 3: Find electric field (\vec{E}_A) as

$$\vec{E}_A = \frac{\nabla \times \nabla \times \vec{A}}{j\omega\mu\varepsilon} = \frac{1}{j\omega\varepsilon}\nabla \times \left(\frac{\nabla \times \vec{A}}{\mu}\right) = \frac{1}{j\omega\varepsilon}\left(\nabla \times \vec{H}\right)$$

- Points to be noted:
 - There are two coordinates:
 - Source coordinates (x', y', z')
 - Observation coordinates (x, y, z)
 - They are independent of each other
 - Note that ∇ is w.r.t. observation coordinates

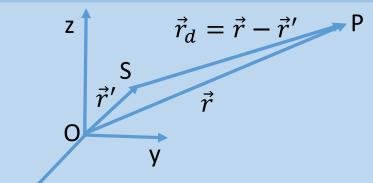


Fig. Radiation from an arbitrary current density \vec{J} at point S

Observation point P: $\vec{r} = (x\hat{x} + y\hat{y} + z\hat{z})$

Source Point: $\vec{r}' = (x'\hat{x} + y'\hat{y} + z'\hat{z})$,

Difference between source and observation point:

$$\vec{r}_d = \vec{r} - \vec{r}' = \{(x - x')\hat{x} + (y - y')\hat{y} + (z - z')\hat{z}\}$$

X

- Step 1: Solve \vec{A} from \vec{J} as
- Similar to convolution of $-\mu \vec{J}(\vec{r}')$

• and
$$G(r) = -\frac{1}{4\pi r} (e^{-j\beta r})^*$$

$$\vec{A}(\vec{r}) = \frac{\mu}{4\pi} \int_{V'} \vec{J}(\vec{r}') \frac{e^{-j\beta|\vec{r}-\vec{r}'|}}{|\vec{r}-\vec{r}'|} dv' = \int_{V'} \vec{J}(\vec{r}') G(\vec{r}, \vec{r}') dv'$$

• Step 2: Find magnetic field from \vec{A} as

•
$$\vec{H} = \frac{1}{\mu} (\nabla \times \vec{A}) = \frac{1}{\mu} \iiint_{V'} \nabla \times \{\vec{J}(\vec{r}')G(\vec{r},\vec{r}')\} dv'$$

- Integrand $\nabla \times \{\vec{J}(\vec{r}')G(\vec{r},\vec{r}')\} = G(\vec{r},\vec{r}')\{\nabla \times \vec{J}(\vec{r}')\} + \{\nabla G(\vec{r},\vec{r}')\} \times \vec{J}(\vec{r}')$
 - 1st term of $\nabla \times \{\vec{J}(\vec{r}')G(\vec{r},\vec{r}')\}: \{\nabla \times \vec{J}(\vec{r}')\} = 0$

* minus sign is because $-\mu \vec{J}(\vec{r}')$ on the RHS of the wave equation was equated to $\delta(\vec{r}')$ to get the Green's function from the wave equation

- 2^{nd} term of $\nabla \times \{\vec{J}(\vec{r}')G(\vec{r},\vec{r}')\}$:
- Let us find $\nabla G(\vec{r}, \vec{r}')$
 - Note that $G(\vec{r}, \vec{r}') = \frac{\mu}{4\pi} e^{-j} |\vec{r} \vec{r}'| \frac{1}{|\vec{r} \vec{r}'|}$
 - Put $r_d = |\vec{r} \vec{r}'|$
 - Then $G(\vec{r}, \vec{r}') = \frac{\mu}{4\pi} \left(e^{-j\beta r_d} \right) \left(\frac{1}{r_d} \right)$
- We have

•
$$\nabla = \frac{\partial}{\partial x}\hat{x} + \frac{\partial}{\partial y}\hat{y} + \frac{\partial}{\partial z}\hat{z}$$
 and $r_d = \sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}$

Therefore,

•
$$\nabla\left(\frac{1}{r_d}\right) = -\frac{1}{{r_d}^2}\hat{r}_d$$
 and $\nabla\left(e^{-j\beta r_d}\right) = -j\beta e^{-j\beta r_d}\hat{r}_d$ where $\hat{r}_d = \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|}$ and $\vec{r}_d = r_d\hat{r}_d$

• Therefore,

•
$$\nabla G(\vec{r}, \vec{r}') = \frac{\mu}{4\pi} e^{-j\beta r_d} \left(-\frac{1}{r_d^2} - \frac{j\beta}{r_d} \right) \hat{r}_d = \frac{\mu}{4\pi} e^{-j\beta r_d} \left(-\frac{1}{r_d^3} - \frac{j\beta}{r_d^2} \right) r_d \hat{r}_d$$

- which further simplifies to $\nabla G(\vec{r}, \vec{r}') = \frac{\mu}{4\pi} e^{-j\beta r_d} \left(-\frac{1}{r_d^3} \frac{j\beta}{r_d^2} \right) \vec{r}_d$
- So 2nd term of of $\nabla \times \{\vec{J}(\vec{r}')G(\vec{r},\vec{r}')\}$:

•
$$\nabla G(\vec{r}, \vec{r}') \times \vec{J}(\vec{r}') = \frac{\mu}{4\pi} e^{-j\beta r_d} \left(-\frac{1}{r_d^3} - \frac{j\beta}{r_d^2} \right) \vec{r}_d \times \vec{J}(\vec{r}')$$

- Hence $\vec{H} = \frac{1}{\mu} \iiint_{V'} \nabla \times \{\vec{J}(\vec{r}')G(\vec{r},\vec{r}')\} dv'$
 - becomes

•
$$\vec{H} = \frac{1}{4\pi} \iiint_{V'} e^{-j\beta r_d} \left(-\frac{1}{r_d^3} - \frac{j\beta}{r_d^2} \right) \vec{r}_d \times \vec{J}(\vec{r}') dv'$$

• Put
$$A(\vec{r}, \vec{r}') = e^{-j\beta r_d} \left(-\frac{1}{r_d^3} - \frac{j\beta}{r_d^2} \right)$$
 and $\vec{B}(\vec{r}, \vec{r}') = \vec{r}_d \times \vec{J}(\vec{r}')$

•
$$\vec{H} = \frac{1}{4\pi} \iiint_{V'} A(\vec{r}, \vec{r}') \vec{B}(\vec{r}, \vec{r}') dv'$$

- Step 3:
- · Find the electric field from magnetic field
- Then electric field simplifies to

•
$$\vec{E} = \frac{1}{j\omega\varepsilon} (\nabla \times \vec{H}) = \frac{1}{j4\pi} \iiint_{V'} \nabla \times \{A(\vec{r}, \vec{r}')\vec{B}(\vec{r}, \vec{r}')\}dv'$$

- Note that Integrand $\nabla \times (A\vec{B}) = A(\nabla \times \vec{B}) + \nabla A \times \vec{B}$
- 2nd term of $\nabla \times (A\vec{B})$:

• :
$$\nabla A = \nabla \left\{ e^{-j\beta r_d} \left(-\frac{1}{r_d^3} - \frac{j\beta}{r_d^2} \right) \right\} = -j\beta e^{-j\beta r_d} \left(-\frac{1}{r_d^3} - \frac{j\beta}{r_d^2} \right) \hat{r}_d + e^{-j\beta r_d} \left(\frac{3}{r_d^4} + \frac{2j\beta}{r_d^3} \right) \hat{r}_d$$

$$= \frac{\beta^2}{r_d^2} e^{-j\beta r_d} \left(-1 - \frac{3}{j\beta r_d} + \frac{3}{\beta^2 r_d^2} \right) \hat{r}_d$$

•
$$\therefore \nabla A \times \vec{B} = \frac{\beta^2}{r_d^2} e^{-j\beta r_d} \left(-1 - \frac{3}{j\beta r_d} + \frac{3}{\beta^2 r_d^2} \right) \hat{r}_d \times \vec{r}_d \times \vec{J}(\vec{r}')$$

• :
$$\nabla A \times \vec{B} = \frac{\beta^2}{r_d^2} e^{-j\beta r_d} \left(-1 - \frac{3}{j\beta r_d} + \frac{3}{\beta^2 r_d^2} \right) \hat{r}_d \times \vec{r}_d \times \vec{J}(\vec{r}')$$

$$= \frac{\beta^2}{r_d^2} e^{-j\beta r_d} \left(-1 - \frac{3}{j\beta r_d} + \frac{3}{\beta^2 r_d^2} \right) \hat{r}_d \times r_d \hat{r}_d \times \vec{J}(\vec{r}')$$

$$= \frac{\beta^2}{r_d} e^{-j\beta r_d} \left(-1 - \frac{3}{j\beta r_d} + \frac{3}{\beta^2 r_d^2} \right) \hat{r}_d \times \hat{r}_d \times \vec{J}(\vec{r}')$$

- 1st term of $\nabla \times (A\vec{B})$:
- $$\begin{split} \bullet \ \, \because \, \nabla \times \vec{B} &= \nabla \times \left\{ \vec{r}_d \times \vec{J}(\vec{r}') \right\} \\ &= \left\{ \vec{J}(\vec{r}') \cdot \nabla \right\} \vec{r}_d \vec{J}(\vec{r}') (\nabla \cdot \vec{r}_d) \left\{ \vec{r}_d \cdot \nabla \right\} \vec{J}(\vec{r}') + \vec{r}_d \left(\nabla \cdot \vec{J}(\vec{r}') \right) \end{split}$$
- 1st term of $\nabla \times \vec{B}$:
- $\{\vec{J}(\vec{r}')\cdot\nabla\}\vec{r}_d = \left(J_x\frac{\partial}{\partial x} + J_y\frac{\partial}{\partial y} + J_z\frac{\partial}{\partial z}\right)\{(x-x')\hat{x} + (y-y')\hat{y} + (z-z')\hat{z}\} = \vec{J}(\vec{r}')$

- 2nd term of $\nabla \times \vec{B}$:
- $-\vec{J}(\vec{r}')(\nabla \cdot \vec{r}_d) = -\vec{J}(\vec{r}')\left(\hat{x}\frac{\partial}{\partial x} + \hat{y}\frac{\partial}{\partial y} + \hat{z}\frac{\partial}{\partial z}\right) \cdot \left\{(x x')\hat{x} + (y y')\hat{y} + (z z')\hat{z}\right\} = -3\vec{J}(\vec{r}')$
- 3rd term of $\nabla \times \vec{B}$:

•
$$-\{\vec{r}_d \cdot \nabla\}\vec{J}(\vec{r}') = -\{(x-x')\frac{\partial}{\partial x} + (y-y')\frac{\partial}{\partial y} + (z-z')\frac{\partial}{\partial z}\}\vec{J}(\vec{r}') = 0$$

- 4th term of $\nabla \times \vec{B}$:
- $\vec{r}_d \left(\nabla \cdot \vec{J}(\vec{r}') \right) = 0$
- $: \nabla \times \vec{B} = \vec{J}(\vec{r}') 3\vec{J}(\vec{r}') = -2\vec{J}(\vec{r}')$
- $\therefore A(\nabla \times \vec{B}) = -2e^{-j\beta r_d} \left(-\frac{1}{r_d^3} \frac{j\beta}{r_d^2} \right) \vec{J}(\vec{r}')$

Hence,

•
$$\nabla \times (A\vec{B}) = A(\nabla \times \vec{B}) + \nabla A \times \vec{B}$$

$$= \frac{\beta^2}{r_d} e^{-j\beta r_d} \left(-1 - \frac{3}{j\beta r_d} + \frac{3}{\beta^2 r_d^2} \right) \hat{r}_d \times \hat{r}_d \times \vec{J}(\vec{r}') - 2e^{-j\beta r_d} \left(-\frac{1}{r_d^3} - \frac{j\beta}{r_d^2} \right) \vec{J}(\vec{r}')$$

Hence,

•
$$\vec{E} = \frac{1}{j4\pi\omega} \iiint_{V'} \nabla \times \{A(\vec{r}, \vec{r}')\vec{B}(\vec{r}, \vec{r}')\}dv'$$

$$= \frac{1}{j4\pi\omega\varepsilon} \iiint_{V'} \left\{ \frac{\beta^2}{r_d} e^{-j\beta r_d} \left(-1 - \frac{3}{j\beta r_d} + \frac{3}{\beta^2 r_d^2} \right) \hat{r}_d \times \hat{r}_d \right\} \times \vec{J}(\vec{r}') - 2e^{-j\beta r_d} \left(-\frac{1}{r_d^3} - \frac{j\beta}{r_d^2} \right) \vec{J}(\vec{r}') dv'$$

- For far fields:
 - We need to consider $\frac{1}{r_d}$ term only,
 - · higher order terms can be neglected

$$\begin{split} \bullet \ \overrightarrow{H} &= \frac{1}{4\pi} \iiint_{V'} e^{-j\beta r_{d}} \left(-\frac{1}{r_{d}^{3}} - \frac{j\beta}{r_{d}^{2}} \right) \overrightarrow{r_{d}} \times \overrightarrow{J}(\overrightarrow{r'}) dv' \\ &= \frac{1}{4\pi} \iiint_{V'} e^{-j\beta r_{d}} \left(-\frac{1}{r_{d}^{2}} - \frac{j\beta}{r_{d}} \right) \widehat{r_{d}} \times \overrightarrow{J}(\overrightarrow{r'}) dv' \\ &= \frac{1}{4\pi} \iiint_{V'} e^{-j\beta r_{d}} \left(-\frac{j\beta}{r_{d}} \right) \widehat{r_{d}} \times \overrightarrow{J}(\overrightarrow{r'}) dv' \\ \bullet \ \overrightarrow{E} &= \frac{1}{j4\pi} \iiint_{V'} \left\{ \frac{\beta^{2}}{r_{d}} e^{-j\beta r_{d}} \left(-1 - \frac{3}{j\beta r_{d}} + \frac{3}{\beta^{2} r_{d}^{2}} \right) \widehat{r_{d}} \times \widehat{r_{d}} \times \overrightarrow{J}(\overrightarrow{r'}) - 2e^{-j\beta r_{d}} \left(-\frac{1}{r_{d}^{3}} - \frac{j\beta}{r_{d}^{2}} \right) \overrightarrow{J}(\overrightarrow{r'}) \right\} dv' \end{split}$$

$$= -\frac{1}{j4\pi\omega\varepsilon}\iiint_{V'}\left\{\frac{\beta^2}{r_d}e^{-j\beta r_d}\hat{r}_d\times\hat{r}_d\times\vec{J}(\vec{r}')\right\}dv'$$
 Prof. Rakhesh Singh Kshetrimayum

- Unit vector: $\hat{r}_d = \hat{r}$
- Let us simplify term $\frac{1}{r_d}e^{-j\beta r_d}$
 - Amplitude: $\frac{1}{r_d} \cong \frac{1}{r}$ (range of values of r is 0 to ∞) O
 - Phase: $e^{-j\beta r_d} \cong e^{-j (r-\vec{r}'\cdot\hat{r})}$

(phase can change from 0 to 2π only)

•
$$\vec{H} \cong -\frac{j\beta e^{-j\beta r}}{4\pi r} \hat{r} \times \iiint_{V'} (\vec{J}(\vec{r}') e^{j\beta(\vec{r}' \cdot \hat{r})}) dv'$$

• Electric field (far field):

•
$$\vec{E} = -\frac{\beta^2}{j\omega\varepsilon} \frac{e^{-j\beta r}}{4\pi r} \hat{r} \times \hat{r} \times \iiint_{V'} \{\vec{J}(\vec{r}')e^{j\beta(\vec{r}'\cdot\hat{r})}\} dv'$$

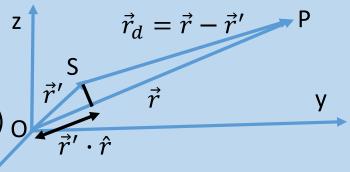


Fig. Radiation from an arbitrary current density \vec{J} at point S in the far field region

- Points to be noted:
 - Magnetic field is
 - perpendicular to the direction of wave propagation \hat{r} since it has $\hat{r} \times (another\ vector)$
 - Relation between electric and magnetic field

•
$$\vec{E} = -\frac{\beta}{\omega \varepsilon} \frac{e^{-j\beta}}{4\pi r} \hat{r} \times \vec{H} = \sqrt{\frac{\mu}{\varepsilon}} \vec{H} \times \hat{r} = \eta \vec{H} \times \hat{r}$$

- Free space wave impedance (intrinsic impedance of free space) is approximately 120 $\pi\Omega\cong 377\Omega$
- Electric field is also
 - perpendicular to the direction of wave propagation \hat{r} and
 - magnetic field
- EM waves propagate in radial direction
 - away from the source

- Far fields of an arbitrary oriented current carrying element:
 - d directed current carrying element (arbitrary direction)
 - · of infinitesimally small length dl and
 - carrying current I₀

•
$$\vec{H} \cong -\frac{j\beta e^{-j\beta r}}{4\pi r} \hat{r} \times \iiint_{V'} (\vec{J}(\vec{r}') e^{j\beta(\vec{r}'\cdot\hat{r})}) dv'$$

• Assume that it is positioned at origin $e^{j\beta(\vec{r}'\cdot\hat{r}\,)}=1$

•
$$(\vec{J}(\vec{r}')e^{j\beta(\vec{r}'\cdot\hat{r})})dv' = I_0dl\hat{d}$$

Magnetic field:

•
$$\vec{H} \cong -\frac{j\beta I_0 dl^{-j\beta}}{4\pi r} (\hat{r} \times \hat{d})$$

• Electric field:

•
$$\vec{E} = \eta \vec{H} \times \hat{r} = -\eta \frac{j\beta_0 dle^{-j\beta r}}{4\pi r} (\hat{r} \times \hat{d}) \times \hat{r}$$

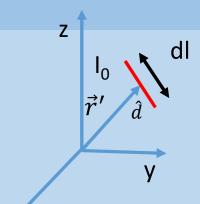


Fig. An arbitrary oriented current carrying element carrying current I_0 of length dl at the position \vec{r}'

- Coordinate transformations:
- $\hat{r} = \sin\theta\cos\varphi\hat{x} + \sin\theta\sin\varphi\hat{y} + \cos\theta\hat{z}$
- For $\hat{\theta}$, we replace $\theta = \left(\theta + \frac{\pi}{2}\right)$ in the above expression of \hat{r}
- $\hat{\theta} = \sin\left(\theta + \frac{\pi}{2}\right)\cos\varphi\hat{x} + \sin\left(\theta + \frac{\pi}{2}\right)\sin\varphi\hat{y} + \cos\left(\theta + \frac{\pi}{2}\right)\hat{z}$ = $\cos\theta\cos\varphi\hat{x} + \cos\theta\sin\varphi\hat{y} - \sin\theta\hat{z}$
- For $\hat{\varphi}$, we replace $\theta = \frac{\pi}{2}$ and $\varphi = \left(\varphi + \frac{\pi}{2}\right)$ in the above expression of \hat{r}
- $\hat{\varphi} = \sin\left(\frac{\pi}{2}\right)\cos\left(\varphi + \frac{\pi}{2}\right)\hat{x} + \sin\left(\frac{\pi}{2}\right)\sin\left(\varphi + \frac{\pi}{2}\right)\hat{y} + \cos\left(\frac{\pi}{2}\right)\hat{z}$ $= -\sin\varphi\hat{x} + \cos\varphi\hat{y}$

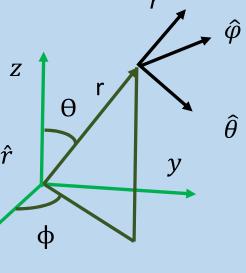


Fig. Relation between spherical and Cartesian coordinates

- Coordinate transformations:
- In matrix form (Cartesian → Spherical),

$$\bullet \begin{bmatrix} \hat{r} \\ \hat{\theta} \\ \hat{\varphi} \end{bmatrix} = \begin{bmatrix} sin\theta cos\varphi & sin\theta sin\varphi & cos\theta \\ cos\theta cos\varphi & cos\theta sin\varphi & -sin\theta \\ -sin\varphi & cos\varphi & 0 \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{bmatrix}$$

• In matrix form (Spherical → Cartesian),

$$\bullet \begin{bmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{bmatrix} = \begin{bmatrix} \sin\theta\cos\varphi & \sin\theta\sin\varphi & \cos\theta \\ \cos\theta\cos\varphi & \cos\theta\sin\varphi & -\sin\theta \\ -\sin\varphi & \cos\varphi & 0 \end{bmatrix}^{-1} \begin{bmatrix} \hat{r} \\ \hat{\theta} \\ \hat{\varphi} \end{bmatrix}$$

• For unitary matrix, $UU^T = I \Rightarrow U^T = U^{-1}$, therefore,

$$\bullet \begin{bmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{bmatrix} = \begin{bmatrix} \sin\theta\cos\varphi & \cos\theta\cos\varphi & -\sin\varphi \\ \sin\theta\sin\varphi & \cos\theta\sin\varphi & \cos\varphi \\ \cos\theta & -\sin\theta & 0 \end{bmatrix} \begin{bmatrix} \hat{r} \\ \hat{\theta} \\ \hat{\varphi} \end{bmatrix}$$

- Far fields of VED:
 - \hat{z} directed current carrying element
 - of infinitesimally small length dl and
 - carrying current I₀
- Magnetic field: replace $\hat{d} = \hat{z}$

•
$$\vec{H} \cong -\frac{j\beta I_0 dle^{-j\beta r}}{4\pi r} (\hat{r} \times \hat{z})$$

$$= -\frac{j\beta I_0 dle^{-j\beta r}}{4\pi r} \{ \hat{r} \times (\cos\theta \hat{r} - \sin\theta \hat{\theta}) \}$$

$$= \frac{j\beta I_0 dle^{-j\beta r}}{4\pi r} \sin\theta \hat{\varphi}$$

• Electric field:

•
$$\vec{E} = \eta \vec{H} \times \hat{r} = \eta \frac{j\beta I_0 dle^{-j\beta r}}{4\pi r} sin\theta \hat{\varphi} \times \hat{r} = \eta \frac{j\beta I_0 dle^{-j\beta r}}{4\pi r} sin\theta \hat{\theta}$$

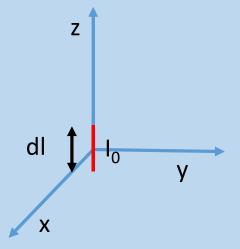


Fig. A z-directed current carrying element carrying current I_0 of length dl at the origin

- Far fields of VED:
- Because of $sin\theta$ term
- in electric field
- Polar radiation pattern
- $(\varphi = constant)$
- will look line 8
- with maximum
- radiation at $\theta = \frac{\pi}{2}$
- null at $\theta = 0$

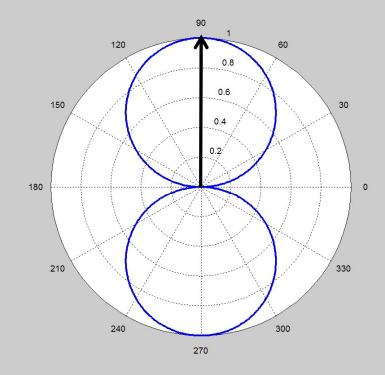


Fig. Polar radiation pattern of a Hertz dipole (VED) in far field ($\varphi = constant$)

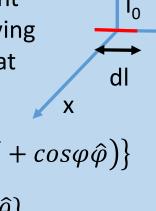
Ζ

- Far fields of HED:
- \hat{y} directed current carrying element of
- infinitesimally small length dl
- and carrying current I₀
- Magnetic field: replace $\hat{d} = \hat{y}$

•
$$\vec{H} \cong -\frac{j\beta I_0 dl}{4\pi r} (\hat{r} \times \hat{y})$$
 the origin
$$= -\frac{j\beta I_0 dl e^{-j\beta r}}{4\pi r} \{\hat{r} \times \left(\sin\theta\sin\phi\hat{r} + \cos\theta\sin\phi\hat{\theta} + \cos\phi\hat{\phi}\right)\}$$

$$= -\frac{j\beta I_0 dl e^{-j\beta r}}{4\pi r} \{\cos\theta\sin\phi\hat{\phi} - \cos\phi\hat{\theta}\}$$
Floatric field

Fig. A y-directed current carrying element carrying current I₀ of length dl at the origin



- Electric field:
- $\vec{E} = \eta \vec{H} \times \hat{r} = -\eta \frac{j\beta I_0 dle^{-j\beta r}}{4\pi r} \{ cos\theta sin\varphi \hat{\theta} + cos\varphi \hat{\varphi} \}$