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Boundary conditions for electric fields

9/13/2020 Prof. Rakhesh Singh Kshetrimayum 2

• Fig. Boundary for electric fields at the interface of two media 
(Interface at z=0, z>0 is region 1 and z<0 is region 2)
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Boundary conditions for electric fields

• Use Faraday’s law over loop PQRSP (LHS), note that loop PQRSP is in x-y plane

• Note that h0 at the boundary interface and 
• therefore there is no contribution from 

• QR and SP in the above line integral

• Also note that the direction of the line integral along 
• PQ and RS are in the opposite direction
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Boundary conditions for electric fields
• Use Faraday’s law over surface PQRS (RHS)

• If time and space dependence of are independent
• We can take the time derivative outside the integral

• Also area of PQRS is small enough that is same w.r.t. space
• We can take the outside the integration
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Boundary conditions for electric fields
• Let us denote area of PQRS by ௉ொோௌ and its direction will be normal to the surface i.e. 

along 

• We have the area of PQRS, ௉ொோௌ , hence

• Note that h0, area of PQRS, ௉ொோௌ0

• So RHS surface integral is negligible, therefore

• First boundary condition of electric field
tttt EElElE 2121 0 
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Boundary conditions for electric fields
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• Boundary conditions for electric flux density 
(Second boundary condition of electric field)

• Let us consider a small cylinder at the interface
• Cross section of the cylinder must be such that 
• vector    is the same

• Note that h0 at the boundary interface at z=0 (use cylindrical 
coordinate, z>0 is region 1 and z<0 is region 2)

• therefore, there are no contribution from the curved surface of the pillbox in the 
above surface integral

• So only the top and bottom surfaces remains in the surface integral 
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Boundary conditions for electric fields
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• The normal is in the upward direction in the top surface 
• and downward direction in the bottom surface
• ଶ௡ ଵ௡ ௦

• ଶ௡ ଵ௡ ௦

• the normal component of electric flux density 
• can only change at the interface 

• if there is charge on the interface, i.e., 
• surface charge is present
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Magnetic boundary conditions
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Boundary conditions for magnetic fields

• Use Modified Ampere’s law over loop PQRSP (LHS)

• Note that Δh0 at the boundary interface and 
• therefore there is no contribution from 

• QR and SP in the above line integral

• Also note that the direction of the line integral along 
• PQ and RS are in the opposite direction
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Boundary conditions for magnetic fields
• Use Modified Ampere’s law over surface PQRS (RHS)

• If time and space dependence of are independent
• Also area of PQRS is small enough that is same w.r.t. space

• Note that Δ h0, area of PQRS, ௉ொோௌ0

• So the 2nd term of RHS surface integral is negligible, so
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Boundary conditions for magnetic fields
• Note that here is volume current density due to free charge
• Maxwell’s equations we have considered is for 

• free charge and current density
• volume current density is often referred to as current density

• What is volume current density? 
• It is the amount of current passing through a unit area 

• normal/perpendicular to the direction of current flow
• Its unit is A/m2

• Volume current density at a point is defined as
• In other words you may consider ΔS perpendicular 
• to the current flow
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Current Δ I

Fig. Definition of volume current density 
(assume is normal to surface element ΔS
and current ΔI is flowing in that direction)  
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Boundary conditions for magnetic fields
• What is surface current density?
• Surface current density is the amount of current passing through a unit width 

• normal/perpendicular to the direction of current flow
• Its unit is A/m 

Alternate way of looking at surface current density
• Consider current flow in a thin layer
• Imagine you squeeze the height of the surface element
• considered perpendicular to the current flow 
• to zero (Δh0), then it will form a line of length ∆𝑙ୄ

• In this case, we can consider a surface current density 
• It is defined at a point as
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Current ΔI

Fig. Definition of surface current 
density (assume          is perpendicular 
to the flow of current and ΔI is the 
current flowing)
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Boundary conditions for magnetic fields
• Note that for small area of PQRS (volume current density) remains the same within PQRS

• When Δ h0, we can define

• We call this impressed surface electric current density ௌ at the interface 
• and its unit will be A/m

• Hence RHS after noting that ௌ is along direction, we will now have

• Therefore,

• First boundary condition of magnetic field
SttStt JHHlJlHlH  2121
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Boundary conditions for magnetic fields
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• Boundary conditions for magnetic flux density 
(Second boundary condition of magnetic field)

• Let us consider a small cylinder at the interface
• Cross section of the cylinder must be such that 
• vector  is the same

• Note that Δh0 at the boundary interface
• therefore, there are no contribution from the curved surface of the pillbox in the 

above surface integral

• So only the top and bottom surfaces remains in the surface integral 
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Boundary conditions for magnetic fields
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• The normal is in the upward direction in the top surface 
• and downward direction in the bottom surface
• ଶ௡ ଵ௡

• ଶ௡ ଵ௡

• the normal component of magnetic flux density 
• are continuous at the boundary
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Boundary conditions for current density

Fig. Boundary conditions for current density 
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Boundary conditions for current density

• Let us construct a pillbox 
• whose height is so small that the contribution from the 
• curved surface of the cylinder to the current can be neglected

• Applying equation of continuity
• points with changing ௩ is the source for current density
• for steady state (there are no points with changing ௩ w.r.t. time )

• and computing the surface integrals, we have, 
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Boundary conditions for current density

• It states that the normal component 
• of electric current density is 
• continuous across the boundary

• Since, we have another boundary condition 
• that the tangential component of the 
• electric field is continuous across the boundary, 
• and applying Ohm’s law in point form 

• We have,
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