EE540 Advance Electromagnetic Theory & Antennas

Prof. Rakhesh S. Kshetrimayum

Dept. of EEE, IIT Guwahati, India

Electromagnetic boundary conditions

- Six electromagnetic boundary conditions (2 each for electric field, magnetic field and electric current)
- Explains the behaviour of fields (electric and magnetic) and also current densities at a media interface
- Interface: boundary between two media (region 1 and region 2)
- Electric boundary conditions (two regions: dielectrics with different ε)
- Magnetic boundary conditions (two regions: magnetic materials with different μ)
- Current boundary conditions (two regions: conductors with different σ)
- Statements and equations in scalar form & vector form

भारतीय प्रौद्योगिकी संस्थान गुवाहाटी

- First electric boundary condition⁺
- Tangential component of electric fields
- Scalar form $E_{t1} = E_{t2}$
- Vector form
- Statement:

 $\hat{n} \times (\vec{E}_1 - \vec{E}_2) = 0$

- the tangential component of the electric field is continuous across the boundary between two dielectrics
- *Boundary conditions are called as 1st & 2nd for convenience & easier understanding, there is no hard and fast rule in this ordering and it can be always altered

10-09-2020

Prof. Rakhesh Singh Kshetrimayum

4

- Second electric boundary condition
- Normal component of electric flux density
- Scalar form $D_{n1} D_{n2} = \rho_s$
- Vector form $\hat{n} \bullet (\vec{D}_1 \vec{D}_2) = \rho_s$
- Statement:
- The normal component of the electric flux density is discontinuous across the boundary between two dielectrics by the surface charge density at the boundary

Electromagnetic boundary conditions

भारतीय प्रौद्योगिकी संस्थान गुवाहाटी INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

- First current boundary condition
- Tangential component of current density
- Scalar form $\frac{J_{t1}}{J_{t2}} = \frac{\sigma_1}{\sigma_2}$
- Vector form $\hat{n} \times (\frac{\vec{J}_1}{\vec{J}_2}) = \frac{\sigma_1}{\sigma_2}$
- Statement:
- The ratio of the tangential components of the current densities at the interface is equal to the ratio of the conductivities

- Second current boundary condition
- Normal component of current density
- Scalar form $J_{n1}=J_{n2}$
- Vector form $\hat{n} \bullet (\vec{J}_1 \vec{J}_2) = 0$
- Statement:
- It states that the normal component of electric current density is continuous across the boundary

- First magnetic boundary condition
- Tangential component of magnetic fields
- Scalar form $H_{t1}-H_{t2}=J_s$
- Vector form $\hat{n} \times (\vec{H}_1 \vec{H}_2) = \vec{J}_s$
- Statement:
- The tangential component of the magnetic field is discontinuous across the boundary between two magnetic materials by the surface current density flowing along the boundary

Prof. Rakhesh Singh Kshetrimayum

8

- Second magnetic boundary condition
- Normal component of magnetic flux density
- Scalar form $B_{n1}=B_{n2}$
- Vector form $\hat{n} \bullet (\vec{B}_1 \vec{B}_2) = 0$
- Statement:
- The normal component of the magnetic flux density is continuous across the boundary between two magnetic materials

