EE540 Advance Electromagnetic Theory & Antennas

Prof. Rakhesh S. Kshetrimayum

Dept. of EEE, IIT Guwahati, India

Electromagnetic Theorems and Concepts

- Uniqueness theorem:
- For a given set of sources and boundary conditions in a lossy medium,
 - the solution to the Maxwell's equation is unique
- Field equivalence principle (FEP):
- FEP 1:
- Consider a set of current sources in a homogeneous medium
 - producing electromagnetic fields \vec{E} and \vec{H} everywhere
- Enclose all sources by a surface S,
 - separating the entire space into two parts: volume 1 and volume 2

Prof. Rakhesh Singh Kshetrimayum

भारतीय प्रौद्योगिकी संस्थान गुवाहाटी

ि भारतीय प्रौद्योगिकी संस्थान गुवाहाटी INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI Electromagnetic Theorems and Concepts

14-08-2020

Prof. Rakhesh Singh Kshetrimayum

Electromagnetic Theorems and Concepts

- Volume 1 contains sources and volume 2 is source free
- Assume surface S is also source free
 - and \hat{n} is unit normal to surface S from V₁ to V₂
- According to FEP 1,
 - the fields in V₂ can be also generated by an equivalent set of virtual sources on surface S, given by $\vec{J}_S = \hat{n} \times \vec{H}$ $\vec{M}_S = \vec{E} \times \hat{n} = -\hat{n} \times \vec{E}$
- where \vec{E} and \vec{H} are the fields on the surface S produced
 - by the original set of sources in volume V₁
- Further the set of virtual sources produce null fields everywhere in V₁

14-08-2020

Prof. Rakhesh Singh Kshetrimayum

भारतीय प्रौद्योगिकी संस्थान गुवाहाटी

9 भारतीय प्रौद्योगिकी संस्थान गुवाहाटी INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

Electromagnetic Theorems and Concepts

Fig. FEP 1: introduction of surface current densities (electric and magnetic) on the surface S

14-08-2020

Prof. Rakhesh Singh Kshetrimayum

ि भारतीय प्रौद्योगिकी संस्थान गुवाहाटी INDIAN INSTITUTE OF TECHNOLOGY GUWAN Electromagnetic Theorems and Concepts

- Justification using uniqueness theorem:
- Consider a situation where the fields in volume V₂ are the same as before
- Then we delete all the sources in V₁
 - and assume the fields are identically zero everywhere in V₁
- At the boundary surface S the fields are discontinuous
- Hence they cannot be supported
 - unless we introduce sources on the discontinuity surface

ि भारतीय प्रौद्योगिकी संस्थान गुवाहाटी INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI Electromagnetic Theorems and Concepts

• Specifically we introduce surface current sheets on S such that

 $\vec{J}_{S} = \hat{n} \times \vec{H}$ $\vec{M}_{S} = \vec{E} \times \hat{n} = -\hat{n} \times \vec{E}$

- so that boundary conditions are satisfied
- Since the tangential \vec{E} and \vec{H} satisfy the boundary conditions,
 - it is a solution to Maxwell's equations,
 - and from Uniqueness theorem,
 - it is the only solution

ि भारतीय प्रौद्योगिकी संस्थान गुवाहाटी INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI Electromagnetic Theorems and Concepts

- Thus the original sources in ${\rm V}_1$
 - and the new set of surface current sources produce the same fields in the volume V₂
- These are equivalent problems
 - as far as the fields in volume V₂ are concerned
- It is the first FEP
 - and the most general form
- We can use this FEP
 - provided we can find tangential electric and magnetic fields on the surface S