EE540 Advance Electromagnetic Theory & Antennas

Prof. Rakhesh S. Kshetrimayum

Dept. of EEE, IIT Guwahati, India

ि भारतीय प्रौद्योगिकी संस्थान गुवाहाटी INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI Electromagnetic Theorems and Concepts

- Maxwell's equations (revisited):
- Let us introduce fictitious magnetic currents \vec{M} and charges (ρ_m) in Maxwell's equations
 - Fictitious equivalent sources are useful in mathematical models of EM problems
- Gauss's law for electric field $\nabla \bullet \vec{D} = \rho_v$
- Gauss's law for magnetic field $\nabla \bullet \vec{B} = \rho_m$
- Ampere-Maxwell law

 $\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$

• Faraday's law

$$\nabla \times \vec{E} = -\vec{M} - \frac{\partial \vec{B}}{\partial t}$$

Prof. Rakhesh Singh Kshetrimayum

ि भारतीय प्रौद्योगिकी संस्थान गुवाहाटी INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI Electromagnetic Theorems and Concepts

- Fields boundary conditions (revisited):
- Let us introduce fictitious magnetic currents \vec{M} and charges (ho_m) in Boundary conditions
- First electric boundary condition $\hat{n} \times (\vec{E}_1 \vec{E}_2) = -\vec{M}_S$
- Second electric boundary condition $\hat{n} \bullet (\vec{D}_1 \vec{D}_2) = \rho_s$
- First magnetic boundary condition $\hat{n} \times (\vec{H}_1 \vec{H}_2) = \vec{J}_s$
- Second magnetic boundary condition $\hat{n} \bullet (\vec{B}_1 \vec{B}_2) = \sigma_m$
 - 16-08-2020 Prof.

Prof. Rakhesh Singh Kshetrimayum

3

16-08-2020

Prof. Rakhesh Singh Kshetrimayum

Electromagnetic Theorems and Concepts

- Most often either electric or magnetic field
 - is available with reasonable accuracy
- If the tangential electric field is known on S, we can use
 - FEP 2:
- Let us assume that the fields in volume V₂ are the same as before
 - and V₁ is filled with PEC, which makes the fields zero in V₁
- The conducting material forces the tangential electric field zero on surface S
 - Therefore to keep the fields in V₂ the same as before
 - We introduce a magnetic surface current density $\vec{M}_{S} = \vec{E} \times \hat{n} = -\hat{n} \times \vec{E}$
 - Just outside the surface S in V₂

भारतीय प्रौद्योगिकी संस्थान गुवाहाटी

ि भारतीय प्रौद्योगिकी संस्थान गुवाहाटी INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI Electromagnetic Theorems and Concepts

- This will restore the tangential electric field
 - to the same value as before
- Since the tangential electric field is the same on surface S
 - the fields in V₂ are unique
 - according to Uniqueness theorem
- A similar proof can be done for
 - FEP 3

Fig. FEP 2 (Magnetic surface current density alone on the surface S which is PEC)

16-08-2020

Prof. Rakhesh Singh Kshetrimayum

7

Fig. FEP 3 (Electric surface current density alone on the surface S which is PMC)

16-08-2020

Prof. Rakhesh Singh Kshetrimayum