An Introduction to Method of Moments

Prof. Rakhesh Singh Kshetrimayum

EE543 Computational Electromagnetics

- Syllabus and reference books available at course webpage
- https:/ / www.iitg.ac.in/engfac/krs/public html/lectures/ee5 43/
- Marks distributions:
- In-class evaluations: 5 marks
- Programming exercise: 35 marks
- Evaluations (online): 20×3

Digression: Introduction to CEM

- Background on commercial softwares
- Who's Who in Computational Electromagnetics (CEM)?
(a) EMSS software
$>$ Originated by Dr. Ulrich Jacobus
$>$ Dr. Francs Meyer (a student of Prof. D. B. Davidson, a Professor at University of Stellenbosch, South Africa) is one of the main person behind this company

CEM: An Introduction

(b) IE3D by Zeland Software Inc.
$>$ Founded by Dr. Jian-Xiong Zheng
$>$ Did PhD under Prof. D. C. Chang (President Emeritus of NYU Poly)
(c) REMCOM XFDTD is a product of Penn. State University
$>$ Founders are \boldsymbol{H}. Scott Langdon,
$>$ Dr. Raymond Lubbers and
$>$ Dr. Christopher Penny

CEM: An Introduction

(d) SONNET
$>$ Dr. James C. Rautio did his PhD from Syracuse university, USA under Prof. R. F. Harrington (considered as originator of MoM in EM area)
(e) GEMS software
$>$ Dr. Wenhua Yu who was a member of Prof. Raj Mittra group at Penn. State University, USA founded

- And list goes on
- Can you guess the price of softwares like HFSS?

CEM: An Introduction

 CEM$>$ Dr. James C. Rautio did his PhD from Syracuse university, USA under Prof. R. F. Harrington (considered as originator of MoM in EM area)
(e) GEMS software
$>$ Dr. Wenhua Yu who was a member of Prof. Raj Mittra group at Penn. State University, USA founded

- And list goes on
- Can you guess the price of softwares like HFSS?

CEM: An Introduction

- What is CEM?
- In CEM
- Try to solve complex EM problems
- which do not have tractable analytical solutions
- Using numerical methods employing computers

CEM: An Introduction

Why CEM?

- Possible to simulate a device/experiment/phenomenon any number of times
- Try to achieve the best or optimal result before actually doing the experiments (preserving resources)
- Some experiments are
- dangerous to perform like lightning strike on aircraft or
- not possible to conduct because of limited facilities/resources

CEM: An Introduction

- How to learn CEM?
- Can be learnt by doing it
- Once you learn the basic concepts
- You should write or code simple programs in any language
- Always start with simple problems to gain confidence
- and try for more difficult problems later

CEM: An Introduction

- Many CEM methods are available
- Method of Moments (MoM)
- Finite Element Method (FEM)
- Finite Difference Time Domain (FDTD)

10.1 Introduction

- learn how to use method of moments (MoM) to solve
- electrostatic problems
- advanced \& challenging problems in time-varying fields
- brief discussion on the basic steps of MoM
- solve a simple differential equation using MoM
- in order to elucidate the steps involved
- MoM for 1-D and 2-D electrostatic problems
- MoM for electrodynamic problems

10.2 Basic Steps in Method of Moments

- Method of Moments (MoM) transforms
- integro-differential equations into matrix systems of linear equations
- which can be solved using computers
- Consider the following inhomogeneous equation

- where L is a linear integro-differential operator,
- u is an unknown function (to be solved) and
- k is a known function (excitation)

10.2 Basic Steps in Method of Moments

- For example,
- (a) consider the integral equation for a line charge density
- Then

$$
V_{0}=\int \frac{\vec{\lambda}\left(x^{\prime}\right) d x^{\prime}}{4 \pi \varepsilon_{0} r\left(x, x^{\prime}\right)}
$$

$$
u=\lambda\left(x^{\prime}\right)
$$

$$
k=V_{0}
$$

$$
L=\int \frac{d x^{\prime}}{4 \pi \varepsilon_{0} r\left(x, x^{\prime}\right)}
$$

10.2 Basic Steps in Method of Moments

- (b) consider the differential equation of the form
- Then

$$
-\frac{d^{2} f(x)}{d x^{2}}=3+2 x^{2}
$$

$$
\begin{aligned}
u & =f(x) \\
k & =3+2 x^{2} \\
L & =-\frac{d^{2}}{d x^{2}}
\end{aligned}
$$

10.2 Basic Steps in Method of Moments

- To solve u, approximate it by sum of weighted known
- basis functions or
- expansion functions

$$
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+\sum_{n=1}^{\infty} b_{n} \sin (n x)
$$

- as given below

$$
u \cong \sum_{n=1}^{N} u_{n}=\sum_{n=1}^{N} I_{n} b_{n}, \quad n=1,2, \ldots, N
$$

- where b_{n} is the expansion function,
- I_{n} is its unknown complex coefficients to be determined,
- N is the total number of expansion functions

10.2 Basic Steps in Method of Moments

- Since L is linear, substitution of the above equation in the
- integro-differential equation,
- we get,

$$
L\left(\sum_{n=1}^{N} I_{n} b_{n}\right) \approx k
$$

- where the error or residual is given by

$$
\longrightarrow R=k-L\left(\sum_{n=1}^{N} I_{n} b_{n}\right)
$$

10.2 Basic Steps in Method of Moments

- Mathematicians name this method as Method of Weighted Residuals
- Why?
- Next step in MoM
- Enforcing the boundary condition
- Make inner product of the above equation with each of the
- testing or
- weighting functions
- should make residual or error zero

10.2 Basic Steps in Method of Moments

- By replacing u by u_{n}
- where $\mathrm{n}=1,2, \ldots, \mathrm{~N}$
- taking inner product with a set of w_{m}
- weighting or
- testing functions
- in the range of L, we have,

$$
\left\langle w_{m},\left(L\left(u_{n}\right)-k\right)\right\rangle=0, \quad m=1,2, \ldots, M
$$

10.2 Basic Steps in Method of Moments

- Since I_{n} is a constant
- we can take it outside the inner product and
- write
$\sum_{n=1}^{N} I_{n}\left\langle w_{m}, L\left(b_{n}\right)\right\rangle=\left\langle w_{m}, k\right\rangle, \quad m=1,2, \ldots, M$
- M and N should be infinite theoretically
- but practically it should be a finite number

10.2 Basic Steps in Method of Moments

- Note that a scalar product $\langle w, g\rangle$ is defined to be a scalar satisfying

$$
\langle w, g\rangle=\langle g, w\rangle=\int g(x) w(x) d x
$$

$$
\langle b f+c g, w\rangle=b\langle f, w\rangle+c\langle g, w\rangle
$$

$$
\left\langle g^{*}, g\right\rangle>0 \quad \text { if } \quad g \neq 0 \quad\left\langle g^{*}, g\right\rangle=0 \quad \text { if } \quad g=0
$$

- b and c are scalars and $*$ indicates complex conjugation

10.2 Basic Steps in Method of Moments

- In matrix form

$$
[Z][I]=[V]
$$

- with each matrix and vector defined by

$$
\begin{aligned}
& {[I]=\left[\begin{array}{llll}
I_{1} & I_{2} & \ldots & I_{N}
\end{array}\right]^{T}[V]=\left[\begin{array}{llll}
\left\langle k, w_{1}\right\rangle & \left\langle k, w_{2}\right\rangle & \ldots & \left\langle k, w_{M}\right\rangle
\end{array}\right]^{T}} \\
& {[Z]=\left[\begin{array}{llll}
\left\langle w_{1}, L\left(b_{1}\right)\right\rangle & \left\langle w_{1}, L\left(b_{2}\right)\right\rangle & \ldots & \left\langle w_{1}, L\left(b_{N}\right)\right\rangle \\
\left\langle w_{2}, L\left(b_{1}\right)\right\rangle & \left\langle w_{2}, L\left(b_{2}\right)\right\rangle & \ldots & \left\langle w_{2}, L\left(b_{N}\right)\right\rangle \\
\left\langle w_{3}, L\left(b_{1}\right)\right\rangle & \left\langle w_{3}, L\left(b_{2}\right)\right\rangle & \ldots & \left\langle w_{3}, L\left(b_{N}\right)\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle w_{M}, L\left(b_{1}\right)\right\rangle & \left\langle w_{M}, L\left(b_{2}\right)\right\rangle & \ldots & \left\langle w_{M}, L\left(b_{N}\right)\right\rangle
\end{array}\right]}
\end{aligned}
$$

