An Introduction to Method of Moments

Prof. Rakhesh Singh Kshetrimayum

MoM by Prof. Rakhesh Singh Kshetrimayum

EE543 Computational Electromagnetics

- Syllabus and reference books available at course webpage
 - <u>https://www.iitg.ac.in/engfac/krs/public_html/lectures/ee5</u> <u>43/</u>
- Marks distributions:
 - In-class evaluations: 5 marks
 - Programming exercise: 35 marks
 - Evaluations (online): 20×3

Digression: Introduction to CEM

- Background on commercial softwares
- Who's Who in Computational Electromagnetics (CEM)?

(a) EMSS software

- > Originated by *Dr. Ulrich Jacobus*
- Dr. Francs Meyer (a student of Prof. D. B. Davidson, a Professor at University of Stellenbosch, South Africa) is one of the main person behind this company

- (b) **IE3D** by Zeland Software Inc.
- Founded by Dr. Jian-Xiong Zheng
- Did PhD under Prof. D. C. Chang (President Emeritus of NYU Poly)
- (c) **REMCOM XFDTD** is a product of Penn. State University
- Founders are *H. Scott Langdon*,
- Dr. Raymond Lubbers and
- Dr. Christopher Penny

(d) **SONNET**

- Dr. James C. Rautio did his PhD from Syracuse university, USA under Prof. R. F. Harrington (considered as originator of MoM in EM area)
- (e) **GEMS** software
- Dr. Wenhua Yu who was a member of Prof. Raj Mittra group at Penn. State University, USA founded
- And list goes on
- Can you guess the price of softwares like HFSS?

CEM

- Dr. James C. Rautio did his PhD from Syracuse university, USA under Prof. R. F. Harrington (considered as originator of MoM in EM area)
- (e) **GEMS** software
- Dr. Wenhua Yu who was a member of Prof. Raj Mittra group at Penn. State University, USA founded
- And list goes on
- Can you guess the price of softwares like HFSS?

- What is CEM?
- In CEM
 - Try to solve complex EM problems
 - which do not have tractable analytical solutions
 - Using numerical methods employing computers

Why CEM?

- Possible to simulate a device/experiment/phenomenon any number of times
- Try to achieve the best or optimal result before actually doing the experiments (preserving resources)
- Some experiments are
 - dangerous to perform like lightning strike on aircraft or
 - not possible to conduct because of limited facilities/resources

- How to learn CEM?
 - Can be learnt by doing it
 - Once you learn the basic concepts
 - You should write or code simple programs in any language
 - Always start with simple problems to gain confidence
 - and try for more difficult problems later

- Many CEM methods are available
 - Method of Moments (MoM)
 - Finite Element Method (FEM)
 - Finite Difference Time Domain (FDTD)

10.1 Introduction

- learn how to use method of moments (MoM) to solve
 - electrostatic problems
 - advanced & challenging problems in time-varying fields
- brief discussion on the basic steps of MoM
- solve a simple differential equation using MoM
 - in order to elucidate the steps involved
- MoM for 1-D and 2-D electrostatic problems
- MoM for electrodynamic problems

- Method of Moments (MoM) transforms
 - integro-differential equations into matrix systems of linear equations
 - which can be solved using computers
- Consider the following inhomogeneous equation

- where *L* is a linear integro-differential operator,
- u is an unknown function (to be solved) and

L(u) = k $\Rightarrow L(u) - k = 0$

• k is a known function (excitation)

- For example,
- (a) consider the integral equation for a line charge density

• Then
$$V_0 = \int \frac{\lambda(x')dx'}{4\pi\varepsilon_0 r(x,x')}$$

$$k = V_0$$

$$L = \int \frac{dx'}{4\pi\varepsilon_0 r(x, x')}$$

MoM by Prof. Rakhesh Singh Kshetrimayum

1/6/2021

13

 $\frac{d^2 f(x)}{dr^2} = 3 + 2x^2$

• (b) consider the differential equation of the form

• Then

u = f(x)

 $k = 3 + 2x^2$

$$L = -\frac{d^2}{dx^2}$$

MoM by Prof. Rakhesh Singh Kshetrimayum

- To solve *u*, approximate it by sum of weighted known
 - basis functions or • expansion functions $f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$
- as given below

$$u \cong \sum_{n=1}^{N} u_n = \sum_{n=1}^{N} I_n b_n^{\prime}, \quad n = 1, 2, ..., N$$

- where b_n is the expansion function,
- I_n is its unknown complex coefficients to be determined,
- *N* is the total number of expansion functions

- Since L is linear, substitution of the above equation in the
 - integro-differential equation,
- we get,

• where the error or residual is given by

$$R = k - L\left(\sum_{n=1}^{N} I_n b_n\right)$$

MoM by Prof. Rakhesh Singh Kshetrimayum

- Mathematicians name this method as Method of Weighted Residuals
- Why?
- Next step in MoM
- Enforcing the boundary condition
- Make inner product of the above equation with each of the
 - testing or
 - weighting functions
- should make residual or error zero

- By replacing u by u_n
 - where n=1,2,...,N
- taking inner product with a set of w_m
 - weighting or
 - testing functions
- in the range of L, we have,

$$\langle w_m, (L(u_n)-k) \rangle = 0, \quad m = 1, 2, \dots, M$$

- Since I_n is a constant
- we can take it outside the inner product and
- write $\sum_{n=1}^{N} I_n \langle w_m, L(b_n) \rangle = \langle w_m, k \rangle, \quad m = 1, 2, ..., M$
- M and N should be infinite theoretically
 - but practically it should be a finite number

• Note that a scalar product $\langle w, g \rangle$ is defined to be a scalar satisfying

$$\langle w, g \rangle = \langle g, w \rangle = \int g(x) w(x) dx$$

$$\langle bf + cg, w \rangle = b \langle f, w \rangle + c \langle g, w \rangle$$

$$\langle g^*, g \rangle > 0$$
 if $g \neq 0$ $\langle g^*, g \rangle = 0$ if $g = 0$

• *b* and c are scalars and * indicates complex conjugation

$$\begin{bmatrix} Z \end{bmatrix} \begin{bmatrix} I \end{bmatrix} = \begin{bmatrix} V \end{bmatrix}$$

• with each matrix and vector defined by

$$[I] = \begin{bmatrix} I_1 & I_2 & \dots & I_N \end{bmatrix}^T \begin{bmatrix} V \end{bmatrix} = \begin{bmatrix} \langle k, w_1 \rangle & \langle k, w_2 \rangle & \dots & \langle k, w_M \rangle \end{bmatrix}^T$$
$$\begin{bmatrix} \langle w_1, L(b_1) \rangle & \langle w_1, L(b_2) \rangle & \dots & \langle w_1, L(b_N) \rangle \\ \langle w_2, L(b_1) \rangle & \langle w_2, L(b_2) \rangle & \dots & \langle w_2, L(b_N) \rangle \\ \langle w_3, L(b_1) \rangle & \langle w_3, L(b_2) \rangle & \dots & \langle w_3, L(b_N) \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle w_M, L(b_1) \rangle & \langle w_M, L(b_2) \rangle & \dots & \langle w_M, L(b_N) \rangle \end{bmatrix}$$

MoM by Prof. Rakhesh Singh Kshetrimayum