- EM Absorption in the Human body
- EM absorption is specified in terms of specific absorption rate (SAR) which is the mass normalized rate of energy absorbed by the body
- At a specific location, SAR may be defined as

$$SAR = \frac{\sigma}{\rho} |E|^2$$

• where σ is tissue conductivity, ρ is tissue mass density, E=rms value of internal field strength

- Usual MoM steps are required:
 - Deriving the appropriate IE
 - Converting IE to matrix equation & matrix elements calculation
 - Solving the set of simultaneous equations
- We will use tensor integral-equation here
- What is this?
- When some electric field is incident on human body, the induced current in the body gives scattered electric field
 - Correspondingly the body may be replaced by an equivalent current density

• Consider Maxwell curl equation

$$\nabla \times \vec{E} = -j\omega\mu_0 \vec{H}$$

• We can derive wave equation from Maxwell curl equation as

$$\begin{aligned} \nabla \times \nabla \times \vec{E} &= -j\omega\mu_0 \left(\nabla \times \vec{H} \right) = -j\omega\mu_0 \left(\sigma \vec{E} + j\omega\varepsilon \vec{E} \right) \\ &= -j\omega\mu_0 \left(\sigma \vec{E} + j\omega \left(\varepsilon - \varepsilon_0 \right) \vec{E} + j\omega\varepsilon_0 \vec{E} \right) \\ &= -j\omega\mu_0 \left(\vec{J}_{conduction} + \vec{J}_{polarization} + j\omega\varepsilon_0 \vec{E} \right) \\ &= -j\omega\mu_0 \left(\vec{J}_{eq} + j\omega\varepsilon_0 \vec{E} \right) \\ &\Rightarrow \nabla \times \nabla \times \vec{E} - k_0^2 \vec{E} = -j\omega\mu_0 \vec{J}_{eq} \end{aligned}$$

MoM by Prof. Rakhesh Singh Kshetrimayum

2/4/2021

- It is more like wave is propagating in free space
- And there is an equivalent current source which is effectively produced as an effect of the human body
- The equivalent current density can be expressed in terms of a tensor as follows

$$\vec{J}_{eq}\left(\vec{r}\right) = \sigma\left(\vec{r}\right)\vec{E}\left(\vec{r}\right) + j\omega\left(\varepsilon\left(\vec{r}\right) - \varepsilon_{0}\right)\vec{E}\left(\vec{r}\right) = \tau\left(\vec{r}\right)\vec{E}\left(\vec{r}\right)$$

- The tensor $\tau(\vec{r})$ takes into account all the effect of a human body in terms of a 3-D matrix
- Consider a biological body of arbitratry shape with constitutive parameters $\mathcal{E}, \mu_0, \sigma$ illuminated by an incident (or impressed) plane EM wave
- The induced current in the body gives rise to a scattered field \vec{E}^{s}

• For time varying electric fields $\vec{E}^s = -j\omega\vec{A} - \nabla\phi$ • where $\vec{A} = \mu_0 \int_{V'} G_0(\vec{r}, \vec{r'}) \vec{J}_{eq}(\vec{r'}) dv'$

• and the free space scalar Green's function is given by

$$G_{0}(\vec{r},\vec{r}') = \frac{e^{-j\kappa|r-r'|}}{4\pi|\vec{r}-\vec{r}'|} \qquad \nabla \bullet \vec{A} =$$

• From Lorentz Gaug condition
• Hence, the scattered fields are $\Rightarrow \phi =$
 $\vec{E}^{s} = -j\omega\vec{A} + \frac{\nabla\nabla \bullet \vec{A}}{j\omega\mu\epsilon}, \vec{H}^{s} = \frac{1}{\mu}\nabla \times \vec{A}$

 $\cdot_1 | \rightarrow \rightarrow' |$

$$\nabla \bullet \vec{A} = -j\omega\mu\varepsilon\phi$$
$$\Rightarrow \phi = \frac{\nabla \bullet \vec{A}}{-j\omega\mu\varepsilon}$$

MoM by Prof. Rakhesh Singh Kshetrimayum

230

- Since scattered electric and magnetic field are dependent on magnetic vector potential which is dependent on the equivalent current density, hence the fields are dependent on the equivalent current density \vec{J}_{eq}
- Let us analyze the dependence of fields on the \vec{J}_{eq}
- Suppose \vec{J}_{eq} is an infinitesimal elementary source at \vec{r}' pointed in x direction so that

$$\vec{J}_{eq} = \delta(\vec{r} - \vec{r}')\hat{x}$$

The corresponding magnetic vector potential is
$$\vec{A} = \mu_0 G_0(\vec{r}, \vec{r}')\hat{x} \quad \because \vec{A} = \mu_0 \int_{V'} G_0(\vec{r}, \vec{r}')\vec{J}_{eq}(\vec{r}')dv'$$

MoM by Prof. Rakhesh Singh Kshetrimayum

• If $\vec{G}_{0x}(\vec{r},\vec{r'})$ is the electric field produced by the above mentioned elementary source, it must satisfy the wave equation

$$\nabla \times \nabla \times \vec{G}_{0x}(\vec{r},\vec{r}') - k_0^2 \vec{G}_{0x}(\vec{r},\vec{r}') = -j\omega\mu_0 \delta(\vec{r}-\vec{r}')$$

• whose solution is given by

$$\vec{E}^{s} = \vec{G}_{0x} = -j\omega\mu_{0}G_{0}(\vec{r},\vec{r}')\hat{x} + \frac{\nabla\nabla\bullet G_{0}(\vec{r},\vec{r}')}{j\omega\varepsilon}\hat{x} \quad \because \vec{E}^{s} = -j\omega\vec{A} + \frac{\nabla\nabla\bullet\vec{A}}{j\omega\mu\varepsilon}$$
$$\Rightarrow \vec{G}_{0x} = -j\omega\mu_{0}\left(1 + \frac{1}{k^{2}}\nabla\nabla\bullet\right)G_{0}(\vec{r},\vec{r}')\hat{x} \qquad \vec{A} = \mu_{0}G_{0}(\vec{r},\vec{r}')\hat{x}$$

• $\vec{G}_{0x}(\vec{r},\vec{r'})$ is referred to as a free space vector Green's

function with a source pointed in the x-direction

• We could also find the free space vector Green's

function $\vec{G}_{0y}(\vec{r},\vec{r'}), \vec{G}_{0z}(\vec{r},\vec{r'})$ for a source pointed in the y-direction and z-direction respectively

• We could now introduce a dyadic function which will store these three free space vector Green's function as

$$\vec{G}_{0}\left(\vec{r},\vec{r}'\right) = \vec{G}_{0x}\left(\vec{r},\vec{r}'\right)\hat{x} + \vec{G}_{0y}\left(\vec{r},\vec{r}'\right)\hat{y} + \vec{G}_{0z}\left(\vec{r},\vec{r}'\right)\hat{z}$$

- This is called free space dyadic Green's function
- It is a solution of the dyadic differential equation $\nabla \times \nabla \times \vec{G}_0(\vec{r}, \vec{r}') - k_0^2 \vec{G}_0(\vec{r}, \vec{r}') = -j\omega\mu_0 \vec{I} \,\delta(\vec{r} - \vec{r}')$

• where unit dyad is given by
$$\vec{I} = \hat{x}\hat{x} + \hat{y}\hat{y} + \hat{z}\hat{z}$$

- The physical meaning is that $\vec{G}_0(\vec{r},\vec{r'})$ is the electric field at a point \vec{r} due to an infinitesimal source at $\vec{r'}$ in any arbitrary orientation
- Then the scattered electric field due to any arbitrary equivalent current density may be expressed as

$$\vec{E}^{s} = \int_{V'} \vec{G}_{0}(\vec{r},\vec{r}') \bullet \vec{J}_{eq}(\vec{r}') dv'$$

• where

$$\vec{G}_{0}(\vec{r},\vec{r}') = \vec{G}_{0x}(\vec{r},\vec{r}')\hat{x} + \vec{G}_{0y}(\vec{r},\vec{r}')\hat{y} + \vec{G}_{0z}(\vec{r},\vec{r}')\hat{z}$$

235

MoM by Prof. Rakhesh Singh Kshetrimayum

• Since
$$\vec{G}_{0w} = -j\omega\mu_0 \left(1 + \frac{1}{k^2}\nabla\nabla \bullet\right) G_0(\vec{r},\vec{r}')\hat{w}$$

• where w can take any value

$$w = \left\{ x, y, z \right\}; \hat{w} = \left\{ \hat{x}, \hat{y}, \hat{z} \right\}$$

- Note that $\vec{G}_0(\vec{r},\vec{r'})$ has singularity of the order $\left|\vec{r}-\vec{r'}\right|^3$
- In other words, the integral diverges if the \vec{r} is inside the source region

MoM by Prof. Rakhesh Singh Kshetrimayum

• The scattered field inside the body may be expressed in terms of equivalent current density by using the free-space tensor/dyadic Green's function as

$$\vec{E}^{s} = \int_{V'} \vec{G}_{0}\left(\vec{r}, \vec{r}'\right) \bullet \vec{J}_{eq}\left(\vec{r}'\right) dv'$$

• However, when the field point is inside the body, scattered field must be evaluated with special care because of singularity

- This difficulty is overcome by excluding a small volume surrounding the field point first and letting the small volume approach zero
- Integral is now well defined as the limit obtained when the radius of the sphere approaches zero
- We shall call this limit the "principal value" of the integral

This process involves defining a principal value and adding a correction term (derived in https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumb er=1145064)

$$\vec{E}^{s}\left(\vec{r}\right) = PV\left(\int_{V'} \vec{G}_{0}\left(\vec{r},\vec{r'}\right) \bullet \vec{J}_{eq}\left(\vec{r'}\right) dv'\right) + \left[\vec{E}^{s}\left(\vec{r}\right)\right]_{correction}$$
$$= PV\left(\int_{V'} \vec{G}_{0}\left(\vec{r},\vec{r'}\right) \bullet \vec{J}_{eq}\left(\vec{r'}\right) dv'\right) - \frac{\vec{J}_{eq}\left(\vec{r}\right)}{j3\omega\varepsilon_{0}}$$

MoM by Prof. Rakhesh Singh Kshetrimayum

• The total electric field inside the body is the sum of the incident field and scattered field

$$\vec{E}(\vec{r}) = \vec{E}^{i}(\vec{r}) + \vec{E}^{s}(\vec{r})$$

$$\therefore \vec{E}^{i}(\vec{r}) = \vec{E}(\vec{r}) - \vec{E}^{s}(\vec{r})$$

$$= \vec{E}(\vec{r}) - PV\left(\int_{V'} \vec{G}_{0}(\vec{r},\vec{r}') \bullet \vec{J}_{eq}(\vec{r}') dv'\right) + \frac{\vec{J}_{eq}(\vec{r})}{j3\omega\varepsilon_{0}}$$

$$= \vec{E}(\vec{r}) - PV\left(\int_{V'} \vec{G}_{0}(\vec{r},\vec{r}') \bullet \tau(\vec{r})\vec{E}(\vec{r}) dv'\right) + \frac{\tau(\vec{r})\vec{E}(\vec{r})}{j3\omega\varepsilon_{0}}$$

$$\Rightarrow \vec{E}^{i}(\vec{r}) = \left(1 + \frac{\tau(\vec{r})}{j3\omega\varepsilon_{0}}\right)\vec{E}(\vec{r}) - PV\left(\int_{V'} \tau(\vec{r})\vec{E}(\vec{r}) \bullet \vec{G}_{0}(\vec{r},\vec{r}') dv'\right)$$

MoM by Prof. Rakhesh Singh Kshetrimayum

240

- Matrix Equation:
- The inner product $\vec{E}(\vec{r}) \bullet \vec{G}_0(\vec{r},\vec{r'})$ is given as

$$\vec{E}(\vec{r}) \bullet \vec{G}_{0}(\vec{r},\vec{r}') = \begin{bmatrix} G_{xx}(\vec{r},\vec{r}') & G_{xy}(\vec{r},\vec{r}') & G_{xz}(\vec{r},\vec{r}') \\ G_{yx}(\vec{r},\vec{r}') & G_{yy}(\vec{r},\vec{r}') & G_{yz}(\vec{r},\vec{r}') \\ G_{zx}(\vec{r},\vec{r}') & G_{zy}(\vec{r},\vec{r}') & G_{zz}(\vec{r},\vec{r}') \\ \end{bmatrix} \bullet \begin{bmatrix} E_{x}(\vec{r}) \\ E_{y}(\vec{r}) \\ E_{z}(\vec{r}) \\ E_{z}(\vec{r}) \end{bmatrix}$$

Denoting $x_{1} = x, x_{2} = y, x_{3} = z$, we have,
 $G_{xy}(\vec{r},\vec{r}') = -j\omega\mu_{0}\left(\delta_{x} + \frac{1}{2}\frac{\partial^{2}}{\partial x}\right)G_{0}(\vec{r},\vec{r}'); p, q = 1, 2, 3$

$$G_{x_p x_q}\left(\vec{r}, \vec{r}'\right) = -j\omega\mu_0 \left(\delta_{pq} + \frac{1}{k^2}\frac{c}{\partial x_q x_p}\right) G_0\left(\vec{r}, \vec{r}'\right); p, q$$

MoM by Prof. Rakhesh Singh Kshetrimayum

241

- Partition the body into N subvolumes or cells, each denoted by v_m (m=1,2,...,N) and
- assume $\tau(\vec{r})$, $\vec{E}(\vec{r})$ are constant within each cell
- If \vec{r}_m is the centre of the mth cell, then

$$E_{x_{p}}^{i}\left(\vec{r}_{m}\right) = \left(1 + \frac{\tau\left(\vec{r}\right)}{j3\omega\varepsilon_{0}}\right)E_{x_{p}}\left(\vec{r}_{m}\right) - \sum_{q=1}^{3}\left[\sum_{n=1}^{N}\tau\left(\vec{r}_{n}\right)PV\left(\int_{V_{m}}G_{x_{p}x_{q}}\left(\vec{r}_{m},\vec{r}'\right)dv'\right)\right]E_{x_{q}}\left(\vec{r}_{n}\right)$$
$$\therefore \vec{E}^{i}\left(\vec{r}\right) = \left(1 + \frac{\tau\left(\vec{r}\right)}{j3\omega\varepsilon_{0}}\right)\vec{E}\left(\vec{r}\right) - PV\left(\int_{V'}\tau\left(\vec{r}\right)\vec{E}\left(\vec{r}\right) \bullet \vec{G}_{0}\left(\vec{r},\vec{r}'\right)dv'\right)$$

MoM by Prof. Rakhesh Singh Kshetrimayum

MoM Advances • If we let $G_{x_p x_q}$ be an N×N matrix with elements $G_{x_{p}x_{q}}^{mn} = \tau(\mathbf{r}_{n})PV\left(\int_{v} G_{x_{p}x_{q}}(\mathbf{r}_{m},\mathbf{r}')dv'\right) - \delta_{pq}\delta_{mn}\left|1 + \frac{\tau(\mathbf{r})}{3j\omega\varepsilon_{0}}\right|$ • where m, n=1, 2, ..., N and p, q=1, 2, 3• let $\begin{bmatrix} E_{x_n} \end{bmatrix}$ and $\begin{bmatrix} E_{x_p}^i \end{bmatrix}$ be column matrices with

elements

• We obtain 3N simultaneous equations for Ex, Ey and Ez at the centers of N cells by the point matching technique

• These simultaneous equations can be written in matrix form

MoM by Prof. Rakhesh Singh Kshetrimayum

245

- Radar cross section:
 - A measure of the effective area of the scatterer
 - Function of both angle of incidence and angle of observation
 - Larger is the radar cross section, larger is scattering

- Scattering from a conducting cylinder of infinite length
- Electric field integral equation
- On the conductor surface

$$E_{tan}^{total} = E_{tan}^{inc} + E_{tan}^{scatt} = 0$$

- Incident wave
 - It is a plane wave from infinity
 - Assume a TM^z wave with $H_z = 0$

$$\vec{E}^{inc} = \hat{z}E_z(x, y)$$

- Scattered wave
- The incident field induces an electric current

$\hat{z}J_{z}(x,y)$

- which produces the scattered field
- The scalar wave equation in this case is

$$\nabla^2 E_z^{scatt} + k^2 E_z^{scatt} = j\omega\mu_0 J_z$$

- 2-D Green's functions
- We can compute 2-D Green's function by
 - computing the field radiated by a line source
 - carrying a time-harmonic electric current of amplitude of I in the +z direction
- Since the current associated with the line source is infinitely long

- flows in the z direction only the z component of the electric field will become non zero
- \bullet Like in cylindrical waveguide $\mathrm{E_z}$ can be expressed as

$$E_{z}(\rho,\phi,z) = \sum_{m=0}^{\infty} \left[A_{m} H_{m}^{(1)}(k_{\rho}\rho) + B_{m} H_{m}^{(2)}(k_{\rho}\rho) \right]$$
$$\left[C_{m} e^{jm\phi} + D_{m} e^{-jm\phi} \left[E_{m} e^{jk_{z}z} + F_{m} e^{-jk_{z}z} \right] \right]$$

MoM by Prof. Rakhesh Singh Kshetrimayum

• where $H_m^{(1)}, H_m^{(2)}$ are the Hankel function of first and second kind

$$k_{\rho}^2 + k_z^2 = k^2$$

• Since the line source is rotationally symmetric, the fields do not vary in the ϕ or z direction

• So
$$k_z = 0$$
 and $C_m = D_m = 0$ for $m \neq 0$

• Hence
$$k_{\rho}^2 = k^2$$

- Note on Hankel's function
- Hankel's function are related to Bessel's functions of first and second kind as

$$H_m^{(1)}(k_\rho\rho) = J_m(k_\rho\rho) + jY_m(k_\rho\rho)$$
$$H_m^{(2)}(k_\rho\rho) = J_m(k_\rho\rho) - jY_m(k_\rho\rho)$$

• These relations are similar to Euler's theorem

- Physically, Bessel's functions represent standing waves whereas Hankel's functions represent propagating waves
- When the argument is large, the Hankel function can be approximated by

$$H_m^{(1)}(k_\rho\rho) \cong \sqrt{\frac{-2j}{\pi k_\rho\rho}} e^{jk_\rho\rho - \frac{m\pi}{2}}$$

$$H_m^{(2)}(k_\rho\rho) \cong \sqrt{\frac{2j}{\pi k_\rho\rho}} e^{-jk_\rho\rho + \frac{m\pi}{2}} = j\sqrt{\frac{-2j}{\pi k_\rho\rho}} e^{-\left(jk_\rho\rho - \frac{m\pi}{2}\right)}$$

MoM by Prof. Rakhesh Singh Kshetrimayum

• The amplitude of Hankel's function decays as

• when $k_{\rho}\rho$ becomes large

 $\sqrt{\frac{1}{k_o\rho}}$

• The phase of the oscillation depends on order m like Bessel's functions

- H⁽¹⁾_m(k_ρρ) represents a wave propagating in the ρ direction (an in-going wave)
 H⁽²⁾_m(k_ρρ) represents a wave propagating in the + ρ direction (an out-going wave)
- An incoming wave defies the principle of causality, hence A₀=0

• Hence

$$E_z(k_\rho\rho) = B_0 H_0^{(2)}(k_\rho\rho)$$

• Using Maxwell's curl equation

$$\vec{H} = -\frac{1}{j\omega\mu} \frac{1}{\rho} \begin{vmatrix} \hat{\rho} & \rho\hat{\phi} & \hat{z} \\ \frac{\partial}{\partial\rho} & \frac{\partial}{\partial\phi} & \frac{\partial}{\partial z} \\ 0 & 0 & E_z(k_\rho\rho) \end{vmatrix}$$

MoM by Prof. Rakhesh Singh Kshetrimayum

$$\vec{H} = \frac{1}{j\omega\mu} \hat{\phi} \frac{\partial \left[E_z(k_\rho\rho)\right]}{\partial\rho} = \frac{1}{j\omega\mu} \hat{\phi} \frac{\partial \left[B_0H_0^{(2)}(k_\rho\rho)\right]}{\partial\rho}$$
$$\vec{H} = \frac{1}{j} \left(\frac{jk_\rho}{j\omega\mu}\right) \hat{\phi} B_0H_0^{(2)'}(k_\rho\rho) = \frac{1}{j\eta} \hat{\phi} B_0H_0^{(2)'}(k_\rho\rho)$$

For small $k_{\rho}\rho$ $H_0^{(2)}(k_{\rho}\rho) \cong 1 - \frac{2j}{\pi} \ln\left(\frac{1.78107k_{\rho}\rho}{2}\right)$

2/4/2021

MoM by Prof. Rakhesh Singh Kshetrimayum

MoM Advances $H_0^{(2)'}(k_{\rho}\rho) \cong -\frac{2j}{\pi} \frac{\left(\frac{1.78107k_{\rho}}{2}\right)}{\left(\frac{1.78107k_{\rho}\rho}{2}\right)} = -\frac{1}{2}$ $\frac{2j}{\pi\rho}$ $\vec{H} = \frac{1}{i\eta} \hat{\phi} B_0 \left(-\frac{2j}{\pi\rho} \right)$

MoM by Prof. Rakhesh Singh Kshetrimayum

259

• Using Ampere's law

$$I = \oint \vec{H} \bullet d\vec{l} = -\frac{2jB_0}{j\eta\pi} \hat{\phi} \int_0^{2\pi} \frac{1}{\rho} \rho d\phi = -\frac{4B_0}{\eta} \Longrightarrow B_0 = -\frac{\eta I}{4}$$

• So
$$E_z(k_{\rho}\rho) = -\frac{\eta I}{4} H_0^{(2)}(k_{\rho}\rho)$$

• For I=1, this is the Green's function for 2-D electric current sources in TM^z polarization