MoM Advances

- EM Absorption in the Human body
- EM absorption is specified in terms of specific absorption rate (SAR) which is the mass normalized rate of energy absorbed by the body
- At a specific location, SAR may be defined as

$$
S A R=\frac{\sigma}{\rho}|E|^{2}
$$

- where σ is tissue conductivity, ρ is tissue mass density, $\mathrm{E}=\mathrm{rms}$ value of internal field strength

MoM Advances

- Usual MoM steps are required:
- Deriving the appropriate IE
- Converting IE to matrix equation \& matrix elements calculation
- Solving the set of simultaneous equations
- We will use tensor integral-equation here
- What is this?
- When some electric field is incident on human body, the induced current in the body gives scattered electric field
- Correspondingly the body may be replaced by an equivalent current density

MoM Advances

- Consider Maxwell curl equation

$$
\nabla \times \vec{E}=-j \omega \mu_{0} \vec{H}
$$

- We can derive wave equation from Maxwell curl equation as

$$
\begin{aligned}
& \nabla \times \nabla \times \vec{E}=-j \omega \mu_{0}(\nabla \times \vec{H})=-j \omega \mu_{0}(\sigma \vec{E}+j \omega \varepsilon \vec{E}) \\
& =-j \omega \mu_{0}\left(\sigma \vec{E}+j \omega\left(\varepsilon-\varepsilon_{0}\right) \vec{E}+j \omega \varepsilon_{0} \vec{E}\right) \\
& =-j \omega \mu_{0}\left(\vec{J}_{\text {conduction }}+\vec{J}_{\text {polarization }}+j \omega \varepsilon_{0} \vec{E}\right) \\
& =-j \omega \mu_{0}\left(\vec{J}_{e q}+j \omega \varepsilon_{0} \vec{E}\right) \\
& \Rightarrow \nabla \times \nabla \times \vec{E}-k_{0}^{2} \vec{E}=-j \omega \mu_{0} \vec{J}_{e q}
\end{aligned}
$$

MoM Advances

- It is more like wave is propagating in free space
- And there is an equivalent current source which is effectively produced as an effect of the human body
- The equivalent current density can be expressed in terms of a tensor as follows

$$
\vec{J}_{e q}(\vec{r})=\sigma(\vec{r}) \vec{E}(\vec{r})+j \omega\left(\varepsilon(\vec{r})-\varepsilon_{0}\right) \vec{E}(\vec{r})=\tau(\vec{r}) \vec{E}(\vec{r})
$$

MoM Advances

- The tensor $\tau(\vec{r})$ takes into account all the effect of a human body in terms of a 3-D matrix
- Consider a biological body of arbitratry shape with constitutive parameters $\mathcal{E}, \mu_{0}, \sigma$ illuminated by an incident (or impressed) plane EM wave
- The induced current in the body gives rise to a scattered field \vec{E}^{s}

MoM Advances

- For time varying electric fields $\quad \vec{E}^{s}=-j \omega \vec{A}-\nabla \phi$
- where

$$
\vec{A}=\mu_{0} \int_{V^{\prime}} G_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \vec{J}_{e q}\left(\vec{r}^{\prime}\right) d \nu^{\prime}
$$

- and the free space scalar Green's function is given by

$$
G_{0}\left(\vec{r}, \vec{r}^{\prime}\right)=\frac{e^{-j k\left|\vec{r}-\vec{r}^{\prime}\right|}}{4 \pi\left|\vec{r}-\vec{r}^{\prime}\right|}
$$

$$
\nabla \bullet \vec{A}=-j \omega \mu \varepsilon \phi
$$

- From Lorentz Gaug condition
- Hence, the scattered fields are

$$
\Rightarrow \phi=\frac{\nabla \bullet \vec{A}}{-j \omega \mu \varepsilon}
$$

$$
\vec{E}^{s}=-j \omega \vec{A}+\frac{\nabla \nabla \bullet \vec{A}}{j \omega \mu \varepsilon}, \vec{H}^{s}=\frac{1}{\mu} \nabla \times \vec{A}
$$

MoM Advances

- Since scattered electric and magnetic field are dependent on magnetic vector potential which is dependent on the equivalent current density, hence the fields are dependent on the equivalent current density $\vec{J}_{e q}$
- Let us analyze the dependence of fields on the $\vec{J}_{\text {eq }}$
- Suppose $\vec{J}_{e q}$ is an infinitesimal elementary source at \vec{r}^{\prime} pointed in x direction so that

$$
\vec{J}_{e q}=\delta\left(\vec{r}-\vec{r}^{\prime}\right) \hat{x}
$$

- The corresponding magnetic vector potential is

$$
\vec{A}=\mu_{0} G_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \hat{x} \quad \because \vec{A}=\mu_{0} \int_{V^{\prime}} G_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \vec{J}_{e q}\left(\vec{r}^{\prime}\right) d v^{\prime}
$$

MoM Advances

- If $\quad \vec{G}_{0 x}\left(\vec{r}, \vec{r}^{\prime}\right)$ is the electric field produced by the above mentioned elementary source, it must satisfy the wave equation

$$
\nabla \times \nabla \times \vec{G}_{0 x}\left(\vec{r}, \vec{r}^{\prime}\right)-k_{0}^{2} \vec{G}_{0 x}\left(\vec{r}, \vec{r}^{\prime}\right)=-j \omega \mu_{0} \delta\left(\vec{r}-\vec{r}^{\prime}\right)
$$

- whose solution is given by

$$
\begin{aligned}
& \vec{E}^{s}=\vec{G}_{0 x}=-j \omega \mu_{0} G_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \hat{x}+\frac{\nabla \nabla \bullet G_{0}\left(\vec{r}, \vec{r}^{\prime}\right)}{j \omega \varepsilon} \hat{x} \quad \because \vec{E}^{s}=-j \omega \vec{A}+\frac{\nabla \nabla \bullet \vec{A}}{j \omega \mu \varepsilon} \\
& \Rightarrow \vec{G}_{0 x}=-j \omega \mu_{0}\left(1+\frac{1}{k^{2}} \nabla \nabla \bullet\right) G_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \hat{x} \\
& \text { 232 } \quad \vec{A}=\mu_{0} G_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \hat{x}
\end{aligned}
$$

MoM Advances

- $\vec{G}_{0 x}\left(\vec{r}, \vec{r}^{\prime}\right)$ is referred to as a free space vector Green's
function with a source pointed in the x -direction
- We could also find the free space vector Green's
function $\quad \vec{G}_{0 y}\left(\vec{r}, \vec{r}^{\prime}\right), \vec{G}_{0 z}\left(\vec{r}, \vec{r}^{\prime}\right)$ for a source pointed in the y -direction and z -direction respectively

MoM Advances

- We could now introduce a dyadic function which will store these three free space vector Green's function as

$$
\vec{G}_{0}\left(\vec{r}, \vec{r}^{\prime}\right)=\vec{G}_{0 x}\left(\vec{r}, \vec{r}^{\prime}\right) \hat{x}+\vec{G}_{0 y}\left(\vec{r}, \vec{r}^{\prime}\right) \hat{y}+\vec{G}_{0 z}\left(\vec{r}, \vec{r}^{\prime}\right) \hat{z}
$$

- This is called free space dyadic Green's function
- It is a solution of the dyadic differential equation

$$
\nabla \times \nabla \times \vec{G}_{0}\left(\vec{r}, \vec{r}^{\prime}\right)-k_{0}^{2} \vec{G}_{0}\left(\vec{r}, \vec{r}^{\prime}\right)=-j \omega \mu_{0} I \vec{I} \delta\left(\vec{r}-\vec{r}^{\prime}\right)
$$

- where unit dyad is given by

$$
\vec{I}=\hat{x} \hat{x}+\hat{y} \hat{y}+\hat{z} \hat{z}
$$

MoM Advances

- The physical meaning is that $\vec{G}_{0}\left(\vec{r}, \vec{r}^{\prime}\right)$ is the electric field at a point $\vec{r} \quad$ due to an infinitesimal source at \vec{r}^{\prime} in any arbitrary orientation
- Then the scattered electric field due to any arbitrary equivalent current density may be expressed as

$$
\vec{E}^{s}=\int_{V^{\prime}} \vec{G}_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \bullet \vec{J}_{e q}\left(\vec{r}^{\prime}\right) d v^{\prime}
$$

- where

$$
\vec{G}_{0}\left(\vec{r}, \vec{r}^{\prime}\right)=\vec{G}_{0 x}\left(\vec{r}, \vec{r}^{\prime}\right) \hat{x}+\vec{G}_{0 y}\left(\vec{r}, \vec{r}^{\prime}\right) \hat{y}+\vec{G}_{0 z}\left(\vec{r}, \vec{r}^{\prime}\right) \hat{z}
$$

MoM Advances

- Since

$$
\vec{G}_{0 w}=-j \omega \mu_{0}\left(1+\frac{1}{k^{2}} \nabla \nabla \bullet\right) G_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \hat{w}
$$

- where w can take any value

$$
w=\{x, y, z\} ; \hat{w}=\{\hat{x}, \hat{y}, \hat{z}\}
$$

- Note that $\vec{G}_{0}\left(\vec{r}, \vec{r}^{\prime}\right)$ has singularity of the order $\left|\vec{r}-\vec{r}^{\prime}\right|^{3}$
- In other words, the integral diverges if the \vec{r} is inside the source region

MoM Advances

- The scattered field inside the body may be expressed in terms of equivalent current density by using the free-space tensor/dyadic Green's function as

$$
\vec{E}^{s}=\int_{V^{\prime}} \vec{G}_{0}\left(\vec{r}^{\prime} \vec{r}^{\prime}\right) \bullet \vec{J}_{e q}\left(\vec{r}^{\prime}\right) d v^{\prime}
$$

- However, when the field point is inside the body, scattered field must be evaluated with special care because of singularity

MoM Advances

- This difficulty is overcome by excluding a small volume surrounding the field point first and letting the small volume approach zero
- Integral is now well defined as the limit obtained when the radius of the sphere approaches zero
- We shall call this limit the "principal value" of the integral

MoM Advances

- This process involves defining a principal value and adding a correction term (derived in https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=\&arnumb er=1145064)

$$
\begin{aligned}
& \vec{E}^{s}(\vec{r})=P V\left(\int_{V^{\prime}} \vec{G}_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \bullet \vec{J}_{e q}\left(\vec{r}^{\prime}\right) d v^{\prime}\right)+\left[\vec{E}^{s}(\vec{r})\right]_{\text {correction }} \\
& =P V\left(\int_{V^{\prime}} \vec{G}_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \bullet \vec{J}_{e q}\left(\vec{r}^{\prime}\right) d v^{\prime}\right)-\frac{\vec{J}_{e q}(\vec{r})}{j 3 \omega \varepsilon_{0}}
\end{aligned}
$$

MoM Advances

- The total electric field inside the body is the sum of the incident field and scattered field

$$
\begin{aligned}
& \vec{E}(\vec{r})=\vec{E}^{i}(\vec{r})+\vec{E}^{s}(\vec{r}) \\
& \therefore \vec{E}^{i}(\vec{r})=\vec{E}(\vec{r})-\vec{E}^{s}(\vec{r}) \\
&= \vec{E}(\vec{r})-P V\left(\int_{V^{\prime}} \vec{G}_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \bullet \vec{J}_{e q}\left(\vec{r}^{\prime}\right) d v^{\prime}\right)+\frac{\vec{J}_{e q}(\vec{r})}{j 3 \omega \varepsilon_{0}} \\
&= \vec{E}(\vec{r})-P V\left(\int_{V^{\prime}} \vec{G}_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \bullet \tau(\vec{r}) \vec{E}(\vec{r}) d v^{\prime}\right)+\frac{\tau(\vec{r}) \vec{E}(\vec{r})}{j 3 \omega \varepsilon_{0}} \\
& \Rightarrow \vec{E}^{i}(\vec{r})=\left(1+\frac{\tau(\vec{r})}{j 3 \omega \varepsilon_{0}}\right) \vec{E}(\vec{r})-P V\left(\int_{V^{\prime}} \tau(\vec{r}) \vec{E}(\vec{r}) \bullet \vec{G}_{0}\left(\vec{r}, \vec{r}^{\prime}\right) d v^{\prime}\right) \\
& \text { MoM by Prof. Rakheesh Singh Kshertimayum }
\end{aligned}
$$

MoM Advances

- Matrix Equation:
- The inner product $\vec{E}(\vec{r}) \bullet \vec{G}_{0}\left(\vec{r}, \vec{r}^{\prime}\right)$ is given as

$$
\vec{E}(\vec{r}) \bullet \vec{G}_{0}\left(\vec{r}, \vec{r}^{\prime}\right)=\left[\begin{array}{lll}
& & \\
G_{x x}\left(\vec{r}, \vec{r}^{\prime}\right) & G_{x y}\left(\vec{r}, \vec{r}^{\prime}\right) & G_{x z}\left(\vec{r}, \vec{r}^{\prime}\right) \\
G_{y x}\left(\vec{r}, \vec{r}^{\prime}\right) & G_{y y}\left(\vec{r}, \vec{r}^{\prime}\right) & G_{y z}\left(\vec{r} \vec{r}^{\prime}\right) \\
G_{z x}\left(\vec{r}, \vec{r}^{\prime}\right) & G_{z y}\left(\vec{r}, \vec{r}^{\prime}\right) & G_{z z}\left(\vec{r}, \vec{r}^{\prime}\right)
\end{array}\right] \bullet\left[\begin{array}{c}
\\
E_{x}(\vec{r}) \\
E_{y}(\vec{r}) \\
E_{z}(\vec{r})
\end{array}\right]
$$

- Denoting $\mathrm{x}_{1}=\mathrm{x}, \mathrm{x}_{2}=\mathrm{y}, \mathrm{x}_{3}=\mathrm{z}$, we have,

$$
G_{x_{p} x_{q}}\left(\vec{r}, \vec{r}^{\prime}\right)=-j \omega \mu_{0}\left(\delta_{p q}+\frac{1}{k^{2}} \frac{\partial^{2}}{\partial x_{q} x_{p}}\right) G_{0}\left(\vec{r}, \vec{r}^{\prime}\right) ; p, q=1,2,3
$$

MoM Advances

- Partition the body into N subvolumes or cells, each denoted by $\mathrm{v}_{\mathrm{m}}(\mathrm{m}=1,2, \ldots, \mathrm{~N})$ and
- assume $\tau(\vec{r}), \vec{E}(\vec{r})$ are constant within each cell
- If \vec{r}_{m} is the centre of the $\mathrm{m}^{\text {th }}$ cell, then

$$
\begin{gathered}
E_{x_{p}}^{i}\left(\vec{r}_{m}\right)=\left(1+\frac{\tau(\vec{r})}{j 3 \omega \varepsilon_{0}}\right) E_{x_{p}}\left(\vec{r}_{m}\right)-\sum_{q=1}^{3}\left[\sum_{n=1}^{N} \tau\left(\vec{r}_{n}\right) P V\left(\int_{V_{m}} G_{x_{p} x_{q}}\left(\vec{r}_{m}, \vec{r}^{\prime}\right) d v^{\prime}\right)\right] E_{x_{q}}\left(\vec{r}_{n}\right) \\
\because \vec{E}^{i}(\vec{r})=\left(1+\frac{\tau(\vec{r})}{j 3 \omega \varepsilon_{0}}\right) \vec{E}(\vec{r})-P V\left(\int_{V} \tau(\vec{r}) \vec{E}(\vec{r}) \bullet \vec{G}_{0}\left(\vec{r}, \vec{r}^{\prime}\right) d v^{\prime}\right)
\end{gathered}
$$

MoM Advances

- If we let $\left[G_{x_{p} x_{q}}\right]$ be an $\mathrm{N} \times \mathrm{N}$ matrix with elements

$$
G_{x_{p} x_{q}}^{m n}=\tau\left(\mathbf{r}_{n}\right) P V\left(\int_{v_{n}} G_{x_{p} x_{q}}\left(\mathbf{r}_{m}, \mathbf{r}^{\prime}\right) d v^{\prime}\right)-\delta_{p q} \delta_{m n}\left[1+\frac{\tau(\mathbf{r})}{3 j \omega \varepsilon_{0}}\right]
$$

- where $\mathrm{m}, \mathrm{n}=1,2, \ldots, \mathrm{~N}$ and $\mathrm{p}, \mathrm{q}=1,2,3$
- let $\left[E_{x_{p}}\right]$ and $\left[E_{x_{p}}^{i}\right]$ be column matrices with elements

MoM Advances

$$
\left[E_{x_{p}}\right]=\left[\begin{array}{c}
E_{x_{p}}\left(\mathbf{r}_{1}\right) \\
\vdots \\
E_{x_{p}}\left(\mathbf{r}_{N}\right)
\end{array}\right] \quad\left[E_{x_{p}}^{i}\right]=\left[\begin{array}{c}
\\
E_{x_{p}}^{i}\left(\mathbf{r}_{1}\right) \\
\vdots \\
E_{x_{p}}^{i}\left(\mathbf{r}_{N}\right) \\
\end{array}\right]
$$

- We obtain 3N simultaneous equations for Ex, Ey and Ez at the centers of N cells by the point matching technique

MoM Advances

- These simultaneous equations can be written in matrix form as

$$
\left[\begin{array}{lll}
{\left[G_{x x}\right]} & {\left[G_{x y}\right]} & {\left[G_{x z}\right]} \\
{\left[G_{y x}\right]} & {\left[G_{y y}\right]} & {\left[G_{y z}\right]} \\
{\left[G_{z x}\right]} & {\left[G_{z y}\right]} & {\left[G_{z z}\right]}
\end{array}\right]\left[\begin{array}{l}
{\left[E_{x}\right]} \\
{\left[E_{y}\right]} \\
{\left[E_{z}\right]}
\end{array}\right]=-\left[\begin{array}{l}
\\
{\left[E_{x}^{i}\right]} \\
{\left[E_{y}^{i}\right.} \\
{\left[E_{z}^{i}\right]}
\end{array}\right]
$$

MoM Advances

- Radar cross section:
- A measure of the effective area of the scatterer
- Function of both angle of incidence and angle of observation
- Larger is the radar cross section, larger is scattering

MoM Advances

- Scattering from a conducting cylinder of infinite length
- Electric field integral equation
- On the conductor surface

$$
E_{\tan }^{\text {total }}=E_{\tan }^{\text {inc }}+E_{\tan }^{\text {scatt }}=0
$$

MoM Advances

- Incident wave
- It is a plane wave from infinity
- Assume a TM^{z} wave with $\mathrm{H}_{\mathrm{z}}=0$

$$
\vec{E}^{i n c}=\hat{z} E_{z}(x, y)
$$

MoM Advances

- Scattered wave
- The incident field induces an electric current

$$
\hat{z} J_{z}(x, y)
$$

- which produces the scattered field
- The scalar wave equation in this case is

$$
\nabla^{2} E_{z}^{\text {scatt }}+k^{2} E_{z}^{\text {scatt }}=j \omega \mu_{0} J_{z}
$$

MoM Advances

- 2-D Green's functions
- We can compute 2-D Green's function by
- computing the field radiated by a line source
- carrying a time-harmonic electric current of amplitude of I in the $+z$ direction
- Since the current associated with the line source is infinitely long

MoM Advances

- flows in the z direction only the z component of the electric field will become non zero
- Like in cylindrical waveguide E_{z} can be expressed as

$$
\begin{aligned}
& E_{z}(\rho, \phi, z)=\sum_{m=0}^{\infty}\left[A_{m} H_{m}^{(1)}\left(k_{\rho} \rho\right)+B_{m} H_{m}^{(2)}\left(k_{\rho} \rho\right)\right] \\
& {\left[C_{m} e^{j m \phi}+D_{m} e^{-j m \phi}\right]\left[E_{m} e^{j k_{z} z}+F_{m} e^{-j k_{z} z}\right]}
\end{aligned}
$$

MoM Advances

- where $H_{m}^{(1)}, H_{m}^{(2)}$ are the Hankel function of first and second kind

$$
k_{\rho}^{2}+k_{z}^{2}=k^{2}
$$

- Since the line source is rotationally symmetric, the fields do not vary in the ϕ or z direction
- So $\mathrm{k}_{\mathrm{z}}=0$ and $\mathrm{C}_{\mathrm{m}}=\mathrm{D}_{\mathrm{m}}=0$ for $\mathrm{m} \neq 0$
- Hence

$$
k_{\rho}^{2}=k^{2}
$$

MoM Advances

- Note on Hankel's function
- Hankel's function are related to Bessel's functions of first and second kind as

$$
\begin{aligned}
& H_{m}^{(1)}\left(k_{\rho} \rho\right)=J_{m}\left(k_{\rho} \rho\right)+j Y_{m}\left(k_{\rho} \rho\right) \\
& H_{m}^{(2)}\left(k_{\rho} \rho\right)=J_{m}\left(k_{\rho} \rho\right)-j Y_{m}\left(k_{\rho} \rho\right)
\end{aligned}
$$

- These relations are similar to Euler's theorem

MoM Advances

- Physically, Bessel's functions represent standing waves whereas Hankel's functions represent propagating waves
- When the argument is large, the Hankel function can be approximated by

$$
\begin{aligned}
& H_{m}^{(1)}\left(k_{\rho} \rho\right) \cong \sqrt{\frac{-2 j}{\pi k_{\rho} \rho}} e^{j k_{\rho} \rho-\frac{m \pi}{2}} \\
& H_{m}^{(2)}\left(k_{\rho} \rho\right) \cong \sqrt{\frac{2 j}{\pi k_{\rho} \rho}} e^{-j k_{\rho} \rho+\frac{m \pi}{2}}=j \sqrt{\frac{-2 j}{\pi k_{\rho} \rho}} e^{-\left(j k_{\rho} \rho-\frac{m \pi}{2}\right)} \\
& \text { Mombvprof. Radhesh singhkntringmum }
\end{aligned}
$$

MoM Advances

- The amplitude of Hankel's function decays as

$$
\sqrt{\frac{1}{k_{\rho} \rho}}
$$

- when $k_{\rho} \rho$ becomes large
- The phase of the oscillation depends on order m like Bessel's functions

MoM Advances

- $H_{m}^{(1)}\left(k_{\rho} \rho\right)$ represents a wave propagating in the ρ direction (an in-going wave)
- $H_{m}^{(2)}\left(k_{\rho} \rho\right)$ represents a wave propagating in the
$+\rho$ direction (an out-going wave)
- An incoming wave defies the principle of causality, hence $\mathrm{A}_{0}=0$

MoM Advances

- Hence

$$
E_{z}\left(k_{\rho} \rho\right)=B_{0} H_{0}^{(2)}\left(k_{\rho} \rho\right)
$$

- Using Maxwell's curl equation

$$
\vec{H}=-\frac{1}{j \omega \mu} \frac{1}{\rho}\left|\begin{array}{ccc}
\hat{\rho} & \rho \hat{\phi} & \hat{z} \\
\frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\
0 & 0 & E_{z}\left(k_{\rho} \rho\right)
\end{array}\right|
$$

MoM Advances

$$
\begin{gathered}
\vec{H}=\frac{1}{j \omega \mu} \hat{\phi} \frac{\partial\left[E_{z}\left(k_{\rho} \rho\right)\right]}{\partial \rho}=\frac{1}{j \omega \mu} \hat{\phi} \frac{\partial\left[B_{0} H_{0}^{(2)}\left(k_{\rho} \rho\right)\right]}{\partial \rho} \\
\vec{H}=\frac{1}{j}\left(\frac{j k_{\rho}}{j \omega \mu}\right) \hat{\phi} B_{0} H_{0}^{(2)^{\prime}}\left(k_{\rho} \rho\right)=\frac{1}{j \eta} \hat{\phi} B_{0} H_{0}^{(2)^{\prime}}\left(k_{\rho} \rho\right)
\end{gathered}
$$

For small $k_{\rho} \rho$

$$
H_{0}^{(2)}\left(k_{\rho} \rho\right) \cong 1-\frac{2 j}{\pi} \ln \left(\frac{1.78107 k_{\rho} \rho}{2}\right)
$$

MoM Advances

$$
\begin{gathered}
H_{0}^{(2)^{\prime}}\left(k_{\rho} \rho\right) \cong-\frac{2 j}{\pi} \frac{\left(\frac{1.78107 k_{\rho}}{2}\right)}{\left(\frac{1.78107 k_{\rho} \rho}{2}\right)}=-\frac{2 j}{\pi \rho} \\
\vec{H}=\frac{1}{j \eta} \hat{\phi} B_{0}\left(-\frac{2 j}{\pi \rho}\right)
\end{gathered}
$$

MoM Advances

- Using Ampere's law

$$
I=\oint \vec{H} \bullet d \vec{l}=-\frac{2 j B_{0}}{j \eta \pi} \hat{\phi}^{2 \pi} \int_{0}^{2} \frac{1}{\rho} \rho d \phi=-\frac{4 B_{0}}{\eta} \Rightarrow B_{0}=-\frac{\eta I}{4}
$$

- So $\quad E_{z}\left(k_{\rho} \rho\right)=-\frac{\eta I}{4} H_{0}^{(2)}\left(k_{\rho} \rho\right)$
- For $\mathrm{I}=1$, this is the Green's function for 2-D electric current sources in TM^{z} polarization

