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 EM Absorption in the Human body
 EM absorption is specified in terms of specific absorption 

rate (SAR) which is the mass normalized rate of energy 
absorbed by the body

 At a specific location, SAR may be defined as

 where      is tissue conductivity,      is tissue mass density, 
E=rms value of internal field strength 
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 Usual MoM steps are required:
 Deriving the appropriate IE
 Converting IE to matrix equation & matrix elements calculation
 Solving the set of simultaneous equations

 We will use tensor integral-equation here
 What is this?
 When some electric field is incident on human body, the 

induced current in the body gives scattered electric field
 Correspondingly the body may be replaced by an equivalent 

current density
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 Consider Maxwell curl equation

 We can derive wave equation from Maxwell curl equation as
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 It is more like wave is propagating in free space
 And there is an equivalent current source which is effectively 

produced as an effect of the human body 
 The equivalent current density can be expressed in terms of a 

tensor as follows
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 The tensor         takes into account all the effect of a human 
body in terms of a 3-D matrix 

 Consider a biological body of arbitratry shape with 
constitutive parameters                      illuminated by an 
incident (or impressed) plane EM wave

 The induced current in the body gives rise to a scattered field 
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 For time varying electric fields
 where

 and the free space scalar Green’s function is given by

 From Lorentz Gaug condition
 Hence,  the scattered fields are
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 Since scattered electric and magnetic field are dependent on  
magnetic vector potential which is dependent on the 
equivalent current density, hence the fields are dependent on 
the equivalent current density

 Let us analyze the dependence of fields on the  
 Suppose          is an infinitesimal elementary source at 

pointed in x direction so that

 The corresponding magnetic vector potential is   
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 If                    is the electric field produced by the above 
mentioned elementary source, it must satisfy the wave 
equation

 whose solution is given by
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 is referred to as a free space vector Green’s 

function  with a source pointed in the x-direction

 We could also find the free space vector Green’s 

function                                           for a source pointed in 
the y-direction and z-direction respectively
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 We could now introduce a dyadic function which will store 
these three free space vector Green’s function as

 This is called free space dyadic Green’s function
 It is a solution of the dyadic differential equation

 where unit dyad is given by
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 The physical meaning is that               is the electric field at a 
point              due to an infinitesimal source at       in any 
arbitrary orientation

 Then the scattered electric field due to any arbitrary 
equivalent current density may be expressed as 

 where
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 Since

 where w can take any value

 Note that                has singularity of the order  
 In other words, the integral diverges if the        is inside the 

source region
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 The scattered field inside the body may be expressed in terms 
of equivalent current density by using the free-space 
tensor/dyadic Green’s function as

 However, when the field point is inside the body, scattered 
field must be evaluated with special care because of 
singularity
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 This difficulty is overcome by excluding a small volume 
surrounding the field point first and letting the small volume 
approach zero

 Integral is now well defined as the limit obtained when the 
radius of the sphere approaches zero

 We shall call this limit the “principal value” of the integral
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 This process involves defining a principal value and adding a 
correction term (derived in 
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumb
er=1145064)
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 The total electric field inside the body is the sum of the 
incident field and scattered field 
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 Matrix Equation:
 The inner product                             is given as

 Denoting x1=x, x2=y, x3=z, we have,
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 Partition the body into N subvolumes or cells, each denoted 
by vm (m=1,2,…,N) and 

 assume                are constant within each cell
 If         is the centre of the mth cell, then
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 If we let               be an N×N matrix with elements

 where m,n=1,2,…,N and p,q=1,2,3 

 let             and                be column matrices with 

elements
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 We obtain 3N simultaneous equations for Ex, Ey and Ez at 
the centers of N cells by the point matching technique 
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 These simultaneous equations can be written in matrix form 
as

i
xxx xy xz x

i
yx yy yz y y

i
zzx zy zz z

EG G G E

G G G E E

EG G G E

    
    
                        
                       
                        
    

       



MoM Advances

2/4/2021MoM by Prof. Rakhesh Singh Kshetrimayum246

Radar cross section:
A measure of the effective area of the scatterer
Function of both angle of incidence and angle of 

observation
Larger is the radar cross section, larger is 

scattering 
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 Scattering from a conducting cylinder of infinite 
length

 Electric field integral equation
 On the conductor surface

0tantantan  scattinctotal EEE
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 Incident wave
 It is a plane wave from infinity
Assume a TMz wave with Hz=0
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 Scattered wave
 The incident field induces an electric current

 which produces the scattered field 
 The scalar wave equation in this case is
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 2-D Green’s functions
 We can compute 2-D Green’s function by 
computing the field radiated by a line source
carrying a time-harmonic  electric current of 

amplitude of I in the +z direction
 Since the current associated with the line source 

is infinitely long  
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 flows in the z direction only the z component of 
the electric field will become non zero

 Like in cylindrical waveguide Ez can be expressed 
as 
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 where                 are the Hankel function of first 
and second kind

 Since the line source is rotationally symmetric, 
the fields do not vary in the      or z direction

 So kz=0 and Cm=Dm=0 for m ≠0
 Hence 
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 Note on Hankel’s function
 Hankel’s function are related to Bessel’s functions 

of first and second kind as

 These relations are similar to Euler’s theorem
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 Physically, Bessel’s functions represent standing 
waves whereas Hankel’s functions represent 
propagating waves

 When the argument is large, the Hankel function 
can be approximated by 
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 The amplitude of Hankel’s function decays as

 when          becomes large
 The phase of the oscillation depends on order m 

like Bessel’s functions
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 represents a wave propagating in the -
direction (an in-going wave)

 represents a wave propagating in the  
+     direction (an out-going wave)

 An incoming wave defies the principle of 
causality, hence A0=0
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 Hence

 Using Maxwell’s curl equation 

      kHBkEz
2

00

 





kE
z

z

j
H

z00

ˆˆˆ
11















MoM Advances

2/4/2021MoM by Prof. Rakhesh Singh Kshetrimayum258

      






















kHB

j

kE

j
H z

2
00ˆ1ˆ1

       



 

 kHB
j

kHB
j

jk

j
H

'2
00

'2
00

ˆ1ˆ1













For small k

   









2

78107.1
ln

2
12

0




 


kj
kH



MoM Advances

2/4/2021MoM by Prof. Rakhesh Singh Kshetrimayum259

   








j

k

k

j
kH

2

2

78107.1

2

78107.1

2'2
0 



































j
B

j
H

2ˆ1
0





MoM Advances

2/4/2021MoM by Prof. Rakhesh Singh Kshetrimayum260

 Using Ampere’s law

 So
 For I=1, this is the Green’s function for 2-D 

electric current sources in TMz polarization
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