MoM Advances

- Radar cross section:
- A measure of the effective area of the scatterer
- Function of both angle of incidence and angle of observation
- Larger is the radar cross section, larger is scattering

MoM Advances

- Scattering from a conducting cylinder of infinite length
- Electric field integral equation
- On the conductor surface

$$
E_{\tan }^{\text {total }}=E_{\tan }^{\text {inc }}+E_{\tan }^{\text {scatt }}=0
$$

MoM Advances

- Incident wave
- It is a plane wave from infinity
- Assume a TM^{z} wave with $\mathrm{H}_{\mathrm{z}}=0$

$$
\vec{E}^{i n c}=\hat{z} E_{z}(x, y)
$$

MoM Advances

- Scattered wave
- The incident field induces an electric current

$$
\hat{z} J_{z}(x, y)
$$

- which produces the scattered field
- The scalar wave equation in this case is

$$
\nabla^{2} E_{z}^{\text {scatt }}+k^{2} E_{z}^{\text {scatt }}=j \omega \mu_{0} J_{z}
$$

MoM Advances

- 2-D Green's functions
- We can compute 2-D Green's function by
- computing the field radiated by a line source
- carrying a time-harmonic electric current of amplitude of I in the $+z$ direction
- Since the current associated with the line source is infinitely long

MoM Advances

- flows in the z direction only the z component of the electric field will become non zero
- Like in cylindrical waveguide E_{z} can be expressed as

$$
\begin{aligned}
& E_{z}(\rho, \phi, z)=\sum_{m=0}^{\infty}\left[A_{m} H_{m}^{(1)}\left(k_{\rho} \rho\right)+B_{m} H_{m}^{(2)}\left(k_{\rho} \rho\right)\right] \\
& {\left[C_{m} e^{j m \phi}+D_{m} e^{-j m \phi}\right]\left[E_{m} e^{j k_{z} z}+F_{m} e^{-j k_{z} z}\right]}
\end{aligned}
$$

MoM Advances

- where $H_{m}^{(1)}, H_{m}^{(2)}$ are the Hankel function of first and second kind

$$
k_{\rho}^{2}+k_{z}^{2}=k^{2}
$$

- Since the line source is rotationally symmetric, the fields do not vary in the ϕ or z direction
- So $\mathrm{k}_{\mathrm{z}}=0$ and $\mathrm{C}_{\mathrm{m}}=\mathrm{D}_{\mathrm{m}}=0$ for $\mathrm{m} \neq 0$
- Hence

$$
k_{\rho}^{2}=k^{2}
$$

MoM Advances

- Note on Hankel's function
- Hankel's function are related to Bessel's functions of first and second kind as

$$
\begin{aligned}
& H_{m}^{(1)}\left(k_{\rho} \rho\right)=J_{m}\left(k_{\rho} \rho\right)+j Y_{m}\left(k_{\rho} \rho\right) \\
& H_{m}^{(2)}\left(k_{\rho} \rho\right)=J_{m}\left(k_{\rho} \rho\right)-j Y_{m}\left(k_{\rho} \rho\right)
\end{aligned}
$$

- These relations are similar to Euler's theorem

MoM Advances

- Physically, Bessel's functions represent standing waves whereas Hankel's functions represent propagating waves
- When the argument is large, the Hankel function can be approximated by

$$
\begin{aligned}
& H_{m}^{(1)}\left(k_{\rho} \rho\right) \cong \sqrt{\frac{-2 j}{\pi k_{\rho} \rho}} e^{j k_{\rho} \rho-\frac{m \pi}{2}} \\
& H_{m}^{(2)}\left(k_{\rho} \rho\right) \cong \sqrt{\frac{2 j}{\pi k_{\rho} \rho}} e^{-j k_{\rho} \rho+\frac{m \pi}{2}}=j \sqrt{\frac{-2 j}{\pi k_{\rho} \rho}} e^{-\left(j k_{\rho} \rho-\frac{m \pi}{2}\right)} \\
& \text { Mombvprof. Radhesh singhkntringmum }
\end{aligned}
$$

MoM Advances

- The amplitude of Hankel's function decays as

$$
\sqrt{\frac{1}{k_{\rho} \rho}}
$$

- when $k_{\rho} \rho$ becomes large
- The phase of the oscillation depends on order m like Bessel's functions

MoM Advances

- $H_{m}^{(1)}\left(k_{\rho} \rho\right)$ represents a wave propagating in the ρ direction (an in-going wave)
- $H_{m}^{(2)}\left(k_{\rho} \rho\right)$ represents a wave propagating in the
$+\rho$ direction (an out-going wave)
- An incoming wave defies the principle of causality, hence $\mathrm{A}_{0}=0$

MoM Advances

- Hence

$$
E_{z}\left(k_{\rho} \rho\right)=B_{0} H_{0}^{(2)}\left(k_{\rho} \rho\right)
$$

- Using Maxwell's curl equation

$$
\vec{H}=-\frac{1}{j \omega \mu} \frac{1}{\rho}\left|\begin{array}{ccc}
\hat{\rho} & \rho \hat{\phi} & \hat{z} \\
\frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\
0 & 0 & E_{z}\left(k_{\rho} \rho\right)
\end{array}\right|
$$

MoM Advances

$$
\begin{gathered}
\vec{H}=\frac{1}{j \omega \mu} \hat{\phi} \frac{\partial\left[E_{z}\left(k_{\rho} \rho\right)\right]}{\partial \rho}=\frac{1}{j \omega \mu} \hat{\phi} \frac{\partial\left[B_{0} H_{0}^{(2)}\left(k_{\rho} \rho\right)\right]}{\partial \rho} \\
\vec{H}=\frac{1}{j}\left(\frac{j k_{\rho}}{j \omega \mu}\right) \hat{\phi} B_{0} H_{0}^{(2)^{\prime}}\left(k_{\rho} \rho\right)=\frac{1}{j \eta} \hat{\phi} B_{0} H_{0}^{(2)^{\prime}}\left(k_{\rho} \rho\right)
\end{gathered}
$$

For small $k_{\rho} \rho$

$$
H_{0}^{(2)}\left(k_{\rho} \rho\right) \cong 1-\frac{2 j}{\pi} \ln \left(\frac{1.78107 k_{\rho} \rho}{2}\right)
$$

MoM Advances

$$
\begin{gathered}
H_{0}^{(2)^{\prime}}\left(k_{\rho} \rho\right) \cong-\frac{2 j}{\pi} \frac{\left(\frac{1.78107 k_{\rho}}{2}\right)}{\left(\frac{1.78107 k_{\rho} \rho}{2}\right)}=-\frac{2 j}{\pi \rho} \\
\vec{H}=\frac{1}{j \eta} \hat{\phi} B_{0}\left(-\frac{2 j}{\pi \rho}\right)
\end{gathered}
$$

MoM Advances

- Using Ampere's law

$$
I=\oint \vec{H} \bullet d \vec{l}=-\frac{2 j B_{0}}{j \eta \pi} \hat{\phi}^{2 \pi} \int_{0}^{2} \frac{1}{\rho} \rho d \phi=-\frac{4 B_{0}}{\eta} \Rightarrow B_{0}=-\frac{\eta I}{4}
$$

- So $\quad E_{z}\left(k_{\rho} \rho\right)=-\frac{\eta I}{4} H_{0}^{(2)}\left(k_{\rho} \rho\right)$
- For $\mathrm{I}=1$, this is the Green's function for 2-D electric current sources in TM^{z} polarization

MoM Advances

- The electric field can be found by convolving the Green's function with the current distribution

$$
\vec{E}(\rho)=-\frac{\eta}{4} \int H_{0}^{(2)}\left(k_{\rho}\left|\vec{\rho}-\vec{\rho}^{\prime}\right|\right) J_{z}\left(\vec{\rho}^{\prime}\right) d \vec{\rho}^{\prime} ; \vec{\rho}^{\prime}=x^{\prime} \hat{x}+y^{\prime} \hat{y}, \vec{\rho}=x \hat{x}+y \hat{y}
$$

- Hence

$$
\begin{aligned}
& E_{z}^{s c a t t}(\rho)=-\frac{\eta}{4} \int H_{0}^{(2)}\left(k_{\rho}\left|\rho-\rho^{\prime}\right|\right) J_{z}\left(\rho^{\prime}\right) d l^{\prime} \\
& \Rightarrow E_{z}^{\text {inc }}(\rho)=-E_{z}^{\text {scatt }}(\rho)=\frac{\eta}{4} \int H_{0}^{(2)}\left(k_{\rho}\left|\rho-\rho^{\prime}\right|\right) J_{z}\left(\rho^{\prime}\right) d l^{\prime}
\end{aligned}
$$

MoM Advances

- The incident plane wave field is assumed to be propagating normal to the z -axis, the axis of the cylinder

$$
E_{z}^{i n c}=E_{0} e^{-j \vec{k} \dot{\rightharpoonup} \cdot}=E_{0} e^{-j k\left(x \cos \phi_{i}+y \sin \phi_{i}\right)}
$$

- where ϕ_{i} is the angle of incidence

MoM Advances

- For the MoM solution,
- we can divide the contour into a number of segments and
- use pulse function expansion for unknown
current as

$$
J_{z}\left(\rho^{\prime}\right) \cong \sum_{n=1}^{N} \alpha_{n} p\left(\rho-\rho_{n}\right)
$$

- where $p\left(\rho-\rho_{n}\right)$ is the pulse function centred at

$$
\rho_{n}
$$

MoM Advances

- If we divide the contour in sufficiently large number of segments,
- the curved segment may be replaced by a flat segment
- Point matching at the mid-point ρ_{m} of segment reduces the integral to
$-E_{z}^{i n c}\left(\rho_{m}\right)=\frac{\eta}{4} \sum_{n=1}^{N} \alpha_{n} \int_{w_{n}} H_{0}^{(2)}\left(k_{\rho}\left|\rho_{m}-\rho^{\prime}\right|\right) d l^{\prime} ; m=1,2,3, \cdots, M$
- w_{n} is the size of the $\mathrm{m}^{\text {th }}$ segment

MoM Advances

- The above expression

$$
\left[\begin{array}{c}
E_{z}^{i n c}\left(\rho_{1}\right) \\
E_{z}^{\text {inc }}\left(\rho_{2}\right) \\
\vdots \\
E_{z}^{\text {inc }}\left(\rho_{N}\right)
\end{array}\right]=\left[\begin{array}{cccc}
Z_{11} & Z_{12} & \cdots & Z_{1 N} \\
Z_{21} & Z_{22} & \cdots & Z_{2 N} \\
\vdots & \ddots & \ddots & \vdots \\
Z_{N 1} & Z_{N 2} & \cdots & Z_{N N}
\end{array}\right]\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{N}
\end{array}\right]
$$

- In matrix form

$$
\left[E_{z}^{m a}\right]=[z \| a]
$$

MoM Advances

- where off-diagonal elements are

$$
\begin{aligned}
& Z_{m n}=\frac{\eta}{4} \int_{\rho_{n}-\frac{w_{n}}{2}}^{\rho_{n}+\frac{w_{n}}{2}} H_{0}^{(2)}\left(k_{\rho}\left|\rho_{m}-\rho^{\prime}\right|\right) d l^{\prime} \cong \frac{\eta}{4} w_{n} H_{0}^{(2)}\left(k_{\rho}\left|\rho_{m}-\rho_{n}\right|\right) \\
& =\frac{\eta}{4} w_{n} H_{0}^{(2)}\left(k_{\rho} R_{m n}\right) ; R_{m n}=\sqrt{\left(x_{m}-x_{n}\right)^{2}+\left(y_{m}-y_{n}\right)^{2}}
\end{aligned}
$$

- Diagonal elements are

$$
Z_{n n}=\frac{\eta}{4} \int H_{0}^{(2)}\left(k_{\rho}\left|\rho_{m}-\rho^{\prime}\right|\right) d l^{\prime}=\frac{2 \eta}{4} \int_{0}^{\frac{w_{n}}{2}}\left[1-\frac{2 j}{\pi} \ln \left(\frac{1.78107 k_{\rho} \rho}{2}\right)\right] d \rho
$$

MoM Advances

- Induced current in the cylinder J_{Z} can be obtained from

$$
[\alpha]=[Z]^{-1}\left[E^{i n c}\right]
$$

- where $E_{m}^{i n c}=e^{-j \vec{k} \cdot \vec{r}}=e^{-j k\left(x_{m} \cos \phi_{i}+y_{m} \sin \phi_{i}\right)}$
- and $\left(\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right)$ denotes the coordinates of the midpoint of the segment

MoM Advances

- Radar Cross Section:
- $\sigma=\lim _{\rho \rightarrow \infty} 2 \pi \rho \frac{\left|\vec{E}^{s}\right|^{2}}{\left|\vec{E}^{\text {inc }}\right|^{2}}$
- where $E_{m}^{i n c}=e^{-j \vec{k} \cdot \vec{r}}=e^{-j k\left(x_{m} \cos \phi_{i}+y_{m} \sin \phi_{i}\right)}$
- and $\left(\mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right)$ denotes the coordinates of the midpoint of the segment

