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Radar cross section:
A measure of the effective area of the scatterer
Function of both angle of incidence and angle of 

observation
Larger is the radar cross section, larger is 

scattering 
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 Scattering from a conducting cylinder of infinite 
length

 Electric field integral equation
 On the conductor surface

0tantantan  scattinctotal EEE
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 Incident wave
 It is a plane wave from infinity
Assume a TMz wave with Hz=0

 yxEzE z
inc ,ˆ
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 Scattered wave
 The incident field induces an electric current

 which produces the scattered field 
 The scalar wave equation in this case is

 yxJz z ,ˆ
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 2-D Green’s functions
 We can compute 2-D Green’s function by 
computing the field radiated by a line source
carrying a time-harmonic  electric current of 

amplitude of I in the +z direction
 Since the current associated with the line source 

is infinitely long  
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 flows in the z direction only the z component of 
the electric field will become non zero

 Like in cylindrical waveguide Ez can be expressed 
as 
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 where                 are the Hankel function of first 
and second kind

 Since the line source is rotationally symmetric, 
the fields do not vary in the      or z direction

 So kz=0 and Cm=Dm=0 for m ≠0
 Hence 
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 Note on Hankel’s function
 Hankel’s function are related to Bessel’s functions 

of first and second kind as

 These relations are similar to Euler’s theorem
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 Physically, Bessel’s functions represent standing 
waves whereas Hankel’s functions represent 
propagating waves

 When the argument is large, the Hankel function 
can be approximated by 

   

   





 









222

21

22

2

























m
jkm

jk

m

m
jk

m

e
k

j
je

k

j
kH

e
k

j
kH



MoM Advances

2/5/2021MoM by Prof. Rakhesh Singh Kshetrimayum255

 The amplitude of Hankel’s function decays as

 when          becomes large
 The phase of the oscillation depends on order m 

like Bessel’s functions
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 represents a wave propagating in the -
direction (an in-going wave)

 represents a wave propagating in the  
+     direction (an out-going wave)

 An incoming wave defies the principle of 
causality, hence A0=0
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 Hence

 Using Maxwell’s curl equation 
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 Using Ampere’s law

 So
 For I=1, this is the Green’s function for 2-D 

electric current sources in TMz polarization
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 The electric field can be found by convolving the 
Green’s function with the current distribution

 Hence
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 The incident plane wave field is assumed to be 
propagating normal to the z-axis, the axis of the 
cylinder

 where           is the angle of incidence
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 For the MoM solution, 
 we can divide the contour into a number of 

segments and 
 use pulse function expansion for unknown 

current as

 where                   is the pulse function centred at 
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 If we divide the contour in sufficiently large 
number of segments, 

 the curved segment may be replaced by a flat 
segment

 Point matching at the mid-point        of segment 
reduces the integral to  

 wn is the size of the mth segment
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 The above expression

 In matrix form
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 where off-diagonal elements are

 Diagonal elements are
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 Induced current in the cylinder Jz can be obtained 
from

 where
 and (xm,ym) denotes the coordinates of the mid-

point of the segment
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 Radar Cross Section:



 where
 and (xm,ym) denotes the coordinates of the mid-

point of the segment
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