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 How do one visualize wave?
How can one observe wave propagation?

 Radio waves cann’t be observed in nature
 But one can write some EM codes (simulation) and 
 observe wave behavior

 One popular choice for this is Finite Difference Time 
Domain method
Also referred to as FDTD
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 What is FDTD?
 Let us start with 4 Maxwell’s equations
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 Basically, we replace spatial & time derivatives in the two 
Maxwell’s curl equations 
 by central finite difference approximation 

 What is central finite difference approximation of 
derivatives?

 Consider a function f(x), its derivative at x0 from central 
finite difference approximation is given by
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 The time-dependent and source free (       )    Maxwell’s 
curl equations in a medium with ε=ε0εr and μ = μ0 μr
are

 For Cartesian coordinate systems, 
 expanding the curl equations, 
 equating the vector components, 

 we have 6 equations
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 Expanding the first vector curl equation

 we get 3 equations
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 Expanding the second vector curl equation

 We get 3 equations
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As we know that FDTD is a time-domain solver
The question is how do we solve those 6 equations above?
1. 1-D FDTD update equations
 For 1-D case (a major simplification), we can consider 
 (a) Linearly polarized wave along x-axis 
 exciting an electric field which has Ex only (Ey = Ez = 0)

 (b) propagation along z-axis
 no variation in the x-y plane, i.e. ∂/∂x = 0 and ∂/∂y = 0
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 Then, the above 6 equations from 2 Maxwell’s curl 
equations

 reduce to 2 equations for 1-D FDTD

 We want to solve these equations at different locations 
and time in solution space (observe fields at different 
place and time)

 Hence we need to discretize both in time and space
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Fig. 1(a) Discretizations in 1-D space

Fig. 1(b) Discretization in time
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 Notations:
 n is the time index and 
 k is the spatial index, 

 How to decide space and time discretization size?
 How do one determine the values of ∆z and ∆t? 
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 Locate positions z = kΔz
Usually Δz is taken as 10-15 per wavelength
 gives accurate results 

 times t = nΔt and
 Δt (dependent on Δz) chosen from Courant stability 

criterion 
 gives stable FDTD solution (will be discussed later)
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 Let us discretize the first equation:

 the central difference approximations for both the 
temporal and spatial derivatives are obtained at 
 z = kΔz, (space discretization size and index)
 t = nΔt (time discretization size and index)
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 For the second equation:

 the central difference approximations for both the 
temporal and spatial derivatives are obtained at 

 at (z + Δz/2, t + Δt/2) 
 (increment all the time and space steps by 1/2):
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 The above equations can be rearranged as a pair of  
‘computer update equations’, 
which can be repeatedly updated in loop, 
 to obtain the next instant time values of Ex (k, n+1/2) 

and Hy (k + ½, n+1) 
 from the previous instant time values as follows
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Fig. 2 Interleaving of E and H fields 
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 Interleaving of the E and H fields in space and time in the 
FDTD formulation

 to calculate Ex(k), 
 the neighbouring values of Hy at k-1/2 and k+1/2 of 

the previous time instant are needed 
 Similarly,  
 to calculate Hy(k+1/2), for instance, 
 the neighbouring values of Ex at k and k+1 of the 

previous time instants are needed
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 In the above equations, 
 ε0 and μ0 differ by several orders of magnitude, 
 Ex and Hy will differ by several orders of magnitude
We also know that ratio of electric field and magnetic 

field for plane waves is 120π
 Numerical error is minimized by making the following 

change of variables as
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 Hence,
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 Similarly,
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Courant stability criteria:
 Courant stability criteria dictates the 
 relationship between the time increment Δt with 

respect to space increment Δz
 in order to have a stable FDTD solution of the 

electromagnetic problems
 In isotropic media, an electromagnetic wave propagates a 

distance of one cell in time Δt = Δz/vp, 
where vp is the phase velocity
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 This limits the maximum time step
 This equation implies that an EM wave cannot be 

allowed 
 to move more than a space cell during a time step

 Otherwise, FDTD will start diverging
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 If we choose Δt > Δz/vp, 
 the distance moved by the EM wave over the time 

interval Δt will be more than Δz, 
 the EM wave will leave out the next node/cell and 
 FDTD cells are not causally interconnected and 

 hence, it leads to instability
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 Propagation at θ=450

 Wavefront jumps from one row of nodes to the next 
row, 

 the spacing between the consecutive rows of nodes is

 Similarly for 3-D case
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 In the case of a 2-D simulation, 
 we have to allow for the propagation in the diagonal 

direction, 

 which brings the time requirement to Δt = Δz/√2vp

 Obviously, three-dimensional simulation requires Δt = 
Δz/√3vp

 We will use in all our simulations a time step Δt of
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where vp is the phase velocity, 
which satisfies the requirements in 1-D, 2-D and 3-D 

for all media (√2≈1.414<√3≈1.7321<2)
 In 3D case, it may be more appropriate to modify the 

above stability criteria as 

 Using the above relation, we may simplify for 1-D FDTD 
as
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 Making use of this in the above two equations, 
 we obtain the following equations

 Hence the computer update equations (for  free space 
er(k)=1) are

 ex[k] = ex[k] + (0.5/er(k))*( hy[k-1] - hy[k] )
 hy[k] = hy[k] + 0.5*( ex[k] - ex[k+1] )
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 k+1/2 and k-1/2 are replaced by k or k-1
Note that the n or n + 1/2 or n −1/2 in the superscripts 

do not appear
 FDTD Simulation of Gaussian pulse propagation in free space 

(fdtd_1d_1.m)
 FDTD Simulation of Gaussian pulse hitting a dielectric medium 

(fdtd1_dielectric.m)
 From theoretical analysis of EM wave hitting a dielectric 

surface
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 Fig. EM wave hitting a dielectric surface
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 For ε1=1.0 and ε2=4.0, we have 
 FDTD simulation of Absorbing Boundary Condition 
 (fdtd_1d_ABC_boundary.m) (Programming 

Exercise 5)
 (fdtd_1d_no_boundary.m)
%Define constants for ABC
 ex_left_m1=0.0
 ex_left_m2=0.0
 ex_right_m1=0.0
 ex_right_m2=0.0
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