Prof. Rakhesh Singh Kshetrimayum

FDTD by Rakhesh Singh Kshetrimayum

- How do one visualize wave?
 - How can one observe wave propagation?
- Radio waves cann't be observed in nature
 - But one can write some EM codes (simulation) and
 - observe wave behavior
- One popular choice for this is Finite Difference Time Domain method
 - Also referred to as FDTD

2

- What is FDTD?
- Let us start with 4 Maxwell's equations

1. $\nabla \bullet \vec{E} = \frac{\rho_v}{\varepsilon}$ 2. $\nabla \bullet \vec{B} = 0$

 $\neg 3. \qquad \nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$

Maxwell curl equations (why?)

 $\longrightarrow 4. \qquad \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$

FDTD by Rakhesh Singh Kshetrimayum

- Basically, we replace spatial & time derivatives in the two Maxwell's curl equations
 - by central finite difference approximation
- What is central finite difference approximation of derivatives?
- Consider a function f(x), its derivative at x₀ from central finite difference approximation is given by

$$\frac{df(x_0)}{dx} = f'(x_0) \cong \frac{f\left(x_0 + \frac{\Delta x}{2}\right) - f\left(x_0 - \frac{\Delta x}{2}\right)}{\Delta x}$$

- The time-dependent and source free $(\vec{J}=0)$ Maxwell's curl equations in a medium with $\mathbf{E} = \mathbf{E}_0 \mathbf{E}_r$ and $\mu = \mu_0 \mu_r$ are 3 equations $\longrightarrow \frac{\partial \vec{E}}{\partial t} = \frac{1}{\varepsilon_0 \varepsilon_r} \nabla \times \vec{H}; \frac{\partial \vec{H}}{\partial t} = -\frac{1}{\mu_0 \mu_r} \nabla \times \vec{E} \longleftarrow 3$ equations
 - For Cartesian coordinate systems,
 - expanding the curl equations,
 - equating the vector components,
 - we have 6 equations

• Expanding the first vector curl equation

$$\frac{\partial \vec{E}}{\partial t} = \frac{1}{\varepsilon_0 \varepsilon_r} \nabla \times \vec{H}$$

• we get 3 equations

$$\frac{\partial E_x}{\partial t} = \frac{1}{\varepsilon_0 \varepsilon_r} \left(\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} \right)$$
$$\frac{\partial E_y}{\partial t} = \frac{1}{\varepsilon_0 \varepsilon_r} \left(\frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x} \right)$$
$$\frac{\partial E_z}{\partial t} = \frac{1}{\varepsilon_0 \varepsilon_r} \left(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} \right)$$

• Expanding the second vector curl equation

$$\frac{\partial \vec{H}}{\partial t} = -\frac{1}{\mu_0 \mu_r} \nabla \times \vec{E}$$

• We get 3 equations

$$\frac{\partial H_x}{\partial t} = \frac{1}{\mu_0 \mu_r} \left(\frac{\partial E_y}{\partial z} - \frac{\partial E_z}{\partial y} \right)$$
$$\frac{\partial H_y}{\partial t} = \frac{1}{\mu_0 \mu_r} \left(\frac{\partial E_z}{\partial x} - \frac{\partial E_x}{\partial z} \right)$$
$$\frac{\partial H_z}{\partial t} = \frac{1}{\mu_0 \mu_r} \left(\frac{\partial E_x}{\partial y} - \frac{\partial E_y}{\partial x} \right)$$

7

As we know that FDTD is a time-domain solver The question is how do we solve those 6 equations above? **1.1-D FDTD update equations**

- For 1-D case (a major simplification), we can consider
- (a) Linearly polarized wave along x-axis
 - exciting an electric field which has E_x only ($E_y = E_z = 0$)
- (b) propagation along z-axis
 - no variation in the x-y plane, i.e. $\partial/\partial x = 0$ and $\partial/\partial y = 0$

 $\frac{\partial E_x}{\partial t} = \frac{1}{\varepsilon_0 \varepsilon_r} \left(\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} \right)$ $\frac{\partial E_{y}}{\partial t} = \frac{1}{\varepsilon_{0}\varepsilon_{r}} \left(\frac{\partial H_{x}}{\partial z} - \frac{\partial H_{z}}{\partial x} \right)$ $\frac{\partial E_z}{\partial t} = \frac{1}{\varepsilon_0 \varepsilon_r} \left(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} \right)$

∂H_x	1	(∂E_y)	∂E_z
∂t	$-\mu_0\mu_r$	∂z	dy)
∂H_y	1	∂E_z	∂E_x
∂t	$-\mu_0\mu_r$	∂x	∂z
∂H_{z}	1	∂E_x	∂E_y
∂t	$\mu_0\mu_r$	<i>∂y</i>	∂x

9

- Then, the above 6 equations from 2 Maxwell's curl equations
- reduce to 2 equations for 1-D FDTD

$$\frac{\partial E_x}{\partial t} = -\frac{1}{\varepsilon_0 \varepsilon_r} \left(\frac{\partial H_y}{\partial z} \right) \qquad \frac{\partial H_y}{\partial t} = -\frac{1}{\mu_0 \mu_r} \left(\frac{\partial E_x}{\partial z} \right)$$

- We want to solve these equations at different locations and time in solution space (observe fields at different place and time)
- Hence we need to discretize both in time and space

Fig. 1(b) Discretization in time

FDTD by Rakhesh Singh Kshetrimayum

- Notations:
 - n is the time index and
 - k is the spatial index,
- How to decide space and time discretization size?
- How do one determine the values of Δz and Δt ?

- Locate positions $z = k\Delta z$
- Usually Δz is taken as 10-15 per wavelength
 - \rightarrow gives accurate results
- times $t = n\Delta t$ and
- Δt (dependent on Δz) chosen from Courant stability criterion
 - \rightarrow gives stable FDTD solution (will be discussed later)

• Let us discretize the first equation:

$$\frac{\partial E_x}{\partial t} = -\frac{1}{\varepsilon_0 \varepsilon_r} \left(\frac{\partial H_y}{\partial z} \right)$$

• the central difference approximations for both the temporal and spatial derivatives are obtained at • $z = k\Delta z$, (space discretization size and index) • $t = n\Delta t$ (time discretization size and index) $\frac{E_x\left(k,n+\frac{1}{2}\right)-E_x\left(k,n-\frac{1}{2}\right)}{\Delta t} = -\frac{1}{\varepsilon_0\varepsilon_r}\frac{H_y\left(k+\frac{1}{2},n\right)-H_y\left(k-\frac{1}{2},n\right)}{\Delta z}$

 $\mathcal{E}_0 \mathcal{E}_r$

FDTD: An Introduction ∂H_y

• For the second equation:

$$\frac{\partial H_{y}}{\partial t} = -\frac{1}{\mu_{0}\mu_{r}} \left(\frac{\partial E_{x}}{\partial z}\right)$$

• the central difference approximations for both the temporal and spatial derivatives are obtained at

• at
$$(z + \Delta z/2, t + \Delta t/2)$$

• (increment all the time and space steps by 1/2):

$$\frac{H_{y}\left(k+\frac{1}{2},n+1\right)-H_{y}\left(k+\frac{1}{2},n\right)}{\Delta t} = -\frac{1}{\mu_{0}\mu_{r}}\frac{E_{x}\left(k+1,n+\frac{1}{2}\right)-E_{x}\left(k,n+\frac{1}{2}\right)}{\Delta z}$$

15

- The above equations can be rearranged as a pair of 'computer update equations',
 - which can be repeatedly updated in loop,
 - to obtain the next instant time values of E_x (k, n+1/2) and H_v (k + $\frac{1}{2}$, n+1)

• from the previous instant time values as follows

$$\begin{split} E_x\left(k,n+\frac{1}{2}\right) &= E_x\left(k,n-\frac{1}{2}\right) - \frac{1}{\varepsilon_0\varepsilon_r}\frac{\Delta t}{\Delta z}\left[H_y\left(k+\frac{1}{2},n\right) - H_y\left(k-\frac{1}{2},n\right)\right] \\ H_y\left(k+\frac{1}{2},n+1\right) &= H_y\left(k+\frac{1}{2},n\right) - \frac{1}{\mu_0\mu_r}\frac{\Delta t}{\Delta z}\left[E_x\left(k+1,n+\frac{1}{2}\right) - E_x\left(k,n+\frac{1}{2}\right)\right] \end{split}$$

FDTD by Rakhesh Singh Kshetrimayum

Fig. 2 Interleaving of E and H fields

- Interleaving of the E and H fields in space and time in the FDTD formulation
- to calculate Ex(k),
 - the neighbouring values of Hy at k-1/2 and k+1/2 of the previous time instant are needed
- Similarly,
- to calculate Hy(k+1/2), for instance,
 - the neighbouring values of Ex at k and k+1 of the previous time instants are needed

- In the above equations,
 - $\boldsymbol{\epsilon}_0$ and $\boldsymbol{\mu}_0$ differ by several orders of magnitude,
 - E_x and H_y will differ by several orders of magnitude
 - We also know that ratio of electric field and magnetic field for plane waves is 120π
- Numerical error is minimized by making the following change of variables as

$$E'_{x} = \sqrt{\frac{\varepsilon}{\mu}}E_{x}$$

• Hence,

$$\begin{split} &\frac{1}{\sqrt{\frac{\varepsilon}{\mu}}}E_x'\left(k,n+\frac{1}{2}\right) = \frac{1}{\sqrt{\frac{\varepsilon}{\mu}}}E_x'\left(k,n-\frac{1}{2}\right) - \frac{1}{\varepsilon}\frac{\Delta t}{\Delta z}\left[H_y\left(k+\frac{1}{2},n\right) - H_y\left(k-\frac{1}{2},n\right)\right]\\ &\Rightarrow E_x'\left(k,n+\frac{1}{2}\right) = E_x'\left(k,n-\frac{1}{2}\right) - \sqrt{\frac{\varepsilon}{\mu}}\frac{1}{\varepsilon}\frac{\Delta t}{\Delta z}\left[H_y\left(k+\frac{1}{2},n\right) - H_y\left(k-\frac{1}{2},n\right)\right]\\ &\Rightarrow E_x'\left(k,n+\frac{1}{2}\right) = E_x'\left(k,n-\frac{1}{2}\right) - \frac{1}{\sqrt{\mu\varepsilon}}\frac{\Delta t}{\Delta z}\left[H_y\left(k+\frac{1}{2},n\right) - H_y\left(k-\frac{1}{2},n\right)\right]\\ &\Rightarrow E_x'\left(k,n+\frac{1}{2}\right) = E_x'\left(k,n-\frac{1}{2}\right) + \frac{1}{\sqrt{\mu\varepsilon}}\frac{\Delta t}{\Delta z'}\left[H_y\left(k-\frac{1}{2},n\right) - H_y\left(k+\frac{1}{2},n\right)\right] \end{split}$$

FDTD by Rakhesh Singh Kshetrimayum

• Similarly,

$$\begin{split} H_{y}\left(k+\frac{1}{2},n+1\right) &= H_{y}\left(k+\frac{1}{2},n\right) - \frac{1}{\sqrt{\frac{\varepsilon}{\mu}}} \frac{1}{\mu} \frac{\Delta t}{\Delta z} \left[E_{x}^{'}\left(k+1,n+\frac{1}{2}\right) - E_{x}^{'}\left(k,n+\frac{1}{2}\right)\right] \\ \Rightarrow H_{y}\left(k+\frac{1}{2},n+1\right) &= H_{y}\left(k+\frac{1}{2},n\right) - \frac{1}{\sqrt{\mu\varepsilon}} \frac{\Delta t}{\Delta z} \left[E_{x}^{'}\left(k+1,n+\frac{1}{2}\right) - E_{x}^{'}\left(k,n+\frac{1}{2}\right)\right] \\ \Rightarrow H_{y}\left(k+\frac{1}{2},n+1\right) &= H_{y}\left(k+\frac{1}{2},n\right) + \frac{1}{\sqrt{\mu\varepsilon}} \frac{\Delta t}{\Delta z} \left[E_{x}^{'}\left(k,n+\frac{1}{2}\right) - E_{x}^{'}\left(k+1,n+\frac{1}{2}\right)\right] \end{split}$$

FDTD by Rakhesh Singh Kshetrimayum

Courant stability criteria:

- Courant stability criteria dictates the
 - relationship between the time increment Δt with respect to space increment Δz
 - in order to have a stable FDTD solution of the electromagnetic problems
- In isotropic media, an electromagnetic wave propagates a distance of one cell in time $\Delta t = \Delta z / v_p$,
 - where v_p is the phase velocity

- This limits the maximum time step
- This equation implies that an EM wave cannot be allowed
 - to move more than a space cell during a time step
- Otherwise, FDTD will start diverging

- If we choose $\Delta t > \Delta z / v_p$,
 - the distance moved by the EM wave over the time interval Δt will be more than Δz ,
 - the EM wave will leave out the next node/cell and
 - FDTD cells are not causally interconnected and
- hence, it leads to instability

- Propagation at $\theta = 45^{\circ}$
- Wavefront jumps from one row of nodes to the next row,
- the spacing between the consecutive rows of nodes is $\frac{\Delta}{\sqrt{2}}$

• Similarly for 3-D case
$$\frac{\Delta}{\sqrt{3}}$$

27

- In the case of a 2-D simulation,
- we have to allow for the propagation in the diagonal direction,
- which brings the time requirement to $\Delta t = \Delta z / \sqrt{2v_p}$
- Obviously, three-dimensional simulation requires $\Delta t = \Delta z / \sqrt{3} v_p$
- We will use in all our simulations a time step Δt of

$$\Delta t = \frac{\Delta z}{2 \cdot v_p}$$

- where v_p is the phase velocity,
- which satisfies the requirements in 1-D, 2-D and 3-D for all media (√2≈1.414<√3≈1.7321<2)
- In 3D case, it may be more appropriate to modify the above stability criteria as

$$\Delta t = \frac{\min\left(\Delta x, \Delta y, \Delta z\right)}{2 \cdot v_p}$$

• Using the above relation, we may simplify for 1-D FDTD as $\frac{1}{\sqrt{\varepsilon\mu}}\frac{\Delta t}{\Delta z} = v_p \cdot \frac{\Delta t}{\Delta z} = \frac{v_p \cdot \Delta z}{2 \cdot v_p \cdot \Delta z} = \frac{1}{2}$

FDTD by Rakhesh Singh Kshetrimayum

- Making use of this in the above two equations,
- we obtain the following equations
 - $E_{x}'\left(k,n+\frac{1}{2}\right) = E_{x}'\left(k,n-\frac{1}{2}\right) + \frac{1}{2}\left[H_{y}\left(k-\frac{1}{2},n\right) H_{y}\left(k+\frac{1}{2},n\right)\right]$ $H_{y}\left(k+\frac{1}{2},n+1\right) = H_{y}\left(k+\frac{1}{2},n\right) + \frac{1}{2}\left[E_{x}'\left(k,n+\frac{1}{2}\right) E_{x}'\left(k+1,n+\frac{1}{2}\right)\right]$
- Hence the computer update equations (for free space er(k)=1) are
- ex[k] = ex[k] + (0.5/er(k))*(hy[k-1] hy[k])
- hy[k] = hy[k] + 0.5*(ex[k] ex[k+1])

- k+1/2 and k-1/2 are replaced by k or k-1
- Note that the n or n + 1/2 or n 1/2 in the superscripts do not appear
- FDTD Simulation of Gaussian pulse propagation in free space (fdtd_1d_1.m)
- FDTD Simulation of Gaussian pulse hitting a dielectric medium (fdtd1_dielectric.m)
- From theoretical analysis of EM wave hitting a dielectric surface $2n 2\sqrt{\epsilon}$ $n n \sqrt{\epsilon} \sqrt{\epsilon}$

$$\tau = \frac{2\eta_2}{\eta_2 + \eta_1} = \frac{2\sqrt{\varepsilon_1}}{\sqrt{\varepsilon_1} + \sqrt{\varepsilon_2}} \quad \Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} = \frac{\sqrt{\varepsilon_1} - \sqrt{\varepsilon_2}}{\sqrt{\varepsilon_1} + \sqrt{\varepsilon_2}}$$

- For $\varepsilon_1 = 1.0$ and $\varepsilon_2 = 4.0$, we have $\Gamma = -\frac{1}{3}$; $\tau = \frac{2}{3}$
- FDTD simulation of Absorbing Boundary Condition
 - (fdtd_1d_ABC_boundary.m) (**Programming** Exercise 5)
 - (fdtd_1d_no_boundary.m)
 - %Define constants for ABC
 - $ex_left_m1=0.0$
 - ex_left_m2=0.0
 - $ex_right_m1=0.0$
 - ex_right_m2=0.0