FDTD: An Introduction

- \%Increase the number of time steps
- NSTEPS=300;
- \%Inside the time index loop after injecting the Gaussian pulse
- \%Left ABC
- $\operatorname{ex}(1,1)=$ ex_left_m2;
- ex_left_m2=ex_left_m1;
- ex_left_m1 =ex(1,2);
- \%Right ABC

FDTD: An Introduction

- $\operatorname{ex}(1, \mathrm{KE})=$ ex_right_m2;
- ex_right_m2=ex_right_m1;
- ex_right_m1 =ex(1,KE-1);
- Discussion:
- For $\mathrm{n}=1$
- $\operatorname{ex}(1,1)=0.0$;
- ex_left_m2=0.0;
- ex_left_m1 $=\mathrm{ex}(1,2)$; for $\mathrm{t}=1$

FDTD: An Introduction

- For $\mathrm{n}=2$
- $\operatorname{ex}(1,1)=0.0$;
- ex_left_m2=ex(1,2); for $\mathrm{t}=1$
- ex_left_m1=ex(1,2); for $\mathrm{t}=2$
- For $\mathrm{n}=3$
- $\operatorname{ex}(1,1)=\operatorname{ex}(1,2)$; for $\mathrm{t}=1$
- ex_left_m2=ex(1,2); for $\mathrm{t}=2$
- ex_left_m1=ex(1,2); for $\mathrm{t}=3$

FDTD: An Introduction

- For $\mathrm{n}=4$
- $\operatorname{ex}(1,1)=\operatorname{ex}(1,2)$; for $\mathrm{t}=2$
- ex_left_m2=ex(1,2); for $\mathrm{t}=3$
- ex_left_m1=ex(1,2); for $t=4$
- We force $\operatorname{ex}(1,1)=\operatorname{ex}(1,2)$ for previous-to-previous time index
- We also need to store the ex $(1,2)$ for current and previous time index so that they can be used for applying ABC for the future time index
- Note that for every time index we are updating ex for all values of $\mathrm{k}=2$: KE

FDTD: An Introduction

- For $\varepsilon_{1}=1.0$ and $\varepsilon_{2}=4.0$, we have $\Gamma=-\frac{1}{3} ; \tau=\frac{2}{3}$
- FDTD simulation of Absorbing Boundary Condition (fdtd_1d_ABC_boundary.m)
- (fdtd_1d_no_boundary.m)
- In calculating the E field,
- we need to know the surrounding H values;
- this is the fundamental assumption in FDTD
- At the edge of the problem space,
- we will not have the value to one side,
- but we know there are no sources outside the problem space

FDTD: An Introduction

- The wave moves $\Delta \mathrm{z} / 2\left(=\mathrm{c}_{0} \cdot \Delta \mathrm{t}\right)$ distance in one time step,
- so it takes two time steps for a wave front to cross one cell
- Suppose we are looking for a boundary condition at the end where $\mathrm{k}=1$
- Now if we write the E field at $\mathrm{k}=1$ as
- $\mathrm{E}_{\mathrm{x}}(1, \mathrm{n})=\mathrm{E}_{\mathrm{x}}(2, \mathrm{n}-2)$,
- then the fields at the edge will not reflect
- This condition must be applied at both ends

FDTD: An Introduction

2. FDTD Solution to Maxwell's equations in 2-D Space

- In deriving 2-D FDTD formulation, we choose between one of two groups of three vectors each:
- (a) Transverse magnetic (TM^{z}) mode, which is composed of Ez, Hx, and Hy or
- (b) Transverse electric (TE^{z}) mode, which is composed of Ex , Ey, and Hz

FDTD: An Introduction

- Unlike time-harmonic guided waves,
- none of the fields vary with z so that
- there is no propagation in the z -direction
- But in general propagation along x - or y - directions or both is possible

FDTD: An Introduction

- FDTD simulation of TM mode wave propagation (fdtd_2d_TM_1.m)
- Expanding the Maxwell's curl equations with
- $\mathrm{Ex}=0, \mathrm{Ey}=0, \mathrm{~Hz}=0$ and $\partial / \partial \mathrm{z}=0$,
- we obtain,
- 3 equations from the 6 equations

FDTD: An Introduction

$$
\begin{array}{r}
\frac{\partial E_{x}}{\partial t} \\
=\frac{1}{\varepsilon_{0} \varepsilon_{r}}\left(\frac{\partial H_{z}}{\partial y}-\frac{\partial H_{y}}{\partial z}\right) \\
\frac{\partial E_{y}}{\partial t}
\end{array}=\frac{1}{\varepsilon_{0} \varepsilon_{r}}\left(\frac{\partial H_{x}}{\partial z}-\frac{\partial H_{z}}{\partial x}\right), ~\left(\frac{\partial E_{z}}{\partial t}=\frac{1}{\varepsilon_{0} \varepsilon_{r}}\left(\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}\right) ~ \$\right.
$$

$$
\begin{aligned}
& \frac{\partial H_{x}}{\partial t}=\frac{1}{\mu_{0} \mu_{r}}\left(\frac{\partial E_{y}}{\partial z}-\frac{\partial E_{z}}{\partial y}\right) \\
& \frac{\partial H_{y}}{\partial t}=\frac{1}{\mu_{0} \mu_{r}}\left(\frac{\partial E_{z}}{\partial x}-\frac{\partial E_{x}}{\partial z}\right) \\
& \frac{\partial H_{z}}{\partial t}=\frac{1}{\mu_{0} \mu_{r}}\left(\frac{\partial E_{x}}{\partial y}-\frac{\partial E_{y}}{\partial x}\right)
\end{aligned}
$$

FDTD: An Introduction

- 3 equations as follows

$$
\begin{aligned}
& \frac{\partial E_{z}}{\partial t}=\frac{1}{\varepsilon}\left(\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}\right) \\
& \frac{\partial H_{x}}{\partial t}=-\frac{1}{\mu}\left(\frac{\partial E_{z}}{\partial y}\right) \\
& \frac{\partial H_{y}}{\partial t}=\frac{1}{\mu}\left(\frac{\partial E_{z}}{\partial x}\right)
\end{aligned}
$$

FDTD: An Introduction

FDTD: An Introduction

- Observations:
- Electric fields are calculated at integer space steps
- Electric fields are calculated at half integer time steps
- Magnetic fields are calculated at half integer space step and integer space step
- Magnetic fields are calculated at integer time steps
- For example,
- $\mathrm{H}_{\mathrm{y}}(\mathrm{i}-1 / 2, \mathrm{j}), \mathrm{H}_{\mathrm{x}}(\mathrm{i}, \mathrm{j}-1 / 2), \mathrm{H}_{\mathrm{y}}(\mathrm{i}+1 / 2, \mathrm{j}), \mathrm{H}_{\mathrm{x}}(\mathrm{i}, \mathrm{j}+1 / 2)$

FDTD: An Introduction

- Central finite difference approximations of the 1 st equation is as follows

$$
\frac{\partial E_{z}}{\partial t}=\frac{1}{\varepsilon}\left(\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}\right)
$$

$\frac{E_{z}\left(\cdots, j, j, n+\frac{1}{2}\right)-E_{z}\left(i, j, n-\frac{1}{2}\right)}{\Delta t}$
$=\frac{1}{\varepsilon_{0} \varepsilon_{r}}\left[\frac{H_{y}\left(i+\frac{1}{2}, j, n\right)-H_{y}\left(i-\frac{1}{2}, j, n\right)}{\Delta x}-\frac{H_{x}\left(i, j+\frac{1}{2}, n\right)-H_{x}\left(i, j-\frac{1}{2}, n\right)}{\Delta y}\right]$

FDTD: An Introduction

- Central finite difference approximations of the next equation is as follows

$$
\frac{\partial H_{x}}{\partial t}=-\frac{1}{\mu}\left(\frac{\partial E_{z}}{\partial y}\right)
$$

FDTD: An Introduction

- Central finite difference approximations of the next equation is as follows

$$
\begin{gathered}
\frac{\partial H_{y}}{\partial t}=\frac{1}{\mu}\left(\frac{\partial E_{z}}{\partial x}\right) \\
\frac{H_{y}\left(i+\frac{1}{2}, j, n+1\right)-H_{x}\left(i+\frac{1}{2}, j, n\right)}{\Delta t}=\frac{1}{\mu_{0} \mu_{r}} \frac{E_{z}\left(i+1, j, n+\frac{1}{2}\right)-E_{z}\left(i, j, n+\frac{1}{2}\right)}{\Delta x}
\end{gathered}
$$

FDTD: An Introduction

- Rearranging the above equations, we can write the final 3 update equations' expressions as
- Electric field update equation

$$
\begin{aligned}
& E_{z}\left(i, j, n+\frac{1}{2}\right) \\
& =E_{z}\left(i, j, n-\frac{1}{2}\right)+\frac{\Delta t}{\varepsilon_{0} \varepsilon_{r}}\left[\frac{H_{y}\left(i+\frac{1}{2}, j, n\right)-H_{y}\left(i-\frac{1}{2}, j, n\right)}{\Delta x}-\frac{H_{x}\left(i, j+\frac{1}{2}, n\right)-H_{x}\left(i, j-\frac{1}{2}, n\right)}{\Delta y}\right]
\end{aligned}
$$

FDTD: An Introduction

- Magnetic field update equation

$$
\begin{aligned}
& H_{x}\left(i, j+\frac{1}{2}, n+1\right)=H_{x}\left(i, j+\frac{1}{2}, n\right)-\frac{\Delta t}{\mu_{0} \mu_{r}} \frac{E_{z}\left(i, j+1, n+\frac{1}{2}\right)-E_{z}\left(i, j, n+\frac{1}{2}\right)}{\Delta y} \\
& H_{y}\left(i+\frac{1}{2}, j, n+1\right)=H_{x}\left(i+\frac{1}{2}, j, n\right)+\frac{\Delta t}{\mu_{0} \mu_{r}} \frac{E_{z}\left(i+1, j, n+\frac{1}{2}\right)-E_{z}\left(i, j, n+\frac{1}{2}\right)}{\Delta x}
\end{aligned}
$$

FDTD: An Introduction

$E_{z}\left(i, j, n+\frac{1}{2}\right)$

$$
=E_{z}\left(i, j, n-\frac{1}{2}\right)+\frac{\Delta t}{\varepsilon_{0} \varepsilon_{r}}\left[\frac{H_{y}\left(i+\frac{1}{2}, j, n\right)-H_{y}\left(i-\frac{1}{2}, j, n\right)}{\Delta x}-\frac{H_{x}\left(i, j+\frac{1}{2}, n\right)-H_{x}\left(i, j-\frac{1}{2}, n\right)}{\Delta y}\right]
$$

- Electric field computer update equation is (i+1/2 and i-1/2 are replaced by i or $i-1)$
- ez(i,j) $=\mathrm{ez}(\mathrm{i}, \mathrm{j})+\{\mathrm{dt} /($ eps_0*eps_r$)\} *[\{\mathrm{Hy}(\mathrm{i}, \mathrm{j})-\mathrm{Hy}(\mathrm{i}-$ $1, \mathrm{j})\} / \mathrm{dx}-\{\mathrm{Hx}(\mathrm{i}, \mathrm{j})-\mathrm{Hx}(\mathrm{i}, \mathrm{j}-1)\} / \mathrm{dy}]$

FDTD: An Introduction

$$
H_{x}\left(i, j+\frac{1}{2}, n+1\right)=H_{x}\left(i, j+\frac{1}{2}, n\right)-\frac{\Delta t}{\mu_{0} \mu_{r}} \frac{E_{z}\left(i, j+1, n+\frac{1}{2}\right)-E_{z}\left(i, j, n+\frac{1}{2}\right)}{\Delta y}
$$

- Magnetic field computer update equation is $(\mathrm{j}+1 / 2$ is replaced by j, usually meu_r=1)
- $\mathrm{Hx}(\mathrm{i}, \mathrm{j})=\mathrm{Hx}(\mathrm{i}, \mathrm{j})-\left\{\mathrm{dt} /\left(\mathrm{mu} _0 * \mathrm{dy}\right)\right\} *\{\mathrm{Ez}(\mathrm{i}, \mathrm{j}+1)-\mathrm{Ez}(\mathrm{i}, \mathrm{j})\}$

FDTD: An Introduction

$$
H_{y}\left(i+\frac{1}{2}, j, n+1\right)=H_{x}\left(i+\frac{1}{2}, j, n\right)+\frac{\Delta t}{\mu_{0} \mu_{r}} \frac{E_{z}\left(i+1, j, n+\frac{1}{2}\right)-E_{z}\left(i, j, n+\frac{1}{2}\right)}{\Delta x}
$$

- Magnetic field computer update equation is (i+1/2 is replaced by i , usually meu_r=1)
- $\mathrm{Hy}(\mathrm{i}, \mathrm{j})=\mathrm{Hy}(\mathrm{i}, \mathrm{j})+\left\{\mathrm{dt} /\left(\mathrm{mu} _0 * \mathrm{dx}\right)\right\} *\{\mathrm{Ez}(\mathrm{i}+1, \mathrm{j})-\mathrm{Ez}(\mathrm{i}, \mathrm{j})\}$

FDTD: An Introduction

- Some new MATLAB commands:
- image: IMAGE(C) displays matrix C as an image
- imagesc: data is scaled to use the full color map
- Colorbar: appends a vertical color scale to the current axis
- Colormap: a matrix may have any number of rows but it must have exactly 3 columns
- Each row is interpreted as a color, with the first element specifying the intensity of red, the second green and the third blue
- Color intensity is specified on the interval of 0.0 to 1.0

FDTD: An Introduction

- For example, [000] is black
- $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ is white
- $\left.\begin{array}{lll}1 & 0 & 0\end{array}\right]$ is red
- [0.5 0.5 0.5] is gray
- [127/255 $1212 / 255]$ is aquamarine

FDTD: An Introduction

FDTD simulation of TM wave hitting a dielectric surface (right side), source at the center (2-D) (fdtd_2d_TM_dielectric.m)

(Programming Exercise 6)

- Modify the above program as follows:
- Specify the position of the dielectric surface ($\mathrm{id}=. ., \mathrm{jd}=.$.)
- Choose a value of eps_r=10.0..
- Modify the constant value C1 accordingly
- Run the program
- In free space wave is propagating freely and
- on the other side reflection and transmission of the wave at the interface

