FDTD: An Introduction

- Convention:
- Integer time and space step for E
- Half time step for H
- Half space step for H
- $\mathrm{Hx}(\mathrm{i}, \mathrm{j}+1 / 2), \mathrm{Hx}(\mathrm{i}, \mathrm{j}-1 / 2)$
- $\mathrm{Hy}(\mathrm{i}+1 / 2, \mathrm{j}), \mathrm{Hx}(\mathrm{i}-1 / 2, \mathrm{j})$

FDTD: An Introduction

- Update equation for Hy

$$
\varepsilon \frac{\partial H_{y}}{\partial t}=\frac{\varepsilon}{\mu} \frac{\partial E_{z}}{\partial x}-\sigma_{x} H_{y}
$$

$$
\Rightarrow \frac{\varepsilon}{\Delta t}\left\{H_{y}^{n+1 / 2}(i+1 / 2, j)-H_{y}^{n-1 / 2}(i+1 / 2, j)\right\}
$$

$$
=\frac{\varepsilon}{\mu \Delta x}\left\{E_{z}^{n}(i+1, j)-E_{z}^{n}(i, j)\right\}-\frac{\sigma_{x}}{2}\left\{H_{y}^{n+1 / 2}(i+1 / 2, j)+H_{y}^{n-1 / 2}(i+1 / 2, j)\right\}
$$

$$
\Rightarrow\left(\frac{\varepsilon}{\Delta t}+\frac{\sigma_{x}}{2}\right)\left\{H_{y}^{n+1 / 2}(i+1 / 2, j)\right\}
$$

$$
=\frac{\varepsilon}{\mu \Delta x}\left\{E_{z}^{n}(i+1, j)-E_{z}^{n}(i, j)\right\}+\left(\frac{\varepsilon}{\Delta t}-\frac{\sigma_{x}}{2}\right)\left\{H_{y}^{n-1 / 2}(i+1 / 2, j)\right\}
$$

FDTD: An Introduction

- Finally,
$\Rightarrow H_{y}^{n+1 / 2}(i+1 / 2, j)$
$=\frac{1}{\left(\frac{\varepsilon}{\Delta t}+\frac{\sigma_{x}}{2}\right)}\left[\frac{\varepsilon}{\mu \Delta x}\left\{E_{z}^{n}(i+1, j)-E_{z}^{n}(i, j)\right\}+\left(\frac{\varepsilon}{\Delta t}-\frac{\sigma_{x}}{2}\right)\left\{H_{y}^{n-1 / 2}(i+1 / 2, j)\right\}\right]$
$=\frac{1}{\beta_{x}(i+1 / 2, j)}\left[\frac{\varepsilon}{\mu \Delta x}\left\{E_{z}^{n}(i+1, j)-E_{z}^{n}(i, j)\right\}+\alpha_{x}(i+1 / 2, j)\left\{H_{y}^{n-1 / 2}(i+1 / 2, j)\right\}\right]$;
$\beta_{x}=\frac{\varepsilon}{\Delta t}+\frac{\sigma_{x}}{2}, \alpha_{x}=\left(\frac{\varepsilon}{\Delta t}-\frac{\sigma_{x}}{2}\right)$

FDTD: An Introduction

- Similarly update equation for Hx

$$
\sigma_{y} H_{x}-\frac{\varepsilon}{\mu} \frac{\partial E_{z}}{\partial y}=\varepsilon \frac{\partial H_{x}}{\partial t}
$$

$\Rightarrow H_{x}^{n+1 / 2}(i, j+1 / 2)$
$=\frac{1}{\left(\frac{\varepsilon}{\Delta t}+\frac{\sigma_{y}}{2}\right)}\left[-\frac{\varepsilon}{\mu \Delta y}\left\{E_{z}^{n}(i, j+1)-E_{z}^{n}(i, j)\right\}+\left(\frac{\varepsilon}{\Delta t}-\frac{\sigma_{y}}{2}\right)\left\{H_{x}^{n-1 / 2}(i, j+1 / 2)\right\}\right]$
$=\frac{1}{\beta_{y}(i, j+1 / 2)}\left[-\frac{\varepsilon}{\mu \Delta y}\left\{E_{z}^{n}(i, j+1)-E_{z}^{n}(i, j)\right\}+\alpha_{y}(i, j+1 / 2)\left\{H_{x}^{n-1 / 2}(i, j+1 / 2)\right\}\right]$,
$\beta_{y}=\frac{\varepsilon}{\Delta t}+\frac{\sigma_{y}}{2}, \alpha_{y}=\left(\frac{\varepsilon}{\Delta t}-\frac{\sigma_{y}}{2}\right)$

FDTD: An Introduction

- Update equation for split electric field may be obtained similarly

$$
\begin{aligned}
& \varepsilon \frac{\partial E_{s x, z}}{\partial t}=\frac{\partial H_{y}}{\partial x}-\sigma_{x} E_{s x, z} \\
& \varepsilon \frac{\partial E_{s y, z}}{\partial t}=-\frac{\partial H_{x}}{\partial y}+\sigma_{y} E_{s y, z} \\
& E_{z} \stackrel{\partial t}{=} E_{s x, z}+E_{s y, z}
\end{aligned}
$$

FDTD: An Introduction

$$
\begin{aligned}
& E_{s x, 2}^{n+1}(i, j)= \\
& \frac{1}{\beta_{x}(i, j)}\left[E_{s, z}^{n}(i, j) \alpha_{x}(i, j)+\frac{1}{\Delta x}\left\{H_{y}^{n+1 / 2}(i+1 / 2, j)-H_{y}^{n+1 / 2}(i-1 / 2, j)\right\}\right] \\
& E_{s y, z}^{n+1}(i, j)= \\
& \frac{1}{\beta_{y}(i, j)}\left[E_{s y, z}^{n}(i, j) \alpha_{y}(i, j)-\frac{1}{\Delta y}\left\{H_{x}^{n+1 / 2}(i, j+1 / 2)-H_{x}^{n+1 / 2}(i, j-1 / 2)\right\}\right]
\end{aligned}
$$

FDTD: An Introduction

- Reflectionless theoretically,
- may not be true for numerical simulations
- Sudden change of conductivity from 0 to that of the PML layer,
- undesirable numerical reflections may occur
- Technique:
- gradually change the value of $\sigma_{x, y, z}$ within the PML

FDTD: An Introduction

- For examples,
- we can set the conductivity as an
- $\mathrm{m}^{\text {th }}$ order polynomial ($\mathrm{m}=2$ or 3 is a good choice)

$$
\sigma_{x, y, z}=\sigma_{\max }\left(\frac{l}{L}\right)^{m}, m=1,2, \cdots
$$

- 1 is the distance from the PML surface,
- L is the thickness of the PML and
- $\sigma_{\max }$ is the maximum conductivity inside the PML

FDTD: An Introduction

- Uniaxial PML
- Assume a diagonally anisotropic medium and write down Maxwell's equation in this medium

$$
\begin{aligned}
& \vec{\Lambda}=\operatorname{diag}(a, b, c) \\
& \nabla \times \vec{E}=-j \omega \mu_{0} \vec{\Lambda} \vec{H} ; \nabla \times \vec{H}=j \omega \varepsilon_{0} \vec{\Lambda} \vec{E} \\
& \nabla \bullet \vec{D}=\nabla \bullet(\vec{\Lambda} \vec{E})=0 ; \nabla \bullet \vec{B}=\nabla \bullet(\vec{\Lambda} \vec{H})=0 \\
& \vec{\Lambda}_{1}=\frac{1}{a b c} \operatorname{diag}(a, b, c)=\operatorname{diag}\left(\frac{1}{b c}, \frac{1}{a c}, \frac{1}{a b}\right)
\end{aligned}
$$

FDTD: An Introduction

Fig. Plane wave incident on the surface of an anisotropic medium

FDTD: An Introduction

$$
\begin{aligned}
& \nabla \times \vec{E}=-j \omega \mu_{0} \vec{\Lambda}_{1} \vec{H} \Rightarrow\left(\vec{\Lambda}_{1}\right)^{-1} \nabla \times \vec{E}=-j \omega \mu_{0} \vec{H} \\
& \nabla \times \vec{H}=j \omega \varepsilon_{0} \vec{\Lambda} \vec{E} \Rightarrow\left(\bar{\Lambda}_{1}\right)^{-1} \nabla \times \vec{H}=j \omega \varepsilon_{0} \vec{E} \\
& \therefore\left(\vec{\Lambda}_{1}\right)^{-1} \nabla \times\left(\vec{\Lambda}_{1}\right)^{-1}(\nabla \times \vec{E})=\omega^{2} \mu_{0} \varepsilon_{0} \vec{E}_{2}^{2} \vec{E} \\
& \nabla \bullet \vec{D}=\nabla \bullet(\vec{\Lambda} \vec{E})=0 ; \nabla \bullet \vec{B}=\nabla \bullet(\vec{\Lambda} \vec{H})=0 ; \\
& \vec{\Lambda}_{1}=\frac{1}{a b c} \operatorname{diag}(a, b, c)=\operatorname{diag}\left(\frac{1}{b c}, \frac{1}{a c}, \frac{1}{a b}\right)
\end{aligned}
$$

FDTD: An Introduction

- For spatially constant case,

$$
\begin{aligned}
& \quad \vec{\Lambda}_{1}^{-1}\left(\nabla \times\left(\vec{\Lambda}_{1}^{-1}(\nabla \times \vec{E})\right)\right)=\omega^{2} \mu_{0} \varepsilon_{0} \vec{E}=k_{0}^{2} \vec{E} \\
& \text { Or, }-\left(\nabla \bullet\left(\vec{\Lambda}_{1} \nabla\right)\right) \vec{E}+\nabla\left(\nabla \bullet\left(\vec{\Lambda}_{1} \vec{E}\right)\right)=k_{0}^{2} \vec{E} \\
& \because \nabla \bullet\left(\vec{\Lambda}_{1} \vec{E}^{2}\right)=0 \\
& \text { Or, }-\left(\nabla \bullet\left(\vec{\Lambda}_{1} \nabla\right)\right) \vec{E}=k_{0}^{2} \vec{E}
\end{aligned}
$$

- For plane wave propagation, we have

$$
\begin{aligned}
& -\left((-j \vec{k}) \cdot\left(\vec{\Lambda}_{1}(-j \vec{k})\right)\right) \vec{E}=\vec{k} \bullet\left(\vec{\Lambda}_{1} \vec{k}\right) \vec{E}=k_{0}^{2} \vec{E} \\
& \Rightarrow \frac{k_{x}^{2}}{b c}+\frac{k_{y}^{2}}{a c}+\frac{k_{z}^{2}}{a b}=k^{2}
\end{aligned}
$$

Digression: Plane wave reflection from media interface at oblique incidence

- We will consider the problem of a plane wave
- obliquely incident on a plane interface
- between two lossy conducting regions
- We will first consider two particular cases of this problem as follows:
- the electric field is in the xz plane (parallel polarization)
- the electric field is in normal to the xz plane (perpendicular polarization)

Digression: Plane wave reflection from media interface at oblique incidence

- Any arbitrary incident plane wave can be expressed
- as a linear combination of these two principal polarizations
- The plane of incidence is that plane containing
- the normal vector to the interface and
- the direction of propagation vector of the incident wave

Digression: Plane wave reflection from media interface at oblique incidence

- For Fig., this is the xz plane
- For perpendicular polarization (TE),
- electric field is perpendicular to the plane of incidence
- For parallel polarization (TM),
- electric field is parallel to the plane of incidence

Digression: Plane wave reflection from media interface at oblique incidence

Fig. Oblique incidence of plane EM wave at a media interface

Digression: Plane wave reflection from media interface at oblique incidence

Perpendicular polarization (TE):

- In this case, electric field vector is perpendicular to the xz plane,
- Hence, it will have component along the y-axis
- Since the electric field is transversal to the plane of incidence
- They are also known transverse electric (TE) waves

(c)

Fig. Wave propagation vector for (a) incident (b) reflected and (c) transmitted EM waves at oblique incidence

Digression: Plane wave reflection from media interface at oblique incidence

- Let us assume that the incident wave propagates in the first quadrant of xz plane without loss of generality and
- $\vec{\gamma}_{1}{ }^{i} \quad$ (incident propagation vector) makes an angle θ_{i} with the normal (see Fig. 6.6 (a))

$$
\begin{aligned}
& \vec{\gamma}_{1}^{i} \bullet \vec{z}^{\prime}=\left(\gamma_{1} \cos \theta_{i} \hat{z}+\gamma_{1} \sin \theta_{i} \hat{x}\right) \bullet(z \hat{z}+x \hat{x})=\gamma_{1} \cos \theta_{i} z+\gamma_{1} \sin \theta_{i} x=\gamma_{1}\left(z \cos \theta_{i}+x \sin \theta_{i}\right) \\
& \vec{E}_{i}=E_{0} e^{-\gamma_{1}\left(z \cos \theta_{i}+x \sin \theta_{i}\right)} \hat{y} \\
& \because \nabla \times \vec{E}_{i}=-j \omega \mu_{1} \vec{H}_{i} \Rightarrow \vec{H}_{i}=\frac{\nabla \times \vec{E}_{i}}{-j \omega \mu_{1}}
\end{aligned}
$$

Digression: Plane wave reflection from media interface at oblique incidence

$$
\begin{aligned}
& =\frac{1}{-j \omega \mu_{1}}\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
0 & E_{0} e^{-\gamma_{1}\left(z \cos \theta_{i}+x \sin \theta_{i}\right)} & 0
\end{array}\right|=\frac{E_{0}}{-j \omega \mu_{1}}\left\{\left(-\frac{\partial e^{-\gamma_{1}\left(z \cos \theta_{i}+x \sin \theta_{i}\right)}}{\partial z} \hat{x}\right)+\left(\frac{\partial e^{-\gamma_{1}\left(z \cos \theta_{i}+x \sin \theta_{i}\right)}}{\partial x} \hat{z}\right)\right\} \\
& =\frac{E_{0}}{j \omega \mu_{1}}\left\{\left(\frac{\partial e^{-\gamma_{1}\left(z \cos \theta_{i}+x \sin \theta_{i}\right)}}{\partial z} \hat{x}\right)-\left(\frac{\partial e^{-\gamma_{1}\left(z \cos \theta_{i}+x \sin \theta_{i}\right)}}{\partial x} \hat{z}\right)\right\}=\frac{E_{0} \gamma_{1}}{j \omega \mu_{1}} e^{-\gamma_{1}\left(z \cos \theta_{i}+x \sin \theta_{i}\right)}\left\{-\cos \theta_{i} \hat{x}+\hat{z} \sin \theta_{i}\right\} \\
& =\frac{E_{0}}{\eta_{1}} e^{-\gamma_{1}\left(z \cos \theta_{i}+x \sin \theta_{i}\right)}\left(-\hat{x} \cos \theta_{i}+\hat{z} \sin \theta_{i}\right)
\end{aligned}
$$

Digression: Plane wave reflection from media interface at oblique incidence

- Let us assume that the reflected wave propagates in the second quadrant of $x z$ plane and
- $\vec{\gamma}_{1}^{r}$ (reflected propagation vector) makes an angle θ_{r} with the normal (see Fig. 6.6 (b))

$$
\begin{aligned}
& \vec{\gamma}_{1}^{r} \bullet \vec{z}^{\prime}=\left(-\gamma_{1} \cos \theta_{r} \hat{z}+\gamma_{1} \sin \theta_{r} \hat{x}\right) \bullet(z \hat{z}+x \hat{x})=-\gamma_{1} \cos \theta_{r} z+\gamma_{1} \sin \theta_{r} x=\gamma_{1}\left(-z \cos \theta_{r}+x \sin \theta_{r}\right) \\
& \vec{E}_{r}=E_{0} \Gamma_{T E} e^{-\gamma_{1}\left(-z \cos \theta_{r}+x \sin \theta_{r}\right)} \hat{y}
\end{aligned}
$$

Digression: Plane wave reflection from media interface at oblique incidence

- Note that $\vec{\gamma}_{1}^{r}$ and $\vec{\gamma}_{1}^{i}$ will have the same magnitude
- since both the waves are still in the same region I,
- only their direction changes
- Since the Poynting vector must be negative like the previous case of normal incidence,

$$
\vec{H}_{r}=\frac{E_{0}}{\eta_{1}} \Gamma_{T E} e^{-\gamma_{1}\left(-2 \cos \theta_{r}+x \sin \theta_{r}\right)}\left(\hat{x} \cos \theta_{r}+\hat{z} \sin \theta_{r}\right)
$$

- You could also use the Maxwell's curl equation below to find this

$$
\vec{H}_{r}=\frac{\nabla \times \vec{E}_{r}}{-j \omega \mu_{1}}
$$

Digression: Plane wave reflection from media interface at oblique incidence

- The transmitted fields will have similar expression with the incident fields except
- that now the θ_{i} should be replaced by θ_{t} (angle that transmitted propagation vector makes with the normal),
- γ_{1} should be replaced by γ_{2} (wave is in region II now) and
- multiplication by (transmission coefficient)
- The transmitted fields are $\vec{E}_{t}=\hat{y} E_{0} \tau_{T E} e^{-\gamma_{2}\left(z \cos \theta_{t}+x \sin \theta_{t}\right)}$

$$
\vec{H}_{t}=\frac{\nabla \times \vec{E}_{t}}{-j \omega \mu_{2}}=\frac{E_{0} \tau_{T F}}{\eta_{2}} e^{-\gamma_{2}\left(z \cos \theta_{t}+x \sin \theta_{t}\right)}\left(-\hat{x} \cos \theta_{t}+\hat{z} \sin \theta_{t}\right)
$$

Digression: Plane wave reflection from media interface at oblique incidence

Table Fields in two regions (oblique incidence: perpendicular polarization)

Region I (lossy medium 1)

$$
\vec{E}_{i}=E_{0} e^{-\gamma_{1}\left(z \cos \theta_{i}+x \sin \theta_{i}\right)} \hat{y}
$$

$\vec{H}_{i}=\frac{E_{0}}{\eta_{1}} e^{-\gamma_{1}\left(z \cos \theta_{i}+x \sin \theta_{i}\right)}\left(-\hat{x} \cos \theta_{i}+\hat{z} \sin \theta_{i}\right)$
$\vec{E}_{r}=E_{0} \Gamma_{T E} e^{-\gamma_{1}\left(-z \cos \theta_{r}+x \sin \theta_{r}\right)} \hat{y}$
$\vec{H}_{r}=\frac{E_{0} \Gamma_{T E}}{\eta_{1}} e^{-\gamma_{1}\left(z \cos \theta_{i}+x \sin \theta_{i}\right)}\left(\hat{x} \cos \theta_{r}+\hat{z} \sin \theta_{r}\right)$

Region II (lossy medium 2)

$$
\vec{E}_{t}=\hat{y} E_{0} \tau_{T E} e^{-\gamma_{2}\left(z \cos \theta_{t}+x \sin \theta_{t}\right)}
$$

$$
\vec{H}_{t}=\frac{E_{0} \tau_{T E}}{\eta_{2}} e^{-\gamma_{2}\left(z \cos \theta_{t}+x \sin \theta_{t}\right)}\left(-\hat{x} \cos \theta_{t}+\hat{z} \sin \theta_{t}\right)
$$

Digression: Plane wave reflection from media interface at oblique incidence

- Equating the tangential components of electric field
- (electric field has only E_{y} component and it is tangential at the interface $\mathrm{z}=0$) and
- magnetic field
- (magnetic field has two components: H_{x} and H_{z} and only H_{x} is tangential at the interface $\mathrm{z}=0$)
- at $\mathrm{z}=0$ gives $e^{-\gamma_{1} x \sin \theta_{i}}+\Gamma_{T E} e^{-\gamma_{1} x \sin \theta_{r}}=\tau_{T E} e^{-\gamma_{2} x \sin \theta_{t}}$

$$
\frac{-1}{\eta_{1}} \cos \theta_{i} e^{-\gamma_{1} \sin \theta_{i}}+\frac{\Gamma_{T E}}{\eta_{1}} \cos \theta_{r} e^{-\gamma_{1} x \sin \theta_{r}}=-\frac{\tau_{T E}}{\eta_{2}} \cos \theta_{t} e^{-\gamma_{2} x \sin \theta_{1}}
$$

Digression: Plane wave reflection from media interface at oblique incidence

- If E_{x} and H_{y} are to be continuous at the interface $\mathrm{z}=0$ for all x,
- then, this x variation must be the same on both sides of the equations (also known as phase matching condition)

$$
\begin{aligned}
& \gamma_{1} \sin \theta_{i}=\gamma_{1} \sin \theta_{r}=\gamma_{2} \sin \theta_{t} \\
& \quad \Rightarrow \theta_{i}=\theta_{r} ; \gamma_{1} \sin \theta_{i}=\gamma_{2} \sin \theta_{t}
\end{aligned}
$$

Digression: Plane wave reflection from media interface at oblique incidence

- The first is Snell's law of reflection
- which states that the angle of incidence equals the angle of reflection
- The second result is the Snell's law of refraction
- (refraction is the change in direction of a wave due to change in velocity from one medium to another medium)
- Also note that refractive index of a medium is defined as

$$
n=\frac{c}{v_{p}}=\frac{\sqrt{\mu_{r} \varepsilon_{r} \mu_{0} \varepsilon_{0}}}{\sqrt{\mu_{0} \varepsilon_{0}}}=\sqrt{\mu_{r} \varepsilon_{r}}
$$

Digression: Plane wave reflection from media interface at oblique incidence

- hence, for a lossless dielectric media,

$$
\frac{\sin \theta_{i}}{\sin \theta_{1}}=\frac{\gamma_{2}}{\gamma_{1}}=\frac{\beta_{2}}{\beta_{1}}=\frac{\sqrt{\mu_{2} \varepsilon_{2}}}{\sqrt{\mu_{1} \varepsilon_{1}}}=\frac{v_{1}}{v_{2}}=\frac{\sqrt{\varepsilon_{2}}}{\sqrt{\varepsilon_{1}}}=\frac{n_{2}}{n_{1}}
$$

- Now we can simplify above two equations by applying Snell's two laws as follows

$$
\begin{aligned}
& 1+\Gamma_{T E}=\tau_{T E} \\
& -\frac{\cos \theta_{i}}{\eta_{1}}+\Gamma_{T E} \frac{\cos \theta_{r}}{\eta_{1}}=-\frac{\tau_{T E}}{\eta_{2}} \cos \theta_{t}
\end{aligned}
$$

FDTD: An Introduction

- $\frac{k_{x}^{2}}{b c}+\frac{k_{y}^{2}}{a c}+\frac{k_{z}^{2}}{a b}=k^{2}$ whose solution is

$$
k_{x}=k \sqrt{b c} \sin \theta \cos \phi, k_{y}=k \sqrt{a c} \sin \theta \sin \phi, k_{z}=k \sqrt{a b} \cos \theta
$$

- For incident and reflected fields, it is still the same
- For xz plane (region II), transmitted fields, we have uniaxial medium hence, $\varphi=0^{0} ; \theta=\theta_{t} ; k_{x}=k \sqrt{b c} \sin \theta_{t}, k_{z}=k \sqrt{a b} \cos \theta_{t}$
- For TE case, $\vec{E}^{i}=\hat{y} E_{0} e^{-j k\left(x \sin \theta_{i}+z \cos \theta_{i}\right)}$

$$
\begin{aligned}
& \vec{E}^{r}=\hat{y} \Gamma_{T E} E_{0} e^{-j k\left(x \sin \theta_{r}-z \cos \theta_{r}\right) \quad \vec{E}_{t}=\hat{y} E_{0} \tau_{T E} e^{-\gamma_{2}\left(z \cos \theta_{t}+x \sin \theta_{t}\right)}} \\
& \vec{E}^{t}=\hat{y} \tau_{T E} E_{0} e^{-j k\left(\sqrt{b c} x \sin \theta_{t}+z \sqrt{a b} \cos \theta_{t}\right)}
\end{aligned}
$$

FDTD: An Introduction

- From Maxwell's curl equations,

$$
\begin{aligned}
& \vec{H}^{i}=\left(-\hat{x} \cos \theta_{i}+\hat{z} \sin \theta_{i}\right) \frac{E_{0}}{\eta} e^{-j k\left(x \sin \theta_{i}+z \cos \theta_{i}\right)} \\
& \vec{H}^{r}=\left(\hat{x} \cos \theta_{r}+\hat{z} \sin \theta_{r}\right) \frac{E_{0}}{\eta} \Gamma_{T E} e^{-j k\left(x \sin \theta_{r}-z \cos \theta_{r}\right)} \\
& \vec{H}^{t}=\left(-\hat{x} \sqrt{\frac{b}{a}} \cos \theta_{t}+\hat{z} \sqrt{\frac{b}{c}} \sin \theta_{t}\right) \tau_{T E} \frac{E_{0}}{\eta} e^{-j k\left(\sqrt{b c} x \sin \theta_{t}+z \sqrt{a b} \cos \theta_{t}\right)} \\
& \vec{H}_{t}=\frac{E_{0} \tau_{T E}}{\eta_{2}} e^{-\gamma_{2}\left(z \cos \theta_{t}+x \sin \theta_{t}\right)}\left(-\hat{x} \cos \theta_{t}+\hat{z} \sin \theta_{t}\right)
\end{aligned}
$$

FDTD: An Introduction

- Tangential components are x - and y -components at $\mathrm{z}=0$ interface

$$
\Rightarrow \theta_{i}=\theta_{r} ; \gamma_{1} \sin \theta_{i}=\gamma_{2} \sin \theta_{t}
$$

$$
\sin \theta_{i}=\sin \theta_{r}=\sqrt{b c} \sin \theta_{t} \quad \vec{E}^{t}=\hat{y} \tau_{T E} E_{0} e^{-j k\left(\sqrt{b c} x \sin \theta_{1}+z \sqrt{a b} \cos \theta_{1}\right)}
$$

$$
1+\Gamma_{T E}=\tau_{T E}
$$

$\cos \theta_{i}-\Gamma_{T E} \cos \theta_{r}=\tau_{T E} \sqrt{\frac{b}{a}} \cos \theta_{t}$

$$
-\frac{\cos \theta_{i}}{\eta_{1}}+\Gamma_{T E} \frac{\cos \theta_{r}}{\eta_{1}}=-\frac{\tau_{T E}}{\eta_{2}} \cos \theta_{t}
$$

$\therefore \Gamma_{T E}=\frac{\cos \theta_{i}-\sqrt{\frac{b}{a}} \cos \theta_{t}}{\cos \theta_{i}+\sqrt{\frac{b}{a}} \cos \theta_{t}}=\Gamma_{T M}$

FDTD: An Introduction

$$
\text { Choose } \sqrt{b c}=1 \text {, then } \theta_{i}=\theta_{t}
$$

- If we take $b / a=1$, then $b=a$, then

$$
\Gamma_{T E / T M}=0
$$

- Or in other words, $\mathrm{a}=\mathrm{b}=1 / \mathrm{c}$
- Anisotropic medium will be reflectionless

