10.2 Basic Steps in Method of Moments

- For [Z] is non-singular,
- Solve the unknown matrix [I] of amplitudes of basis function as

$$
[I]=[Z]^{-1}[V]=[Y][V]
$$

- Galerkin's method

$$
b_{n}=w_{n}
$$

- Point matching or Collocation
- The testing function is a delta function

10.2 Basic Steps in Method of Moments

- Methods for calculating inverse of a matrix
- Seldom find the inverse of matrix directly $[Z]^{-1}$, because,
- if we have ill-conditioned matrices,
- it can give highly erroneous results
- MATLAB command 'pinv' finds pseudo inverse of a matrix
- using the singular value decomposition
- For a matrix equation of the form $\mathrm{AX}=\mathrm{B}$,
- if small changes in B leads to large changes in the solution X,
- then we call A is ill-conditioned

10.2 Basic Steps in Method of Moments

- The condition number of a matrix is the
- ratio of the largest singular value of a matrix to the smallest singular value
- Larger is this condition value
- closer is the matrix to singularity
- It is always
- greater than or equal to 1
- If it is close to one,
- the matrix is well conditioned
- which means its inverse can be computed with good accuracy

10.2 Basic Steps in Method of Moments

- If the condition number is large,
- then the matrix is said to be ill-conditioned
- Practically,
- such a matrix is almost singular, and
- the computation of its inverse, or
- solution of a linear system of equations is
- prone to large numerical errors
- A matrix that is not invertible
- has the condition number equal to infinity

10.2 Basic Steps in Method of Moments

- Sometimes pseudo inverse is also used for finding
- approximate solutions to ill-conditioned matrices
- Preferable to use LU decomposition
- to solve linear matrix equations
- LU factorization unlike Gaussian elimination,
- do not make any modifications in the matrix B
- in solving the matrix equation

10.2 Basic Steps in Method of Moments

- Try to solving a matrix equation $\quad[A][X]=[B]$
- using LU factorization
- First express the matrix

$$
\begin{gathered}
{[A]=[L][U]} \\
{[L]=\left[\begin{array}{ccccc}
l_{11} & 0 & 0 & \cdots & 0 \\
l_{21} & l_{22} & 0 & \cdots & 0 \\
l_{31} & l_{32} & l_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
l_{N 1} & l_{N 2} & l_{N 3} & \cdots & l_{N 1}
\end{array}\right] \quad \text { and } \quad[U]=\left[\begin{array}{ccccc}
u_{11} & u_{12} & u_{13} & \cdots & u_{1 N} \\
0 & u_{22} & u_{23} & \cdots & u_{2 N} \\
0 & 0 & u_{33} & \cdots & u_{3 N} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & u_{N N}
\end{array}\right]}
\end{gathered}
$$

10.2 Basic Steps in Method of Moments

$$
\therefore[L][U][X]=[B] \Rightarrow[L][Y]=[B]
$$

- through the forward substitution

$$
y_{1}=\frac{b_{1}}{l_{11}} ; y_{i}=\frac{1}{l_{i i}}\left[b_{i}-\sum_{k=1}^{i-1} l_{i k} y_{k}\right], i>1
$$

- through the backward substitution $\quad[U][X]=[Y]$

$$
x_{N}=\frac{y_{N}}{u_{N N}} ; x_{i}=\frac{1}{u_{i i}}\left[y_{i}-\sum_{k=i+1}^{N} u_{i k} x_{k}\right], i<N
$$

10.2 Basic Steps in Method of Moments

- This is more efficient than Gaussian elimination
- since the RHS remain unchanged during the whole process
- The main issue here is to
- find the lower and upper triangular matrices.
- MATLAB command for LU factorization of a matrix A is
- $[\mathrm{L} \mathrm{U}]=\operatorname{lu}(\mathrm{A})$

10.2 Basic Steps in Method of Moments

Example 10.1

- Consider a 1-D differential equation

$$
-\frac{d^{2} f(x)}{d x^{2}}=3+2 x^{2}
$$

- subject to the boundary condition $f(0)=f(1)=0$
- Solve this differential equation using Galerkin's MoM Solution:
- Note that for this case,

$$
u=f(x)
$$

10.2 Basic Steps in Method of Moments

$$
\begin{gathered}
k=3+2 x^{2} \\
L=-\frac{d^{2}}{d x^{2}}
\end{gathered}
$$

- According to the nature of the known function $k=3+2 x^{2}$,
- it is natural to choose the basis function as $b_{n}(x)=x^{n}$
- However,
- the boundary condition $f(1)=0$
- can't be satisfied with such a basis function

10.2 Basic Steps in Method of Moments

- A suitable basis function for this differential equation
- taking into account of this boundary condition is

$$
b_{n}(x)=x-x^{n+1} ; n=1,2, \ldots, N
$$

- Assume $\mathrm{N}=2$ (the total number of subsections on the interval [0,1])
- Approximation of the unknown function

$$
f(x) \cong I_{1} b_{1}(x)+I_{2} b_{2}(x)=I_{1}\left(x-x^{2}\right)+I_{2}\left(x-x^{3}\right)
$$

10.2 Basic Steps in Method of Moments

- For Galerkin's MoM, the weighting functions are

$$
w_{m}(x)=x-x^{m+1} ; m=1,2, \ldots, M
$$

- Choosing a square [Z] matrix where $\mathrm{M}=\mathrm{N}=2$

$$
\begin{array}{r}
Z_{11}=\left\langle w_{1}, L\left(b_{1}\right)\right\rangle=\int_{0}^{1} w_{1}(x) L\left(b_{1}(x)\right) d x=\int_{0}^{1}\left(x-x^{2}\right)(2) d x=\frac{d^{2}}{3} \\
L=x^{2} \\
Z_{12}=\left\langle w_{1}, L\left(b_{2}\right)\right\rangle=\int_{0}^{1} w_{1}(x) L\left(b_{2}(x)\right) d x=\int_{0}^{1}\left(x-x^{2}\right)(6 x) d x=\frac{1}{2}
\end{array}
$$

10.2 Basic Steps in Method of Moments

$$
\begin{aligned}
& Z_{21}=\left\langle w_{2}, L\left(b_{1}\right)\right\rangle=\int_{0}^{1} w_{2}(x) L\left(b_{1}(x)\right) d x=\int_{0}^{1}\left(x-x^{3}\right)(2) d x=\frac{1}{2} \\
& Z_{22}=\left\langle w_{2}, L\left(b_{2}\right)\right\rangle=\int_{0}^{1} w_{2}(x) L\left(b_{2}(x)\right) d x=\int_{0}^{1}\left(x-x^{3}\right)(6 x) d x=\frac{4}{5}
\end{aligned}
$$

$$
V_{1}=\left\langle k, w_{1}\right\rangle=\int_{0}^{1} k(x) w_{1}(x) d x=\int_{0}^{1}\left(3+2 x^{2}\right)\left(x-x^{2}\right) d x=\frac{3}{5}
$$

$k=3+2 x^{2}$

$$
V_{2}=\left\langle k, w_{2}\right\rangle=\int_{0}^{1} k(x) w_{2}(x) d x=\int_{0}^{1}\left(3+2 x^{2}\right)\left(x-x^{3}\right) d x=\frac{11}{12}
$$

10.2 Basic Steps in Method of Moments

- Therefore,

$$
\begin{aligned}
& {[Z][I]=[V] \Rightarrow\left[\begin{array}{ll}
\frac{1}{3} & \frac{1}{2} \\
\frac{1}{2} & \frac{4}{5}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{5} \\
\frac{11}{12}
\end{array}\right]} \\
& \Rightarrow[I]=\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{13}{10} \\
\frac{1}{3}
\end{array}\right]
\end{aligned}
$$

- The unknown function $f(x)$

$$
f(x) \cong I_{1}\left(x-x^{2}\right)+I_{2}\left(x-x^{3}\right)=\frac{13}{10}\left(x-x^{2}\right)+\frac{1}{3}\left(x-x^{3}\right)
$$

10.2 Basic Steps in Method of Moments

- The above function satisfies the given boundary conditions
- $f(0)=f(1)=0$
- The analytical solution for this differential equation is

$$
f(x)=\frac{5}{3} x-\frac{3}{2} x^{2}-\frac{1}{6} x^{4}
$$

- Check whether the above solution using MoM is
- different from the analytical solution obtained by direct integration (see Fig. 10.1)

10.2 Basic Steps in Method of Moments

- Fig. 10.1 Comparison of exact solution (analytical) and approximate solution (MoM) of Example 10.1

Programming Exercise 1 (Homework)

- Write a MATLAB program to solve Exercise 10.1
- Convergence analysis:
- Perform convergence analysis by taking $\mathrm{N}=2,3,4$
- Accuracy testing:
- Check the accuracy of the MoM program by plotting the approximate solution obtained (convergent one) and comparing with the actual solution
- Programming exercise schedule:
- All Programming exercise will be given on or before Friday
- Submit it on or before next Wednesday

10.3 Introductory examples from electrostatics

- In electrostatics, the problem of finding the potential
- due to a given charge distribution is often considered
- In practical scenario, it is very difficult to
- specify a charge distribution
- We usually connect a conductor to a voltage source
- and thus the voltage on the conductor is specified
- We will consider MoM
- to solve for the electric charge distribution
- when an electric potential is specified
- Examples 2 and 3 discuss about calculation of inverse using LU decomposition and SVD

10.3 Introductory examples from electrostatics

- 1-D Electrostatic case: Charge density of a straight wire
- Consider a straight wire of length 1 and radius a (assume $a \ll l$) ,
- placed along the y-axis as shown in Fig. 10.2 (a)
- The wire is applied to a constant electric potential of 1 V
- Choosing observation along the wire axis $(x=z=0)$ i.e., along the y -axis
- and representing the charge density on the surface of the wire

$$
\longrightarrow 1=\frac{1}{4 \pi \varepsilon_{0}} \int_{0}^{l} \frac{\lambda\left(y^{\prime}\right) d y^{\prime}}{R\left(y, y^{\prime}\right)}
$$

10.3 Introductory examples from electrostatics

Fig. 10.2

- (a) Straight wire of length 1 and radius a applied with a constant potential of 1 V
- (b) Its segmentation: $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{N}}$ are observation points and r^{\prime} shows a source point
- (c) Division of the charged strip into N sections

10.3 Introductory examples from electrostatics

- where

$$
R\left(y, y^{\prime}\right)=\left.R\left(\vec{r}, \vec{r}^{\prime}\right)\right|_{x=z=0}=\sqrt{\left(y-y^{\prime}\right)^{2}+\left(x^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2}}=\sqrt{\left(y-y^{\prime}\right)^{2}+(a)^{2}}
$$

- It is necessary to solve the integral equation
- to find the unknown function $\lambda\left(\mathrm{y}^{\prime}\right)$
- The solution may be obtained numerically by
- reducing the integral equation into a series of linear algebraic equations
- that may be solved by conventional matrix techniques

10.3 Introductory examples from electrostatics

- (a) Approximate the unknown charge density $\boldsymbol{\lambda}\left(\mathrm{y}^{\prime}\right)$
- by an expansion of N known basis functions with unknown coefficients

$$
\lambda\left(y^{\prime}\right)=\sum_{n=1}^{N} I_{n} b_{n}\left(y^{\prime}\right)
$$

$$
1=\frac{1}{4 \pi \varepsilon_{0}} \int_{0}^{l} \frac{\lambda\left(y^{\prime}\right) d y^{\prime}}{R\left(y, y^{\prime}\right)}
$$

- Integral equation after substituting this is

$$
4 \pi \varepsilon_{0}=\int_{0}^{l} \frac{\sum_{n=1}^{N} I_{n} b_{n}\left(y^{\prime}\right) d y^{\prime}}{R\left(y, y^{\prime}\right)}=\sum_{n=1}^{N} I_{n} \int_{0}^{l} \frac{b_{n}\left(y^{\prime}\right) d y^{\prime}}{R\left(y, y^{\prime}\right)}
$$

10.3 Introductory examples from electrostatics

- Now we have divided the wire into N uniform segments each of length Δ as shown in Fig. 10.2 (b)
- We will choose our basis functions as pulse functions

$$
b_{n}\left(y^{\prime}\right)=\left\{\begin{array}{cc}
1 & \text { for } \\
0 & (n-1) \Delta \leq y^{\prime} \leq n \Delta \\
0 & \text { otherwise }
\end{array}\right.
$$

b) Applying the testing or weighting functions

- Let us apply the testing functions as delta functions $\left[\partial\left(y-y_{m}\right)\right]$ for point matching

10.3 Introductory examples from electrostatics

- Integration of any function with this delta function
- will give us the function value at $y=y_{m}$
- Replacing observation variable y by a fixed point such as y_{m},
- results in an integrand that is solely a function of y^{\prime}
- so the integral may be evaluated.
- It leads to an equation
- with N unknowns

$$
4 \pi \varepsilon_{0}=\int_{0}^{l} \frac{\sum_{n=1}^{N} I_{n} b_{n}\left(y^{\prime}\right) d y^{\prime}}{R\left(y, y^{\prime}\right)}=\sum_{n=1}^{N} I_{n} \int_{0}^{l} \frac{b_{n}\left(y^{\prime}\right) d y^{\prime}}{R\left(y, y^{\prime}\right)}
$$

$4 \pi \varepsilon_{0}=I_{1} \int_{0}^{\Delta} \frac{b_{1}\left(y^{\prime}\right) d y^{\prime}}{R\left(y_{m}, y^{\prime}\right)}+I_{2} \int_{\Delta}^{2 \Delta} \frac{b_{2}\left(y^{\prime}\right) d y^{\prime}}{R\left(y_{m}, y^{\prime}\right)}+\ldots+I_{n} \int_{(n-1) \Delta}^{n \Delta} \frac{b_{n}\left(y^{\prime}\right) d y^{\prime}}{R\left(y_{m}, y^{\prime}\right)}+\ldots+I_{N} \int_{(N-1) \Delta}^{l} \frac{b_{N}\left(y^{\prime}\right) d y^{\prime}}{R\left(y_{m}, y^{\prime}\right)}$

10.3 Introductory examples from electrostatics

- Solution for these N unknown constants,
- N linearly independent equations are required
- N equations may be produced
- by choosing an observation point y_{m} on the wire
- where $\mathbf{m}=1,2,3 \ldots, \mathbf{N}$ and
- at the center of each Δ length element
- as shown in Fig. 10.2 (c)
- Result in an equation of the form of the previous equation
- corresponding to each observation point

10.3 Introductory examples from electrostatics

- For N such observation points we have

$$
\begin{aligned}
& 4 \pi \varepsilon_{0}=I_{1} \int_{0}^{\Delta} \frac{b_{1}\left(y^{\prime}\right) d y^{\prime}}{R\left(y_{1}, y^{\prime}\right)}+I_{2} \int_{\Delta}^{2 \Delta} \frac{b_{2}\left(y^{\prime}\right) d y^{\prime}}{R\left(y_{1}, y^{\prime}\right)}+\ldots+I_{n} \int_{(n-1) \Delta}^{n \Delta} \frac{b_{n}\left(y^{\prime}\right) d y^{\prime}}{R\left(y_{1}, y^{\prime}\right)}+\ldots+I_{N} \int_{(N-1) \Delta}^{l} \frac{b_{N}\left(y^{\prime}\right) d y^{\prime}}{R\left(y_{1}, y^{\prime}\right)} \\
& 4 \pi \varepsilon_{0}=I_{1} \int_{0}^{\Delta} \frac{b_{1}\left(y^{\prime}\right) d y^{\prime}}{R\left(y_{2}, y^{\prime}\right)}+I_{2} \int_{\Delta}^{2 \Delta} \frac{b_{2}\left(y^{\prime}\right) d y^{\prime}}{R\left(y_{2}, y^{\prime}\right)}+\ldots+I_{n} \int_{(n-1) \Delta}^{n \Delta} \frac{b_{n}\left(y^{\prime}\right) d y^{\prime}}{R\left(y_{2}, y^{\prime}\right)}+\ldots+I_{N} \int_{(N-1) \Delta}^{l} \frac{b_{N}\left(y^{\prime}\right) d y^{\prime}}{R\left(y_{2}, y^{\prime}\right)} \\
& 4 \pi \varepsilon_{0}=I_{1} \int_{0}^{\Delta} \frac{b_{1}\left(y^{\prime}\right) d y^{\prime}}{R\left(y_{N}, y^{\prime}\right)}+I_{2} \int_{\Delta}^{2 \Delta} \frac{b_{2}\left(y^{\prime}\right) d y^{\prime}}{R\left(y_{N}, y^{\prime}\right)}+\ldots+I_{n} \int_{(n-1) \Delta}^{n \Delta} \frac{b_{n}\left(y^{\prime}\right) d y^{\prime}}{R\left(y_{N}, y^{\prime}\right)}+\ldots+I_{N} \int_{(N-1) \Delta}^{l} \frac{b_{N}\left(y^{\prime}\right) d y^{\prime}}{R\left(y_{N}, y^{\prime}\right)}
\end{aligned}
$$

