10.2 Basic Steps in Method of Moments

® For [Z] is non-singular,

* Solve the unknown matrix [I] of amplitudes of basis function

as

[1]=[2]"[V]=[Y][V]
® Galerkin’s method
b, =wy,

® Point matching or Collocation

® The testing function is a delta function
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10.2 Basic Steps in Method of Moments

® Methods for calcu]ating inverse (yf a matrix

® Seldom find the inverse of matrix directly [Z ]_1 , because,
e if we have ill-conditioned matrices,

® it can give highly erroneous results

e MATLAB command ‘pinv’ finds pseudo inverse of a matrix

® using the singular value decomposition
* For a matrix equation of the form AX=B,

® if small changes in B leads to large changes in the solution X,

® then we call A is ill-conditioned
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10.2 Basic Steps in Method of Moments

® The condition number (yp a matrix is the

® ratio of the largest singular value of a matrix to the smallest

singular value
* Larger is this condition value

® closer is the matrix to singularity

o Itis always
® greater than or equal to 1
e Ifitis close to one,

® the matrix is well conditioned

® which means its inverse can be computed with good accuracy
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10.2 Basic Steps in Method of Moments

® If the condition number is large,

® then the matrix is said to be ill-conditioned

® Practically,

® such a matrix is almost singular, and
® the computation of its inverse, or

® solution of a linear system of equations is

L prone to large numerical CIrrors

e A matrix that is not invertible

® has the condition number equal to infinity
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10.2 Basic Steps in Method of Moments

e Sometimes pseudo inverse is also used for finding

® approximate solutions to ill-conditioned matrices

® Preferable to use LU decomposition

® to solve linear matrix equations

e LU factorization unlike Gaussian elimination,

® do not make any modifications in the matrix B

® in solving the matrix equation
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10.2 Basic Steps in Methoc

® Try to solving a matrix equation [ A][ X

® using LU factorization

* First express the matrix
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10.2 Basic Steps in Method of Moments
~[L[U]lx]=[B]=[L][Y]=]B]

o through the forward substitution

b
y1=l { Z kyk},
11

l

o through the backward substitution [U ][X ] = [Y ]

xN:y—N { Zukxki|9

uNN k=i+1
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10.2 Basic Steps in Method of Moments

® This is more efficient than Gaussian elimination

® since the RHS remain unchanged during the whole process
® The main issue here is to

® find the lower and upper triangular matrices.

e MATLAB command for LU factorization of a matrix A is
o [L U] = lu(A)
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10.2 Basic Steps in Method of Moments

Example 10.1

* Consider a 1-D differential equation

2
10 3
X

® subject to the boundary condition £(0)=f(1)=0
* Solve this ditferential equation using Galerkin’s MoM
Solution:

® Note that for this case,

uzf(x)
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10.2 Basic Steps in Method of Moments

k=3+2x"
2
A
dx

According to the nature of the known function k=3+2x?,

it is natural to choose the basis function as &, (x)=x"
However,

the boundary condition £(1)=0

® can’t be satisfied with such a basis function
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10.2 Basic Steps in Method of Moments

® A suitable basis function for this differential equation

° taking into account of this boundary condition is

b (x) =x—x""n=12,..N

n

® Assume N=2 (the total number of subsections on the

interval [0, 1])

* Approximation of the unknown function

f(x)=1b(x)+1,b,(x) =Il(x—x2)+]2 (x—x3)

/S
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10.2 Basic Steps in Method of Moments

® For Galerkin’s MoM, the weighting functions are

w (x) =x—x""m=12,...M

m

® Choosing a square [Z] matrix where M=N=2

1 1 1
2 Zy=(wi L(B)) = !wl(x)L(bl(x))dx = _([(2)dx -
et/

le = <W19L(b2 )> = '(i)-WI (x)L (b2 (X))dx = i(x—xz)(6x)dx :%
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10.2 Basic Steps in Method of Moments

Z,, :<W2’L(b1)>:.(i;wz(x)L(bl(x))dx:i(X—x3)(2)dx=%
Z,, =<W2,L(b2)> :sz(x)L(bz(x))dXZ I(X—x3)(6x)dx:%

V= (k,w )= ik(X)wl(x)dx = j(3+2x2)(x—x2)dx :%

0

k=3—|—2x2 \ | 1 .

v, =<k,w2> :gk(x)wz(x)dxz2[(3+2x2)(x—x3 a’x:E
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10.2 Basic Steps in Method of Moments
® Therefore, | ]
[Z][1]=["]=

N | — W |—
O N I NG NS e
1

ek

.
-

1
3

[E—

® The unknown function t(x)

f(x)z[l(x—xz)Jrl2 (x—x3)=%(x—x2)+§(x—x3)
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10.2 Basic Steps in Method of Moments

¢ The above function satisfies the given boundary conditions
o £(0)=£(1)=0

® The analytical solution for this differential equation is

® Check whether the above solution using MoM is

e different from the analytical solution obtained by direct

integration (see Fig. 10.1)
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5 10.2 Basic Steps in Method of Moments

0.5 T T T T T T

Analytical
and MoM

solution:

04— =]
0.35- —

0.3 =

almost
same Ea- 7
coinciding 02k .

even with
0.15 =

two basis

01 —
functions

0.05- =1

* Fig. 10.1 Comparison of exact solution (analytical) and approximate
solution (MoM) of Example 10.1
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Programming Exercise 1 (Homework)
® Write a MATLAB program to solve Exercise 10.1

® Convergence analysis:

® Perform convergence analysis by taking N=2,3,4

® Accuracy testing:
® Check the accuracy of the MoM program by plotting the
approximate solution obtained (convergent one) and
comparing with the actual solution
® Programming exercise schedule:
* All Programming exercise will be given on or before
Friday

® Submit it on or before next Wednesday
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10.3 Introductory examples from electrostatics

® In electrostatics, the problem of finding the potential

® duetoa given charge distribution is often considered
® In practical scenario, it is very difficult to
® specify a charge distribution

e We usually connect a conductor to a Voltage source

® and thus the Voltage on the conductor is specified

e We will consider MoM

® to solve for the electric charge distribution
® when an electric potential is specified

® Examples 2 and 3 discuss about calculation of inverse using LU
decomposition and SVD
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10.3 Introductory examples from electrostatics

® |-D Electrostatic case: Cbarge densit)/ cyf a Stmigbt wire

* Consider a straight wire of length | and radius a (assume
a<<l),
® placed along the y-axis as shown in Fig. 10.2 (a)

® The wire is applied to a constant electric potential of 1V

® Choosing observation along the wire axis (x=z=0) i.e.,
along the y-axis

® and representing the charge density on the surface of the wire

i 7
. j/l(y)d'y/
4me0 o R(v,y)
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10.3 Introductory examples from electrostatics

Fig. 10.2

® (a) Straight wire of length | and radius a applied with a
constant potential of 1V

* (b) Its segmentation: y,, y,, ..., Yy are observation points and

/ .
r ShOWS a Source pomt

® (c) Division of the charged strip into N sections
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10.3 Introductory examples from electrostatics

® where

R(y.y)=REF)|__ =J(r-y)+()+(@) =J(r-y) +(a)’

® It is necessary to solve the integral equation
* to find the unknown function A(y")

® The solution may be obtained numerically by

° reducing the integral equation into a series of linear algebraic

equations

® that may be solved by conventional matrix techniques
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10.3 Introductory examples from electrostatics

® (a) Approximate the unknown charge density A(y')

coefficients

° by an expansion of N known basis functions with unknown/

N
' . ' l \ \
Ay )= lenbn(w ] V(y )y
n= '
4me0 o R(y,y)

© Integral equation after substituting this is
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10.3 Introductory examples from electrostatics

e Now we have divided the wire into N uniform segments each

of length A as shown in Fig. 10.2 (b)

e We will choose our basis functions as pulse functions

b (y'): 1 for (n—l)ASy' <nA
" 0 otherwise
b) Applying the testing or weighting functions
® Let us apply the testing functions as delta functions [d(y-y,)]

for point matching

\
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10.3 Introductory examples from electrostatics

® Integration of any function with this delta function
* will give us the function valueat y=y,

* Replacing observation variable y by a fixed point such as y,_,
® results in an integrand that is solely a function of y’

® 5o the inteoral may be evaluated.
g y N

® It leads to an equation .l[ le”’b” (y )y N .l[ b (3 )y
. dreq = | 2= =>1,|-"
° h N k 0 . n
With N unknowns o ROLY) =1 o ROLY)
A ' ' 2A ' ' nA ' ' l '
4%0:]1]-191()/ )dy, +12Ib2(y )dy, +..+1, J. bu(y )d),} +o+ 1y I by (y )d),}
OR(ymay ) A R(ym,y) (n—=1)A R(ym,y ) (N=1)A R(ym,y )
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10.3 Introductory examples from electrostatics

® Solution for these N unknown constants,
® N linearly independent equations are required

® N equations may be produced
® by choosing an observation point y_ on the wire
® where m=1,2,3..., N and

® at the center of each A length element
® as shown in Fig. 10.2 (c)

® Resultin an equation of the form of the previous equation

° corresponding to each observation point
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10.3 Introductory examples from electrostatics

® For N such observation points we have

A ' ' 2A ' ' nA ' ' / ' )

b d

47s, zjlj_bl(y g [0 I by L I NGy
0 R(y1,y) A R(y1,y) (n-1)A R(y1,y) (N-DA R(y1,y)

nA [

A ! ! 2A ' ! ' ' ' 1
b d
47z€0=11J.M+12 M+...+1n I bn ¥ )y )d),} +o.+ 1y I N(y)'y

/

A ' ' 2A ' ' nA Y ' / ' '

b d b d

4ﬂ50=11Ib1(y )dy, +12I b2y )d)f +.o.t 1, j "(y))f +ot 1y N(y))f
OR(J’Nay) A R(yn.y) (n=1)A R(yn,y) (N-DA R(yn,y)

/
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