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 For [Z] is non-singular, 
 Solve the unknown matrix [I] of amplitudes of basis function 

as

 Galerkin’s method

 Point matching or Collocation 
 The testing function is a delta function
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 Methods for calculating inverse of a matrix
 Seldom find the inverse of matrix directly         , because, 

 if we have ill-conditioned matrices, 
 it can give highly erroneous results 

 MATLAB command ‘pinv’ finds pseudo inverse of a matrix
 using the singular value decomposition

 For a matrix equation of the form AX=B, 
 if small changes in B leads to large changes in the solution X, 

 then we call A is ill-conditioned

  1
Z





10.2 Basic Steps in Method of Moments

1/7/2021MoM by Prof. Rakhesh Singh Kshetrimayum24

 The condition number of a matrix is the 
 ratio of the largest singular value of a matrix to the smallest 

singular value

 Larger is this condition value
 closer is the matrix to singularity

 It is always 
 greater than or equal to 1

 If it is close to one, 
 the matrix is well conditioned
 which means its inverse can be computed with good accuracy



10.2 Basic Steps in Method of Moments

1/7/2021MoM by Prof. Rakhesh Singh Kshetrimayum25

 If the condition number is large, 
 then the matrix is said to be ill-conditioned

 Practically, 
 such a matrix is almost singular, and 

 the computation of its inverse, or 
 solution of a linear system of equations is 

 prone to large numerical errors

 A matrix that is not invertible 
 has the condition number equal to infinity
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 Sometimes pseudo inverse is also used for finding 
 approximate solutions to ill-conditioned matrices 

 Preferable to use LU decomposition 
 to solve linear matrix equations

 LU factorization unlike Gaussian elimination, 
 do not make any modifications in the matrix B 

 in solving the matrix equation
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 Try to solving a matrix equation  
 using LU factorization 

 First express the matrix  
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 through the forward substitution

 through the backward substitution 
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 This is more efficient than Gaussian elimination 
 since the RHS remain unchanged during the whole process

 The main issue here is to 
 find the lower and upper triangular matrices.

 MATLAB command for LU factorization of a matrix A is 
 [L U] = lu(A)
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Example 10.1 
 Consider a 1-D differential equation  

 subject to the boundary condition f(0)=f(1)=0
 Solve this differential equation using Galerkin’s MoM
Solution:
 Note that for this case,
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 According to the nature of the known function                  , 
 it is natural to choose the basis function as 
 However, 
 the boundary condition f(1)=0 

 can’t be satisfied with such a basis function
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 A suitable basis function for this differential equation 
 taking into account of this boundary condition is 

 Assume N=2 (the total number of subsections on the 
interval [0,1]) 

 Approximation of the unknown function
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 For Galerkin’s MoM, the weighting functions are

 Choosing a square [Z] matrix where M=N=2
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 Therefore,

 The unknown function f(x)
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 The above function satisfies the given boundary conditions 
 f(0)=f(1)=0

 The analytical solution for this differential equation is

 Check whether the above solution using MoM is 
 different from the analytical solution obtained by direct 

integration (see Fig. 10.1)
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 Fig. 10.1 Comparison of exact solution (analytical) and approximate 
solution (MoM) of Example 10.1

Analytical 
and MoM 
solution: 
almost 
same 
coinciding 
even with 
two basis 
functions
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 Write a MATLAB program to solve Exercise 10.1
 Convergence analysis: 

 Perform convergence analysis by taking N=2,3,4
 Accuracy testing:

 Check the accuracy of the MoM program by plotting the 
approximate solution obtained (convergent one) and 
comparing with the actual solution

 Programming exercise schedule:
 All Programming exercise will be given on or before 

Friday
 Submit it on or before next Wednesday
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 In electrostatics, the problem of finding the potential 
 due to a given charge distribution is often considered

 In practical scenario, it is very difficult to 
 specify a charge distribution

 We usually connect a conductor to a voltage source 
 and thus the voltage on the conductor is specified

 We will consider MoM
 to solve for the electric charge distribution 

 when an electric potential is specified 
 Examples 2 and 3 discuss about calculation of inverse using LU 

decomposition and SVD
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 1-D Electrostatic case: Charge density of a straight wire
 Consider a straight wire of length l and radius a (assume 

a<<l), 
 placed along the y-axis as shown in Fig. 10.2 (a)

 The wire is applied to a constant electric potential of 1V
 Choosing observation along the wire axis (x=z=0) i.e., 

along the y-axis 
 and representing the charge density on the surface of the wire 
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Fig. 10.2 
 (a) Straight wire of length l and radius a applied with a 

constant potential of 1V 
 (b) Its segmentation: y1, y2, …, yN are observation points and 

r shows a source point 
 (c) Division of the charged strip into N sections
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 where

 It is necessary to solve the integral equation
 to find the unknown function λ(y′)

 The solution may be obtained numerically by 
 reducing the integral equation into a series of linear algebraic 

equations 
 that may be solved by conventional matrix techniques 
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 (a) Approximate the unknown charge density λ(y′) 
 by an expansion of N known basis functions with unknown 

coefficients

 Integral equation after substituting this is
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 Now we have divided the wire into N uniform segments each 
of length Δ as shown in Fig. 10.2 (b)

 We will choose our basis functions as pulse functions 

b) Applying the testing or weighting functions
 Let us apply the testing functions as delta functions             

for point matching 
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 Integration of any function with this delta function 
 will give us the function value at 

 Replacing observation variable y by a fixed point such as ym, 
 results in an integrand that is solely a function of y′

 so the integral may be evaluated. 
 It leads to an equation 

 with N unknowns
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 Solution for these N unknown constants, 
 N linearly independent equations are required

 N equations may be produced 
 by choosing an observation point ym on the wire 
 where m=1,2,3…, N and 
 at the center of each Δ length element 

 as shown in Fig. 10.2 (c)
 Result in an equation of the form of the previous equation 

 corresponding to each observation point
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 For N such observation points we have
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