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 For [Z] is non-singular, 
 Solve the unknown matrix [I] of amplitudes of basis function 

as

 Galerkin’s method

 Point matching or Collocation 
 The testing function is a delta function
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 Methods for calculating inverse of a matrix
 Seldom find the inverse of matrix directly         , because, 

 if we have ill-conditioned matrices, 
 it can give highly erroneous results 

 MATLAB command ‘pinv’ finds pseudo inverse of a matrix
 using the singular value decomposition

 For a matrix equation of the form AX=B, 
 if small changes in B leads to large changes in the solution X, 

 then we call A is ill-conditioned

  1
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 The condition number of a matrix is the 
 ratio of the largest singular value of a matrix to the smallest 

singular value

 Larger is this condition value
 closer is the matrix to singularity

 It is always 
 greater than or equal to 1

 If it is close to one, 
 the matrix is well conditioned
 which means its inverse can be computed with good accuracy
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 If the condition number is large, 
 then the matrix is said to be ill-conditioned

 Practically, 
 such a matrix is almost singular, and 

 the computation of its inverse, or 
 solution of a linear system of equations is 

 prone to large numerical errors

 A matrix that is not invertible 
 has the condition number equal to infinity
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 Sometimes pseudo inverse is also used for finding 
 approximate solutions to ill-conditioned matrices 

 Preferable to use LU decomposition 
 to solve linear matrix equations

 LU factorization unlike Gaussian elimination, 
 do not make any modifications in the matrix B 

 in solving the matrix equation
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 Try to solving a matrix equation  
 using LU factorization 

 First express the matrix  
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 through the forward substitution

 through the backward substitution 
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 This is more efficient than Gaussian elimination 
 since the RHS remain unchanged during the whole process

 The main issue here is to 
 find the lower and upper triangular matrices.

 MATLAB command for LU factorization of a matrix A is 
 [L U] = lu(A)
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Example 10.1 
 Consider a 1-D differential equation  

 subject to the boundary condition f(0)=f(1)=0
 Solve this differential equation using Galerkin’s MoM
Solution:
 Note that for this case,
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 According to the nature of the known function                  , 
 it is natural to choose the basis function as 
 However, 
 the boundary condition f(1)=0 

 can’t be satisfied with such a basis function
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 A suitable basis function for this differential equation 
 taking into account of this boundary condition is 

 Assume N=2 (the total number of subsections on the 
interval [0,1]) 

 Approximation of the unknown function

  1; 1,2,...,n
nb x x x n N  
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 For Galerkin’s MoM, the weighting functions are

 Choosing a square [Z] matrix where M=N=2

  1; 1,2,...,m
mw x x x m M  
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 Therefore,

 The unknown function f(x)
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 The above function satisfies the given boundary conditions 
 f(0)=f(1)=0

 The analytical solution for this differential equation is

 Check whether the above solution using MoM is 
 different from the analytical solution obtained by direct 

integration (see Fig. 10.1)
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 Fig. 10.1 Comparison of exact solution (analytical) and approximate 
solution (MoM) of Example 10.1

Analytical 
and MoM 
solution: 
almost 
same 
coinciding 
even with 
two basis 
functions
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 Write a MATLAB program to solve Exercise 10.1
 Convergence analysis: 

 Perform convergence analysis by taking N=2,3,4
 Accuracy testing:

 Check the accuracy of the MoM program by plotting the 
approximate solution obtained (convergent one) and 
comparing with the actual solution

 Programming exercise schedule:
 All Programming exercise will be given on or before 

Friday
 Submit it on or before next Wednesday
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 In electrostatics, the problem of finding the potential 
 due to a given charge distribution is often considered

 In practical scenario, it is very difficult to 
 specify a charge distribution

 We usually connect a conductor to a voltage source 
 and thus the voltage on the conductor is specified

 We will consider MoM
 to solve for the electric charge distribution 

 when an electric potential is specified 
 Examples 2 and 3 discuss about calculation of inverse using LU 

decomposition and SVD
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 1-D Electrostatic case: Charge density of a straight wire
 Consider a straight wire of length l and radius a (assume 

a<<l), 
 placed along the y-axis as shown in Fig. 10.2 (a)

 The wire is applied to a constant electric potential of 1V
 Choosing observation along the wire axis (x=z=0) i.e., 

along the y-axis 
 and representing the charge density on the surface of the wire 
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Fig. 10.2 
 (a) Straight wire of length l and radius a applied with a 

constant potential of 1V 
 (b) Its segmentation: y1, y2, …, yN are observation points and 

r shows a source point 
 (c) Division of the charged strip into N sections
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 where

 It is necessary to solve the integral equation
 to find the unknown function λ(y′)

 The solution may be obtained numerically by 
 reducing the integral equation into a series of linear algebraic 

equations 
 that may be solved by conventional matrix techniques 
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 (a) Approximate the unknown charge density λ(y′) 
 by an expansion of N known basis functions with unknown 

coefficients

 Integral equation after substituting this is
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 Now we have divided the wire into N uniform segments each 
of length Δ as shown in Fig. 10.2 (b)

 We will choose our basis functions as pulse functions 

b) Applying the testing or weighting functions
 Let us apply the testing functions as delta functions             

for point matching 
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 Integration of any function with this delta function 
 will give us the function value at 

 Replacing observation variable y by a fixed point such as ym, 
 results in an integrand that is solely a function of y′

 so the integral may be evaluated. 
 It leads to an equation 

 with N unknowns
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 Solution for these N unknown constants, 
 N linearly independent equations are required

 N equations may be produced 
 by choosing an observation point ym on the wire 
 where m=1,2,3…, N and 
 at the center of each Δ length element 

 as shown in Fig. 10.2 (c)
 Result in an equation of the form of the previous equation 

 corresponding to each observation point
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 For N such observation points we have
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