FDTD: Advances

- 2-D CN FDTD
- Let us consider TE^{z} case $\left(\mathrm{E}_{\mathrm{z}}=0\right)$

$$
\begin{aligned}
& \frac{\partial E_{x}}{\partial t}=\frac{1}{\varepsilon} \frac{\partial H_{z}}{\partial y} \\
& \frac{\partial E_{y}}{\partial t}=-\frac{1}{\varepsilon} \frac{\partial H_{z}}{\partial x} \\
& \frac{\partial H_{z}}{\partial t}=\frac{1}{\mu}\left(\frac{\partial E_{x}}{\partial y}-\frac{\partial E_{y}}{\partial x}\right)
\end{aligned}
$$

FDTD: Advances

Conventional FDTD

$$
\frac{\partial E_{x}}{\partial t}=\frac{1}{\varepsilon} \frac{\partial H_{z}}{\partial y}
$$

$$
\begin{aligned}
& E_{x}^{n+1}(i+1 / 2, j)=E_{x}^{n}(i+1 / 2, j)+\frac{\Delta t}{\varepsilon \Delta y} x \\
& {\left[H_{z}^{n+1 / 2}(i+1 / 2, j+1 / 2)-H_{z}^{n+1 / 2}(i+1 / 2, j-1 / 2)\right]}
\end{aligned}
$$

FDTD: Advances $\quad \frac{\partial E_{x}}{\partial t}=\frac{1}{\varepsilon} \frac{\partial H_{z}}{\partial y}$

$$
\begin{array}{ll}
& E_{x}^{n+1}(i+1 / 2, j)=E_{x}^{n}(i+1 / 2, j)+\frac{\Delta t}{\varepsilon \Delta y} \times \\
\text { CN FDTD } & {\left[H_{z}^{n+1 / 2}(i+1 / 2, j+1 / 2)-H_{z}^{n+1 / 2}(i+1 / 2, j-1 / 2)\right]}
\end{array}
$$

$$
E_{x}^{n+1}(i+1 / 2, j)=E_{x}^{n}(i+1 / 2, j)+\frac{\Delta t}{2 \varepsilon \Delta y} \times
$$

$$
\left\lvert\, \begin{array}{|l|}
\hline H_{z}^{n+1}(i+1 / 2, j+1 / 2)+H_{z}^{n}(i+1 / 2, j+1 / 2) \\
\hline-\left\{H_{z}^{n+1}(i+1 / 2, j-1 / 2)+H_{z}^{n}(i+1 / 2, j-1 / 2)\right\}
\end{array}\right.
$$

(1)

FDTD: Advances $\frac{\partial E_{y}}{\partial t}=-\frac{1}{\varepsilon} \frac{\partial H_{z}}{\partial x}$
 Conventional FDTD

$$
\begin{aligned}
& E_{y}^{n+1}(i, j+1 / 2)=E_{y}^{n}(i, j+1 / 2)-\frac{\Delta t}{\varepsilon \Delta x} \times \\
& {\left[H_{z}^{n+1 / 2}(i+1 / 2, j+1 / 2)-H_{z}^{n+1 / 2}(i-1 / 2, j-1 / 2)\right]}
\end{aligned}
$$

FDTD: Advances
$\frac{\partial E_{y}}{\partial t}=-\frac{1}{\varepsilon} \frac{\partial H_{z}}{\partial x}$

$$
\begin{aligned}
& E_{y}^{n+1}(i, j+1 / 2)=E_{y}^{n}(i, j+1 / 2)-\frac{\Delta t}{\varepsilon \Delta x} \times \\
& {\left[H_{z}^{n+1 / 2}(i+1 / 2, j+1 / 2)-H_{z}^{n+1 / 2}(i-1 / 2, j-1 / 2)\right]}
\end{aligned}
$$

CN FDTD

$$
E_{y}^{n+1}(i, j+1 / 2)=E_{y}^{n}(i, j+1 / 2)-\frac{\Delta t}{2 \varepsilon \Delta x} \times
$$

$$
\left[\begin{array}{l}
H_{z}^{n+1}(i+1 / 2, j+1 / 2)+H_{z}^{n}(i+1 / 2, j+1 / 2) \\
\hline-\left\{H_{z}^{n+1}(i-1 / 2, j-1 / 2)+H_{z}^{n}(i-1 / 2, j-1 / 2)\right\} \\
\hline
\end{array}\right]
$$

FDTD: Advances
 $$
\frac{\partial H_{z}}{\partial t}=\frac{1}{\mu}\left(\frac{\partial E_{x}}{\partial y}-\frac{\partial E_{y}}{\partial x}\right)
$$
 Conventional FDTD

$$
\begin{aligned}
& H_{z}^{n+1}(i+1 / 2, j+1 / 2)=H_{z}^{n}(i+1 / 2, j+1 / 2) \\
& +\frac{\Delta t}{\mu \Delta y}\left[E_{x}^{n+1 / 2}(i+1 / 2, j+1)-E_{x}^{n+1 / 2}(i+1 / 2, j)\right] \\
& -\frac{\Delta t}{\mu \Delta x}\left[E_{y}^{n+1 / 2}(i+1, j+1 / 2)-E_{y}^{n+1 / 2}(i, j+1 / 2)\right]
\end{aligned}
$$

FDTD: Advances

CN FDTD

$$
\begin{aligned}
& H_{z}^{n+1}(i+1 / 2, j+1 / 2)=H_{z}^{n}(i+1 / 2, j+1 / 2) \\
& +\frac{\Delta t}{\mu \Delta y}\left[E_{x}^{n+1 / 2}(i+1 / 2, j+1)-E_{x}^{n+1 / 2}(i+1 / 2, j)\right] \\
& -\frac{\Delta t}{\mu \Delta x}\left[E_{y}^{n+1 / 2}(i+1, j+1 / 2)-E_{y}^{n+1 / 2}(i, j+1 / 2)\right]
\end{aligned}
$$

$$
H_{2}^{n+1}(i+1 / 2, j+1 / 2)=H_{z}^{n}(i+1 / 2, j+1 / 2)
$$

$$
+\frac{\Delta t}{2 \mu \Delta y}\left[E_{x}^{n+1}(i+1 / 2, j+1)+E_{x}^{n}(i+1 / 2, j+1)-\left\{E_{x}^{n+1}(i+1 / 2, j)+E_{x}^{n}(i+1 / 2, j)\right\}\right]
$$

$$
-\frac{\Delta t}{2 \mu \Delta x}\left[E_{y}^{n+1}(i+1, j+1 / 2)+E_{y}^{n}(i+1, j+1 / 2)-\left\{E_{y}^{n+1}(i, j+1 / 2)+E_{y}^{n}(i, j+1 / 2)\right\}\right]
$$

FDTD: Advances

- In the CN update equations (1), (2) and (3),
- the field components $E_{x}^{n+1}, E_{y}^{n+1}, H_{z}^{n+1}$ are coupled implicitly
- To decouple,
- substitute equations (1) and (2) into equation (3)
- Denote

$$
a_{1}=\frac{\Delta t}{2 \varepsilon}, a_{2}=\frac{\Delta t}{2 \mu}
$$

FDTD: Advances

$$
\begin{aligned}
& \left\{1-b^{2}\left(D_{2 x}^{n+1}+D_{2 y}^{n+1}\right)\right\} H_{z}^{n+1}(i+1 / 2, j+1 / 2) \\
& =\left\{1+b^{2}\left(D_{2 x}^{n}+D_{2 y}^{n}\right)\right\} H_{z}^{n}(i+1 / 2, j+1 / 2)+f\left(E_{x}^{n}, E_{y}^{n}\right)
\end{aligned}
$$

where
$b=\frac{c \Delta t}{2}$
$D_{2 x}^{i}=\frac{H_{z}^{n+1}(i+3 / 2, j+1 / 2)+H_{z}^{n+1}(i-1 / 2, j+1 / 2)-2 H_{z}^{n+1}(i+1 / 2, j+1 / 2)}{\Delta x^{2}}$
$D_{2 y}^{i}=\frac{H_{z}^{n+1}(i+1 / 2, j+3 / 2)+H_{z}^{n+1}\left(i+1 \frac{x^{2}}{2}, j-1 / 2\right)-2 H_{z}^{n+1}(i+1 / 2, j+1 / 2)}{\Delta y^{2}}$
$f\left(E_{x}^{n}, E_{y}^{n}\right)=2 a_{2} \frac{E_{x}^{n}(i+1 / 2, j+1)-E_{x}^{n}\left(\begin{array}{l}\Delta y^{2} \\ i+1 / 2, j)\end{array}\right.}{\Delta y}-\frac{E_{y}^{n}(i+1, j+1 / 2)-E_{y}^{n}(i, j+1 / 2)}{\Delta x}$

FDTD: Advances

- 3D CN FDTD
(https://ieeexplore.ieee.org/document/1710457)
- Auxiliary Differential Equation (ADE) FDTD
- Digression:
- The most well known material model is the Lorentz model
- Electron motion is described in terms of a
- driven, damped harmonic oscillator
- We will assume that the charges are allowed to move
- in the same direction as the electric field

FDTD: Advances

- The Lorentz model then describes the temporal response of a component of the polarization field of the medium to the same component of the electric field as

$$
\frac{d^{2}}{d t^{2}} P_{i}+\Gamma_{L} \frac{d}{d t} P_{i}+\omega_{0}^{2} P_{i}=\varepsilon_{0} \chi_{L} E_{i}
$$

- $1^{\text {st }}$ term: acceleration of charges
- $2^{\text {nd }}$ term: damping mechanism of the system with damping coefficient Γ_{L} (subscript L is for Lorentz)
- $3^{\text {rd }}$ term: restoring forces with the characteristic frequency $\mathrm{f}_{0}=\omega_{0} / 2 \pi$

FDTD: Advances

- RHS term: driving term exhibits a coupling coefficient χ_{L}
- Frequency response for time harmonic fields with time dependence $\exp (+\mathrm{j} \omega \mathrm{t})$ is given by

$$
\frac{d^{2}}{d t^{2}} P_{i}+\Gamma_{L} \frac{d}{d t} P_{i}+\omega_{0}^{2} P_{i}=\varepsilon_{0} \chi_{L} E_{i}
$$

$$
P_{i}(\omega)=\frac{\chi_{L}}{-\omega^{2}+j \Gamma / L \omega+\omega_{0}^{2}} \varepsilon_{0} E_{i}(\omega)
$$

- For small losses $\Gamma_{L} / \omega_{0} \ll 1$, the response is clearly resonant at the natural frequency f_{0}

FDTD: Advances

- The polarization and electric fields are related to the electric susceptibility

$$
P_{i}(\omega)=\frac{\chi_{L}}{-\omega^{2}+j \Gamma_{L} \omega+\omega_{0}^{2}} \varepsilon_{0} E_{i}(\omega)
$$

$\chi_{e, \text { Lorentz }}(\omega)=\frac{P_{i}(\omega)}{\varepsilon_{0} E_{i}(\omega)}=\frac{\chi_{L}}{-\omega^{2}+j \Gamma_{L} \omega+\omega_{0}^{2}}$

- Electric permittivity is obtained from electric susceptibility as

$$
\varepsilon_{\text {Lorentz }}(\omega)=\varepsilon_{0}\left(1+\chi_{e, \text { Lorentz }}(\omega)\right)
$$

FDTD: Advances

- Special cases:

$$
\frac{d^{2}}{d t^{2}} P_{i}+\Gamma_{L} \frac{d}{d t} P_{i}+\omega_{0}^{2} P_{i}=\varepsilon_{0} \chi_{L} E_{i}
$$

- Debye model: Acceleration term is small compared to others (subscript d is for Debye)

$$
\Gamma_{d} \frac{d}{d t} P_{i}+\omega_{0}^{2} P_{i}=\varepsilon_{0} \chi_{d} E_{i} \quad \chi_{e, \text { Debye }}(\omega)=\frac{P_{i}(\omega)}{\varepsilon_{0} E_{i}(\omega)}=\frac{\chi_{d}}{j \Gamma_{d} \omega+\omega_{0}^{2}}
$$

- Drude model: Restoring force is negligible (subscript d is for Debye)

$$
\frac{d^{2}}{d t^{2}} P_{i}+\Gamma_{D} \frac{d}{d t} P_{i}=\varepsilon_{0} \chi_{D} E_{i}
$$

$$
\chi_{e, \text { Drude }}(\omega)=\frac{P_{i}(\omega)}{\varepsilon_{0} E_{i}(\omega)}=\frac{\chi_{L}}{-\omega^{2}+j \Gamma_{D} \omega}
$$

- where the coupling frequency is generally represented by plasma frequency $\quad \chi_{D}=\omega_{p}^{2}$

FDTD: Advances

- In all these models, at high frequency limit permittivity
- reduces to that of the free space
- For linear materials, relationship between the electric flux density and electric field phasor,
- valid at each frequency and at each point in space is

$$
\mathbf{D}(\mathbf{r}, \omega)=\varepsilon_{c}(\mathbf{r}, \omega) \mathbf{E}(\mathbf{r}, \omega)
$$

- where complex permittivity ε_{c} may vary in space
- It is also often written as

$$
\begin{aligned}
& \mathbf{D}(\mathbf{r}, \omega)=\varepsilon_{0} \varepsilon_{\infty} \mathbf{E}(\mathbf{r}, \omega)+\mathbf{P}(\mathbf{r}, \omega) \\
& \mathbf{D}(\mathbf{r}, \omega)=\varepsilon_{0} \varepsilon_{\infty} \mathbf{E}(\mathbf{r}, \omega)+\varepsilon_{0} \chi_{e}(\mathbf{r}, \omega) \mathbf{E}(\mathbf{r}, \omega)
\end{aligned}
$$

FDTD: Advances

- where \mathbf{P} is the polarization phasor
- $\chi \mathrm{e}$ is the electric susceptibility of the material
- \mathcal{E}_{∞} is the relative permittivity at the upper end of the frequency band (usually 1 for all real materials, but FDTD simulation it may be taken as non-unit for artificial materials)
- $\mathcal{E}_{d c}$ is the relative permittivity at the lower end of the frequency band
- Hence complex electric permittivity is related to electric susceptibility

$$
\varepsilon_{c}(\omega)=\varepsilon_{0}\left[\varepsilon_{\infty}+\chi_{e}(\omega)\right]
$$

FDTD: Advances

- Debye materials

$$
\varepsilon_{c}(\omega)=\varepsilon_{0}\left[\varepsilon_{\infty}+\chi_{e}(\omega)\right]
$$

- which can be expressed as

$$
\varepsilon_{c}(\omega)=\varepsilon_{0}\left[\varepsilon_{\infty}+\int_{0}^{\infty} \chi_{e}(t) e^{-j \omega t} d t\right\rfloor
$$

- where $\chi_{e}(t)$ is some kind of decay factor
- Note that $\chi_{e}(t)$ should tends to zero for ω tending to infinity
- Since ω tending to infinity

$$
\varepsilon_{c}(\omega)=\varepsilon_{0}\left[\varepsilon_{\infty}\right]
$$

FDTD: Advances

- P. Debye gave a simple exponential model for decay factor as

$$
\chi_{e}(t)=\chi_{e}(0) e^{-\frac{t}{\tau_{v}}} u(t)
$$

- where $u(t)$ is unit step function and τ_{0} is the Debye relaxation time constant
- Hence, $\quad \varepsilon_{c}(\omega)=\varepsilon_{0} \quad\left[\varepsilon_{\infty}+\int_{0}^{\infty} \chi_{0}(0) e^{\left(-j \omega-\frac{1}{\tau_{0}}\right) t} d t\right]$
- Therefore,

$$
\varepsilon_{c}(\omega)=\varepsilon_{0}\left[\varepsilon_{\infty}+\frac{\chi_{e}(0)}{\left(\frac{1}{\tau_{0}}+j \omega\right)}\right]
$$

FDTD: Advances

- Therefore,

$$
\chi_{e}(\omega)=\varepsilon_{0}\left[\varepsilon_{\infty}+\frac{\chi_{e}(0) \tau_{0}}{\left(1+j \omega \tau_{0}\right)}\right]
$$

- We also have

$$
\varepsilon_{c}(0)=\varepsilon_{d c} \varepsilon_{0}=\varepsilon_{0} \varepsilon_{\infty}+\varepsilon_{0} \chi_{e}(0) \tau_{0} \quad \varepsilon_{c}(\omega)=\varepsilon_{0}
$$

- So,

$$
\chi_{e}(0)=\frac{\left(\varepsilon_{d c}-\varepsilon_{\infty}\right)}{\tau_{0}}
$$

- Finally,

$$
\chi_{e, D \text { otye }}(\omega)=\varepsilon_{0}\left[\varepsilon_{\omega_{\infty}}+\frac{\left(\varepsilon_{d \alpha}-\varepsilon_{\omega_{0}}\right)}{\left(1+j \omega \tau_{0}\right)}\right]
$$

FDTD: Advances

- Therefore

$$
\begin{aligned}
& \mathbf{D}=\varepsilon_{c} \mathbf{E} \\
& \mathbf{D}=\varepsilon_{0}\left[\varepsilon_{\infty}+\chi_{e}(\omega)\right] \mathbf{E} \\
& \mathbf{D}=\varepsilon_{0}\left[\varepsilon_{\infty}+\frac{\varepsilon_{Q}\left(\varepsilon_{d c}-\varepsilon_{\infty}\right)}{1+j \omega \tau_{0}}\right] \mathbf{E}
\end{aligned}
$$

- Simplifying

$$
\left(1+j \omega \tau_{0}\right) \mathbf{D}=\left(\varepsilon_{0} \varepsilon_{\infty}\left(l+j \omega \tau_{0}\right)+\varepsilon_{0}\left(\varepsilon_{d c}-\varepsilon_{0}\right)\right) \mathbf{E}
$$

- Finally

$$
\left(1+j \omega \tau_{0}\right) \mathbf{D}=\left(\varepsilon_{0} \varepsilon_{\infty} \times \quad j \omega \tau_{0}+\varepsilon_{0} \varepsilon_{d c}\right) \mathbf{E}
$$

