FDTD: Advances

- How to get numerators of $\mathrm{D}(2 \mathrm{x}), \mathrm{D}(2 \mathrm{y})$?
- Ans: $\mathrm{D}(2 \mathrm{x})$ is shown here you can find $\mathrm{D}(2 \mathrm{y})$ similarly
- $\frac{\partial^{2}}{\partial x^{2}} H_{z}^{n+1}\left(i+\frac{1}{2}, j+1 / 2\right)$
- $=\frac{\partial}{\partial x}\left\{\frac{H_{z}^{n+1}(i+1, j+1 / 2)-H_{z}^{n+1}(i, j+1 / 2)}{\Delta x}\right\}$
- $=\left\{\frac{H_{Z}^{n+1}(i+3 / 2, j+1 / 2)-H_{Z}^{n+1}(i+1 / 2, j+1 / 2)}{\Delta x^{2}}\right\}-$ $\left\{\frac{H_{z}^{n+1}(i+1 / 2, j+1 / 2)-H_{z}^{n+1}(i-1 / 2, j+1 / 2)}{\Delta x^{2}}\right\}$
- $=\left\{\frac{H_{Z}^{n+1}(i+3 / 2, j+1 / 2)-2 H_{Z}^{n+1}\left(i+\frac{1}{2}, j+\frac{1}{2}\right)+H_{Z}^{n+1}(i-1 / 2, j+1 / 2)}{\Delta x^{2}}\right\}$

FDTD: Advances

- Frequency domain equation for Debye model

$$
\mathbf{D}+j \omega \tau_{0} \mathbf{D}=\varepsilon_{0} \varepsilon_{d c} \mathbf{E}+j \omega \tau_{0} \varepsilon_{0} \varepsilon_{\infty} \mathbf{E}
$$

- Take IFT

$$
\bar{D}+\tau_{0} \frac{\partial \bar{D}}{\partial t}=\varepsilon_{0} \varepsilon_{d c} \bar{E}+\tau_{0} \varepsilon_{0} \varepsilon_{\infty} \frac{\partial \bar{E}}{\partial t}
$$

- This differential equation can be discretized as usual to find an update equation for electric field

FDTD: An Introduction

$$
\begin{aligned}
& \bar{E}^{n+1}=\left(\frac{\Delta t+2 \tau_{0}}{2 \tau_{0} \varepsilon_{0} \varepsilon_{\infty}+\varepsilon_{0} \varepsilon_{d c} \Delta t}\right) \bar{D}^{n+1} \\
& +\left(\frac{\Delta t-2 \tau_{0}}{2 \tau_{0} \varepsilon_{0} \varepsilon_{\infty}+\varepsilon_{0} \varepsilon_{d c} \Delta t}\right) \bar{D}^{n}+\left(\frac{2 \tau_{0} \varepsilon_{0} \varepsilon_{\infty}-\varepsilon_{0} \varepsilon_{d c} \Delta t}{2 \tau_{0} \varepsilon_{0} \varepsilon_{\infty}+\varepsilon_{0} \varepsilon_{d c} \Delta t}\right) \bar{E}^{n}
\end{aligned}
$$

Update equation for magnetic field (no dispersion in magnetic permeability)

$$
\begin{aligned}
& \frac{\partial \bar{H}}{\partial t}=-\frac{1}{\mu} \nabla \times \bar{E} \\
& \Rightarrow \bar{H}^{n+1 / 2}=\bar{H}^{n-1 / 2}-\frac{\Delta t}{\mu}[\nabla \times \bar{E}]^{n}
\end{aligned}
$$

FDTD: An Introduction

- Update equation for electric flux density (use the value of $\bar{H}^{n+1 / 2}$ from the previous update equation)

$$
\begin{array}{ll}
\frac{\partial \bar{D}}{\partial t}=\nabla \times \bar{H} & \bar{E}^{n+1}=\left(\frac{\Delta t+2 \tau_{0}}{2 \tau_{0} \varepsilon_{0} \varepsilon_{\infty}+\varepsilon_{0} \varepsilon_{d c} \Delta t}\right) \bar{D}^{n+1} \\
\Rightarrow \bar{D}^{n+1}=\bar{D}^{n}-\Delta t[\nabla \times \bar{H}]^{n+1 / 2} & +\left(\frac{\Delta t-2 \tau_{0}}{2 \tau_{0} \varepsilon_{0} \varepsilon_{\infty}+\varepsilon_{0} \varepsilon_{d c} \Delta t}\right) \bar{D}^{n}+\left(\frac{2 \tau_{0} \varepsilon_{0} \varepsilon_{\infty}-\varepsilon_{0} \varepsilon_{d c} \Delta t}{2 \tau_{0} \varepsilon_{0} \varepsilon_{\infty}+\varepsilon_{0} \varepsilon_{d c} \Delta t}\right) \bar{E}^{n}
\end{array}
$$

- We can use value of $\bar{D}^{n+1}, \bar{D}^{n}$ and \bar{E}^{n} to find \bar{E}^{n+1}
- Formulation for multiple Debye poles
- For materials having susceptibilty with multiple (e.g. a total of M) poles, we can express the permittivity in the frequency domain as:

$$
\varepsilon_{c}(\omega)=\varepsilon_{0}\left[\varepsilon_{\infty}+\sum_{m=1}^{M} \frac{\Delta \varepsilon_{m}}{1+j \omega \tau_{0 m}}\right] ; \Delta \varepsilon_{m}=\varepsilon_{d c}^{m}-\varepsilon_{\infty}^{m}
$$

FDTD: An Introduction

- $\Delta \varepsilon_{m}$ Change in the real part of the relative permittivity in the vicinity of the mth Debye pole, specified by the relaxation time $\tau_{0 m}$ would be

$$
\begin{aligned}
& \varepsilon_{c, \text { Debve }}(\omega)=\varepsilon_{0}\left[\varepsilon_{\infty}+\frac{\left(\varepsilon_{m, d c}-\varepsilon_{m, \infty}\right)}{\left(1+j \omega \tau_{0 m}\right)}\right]=\varepsilon_{0} \varepsilon_{\infty}+\frac{\varepsilon_{0} \Delta \varepsilon_{m}}{\left(1+j \omega \tau_{0 m}\right)} \\
& \Rightarrow \chi_{\text {em,Debye }}(\omega)=\frac{\varepsilon_{0} \Delta \varepsilon_{m}}{\left(1+j \omega \tau_{0 m}\right)} \\
& \Rightarrow j \omega \mathbf{J}_{p m}(\omega)=\left(\chi_{\text {em,Debye }}(\omega)\right) \mathbf{E}(\omega) \\
& \mathbf{J}_{p m}(\omega)=j \omega \varepsilon_{0} \frac{\Delta \varepsilon_{m}}{1+j \omega \tau_{0 m}} \mathbf{E}(\omega)
\end{aligned}
$$

FDTD: An Introduction

- Maxwell equation

$$
\Delta \times \bar{H}=\varepsilon_{0} \varepsilon_{\infty} \frac{\partial \bar{E}}{\partial t}+\sum_{m=1}^{M} \bar{J}_{p m}
$$

- Update equation for Polarization current

$$
\begin{gathered}
\mathbf{J}_{p m}(\omega)+j \omega \tau_{0 m} \mathbf{J}_{p m}(\omega)=j \omega \varepsilon_{0} \Delta \varepsilon_{m} \mathbf{E}(\omega) \mathbf{J}_{p m}(\omega)=j \omega \varepsilon_{0} \frac{\Delta \varepsilon_{m}}{1+j \omega \tau_{0 m}} \mathbf{E}(\omega) \\
d \bar{J}_{p m} d \bar{E}
\end{gathered}
$$

- IFT $\bar{J}_{p m}+\tau_{0 m} \frac{d \bar{J}_{p m}}{d t}=\varepsilon_{0} \Delta \varepsilon_{m} \frac{d \bar{E}}{d t}$

$$
\bar{J}_{p m}^{n+1}=\left.\left(\frac{2 \tau_{0 m}-\Delta t}{2 \tau_{0 m}+\Delta t}\right) \bar{J}_{p m}\right|^{n}+\left(\frac{2 \varepsilon_{0} \Delta \varepsilon_{m} \Delta t}{2 \tau_{0 m}+\Delta t}\right)\left[\frac{\bar{E}^{n+1}-\left.\bar{E}\right|^{n}}{\Delta t}\right]
$$

FDTD: An Introduction

- We can obtain

$$
\left.\bar{J}_{p m}\right|^{n+1 / 2}=\frac{\left.\bar{J}_{p m}\right|^{n+1}+\bar{J}_{p m}{ }^{n}}{2}=\left.\left(\frac{2 \tau_{0 m}}{2 \tau_{0 m}+\Delta t}\right) \bar{J}_{p m}\right|^{n}+\left(\frac{\varepsilon_{0} \Delta \varepsilon_{m} \Delta t}{2 \tau_{0 m}+\Delta t}\right)\left[\frac{\bar{E}^{n+1}-\left.\bar{E}\right|^{n}}{\Delta t}\right]
$$

- Therefore

$$
[\nabla \times \bar{H}]^{n+1 / 2}=\varepsilon_{0} \varepsilon_{\infty}\left[\frac{E^{n+1}-\bar{E}^{n}}{\Delta t}\right]+\sum_{m=1}^{M} P_{p m}^{n+1 / 2}
$$

- Putting the update equation of polarization current and rearranging

FDTD: An Introduction

$$
\begin{gathered}
\left.\bar{J}_{p m}\right|^{n+1}=\left.\left(\frac{2 \tau_{0 m}-\Delta t}{2 \tau_{0 m}+\Delta t}\right) \bar{J}_{p m}\right|^{n}+\left(\frac{2 \varepsilon_{0} \Delta \varepsilon_{m} \Delta t}{2 \tau_{0 m}+\Delta t}\right)\left[\frac{\left.\bar{E}\right|^{n+1}-\left.\bar{E}\right|^{n}}{\Delta t}\right] \\
\bar{E}^{n+1}=\bar{E}^{n}+\left(\frac{2 \Delta t}{2 \varepsilon_{0} \varepsilon_{\infty}+\sum_{m=1}^{M} \beta_{m}}\right)\left[[\nabla \times \bar{H}]^{n+1 / 2}-\frac{1}{2} \sum_{m=1}^{M}\left(1+k_{m}\right) \bar{J}_{p m}^{n}\right]
\end{gathered}
$$

where

$$
k_{m}=\left(\frac{2 \tau_{0 m}-\Delta t}{2 \tau_{0 m}+\Delta t}\right) \quad \beta_{m}=\left(\frac{2 \varepsilon_{0} \Delta \varepsilon_{m} \Delta t}{2 \tau_{0 m}+\Delta t}\right)
$$

FDTD: An Introduction

$$
\bar{E}^{n+1}=\bar{E}^{n}+\left(\frac { 2 \Delta t } { 2 \varepsilon _ { 0 } \varepsilon _ { \infty } + \sum _ { m = 1 } ^ { M } \beta _ { m } } \left[\left[[\nabla \times \bar{H}]^{n+1 / 2}-\frac{1}{2} \sum_{m=1}^{M}\left(1+k_{m}\right) \bar{J}_{p m}^{n}\right]\right.\right.
$$

$$
\bar{F}^{n}, \bar{P}^{n}, \bar{F}^{n+1 / 2} \rightarrow \bar{F}^{n+1} \rightarrow \bar{P}^{n+1}
$$

$$
\begin{aligned}
& \bar{J}_{p m}^{n+1}=\left(\frac{2 \tau_{0 m}-\Delta t}{2 \tau_{0 m}+\Delta t}\right) \bar{J}_{p m}{ }^{n}+\left(\frac{2 \varepsilon_{0} \Delta \varepsilon_{m} \Delta t}{2 \tau_{0 m}+\Delta t}\right)\left[\frac{\bar{E}^{n+1}-\bar{E}^{n}}{\Delta t}\right] \\
& \bar{J}_{p}(t)=\frac{\partial \bar{P}}{\partial t} \\
& \bar{H}^{n+3 / 2 \quad \frac{\partial \bar{H}}{\partial t}=-\frac{1}{\mu} \nabla \times \bar{E}}
\end{aligned}
$$

After which use Faraday's law to find $\left.\Rightarrow \bar{H}^{n+1 / 2}=\bar{H}^{n-1 / 2}-\frac{\Delta t}{\mu}[\nabla \times \bar{E}]\right]^{2}$ and proceed with updating

$$
[\nabla \times \bar{E}]^{n+1}=-\mu\left[\frac{\bar{H}^{n+3 / 2}-\bar{H}^{n+1 / 2}}{\Delta t}\right]
$$

FDTD: An Introduction

- Lorentz materials

$$
\varepsilon_{\text {Lorentz }}(\omega)=\varepsilon_{0}\left(\varepsilon_{\infty}+\chi_{e, \text { Lorennz }}(\omega)\right)
$$

- where

$$
\chi_{e, \text { Lorenz }}(\omega)=\frac{P_{i}(\omega)}{\varepsilon_{0} E_{i}(\omega)}=\frac{\chi_{L}}{-\omega^{2}+j \Gamma_{L} \omega+\omega_{0}^{2}}
$$

- In terms of $\Delta \varepsilon_{m}=\varepsilon_{d c}^{m}-\varepsilon_{\infty}^{m}$

$$
\varepsilon_{\text {Lorenzz }}(\omega)=\varepsilon_{0}\left(\varepsilon_{\infty}+\frac{\Delta \varepsilon \omega_{0}^{2}}{-\omega^{2}+2 j \omega \delta+\omega_{0}^{2}}\right)
$$

FDTD: Advances

- For Lorentz material with M pole-pairs,

$$
\varepsilon_{\text {Lorentz }}(\omega)=\varepsilon_{0}\left(\varepsilon_{\infty}+\sum_{m=1}^{M} \frac{\Delta \varepsilon_{m} \omega_{0 m}^{2}}{\omega_{0 m}^{2}+2 j \omega \delta_{m}-\omega^{2}}\right)
$$

- Therefore

$$
\mathbf{J}_{p m}(\omega)=j \omega \mathbf{P}=\varepsilon_{0} \Delta \varepsilon_{m} \omega_{0 m}^{2} \frac{j \omega}{\omega_{0 m}^{2}+2 j \omega \delta_{m}-\omega^{2}} \mathbf{E}
$$

FDTD: Advances

- Rearranging

$$
\omega_{0 m}^{2} \mathbf{J}_{p m}+2 j \omega \delta_{m} \mathbf{J}_{p m}-\omega^{2} \mathbf{J}_{p m}=\varepsilon_{0} \Delta \varepsilon_{m} \omega_{0 m}^{2} j \omega \mathbf{E}
$$

- Taking IFT

$$
\omega_{0 m}^{2} \bar{J}_{p m}+2 \delta_{m} \frac{\partial \bar{J}_{p m}}{\partial t}+\frac{\partial^{2} \bar{J}_{p m}}{\partial t^{2}}=\varepsilon_{0} \Delta \varepsilon_{m} \omega_{0 m}^{2} \frac{\partial \bar{E}}{\partial t}
$$

FDTD: Advances

- Discretize using second-order centered differences for first and second derivaties

$$
\begin{aligned}
& \omega_{0 m}^{2} \bar{J}_{p m}+2 \delta_{m} \frac{\bar{J}_{p m}^{n+1}-\bar{J}_{p m}^{n-1}}{2 \Delta t}+\frac{\bar{J}_{p m}^{n+1}-2 \bar{J}_{p m}^{n}+\bar{J}_{p m}^{n-1}}{\Delta t^{2}} \\
& =\varepsilon_{0} \Delta \varepsilon_{m} \omega_{0 m}^{2} \frac{\bar{E}_{m}^{n+1}-\bar{E}_{m}^{n-1}}{2 \Delta t}
\end{aligned}
$$

FDTD: Advances

- Hence

$$
J_{p m}^{n+1 / 2}=\frac{J_{p m}^{n+1}+J_{p m}^{n}}{2}=\frac{1}{2}\left[\left(1+A_{1 m}\right) J_{p m}^{n}+A_{2 m} J_{p m}^{n-1}+A_{3 m}\left(\frac{\bar{E}_{m}^{n+1}-\bar{E}_{m}^{n-1}}{2 \Delta t}\right)\right]
$$

- Now we can use this equation in

$$
A_{1 m}=\frac{2-\omega_{0 m}^{2}}{1+\delta_{m} \Delta t} ; A_{2 m}=\frac{\delta_{m} \Delta t-1}{1+\delta_{m} \Delta t} A_{3 m}=\frac{\varepsilon_{0} \Delta \varepsilon_{m} \omega_{0 m}^{2} \Delta t^{2}}{1+\delta_{m} \Delta t}
$$

FDTD: Advances

- Update equation for polarization current

$$
\bar{J}_{p m}^{n+1}=A_{1 m} \bar{J}_{p m}^{n}+A_{2 m} \bar{J}_{p m}^{n-1}+A_{3 m}\left(\frac{\bar{E}_{m}^{n+1}-\bar{E}_{m}^{n-1}}{2 \Delta t}\right)
$$

- Now we can use this equation in the following equation

$$
\Delta \times \bar{H}=\varepsilon_{0} \varepsilon_{\infty} \frac{\partial \bar{E}}{\partial t}+\sum_{m=1}^{M} \bar{J}_{p m}
$$

FDTD: Advances

- The update equation for electric field as

$$
\bar{E}^{n+1}=C_{1} \bar{E}^{n}+C_{2} \bar{E}^{n-1}+C_{3}\left[(\Delta \times H)^{n+1 / 2}-\frac{1}{2} \sum_{m=1}^{M}\left\{\left(1+A_{1 m}\right) J_{p m}^{n}+A_{2 m} J_{p m}^{n-1}\right\}\right]
$$

- where the constants are

$$
C_{1}=\frac{2 \varepsilon_{0} \varepsilon_{m}}{2 \varepsilon_{0} \varepsilon_{\infty}+\frac{1}{2} \sum A_{3 m}} ; C_{2}=\frac{\frac{1}{2} \sum A_{3 m}}{2 \varepsilon_{0} \varepsilon_{\infty}+\frac{1}{2} \sum A_{3 m}} C_{3}=\frac{2 \Delta t}{2 \varepsilon_{0} \varepsilon_{\infty}+\frac{1}{2} \sum A_{3 m}}
$$

FDTD: Advances

- Finally

$$
\bar{E}^{n}, \bar{E}^{n-1}, \bar{P}^{n}, \bar{P}^{n-1}, \bar{H}^{n+1 / 2} \rightarrow \bar{E}^{n+1} \rightarrow \bar{P}^{n+1}
$$

- Drude materials

$$
\begin{aligned}
& \chi_{e, \text { Drude }}(\omega)=\frac{\chi_{L}}{-\omega^{2}+j \Gamma_{D} \omega}=-\frac{\omega_{r}^{2}}{\omega^{2}-j \frac{1}{\tau_{r}} \omega} \\
& \text { For multinle nole }
\end{aligned}
$$

- For multiple pole

$$
\varepsilon_{\text {Drude }}(\omega)=\varepsilon_{0} \varepsilon_{\infty}-\varepsilon_{0} \sum_{m=1}^{M} \frac{\omega_{r m}^{2}}{\omega^{2}-\frac{j \omega}{\tau_{r m}}}
$$

FDTD: Advances

- Polarization current

$$
\begin{aligned}
& \mathbf{J}_{p m}(\omega)=j \omega \mathbf{P}=-j \omega \varepsilon_{0} \frac{\omega_{r m}^{2}}{\omega^{2}-\frac{j \omega}{\tau_{r m}}} \mathbf{E} \\
& \omega^{2} \mathbf{J}_{p m}-\frac{j \omega}{\tau_{r m}} \mathbf{J}_{p m}=-j \omega \varepsilon_{0} \omega_{r m}^{2} \mathbf{E} \\
& -j \omega \mathbf{J}_{p m}-\frac{1}{\tau_{r m}} \mathbf{J}_{p m}=-\varepsilon_{0} \omega_{r m}^{2} \mathbf{E} \\
& \frac{\partial \bar{J}_{p m}}{\partial t}+\frac{1}{\tau_{r m}} J_{p m}=\varepsilon_{0} \omega_{r m}^{2} \bar{E}
\end{aligned}
$$

FDTD: Advances

- Discretize

$$
\frac{\bar{J}_{p m}^{n+1}-\bar{J}_{p m}^{n}}{\Delta t}+\frac{1}{\tau_{r m}} \frac{\bar{J}_{p m}^{n+1}+\bar{J}_{p m}^{n}}{2}=\varepsilon_{0} \omega_{r m}^{2} \frac{\bar{E}^{n+1}+\bar{E}^{n}}{2}
$$

- which yields $\bar{J}_{p m}^{n+1}=\alpha_{m} \bar{J}_{p m}^{n}+\beta_{m}\left(\frac{\bar{E}^{n+1}+\bar{E}^{n}}{2}\right)$;

$$
\alpha_{m}=\left(\frac{2-\frac{\Delta t}{\tau_{r m}}}{2+\frac{\Delta t}{\tau_{r m}}}\right), \beta_{m}=\left(\frac{\varepsilon_{0} \omega_{r m}^{2} \Delta t}{2+\frac{\Delta t}{\tau_{r m}}}\right)
$$

FDTD: Advances

- Now

$$
\bar{J}_{p m}^{n+1 / 2}=\frac{\bar{J}_{p m}^{n+1}+\bar{J}_{p m}^{n}}{2}=\frac{1}{2}\left[\left(1+\alpha_{m}\right) \bar{J}_{p m}^{n}+\beta_{m}\left(\frac{\bar{E}^{n+1}+\bar{E}^{n}}{2}\right)\right]
$$

- Finally

$$
\bar{E}^{n+1}=\left(\frac{2 \varepsilon_{0} \varepsilon_{\infty}-\Delta t \sum \beta_{m}}{2 \varepsilon_{0} \varepsilon_{\infty}+\Delta t \sum \beta_{m}} \bar{E}^{n}+\left(\frac{2 \Delta t}{2 \varepsilon_{0} \varepsilon_{\infty}+\sum \beta_{m}}\right)\left[(\Delta \times \bar{H})^{n+1 / 2}-\frac{1}{2} \sum_{m=1}^{M}\left\{\left(1+\alpha_{m}\right) \bar{J}_{p m}^{n}\right\}\right]\right.
$$

FDTD: An Introduction

References

1. T. Rylander, P. Ingelstrom and A. Bondeson, Computational Electromagnetics, Springer, 2013
2. J. M. Jin, Theory and Computation of Electromagnetic Fields, IEEE Press, 2010
3. U. S. Inan and R. A. Marshall, Numerical Electromagnetics The FDTD Method, Cambridge University Press, 2011
4. S. D. Gedney, Introduction to the Finite-Difference Time-Domain Method for Electromagnetics, Morgan \& Claypool, 2011
