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 FEM involves basically four steps
 Finite element discretization: 
Discretizing the solution region into a finite number of 

subregions or elements
 Element governing equation: 
Deriving governing equations for a typical element

 Assembling all elements: 
 assembling of all elements in the solution region

 Solving the resulting equation: 
 Solving the system of equations obtained 

Introduction
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 Finite element discretization: i node number and (j) element number 
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 We find an approximation for the potential Ve within an 
element e
 then interrelate the potential distribution in various 

elements 
 Such that the potential is continuous across the 

inter-element boundaries
 The approximate solution for the whole region is   
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 where N is the number of triangular elements into which 
the solution region is divided 

 The most common form of approximation of Ve within 
an element is polynomial approximation, namely
 Triangular element

Quadrilateral element
 e

V x y a bx cy  

 e
V x y a bx cy dxy   
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 The constants a, b, c and d are to be determined 
 The potential Ve in general is nonzero within the element e 

but zero outside e
 Element governing equation:

 Consider a triangular element shown in Fig.
 The potential Ve1, Ve2 and Ve3 at nodes 1,2 and 3 respectively 

are obtained as
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 Typical triangular element: local numbering 1-2-3 must 
proceed counter-clockwise as indicated by arrow 
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 where A is the area of element e, i.e., 
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 The value A is positive if the nodes are numbered counter-
clockwise (starting from any node) as shown by arrow in the 
Fig. 

 We may express the above equation also as

 where
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 The potential at any point (x,y) within the element provided 
that the potentials at the vertices are known
 This is unlike FDTD when the potential is known at the grid 

points only

 Here the αi are the interpolation functions
 They are also called as element shape functions
 And they have the following properties:
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 Shape functions for α1, α2 and α3 for a triangular element
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 Also

 The shape functions α1, α2 and α3 are illustrated in Fig.
 The functional corresponding to Laplace’s equation

is given by 

Physically the functional We is the energy per unit length 
associated with the element e
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 Therefore,

 If we define the term in brackets as

 Therefore 
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 In matrix form,

 where the subscript t denotes the transpose and
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Element coefficient matrix or stiffness matrix for element e
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 The element            of the coefficient matrix may be 
regarded as the coupling between nodes i and j (for instance)

 e
ij
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 Similarly,
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 How to remember? (off-diagonal elements)
 For         , find remaining vertex and it is 3 
 plus                        multiplied by
 Similarly for 
 For         , find remaining vertex and it is 2
 plus                        multiplied by
 For         , find remaining vertex and it is 1
 plus                        multiplied by
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How to remember? (diagonal elements)
 Find the remaining vertices
 For         ,                 plus               multiplied by  

 For         ,                 plus               multiplied by  

 For         ,                 plus               multiplied by  
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 Assembling all elements:

 The energy associated with the assemblage of elements is

 where
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 n is the number of nodes
 N is the number of elements

 [C] is the overall or global coefficients matrix
 which is the assemblage of individual element coefficient matrix

 The process by which individual element coefficient matrices 
are assembled 
 to obtain the global coefficient matrix is illustrated with an 

example 
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 Example: A solution region is discretized into 3 triangular 
elements 
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 Global numbering (number exterior to figure) : 1,2,3,4,5 
 Local numbering (always counter-clockwise): 1,2,3
 For five nodes, n=5 and 

 N=3 (three elements), 
 the global coefficient matrix [C] is

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

C C C C C

C C C C C

C C C C C
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 Properties of global coefficient matrix [C] :
 It is symmetric, i.e., Cij=Cji
Cij=0 if no coupling exists, making the matrix sparse
 It is singular

 How to find the elements of the global coefficient matrix [C]?

 For example,
 a) Element (1) and (2) have global node 1 in common, hence 

   1 2

11 11 11
C C C 
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 b) Node 2 belongs to element 1 only, hence

 c) Node 4 belongs to elements 1,2 and 3 hence

 1
22 33

C C

     1 2 3

44 22 33 33
C C C C  
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 d) Node 1 and 4 belong simultaneously to element 1 and 2 
hence 

 e) Since there is no coupling between nodes 2 and 3, hence

   1 2

14 41 12 13
C C C C  

23 32
0C C 
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 Therefore, the global coefficient matrix is given by
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 Solving the resulting equation:

 Note that Laplace’s equation is satisfied when the total 
energy in the solution region is minimum

 Thus we require the partial derivatives of W w.r.t. each nodal 
value of potential be zero, i.e.,
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 Consider the previous example of 5 nodes
 For example,                  implies that
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 V1 dependent terms are shown in green color
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 Therefore,

 Usually,          leads to
 where n is the number of nodes in the mesh
 Writing the above equation for all nodes k=1,2,…,n, we 

obtain a set of simultaneous equations from which the 
solution                                              can be found 
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(i) Iteration method
 Suppose node 1 is a free node 
 A free node is where the potential is unknown
 Whereas, a fixed node is where the potential is prescribed
 Since 
 We have
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 Thus in general for node k in a mesh with n nodes, we have,

 where the k node is a free node
 Since Cki=0 if node k is not directly connected to node i, so 

nodes which are directly linked to node k contribute to Vk in 
the above equation 

 The iteration process starts by assigning the potential of fixed 
nodes equal to zero or to the average potential  
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