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Introduction

e FEM involves basically four steps

® Finite element discretization:

® Discretizing the solution region into a finite number of

subregions or elements
® Element governing equation:
® Deriving governing equations for a typical element
® Assembling all elements:
® assembling of all elements in the solution region
® Solving the resulting equation:

° Solving the system of equations obtained
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® Finite element discretization: i node number and (j) element number
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® We find an approximation for the potential Ve within an
element e
® then interrelate the potential distribution in various
elements
Such that the potential is continuous across the

inter-element boundaries

® The approximate solution for the whole region is

N

ACREINACH)

e=1
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® where N is the number of triangular elements into which

the solution region is divided

® The most common form of approximation of Ve within

an element is polynomial approximation, namely

o Triangular element
Ve(x,y)zaerercy

® Quadrilateral element

T/e(x,y)=a+bx+cy+dxy
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® The constants a, b, c and d are to be determined

® The potential Ve in general is nonzero within the element e

but zero outside e
® Llement governing equation:
e Consider a triangular element shown in Fig.

® The potential V,,,V,, and V_; at nodes 1,2 and 3 respectively

are obtained as
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© Typical triangular element: local numbering 1-2-3 must

proceed collnter—clockwise as indicated by arrow

Yy
Ves(X3,Y3)
3
1 2
Ve1(X1,Y1) Vea(X2,Y2)
X
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v c I x,
¢ 1 NV =X, XKW —X); X, =X, el
=21b =l »y =y on=y ||V L L 4L
c X, — X, X, =Xy X=X e3

® where A is the area of element e, i.e.,

11 Xy i
AZEI Y W =5{(x1y2—x2yl)+(x3yl—x1y3)+(x2y3—x3y2)}
I x,

1
=5{(x2—x1)(y3 —yl)—(x3—x1)(y2 —yl)}
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® The value A is positive if the nodes are numbered counter-
clockwise (starting from any node) as shown by arrow in the
Fig.

® We may express the above equation also as

v =Y a(ny),
=1

® where
1
a, = ZA[( X V3™ 3y2)+(y2_y3 ’x+(x3 —X, )y]
1 |
@, = ZA[( XV~ x1y3)+(y3_y1 x+(x1_x3)y_
1
R A .
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® The potential at any point (x,y) within the element provided

that the potentials at the vertices are known
® This is unlike FDTD when the potential is known at the grid
points only
® Here the « are the interpolation functions
® They are also called as element shape functions

® And they have the following properties:

(

1, i=j

1

.
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® Shape functions for &, ¢, and @, for a triangular element

s >\
1 / \
/1
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* Also iai(x’y):]
i=1

® The shape functions &, &, and @ are illustrated in Fig,
® The functional corresponding to Laplace’s equation V2 =(
is given by
|

] !
W =§jg\Ee\2ds:5jg\v1/e\2ds

Physically the functional We is the energy per unit length

associated with the element e
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% :iVeiVai Y :ia.(x,y)V.
i=1

® Therefore, W = J‘g‘E‘ ds_—jg‘VV‘ ds

W, = ZZgV [V eva a’s]V

11]1

¢ [f we define the term in brackets as

=IVai0Vajds

¢ Therefore We=%iz3:5 ei ij e

i=l j=l1
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® In matrix form,

W= e[v.] [ 7]

e where the subscript t denotes the transpose and

v.]=7,
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Element cogﬁ'icient matrix or Stl'ﬁfness matrix for element e

Cl(le) C1(2e ) C1(3e ) y Ves(X3,Y3)
=) ) o :
cl) ¥ cl
A,
| . Ve1(X1,¥1) Vea(X2,Y2)
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¢ The element Ci(_e) of the coefficient matrix may be

regarded as the c]oupling between nodes i and j (for instance)

cl) = .Val oV ds

12

4114[ (¥, yz)(y3—yl)—(x3—x2)(x3—xl)]

— C(e)

21
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® Similarly,

o) _ 1o

13 31

4114[ (- y3)(yl—yz)—(xl—x3)(x1—x2)]
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® How to remember? (off-diagonal elements)
® For Cl(ze) , find remaining vertex and it is 3
o —(y,-»)(»-») plus —(x,—x, )(x,—x,) multiplied by ﬁ
® Similarly for

® For Cl(i) , find remaining vertex and it is 2

° —(y,-)(»,-») plus—(x,—x,)(x,~x ) multiplied by ﬁ

® For Cg) , find remaining vertex and it is 1

[ _(yl _yz)(yl _y3) Plus _(xl _x3)(xl _xl) Inlﬂtlphed by ﬁ
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How to remember? (diagonal elements)

e Find the remaining vertices

’ 2 : 1
® For C1(1) : ()@‘)@) plus (xz_xz,) multiplied by a4

e 1 2 2
Cl(l)_4A|:(y2 ys) +(x2—x3) }

. 1
e For ng) : ( V- yl)z plus (x3 —xl)zmultlphed by A

e 1 2 2
ng) 4A[(y3 yl) +(x3_x1)}

1 1
* For C3(3) , (3 - y2)2 plus (xl—xz)2 multiplied by v

C3(§)_ ! |:(yl y2)2+(x1_x2)2}
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® Assembling all elements:

® The energy associated with the assemblage of elements is

W=y =3[ [c][V]

® where -
4
v,
V=
V
n
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® n is the number of nodes
® N is the number of elements

® [C]is the overall or global coefficients matrix

® which is the assemblage of individual element coefficient matrix

e The process by which individual element coefficient matrices
are assembled

® to obtain the global coefficient matrix is illustrated with an

example
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© Example: A solution region is discretized into 3 triangular

elements

2
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* Global numbering (number exterior to figure) : 1,2,3,4,5
® Local numbering (always counter-clockwise): 1,2,3

® For five nodes, n=5 and

® N=3 (three elements),
the global coefficient matrix [C] is

- - 2 4
C11 C12 C13 C14 C15
C21 sz C23 C24 Czs
[C} _ C31 Csz C33 C34 C35
C41 C42 C43 C44 C45
C51 Csz Css C54 Css
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® Properties of global coetficient matrix [C] :
® [t is symmetric, i.e., Cij=Cji
* Cij=0 if no coupling exists, making the matrix sparse
® It is singular

® How to find the elements of the global coefficient matrix [C]?

* For example,

® a) Element (1) and (2) have global node 1 in common, hence

c =c+c?

11
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z
A

(3)
(1)
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® b) Node 2 belongs to element 1 only, hence

c, =c!

22 33

® ¢) Node 4 belongs to elements 1,2 and 3 hence

Cp = Cg) T C3(§) T Cs(j)
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\l\)l)

(3)

(1
2)
(1) 1
1 _
1 3
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* d) Node 1 and 4 belong simultaneously to element 1 and 2
hence

1 2
C,=C, = Cl(z) T C( |

13

® e) Since there is no coupling between nodes 2 and 3, hence

C23 o C32 =0
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® Therefore, the global coefficient matrix is given by

e N .
c! cl! 0 c\) ’
ol @ e )
I e T Do e
0 0 ct ct) cl)
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® Solving the resulting equation:

® Note that Laplace’s equation is satisfied when the total

energy in the solution region 1S minimum

e Thus we require the partial derivatives of W w.r.t. each nodal

value of potential be zero, i.e.,

oW _ow oW

— — e ___O
oV, ov,  or
n
ow
= 0,k =1,2,n
k
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e Consider the previous exarnple of 5 nodes

* For example, ow _ o implies that

v,
C11 C12 C13 C14 C15 4
i i C21 sz Czs C24 Czs v,
W:lg Vv oV vy C31 C32 C33 C34 C35 V3
2 : 2o C41 C42 C43 C44 C45 V,
i | C51 Csz C53 C54 C55 Vs
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W=2eh v, Vb

°V, dependent terms are shown in green color

VG VC, AV, +VC Y +ViC Y+
VO AV, C IV, + VG + VGV, + VG +
1 V3C31Vl + V3C32V2 + V3C33V3 + V3C34V4 + V3C35V5 +
27| VLE )+ V4C42V2 + V4C43V3 + V4C44V4 + V4C45V5 +
VOV, +VC Y +VCL IV, + VI
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® Therefore,

ow
oV,

1

—=2C V+C IV, +C V. +CV, +C V. +V.C +V.C +V,C, +V.C,
=GV + N+ G+ G+ G =0

* Usually, leads to ZVC =0

5V
e where n is the number of nodes in the mesh
® Writing the above equation for all nodes k=1,2,...,n, we
obtain a set of simultaneous equations from which the
solution i | can be found
LA R A4
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(i) Iteration method

® Suppose node 1 is a free node

* A free node is where the potential is unknown

® Whereas, a fixed node is where the potential is prescribed

® Since CV+CV,+CV,+CV,+CJ V. =0

® We have
5
v __C12V2 +C13V3 +C14V4 +C15V5 _ 1 ZC v
1 C o C li i
11 11 =2
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® Thus in general for node k in a mesh with n nodes, we have,

® where the k node is a free node

® Since C;=0 if node k is not directly connected to node i, so
nodes which are directly linked to node k contribute to V,_in

the above equation

® The iteration process starts by assigning the potential of fixed

nodes equal to zero or to the average potential
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