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 FEM
 Converts PDE into a set of linear algebraic equations

 To obtain approximate solutions to boundary-value problems 
(BVPs)

 Two methods:
 Variational method (Rayleigh-Ritz method):

 Starts with variational representation of the BVPs

 Weighted residual method
 Similar to MoM
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 Variational method (Rayleigh-Ritz method):
 In BVPs, 
 it is often possible to replace the problem of integrating a 

differential equation 
 by the equivalent problem of seeking a function that gives a 

minimum value of some integral (functional)

 Problems of this type are called variational problems
 Was first presented by Rayleigh in 1877 and extended by Ritz 

in 1909



FEM

3/31/2021FEM by Prof. Rakhesh Singh Kshetrimayum70

 Use Calculus of Variations in solving BVPs 
 What is Calculus of Variations?
 Calculus of Variations:

 It is an extension of ordinary calculus
 it is concerned primarily with the theory of maxima and 

minima 

 In FEM, we will try to find the extrema of an integral 
expression involving a function of function (functionals)



FEM

3/31/2021FEM by Prof. Rakhesh Singh Kshetrimayum71

 Consider the problem of finding a function (x) {consider 
is dependent only on x} such that the function



 Subject to the boundary condition ,

 The integrand is a given function of x, and 

 The is called a functional or variational principle
 The problem here is finding an extremizing function (x) 

for which the functional has an extremum
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 Let us introduce an operator called the variational symbol
 The variation of a function (x) is an infinitesimal change 

in for a fixed value of the independent variable x, i.e., for 

 Note that total differential of is

 ᇲ

 where since x does not change when changes 
from 

 ᇲ
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 Note that operator is similar to differential operator 
 A necessary condition  for to have an extremum is 


 Let h(x) be an increment in (x)
 In order that the boundary condition ,

is satisfied

 ,
 The corresponding increment in I is


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



 On applying Taylor’s series expansion

 ᇲ

 where ᇲ
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 Integration by parts

 Take ᇲ

 for the second term in the integrand 

ᇲ

 Integration by parts

 ᇲ

ᇲ

vdu vu udv  
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

 ᇲ

 For , we have, integrand equal to zero

 ᇲ

 ᇲ

 This is called Euler’s (Euler-Lagrange) equation

 Thus necessary condition for to have an extremum for 
a given function (x) is that (x) satisfies Euler’s equation
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 The function Φ(x) that gives minimum of the functional I 
therefore satisfies the equation which is called Euler equation

 When the function Φ(x,y,z) depends on three independent 
variables, the 3-D form of the Euler equation 

 where
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 Example:
 Given the functional 



 Obtain the Euler’s equation.
 Solution:
 The integrand of the function or variational principle is 



 It has two independent variables
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 Therefore,

 where



 Hence,





 which is the Poisson’s equation
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 Construction of functionals from PDE
 We will try to find functional or variational principle for a 

given differential equation
 It involves four steps

 (1) Multiply the (Euler’s equation) with the 
variational of the dependent variable and integrate 
over the domain of the problem

 (2) Use integration by parts to transfer the derivatives to 
variation 
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 (3) Express the boundary integrals in terms of the specified 
boundary condition

 (4) Bring the variational operator outside the integrals
 For instance,
 We want to find the functional or variational principle of the 

Poisson’s equation



 (1) 
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 (2) Integration by parts
 Hence the  first term of

 is simplified as 







vdu vu udv  
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 In order to find using integration by parts

 Let us take



 and 

 Hence integration by parts of the first integration

vdu vu udv  
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 In order to find using integration by parts

 Let us take



 and 

 Hence integration by parts of the first integration

vdu vu udv  
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 Hence





 If we assume homogeneous Drichlet or Neuman boundary 
conditions





Introduction

3/31/2021FEM by Prof. Rakhesh Singh Kshetrimayum86

 Therefore variational principle or functional 
 for Poisson’s equation 
 After taking all terms to RHS for 



 For LΦ=g is obtained by extremizing the functional

 for Euler’s equation                                      after taking all terms 
to RHS



  2 2 21
2

2
I k g ds         

2 2k g   
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 FEM analysis of transmission lines (Variational
approach)
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 Telegrapher’s equation

 In frequency domain
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 1-D wave equation in TL

 Boundary condition
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 Euler’s equation
 Functional is  

 Euler’s equation 
మ

మ

 Transfer all terms to RHS, 
మ

మ

 Therefore, functional is
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 Hence, the integrand of the functional is

 Therefore,
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 Euler equation

 Hence the PDE for this case is

 It is the wave equation of the TL
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 This functional can be expressed as

 The integrand look like stored electric and magnetic energy 
per unit length, so energy-related functional   
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 The approximate voltage for element lying between zl and zr:

 where the interpolation functions are given by

 Assume that a TL of length l is discretized into N elements, 
each of length he=l/N
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 Interpolation functions
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 Substituting the approximate voltage in the functional
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