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 Weighted residual method
 PDE is written as
 (1)
 where denotes differential operator
 is the unknown solution to be found
 denote the source functions

 To find the solution , we first express it in terms of known 
basis functions

 (2)

 where is the jth basis function and is the unknown 
constant 
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 Substituting (2) in (1) and integrating w.r.t. weighting functions 



 In Galerkin’s method, 



 Or,



 where and 
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 Weighted residual method (1-D example)
 Consider 1-D BVP defined by Helmholtz wave equation


మ

మ (1)

 with the boundary conditions 




 Nemann BC is a special case when 
 Like in MoM, is expressed in terms of basis functions 

 (2)

 where is the jth basis function and is the unknown constant 
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 Because of BC

 (2)
 Applying weighting functions for Galerkin’s case with i=1,2,…,N


మ

మ 




 Using integration by parts of the first term in the LHS


ௗ

ௗ௫

ௗ

ௗ௫
ଶ




 
ௗ

ௗ௫ ௫ୀ






 We have also used the fact that at x=0 for i=1,2,…,N



 






vdu vu udv  
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 Now we can write in matrix form as

 (2)
 where

  ೕ

  బ






 where for and zero for 

 Note that and overlap only for 

 Hence is non zero only for 
 which is a tridiagonal matrix
 and it is an important property of FEM which can be solved efficiently



Introduction

4/8/2021FEM by Prof. Rakhesh Singh Kshetrimayum138

 Finite Element Time-Domain Method
 method combines the advantages of a time-domain technique 
 with the versatile spatial discretization options of the finite 

element method
 A variety of FETD methods have been proposed
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 In FETD, we will solve second-order vector wave equation 
 by eliminating one of the field variables from 

Maxwell’s equations
 Consider Maxwell’s equations in space-time:

 Dividing the second equation by ε, we have,

imp

H E
E H J E

t t
         
 

 
   

imp
JH E

E
t
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 Hence, taking curl again, we have,

 Substituting                                in the 2nd and 3rd term of the 
RHS, we have, 

 1 imp
J E

H E
t


  

   
        

 
 

2

2

1 imp
J H H

H
tt

 
  

               

  


H
E

t
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 Transferring 2nd and 3rd term in the RHS to LHS, we have, 

 Since

2

2

1 imp
JH H

H
tt


  

          

 


  2 21 1 1 1
H H H H
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 Hence, putting the above equation and noting the sign 
change,

 For 2-D region, the scalar wave equation for the longitudinal 
component of the magnetic field for TEz case, we have,

2
2

2

1 imp
JH H

H
tt


  

     


 


 2
2

2

1 impz z z
z

JH H
H

t t
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 By defining the carrier frequency ωc, the field component 
and the current density can be written as

 where V(t) is the time-varying complex envelope of the field 
at the carrier frequency  

 Substituting the above relation, we have,

       c cj t j t

z
H t V t e J t j t e  

 

            2

2 0
0 2

0 0 0

1
cc c

c

j tj t j t

j t r z
r

r r r

j t eV t e V t e
V t e

t t
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 Since

        
c

c c

j t

j t j t

c

V t e V t
e V t j e

t t


 

 
 

 

          

      

2 2

2 2

2

c

c c

c c

j t

j t j t

c

j t j t

c c

V t e V t V t
e j e

tt t
V t

V t j e j e
t
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 Therefore

 where

     2 2c cj t j tV t e e V t   

       c cj t j t

zz
j t e e j t   

            2
2 2

2 2
0

1
2r z

c c c
r r

j t
V t j j V t

tc t


    

 

           

0r
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 We will call the above equation as envelope equation
 The envelope equation reduces to a scalar Helmholtz equation 
when V is time independent on which the frequency domain 

FEM is based
 The inner product with a testing function leads to the weak form 

        

   

2
2 2

2 2
0

1
2r

c c c
S r

z

S r

V t T j j V t T ds
tc t

j t
Tds
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 Since

     2

S S S

T V ds T V ds T V ds        

     2

S S S

T V ds T V ds T V ds         

     2

S S

T V ds T V ds T V dl
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 Therefore

     

   

2
2

2 2
0

1
2

1

r
c c c

S r

z

S r r

T V j j V t T ds
tc t

j t V
Tds T dl

n
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 Assuming PEC or PMC, the path integral term on the RHS 
vanishes

 The spatial discretization, the envelope variable is expanded 
in terms of 2-D FEM basis function wj (Ti=wj for Galerkin’s)

 Hence it results in a system of ODE 
2

2
0

d V dV
T B SV F

dtdt
   

         2
2

2 2
0

1
2r z

c c c
S Sr r

j t
T V j j V t T ds Tds

tc t
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 where

2
0

r
ij i j

S

T ww ds
c


 

 2
0

2r
ij c i j

S

B jw ww ds
c


 

 2

2
0

1 r
ij i j c c i j

S r

S w w w j w ww ds
c





 

     
 



 1
i i z

S r

F w j ds


 


         2
2

2 2
0

1
2r z

c c c
S Sr r

j t
T V j j V t T ds Tds

tc t
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 Note that instabilities observed in the time domain FEM and 
 that the Newmark-Beta formulation was suggested to solve 

them

 The solution of a linear system of equations is required at 
each time step

 but this implicit method can be formulated to be 
unconditionally stable

     
2

2 2

1
1 2 1

d V
V n V n V n

dt t
      

   1
1 1

2
dV

V n V n
dt t
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 We can use

 where V(n)=V(nΔt) is the discrete time representation 
of  V(t)

 β is a constant that has to be carefully chosen to 
guarantee stability

 β =1/4 leads to an unconditionally stable two-step 
update scheme

         1 1 2 1V n V n V n V n       
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 Substituting the above discretized version of V(t) and its time 
derivatives and taking β=1/4

 Hence,

         

     

2

1 1
1 2 1 1 1

2

1 1 1
1 1 0

4 2 4

T V n V n V n B V n V n
tt

S V n V n V n F

                      

 
       

 

       2 2 2

2
1 1

2 4 2 2 4
T B S T S T B S

V n V n V n f n
t tt t t
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 To solve these equations, 
we need to invert the matrix on the LHS

 Since this matrix is time independent, 
 it needs to be filled and 
 solved only once

 Vector edge elements
 Field can be approximated as

4

1

e e
e i i

i

E N E



 


