FEM

* Weighted residual method
® PDE is written as
LD =f (1)
where L denotes differential operator
® is the unknown solution to be found
f denote the source functions

® To find the solution @, we first express it in terms of known

basis functions
_ N
e ®=)2/_1¢b; (2)

where bj is the jth basis function and Cj is the unknown

constant
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® Substituting (2) in (1) and integrating w.r.t. weighting functions
Wi

® f,Q Wi 1:(29,:1 Cj b])dﬂ = fﬂ Wlfd.Q
* In Galerkin’s method, w; = b;

¢ 27=1 Cj f,Q bi L(b])dQ — fQ blfd'QJL — 1;2;°'°;N
® Or,
o Z?’leijcj = ki,i = 1,2,"',N

® where ZU — fﬂ bi £(b])dﬂ and ki — f,Q blfdﬂ
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° Weighted residual method (1—D example)
® Consider 1-D BVP defined by Helmholtz wave equation

dx2+k2d> f(x),0<x<L (1)
with the boundary conditions
Ply—g=p

E + VCIJ]x:L = q

Nemann BC is a special case wheny = 0

¢ Like in MoM, D is expressed in terms of basis functions

° b = Z] OC] (2)

where bj is the ]th basis function and Cj is the unknown constant
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Fig. (a) One-dimensional domain subdivided into linear elements
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Fig. (b) One-dimensional linear basis function
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® Because of BC
N N
o O = Zj:l Cj b] + Cobo — j=1 Cj b] + pbo (2)
* Applying weighting functions for Galerkin’s case withi=1,2,... N

b3+ k2o dx = [ bifelar [vdu=vu—[udy

® Using integration by parts of the first term in the LHS
o (L122:9% _ r2ppldx — b 22| = — (L.
[y 5222 — k2ab;] dx [bl o) =~ Jy b lf (0)lax
® We have also used the fact that b; = 0 at x=0 fori=1,2,...,N

e Also application of BC yields
L db; d®
o Jo |5 — k2 ®@bi]dx — [bi(q — yP)]r=1 =

— fOL b; [f (x)1dx
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e Now we can write in matrix form as

® Z?’=1Zijcj = ki,i =12,---,N (2)
® where
_ (Ldbidbj >
o ZU = fO Tx dx k b]bl] dx +y5iN jN
L rdb; db
cki=qdin— fy | - k%bibo|dx — J; b; [f (x)]dx

® where §;jy = 1 fori = N and zero for i # N

® Note that b; and bj overlap only for j=itxt1
Hence Zj; is non zero only for Zj;, Zi 14, Zi41,i
which is a tridiagonal matrix

and it is an important property of FEM which can be solved efficiently
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¢ Finite ElementTime-Domain Method

® method combines the advantages of a time-domain technique

e with the versatile spatial discretization options of the finite

element method

* A variety of FETD methods have been proposed
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* In FETD, we will solve second-order vector wave equation

o by eliminating one of the field variables from

Maxwell’s equations

® Consider Maxwell’s equations in space-time:

. OH L OF -
VxE=—u-——VxH=J +& —+0L
ot P ot
* Dividing the second equation by €, we have,
VxH J OF o -
=—++——+—F
g s Ot ¢
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* Hence, taking curl again, we have,

N\ VxJ o(VxE _,
VX(IVXHj= L ANE ( )+GV><E

g g Ot g
° Substltutlng VxE=— U in the 2™ and 3" term of the
RHS, we have, Ot
1o ) VxJ,. 0’H o aﬁ
Vx| —VxH |= — U
g g ot* 8t
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® Transferring 27 and 3" term in the RHS to LHS, we have,

82ﬁ+0y8ﬁzv><jimp
orr & Ot £

Vx(1Vxﬁj+,u
g

e Since

vx(lwﬁj:1v(v-ﬁ)—1v2ﬁ=—1v2ﬁ
E

@ FEM by Prof. Rakhesh Singh Kshctrimayum 4/8/2021




Introduction

® Hence, putting the above equation and noting the sign

change,

- 2 3 7 VxJ
Vv O _owdl_ V<,
g Ot s Ot &

® For 2-D region, the scalar wave equation for the longitudinal

component of the magnetic field for TE” case, we have,

2 —
1 oudH 0°H (V xJ, )
“V’H_ - Z Z=— iz
z ’Ll 2
g g Ot Ot E
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Introduction

* By defining the carrier frequency w_, the field component

and the current density can be written as

1.(0) ¥ (1" 57(1)- 7 (1)
® where V(t) is the time-varying complex envelope of the field

at the carrier frequency

® Substituting the above relation, we have,

2
£ &, ot ot £ &,

ey ) 7). [00)
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'Since/\
o 9e) Lol i, Lo

Ot
a2(v<r>e”“>:ejmazw(rm( )ewaw»
ot’ . azz. a(t) ot
+V( )(]a) ) e’wct+(ja) )e’m
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Vz(V(t)ejwct) A a40)

(Vx(i(e)e)) = (vx(i(1))),

\

® Therefore

1Vz(V(t))—'u”{(a)f—ja)ca)—(a+2ja)c)§—62 Vit

2

Er CO

® where
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e We will call the above equation as envelope equation
® The envelope equation reduces to a scalar Helmholtz equation

® whenV is time independent on which the frequency domain

FEM is based

¢ The inner product with a testing function leads to the weak form

D “VE(r ()T -5 (0 - jw,a)- (a+2]a));—§;}V(t)T}ds

Co

_Lj(vx(z(t))) s
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e Since

LIV(T-VV)CIS:Lj(VT-VV)ds—Lj(TWV)ds

:>”(TV2V)0’S:H(VT-VV)ds—”V(TOVV)dS

”(TV Vs H VT eVV )ds - [Jj(T-VV)
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® Therefore

hj‘:rVToVV—ﬂ{(wf - joa)-(a+2jo, ); 5: }V(t)T}ds

Co

/=jj(vx(j(t ), Tds+[_ﬂ : T‘Wdz

on
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* Assuming PEC or PMC, the path integral term on the RHS

vanishes

® The spatial discretization, the envelope variable is expanded
in terms of 2-D FEM basis function w; (T;=w; for Galerkin’s)

® Hence it results in a system of ODE

dV B—+§V+F 0

Vx ]
H VTOVV+— a) ]a)a a+2]a) ——— ds Tds
ot @t
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M Ve VVJF{G) - joa)- (a+2jo,.) }ds H( )Tds

L

T, H “wow ds

O

B ”,u 2]w +a)wwds

H EVW oV, — 22 (w2~ jaw, )jwiwjds

Co

F.:”—w. Vx])‘ ds
l g l z
S Tr
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® Note that instabilities observed in the time domain FEM and

¢ that the Newmark-Beta formulation was suggested to solve

them 4V 1 [V(n+1)—2V(n)+V(n_1)}

> A
v 1
Ezz—N[V(nﬂ)—V(nq)]

® The solution of a linear system of equations is required at

each time step

® but this implicit method can be formulated to be

unconditionally stable
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® We can use

V(n)= BV (n+1)+(1=-28)V (n)+ BV (n-1)

® where V(n)=V(nAt) is the discrete time representation
of V(t)
* (3 is a constant that has to be carefully chosen to

guarantee stability
* 3 =1/4 leads to an unconditionally stable two-step

update scheme
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® Substituting the above discretized version of V(t) and its time

derivatives and taking f=1/4

jv(n+1)_zv(,§)]j+(

1

1
—T
(Atz

AN

® Hence,

uz *oa +ﬂV("+l) :BrTz_ﬂV(n){_
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* To solve these equations,

® we need to invert the matrix on the LHS

® Since this matrix is time independent,

® it needs to be filled and
® solved only once
® Vector edge elements

¢ Field can be approximated as
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