FEM

- Weighted residual method
- PDE is written as
- $\mathcal{L} \Phi=f$
- where \mathcal{L} denotes differential operator
- Φ is the unknown solution to be found
- f denote the source functions
- To find the solution Φ, we first express it in terms of known basis functions
- $\Phi=\sum_{j=1}^{N} c_{j} b_{j}$
- where b_{j} is the $\mathrm{j}^{\text {th }}$ basis function and c_{j} is the unknown constant

FEM

- Substituting (2) in (1) and integrating w.r.t. weighting functions w_{i}
- $\int_{\Omega} w_{i} \mathcal{L}\left(\sum_{j=1}^{N} c_{j} b_{j}\right) d \Omega=\int_{\Omega} w_{i} f d \Omega$
- In Galerkin's method, $w_{i}=b_{i}$
- $\sum_{j=1}^{N} c_{j} \int_{\Omega} b_{i} \mathcal{L}\left(b_{j}\right) d \Omega=\int_{\Omega} b_{i} f d \Omega, i=1,2, \cdots, N$
- Or,
- $\sum_{j=1}^{N} Z_{i j} c_{j}=k_{i}, i=1,2, \cdots, N$
- where $Z_{i j}=\int_{\Omega} b_{i} \mathcal{L}\left(b_{j}\right) d \Omega$ and $k_{i}=\int_{\Omega} b_{i} f d \Omega$

FEM

- Weighted residual method (1-D example)
- Consider 1-D BVP defined by Helmholtz wave equation
- $\frac{d^{2} \Phi}{d x^{2}}+k^{2} \Phi=f(x), 0<x<L$
- with the boundary conditions
- $\left.\Phi\right|_{x=0}=p$
- $\left[\frac{d \Phi}{d x}+\gamma \Phi\right]_{x=L}=q$
- Nemann BC is a special case when $\gamma=0$
- Like in MoM, Φ is expressed in terms of basis functions
- $\Phi=\sum_{j=0}^{N} c_{j} b_{j}$
- where b_{j} is the $\mathrm{j}^{\text {th }}$ basis function and c_{j} is the unknown constant

FEM

Fig. (a) One-dimensional domain subdivided into linear elements

Fig. (b) One-dimensional linear basis function

FEM

- Because of BC
- $\Phi=\sum_{j=1}^{N} c_{j} b_{j}+c_{0} b_{0}=\sum_{j=1}^{N} c_{j} b_{j}+p b_{0}$
- Applying weighting functions for Galerkin's case with $\mathrm{i}=1,2, \ldots, \mathrm{~N}$
- $\int_{0}^{L} b_{i}\left[\frac{d^{2} \Phi}{d x^{2}}+k^{2} \Phi\right] d x=\int_{0}^{L} b_{i}[f(x)] d x \quad \int v d u=v u-\int u d v$
- Using integration by parts of the first term in the LHS
- $\int_{0}^{L}\left[\frac{d b_{i}}{d x} \frac{d \Phi}{d x}-k^{2} \Phi b_{i}\right] d x-\left[b_{i} \frac{d \Phi}{d x}\right]_{x=L}=-\int_{0}^{L} b_{i}[f(x)] d x$
- We have also used the fact that $b_{i}=0$ at $\mathrm{x}=0$ for $\mathrm{i}=1,2, \ldots, \mathrm{~N}$
- Also application of BC yields
- $\int_{0}^{L}\left[\frac{d b_{i}}{d x} \frac{d \Phi}{d x}-k^{2} \Phi b_{i}\right] d x-\left[b_{i}(q-\gamma \Phi)\right]_{x=L}=$
$-\int_{0}^{L} b_{i}[f(x)] d x$

FEM

- Now we can write in matrix form as
- $\sum_{j=1}^{N} Z_{i j} c_{j}=k_{i}, i=1,2, \cdots, N$
- where
- $Z_{i j}=\int_{0}^{L}\left[\frac{d b_{i}}{d x} \frac{d b_{j}}{d x}-k^{2} b_{j} b_{i}\right] d x+\gamma \delta_{i N} \delta_{j N}$
- $k_{i}=q \delta_{i N}-\int_{0}^{L}\left[\frac{d b_{i}}{d x} \frac{d b_{0}}{d x}-k^{2} b_{i} b_{0}\right] d x-\int_{0}^{L} b_{i}[f(x)] d x$
- where $\delta_{i N}=1$ for $i=N$ and zero for $i \neq N$
- Note that b_{i} and b_{j} overlap only for $j=i \pm 1$
- Hence $Z_{i j}$ is non zero only for $Z_{i i}, Z_{i+1, i}, Z_{i+1, i}$
- which is a tridiagonal matrix
- and it is an important property of FEM which can be solved efficiently

Introduction

- Finite ElementTime-Domain Method
- method combines the advantages of a time-domain technique
- with the versatile spatial discretization options of the finite element method
- A variety of FETD methods have been proposed

Introduction

- In FETD, we will solve second-order vector wave equation
- by eliminating one of the field variables from Maxwell's equations
- Consider Maxwell's equations in space-time:

$$
\nabla \times \vec{E}=-\mu \frac{\partial \vec{H}}{\partial t} ; \nabla \times \vec{H}=\vec{J}_{i m p}+\varepsilon \frac{\partial \vec{E}}{\partial t}+\sigma \vec{E}
$$

- Dividing the second equation by ε, we have,

$$
\frac{\nabla \times \vec{H}}{\varepsilon}=\frac{\vec{J}_{i m p}}{\varepsilon}+\frac{\partial \vec{E}}{\partial t}+\frac{\sigma}{\varepsilon} \vec{E}
$$

Introduction

- Hence, taking curl again, we have,

$$
\nabla \times\left(\frac{1}{\varepsilon} \nabla \times \vec{H}\right)=\frac{\nabla \times \vec{J}_{i m p}}{\varepsilon}+\frac{\partial(\nabla \times \vec{E})}{\partial t}+\frac{\sigma}{\varepsilon} \nabla \times \vec{E}
$$

- Substituting $\nabla \times \vec{E}=-\mu \frac{\partial \vec{H}}{\partial t}$ in the $2^{\text {nd }}$ and $3^{\text {rd }}$ term of the RHS, we have,

$$
\nabla \times\left(\frac{1}{\varepsilon} \nabla \times \vec{H}\right)=\frac{\nabla \times \vec{J}_{i m p}}{\varepsilon}-\mu \frac{\partial^{2} \vec{H}}{\partial t^{2}}+\frac{\sigma}{\varepsilon}\left(-\mu \frac{\partial \vec{H}}{\partial t}\right)
$$

Introduction

- Transferring $2^{\text {nd }}$ and $3^{\text {rd }}$ term in the RHS to LHS, we have,

$$
\nabla \times\left(\frac{1}{\varepsilon} \nabla \times \vec{H}\right)+\mu \frac{\partial^{2} \vec{H}}{\partial t^{2}}+\frac{\sigma \mu}{\varepsilon} \frac{\partial \vec{H}}{\partial t}=\frac{\nabla \times \vec{J}_{i m p}}{\varepsilon}
$$

- Since

$$
\nabla \times\left(\frac{1}{\varepsilon} \nabla \times \vec{H}\right)=\frac{1}{\varepsilon} \nabla(\nabla \bullet \vec{H})-\frac{1}{\varepsilon} \nabla^{2} \vec{H}=-\frac{1}{\varepsilon} \nabla^{2} \vec{H}
$$

Introduction

- Hence, putting the above equation and noting the sign change,

$$
\frac{1}{\varepsilon} \nabla^{2} \vec{H}-\mu \frac{\partial^{2} \vec{H}}{\partial t^{2}}-\frac{\sigma \mu}{\varepsilon} \frac{\partial \vec{H}}{\partial t}=-\frac{\nabla \times \vec{J}_{i m p}}{\varepsilon}
$$

- For 2-D region, the scalar wave equation for the longitudinal component of the magnetic field for TE^{z} case, we have,

$$
\frac{1}{\varepsilon} \nabla^{2} H_{z}-\frac{\sigma \mu}{\varepsilon} \frac{\partial H_{z}}{\partial t}-\mu \frac{\partial^{2} H_{z}}{\partial t^{2}}=-\frac{\left(\nabla \times \vec{J}_{i m p}\right)_{z}}{\varepsilon}
$$

Introduction

- By defining the carrier frequency ω_{c}, the field component and the current density can be written as

$$
H_{z}(t)=V(t) e^{j \omega_{c} t} ; \vec{J}(t)=\vec{j}(t) e^{j \omega_{c} t}
$$

- where $\mathrm{V}(\mathrm{t})$ is the time-varying complex envelope of the field at the carrier frequency
- Substituting the above relation, we have,

$$
\frac{1}{\varepsilon_{r} \varepsilon_{0}} \nabla^{2}\left(V(t) e^{j \sigma_{c} t}\right)-\frac{\sigma \mu_{r} \mu_{0}}{\varepsilon_{r} \varepsilon_{0}} \frac{\partial\left(V(t) e^{j \sigma_{c} t}\right)}{\partial t}-\mu_{r} \mu_{r} \frac{\partial^{2}\left(V(t) e^{j \omega_{c} t}\right)}{\partial t^{2}}=-\frac{\left(\nabla \times\left(\vec{j}(t) e^{j \omega_{c} t}\right)\right)_{z}}{\varepsilon_{r} \varepsilon_{0}}
$$

Introduction

- Since

$$
\begin{aligned}
& \frac{\partial\left(V(t) e^{j \omega_{c} t}\right)}{\partial t}=e^{j \omega_{c} t} \frac{\partial(V(t))}{\partial t}+V(t)\left(j \omega_{c}\right) e^{j \omega_{c} t} \\
& \frac{\partial^{2}\left(V(t) e^{j \omega_{c} t}\right)}{\partial t^{2}}=e^{j \omega_{c} t} \frac{\partial^{2}(V(t))}{\partial t^{2}}+\left(j \omega_{c}\right) e^{j \omega_{c} t} \frac{\partial(V(t))}{\partial t} \\
& +V(t)\left(j \omega_{c}\right)^{2} e^{j \omega_{c} t}+\left(j \omega_{c}\right) e^{j \omega_{c} t} \frac{\partial V(t)}{\partial t}
\end{aligned}
$$

Introduction

$$
\begin{aligned}
\nabla^{2}\left(V(t) e^{j \omega_{c} t}\right) & =e^{j \omega_{c} \nabla^{2}}(V(t)) \\
\left(\nabla \times\left(j(t) e^{j \omega_{c} t}\right)\right)_{z} & =e^{j \omega_{c} t}(\nabla \times(j(t)))_{z}
\end{aligned}
$$

- Therefore
$\frac{1}{\varepsilon_{r}} \nabla^{2}(V(t))-\frac{\mu_{r}}{c_{0}^{2}}\left[\left(\omega_{c}^{2}-j \omega_{c} \alpha\right)-\left(\alpha+2 j \omega_{c}\right) \frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial t^{2}}\right] V(t)=\frac{(\nabla \times(j(t)))_{z}}{\varepsilon_{r}}$
- where

$$
\alpha=\frac{\sigma}{\varepsilon_{r} \varepsilon_{0}}=\frac{\sigma}{\varepsilon}
$$

Introduction

- We will call the above equation as envelope equation
- The envelope equation reduces to a scalar Helmholtz equation
- when V is time independent on which the frequency domain FEM is based
- The inner product with a testing function leads to the weak form

$$
\begin{aligned}
& {\left[\iint_{S} \frac{1}{\varepsilon_{r}} \nabla^{2}(V(t)) T-\frac{\mu_{r}}{c_{0}^{2}}\left[\left(\omega_{c}^{2}-j \omega_{c} \alpha\right)-\left(\alpha+2 j \omega_{c}\right) \frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial t^{2}}\right] V(t) T\right] d s} \\
& =\iint_{S} \frac{(\nabla \times(\vec{j}(t)))_{z}}{\varepsilon_{r}} T d s
\end{aligned}
$$

Introduction

- Since
$\iint_{S} \nabla(T \bullet \nabla V) d s=\iint_{S}(\nabla T \bullet \nabla V) d s-\iint_{S}\left(T \nabla^{2} V\right) d s$
$\Rightarrow \iint_{S}\left(T \nabla^{2} V\right) d s=\iint_{S}(\nabla T \bullet \nabla V) d s-\iint_{S} \nabla(T \bullet \nabla V) d s$

$$
\Rightarrow \iint_{S}\left(T \nabla^{2} V\right) d s=\iint_{S}(\nabla T \bullet \nabla V) d s-\prod_{\Gamma}(T \bullet \nabla V) d l
$$

Introduction

- Therefore

$$
\begin{aligned}
& {\left[\iint_{S} \frac{1}{\varepsilon_{r}} \nabla T \bullet \nabla V-\frac{\mu_{r}}{c_{0}^{2}}\left[\left(\omega_{c}^{2}-j \omega_{c} \alpha\right)-\left(\alpha+2 j \omega_{c}\right) \frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial t^{2}}\right] V(t) T\right] d s} \\
& =\iint_{S} \frac{(\nabla \times(j(t)))_{z}}{\varepsilon_{r}} T d s+\int_{\Gamma} \frac{1}{\varepsilon_{r}} T \frac{\partial V}{\partial n} d l
\end{aligned}
$$

Introduction

- Assuming PEC or PMC, the path integral term on the RHS vanishes
- The spatial discretization, the envelope variable is expanded in terms of 2-D FEM basis function $w_{j}\left(T_{i}=w_{j}\right.$ for Galerkin's)
- Hence it results in a system of ODE

Introduction

$$
\begin{gathered}
{\left[\iint_{s} \frac{1}{\varepsilon_{r}} \nabla T \bullet \nabla V+\frac{\mu_{r}}{c_{0}^{2}}\left[\left(\omega_{c}^{2}-j \omega_{c} \alpha\right)-\left(\alpha+2 j \omega_{c}\right) \frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial t^{2}}\right] V(t) T\right] d s=\iint_{S} \frac{(\nabla \times(\vec{j}(t)))_{z}}{\varepsilon_{r}} T d s} \\
\bar{T}_{i j}=\iint_{S} \frac{\mu_{r}}{c_{0}^{2}} w_{i} w_{j} d s \\
\bar{B}_{i j}=\iint_{S} \frac{\mu_{r}}{c_{0}^{2}}\left(2 j w_{c}+\alpha\right) w_{i} w_{j} d s \\
\bar{S}_{i j}=\iint_{S} \frac{1}{\varepsilon_{r}}\left(-\nabla w_{i} \bullet \nabla w_{j}-\frac{\mu_{r}}{c_{0}^{2}}\left(w_{c}^{2}-j \alpha w_{c}\right)\right) w_{i} w_{j} d s \\
F_{i}=\left.\iint_{S} \frac{1}{\varepsilon_{r}} w_{i}(\nabla \times \vec{j})\right|_{z} d s
\end{gathered}
$$

Introduction

- Note that instabilities observed in the time domain FEM and
- that the Newmark-Beta formulation was suggested to solve them

$$
\begin{aligned}
\frac{d^{2} V}{d t^{2}} & =\frac{1}{\Delta t^{2}}[V(n+1)-2 V(n)+V(n-1)] \\
\frac{d V}{d t} & =\frac{1}{2 \Delta t}[V(n+1)-V(n-1)]
\end{aligned}
$$

- The solution of a linear system of equations is required at each time step
- but this implicit method can be formulated to be unconditionally stable

Introduction

- We can use
$V(n)=\beta V(n+1)+(1-2 \beta) V(n)+\beta V(n-1)$
- where $\mathrm{V}(\mathrm{n})=\mathrm{V}(\mathrm{n} \Delta \mathrm{t})$ is the discrete time representation of $\mathrm{V}(\mathrm{t})$
- β is a constant that has to be carefully chosen to guarantee stability
- $\beta=1 / 4$ leads to an unconditionally stable two-step update scheme

Introduction

- Substituting the above discretized version of $\mathrm{V}(\mathrm{t})$ and its time derivatives and taking $\beta=1 / 4$
$\left(\frac{1}{\Delta t^{2}} \bar{T}[V(n+1)-2 V(n)+V(n-1)]\right)+\left(\frac{1}{2 \Delta t} \bar{B}[V(n+1)-V(n-1)]\right)$
$+\bar{S}\left(\frac{1}{4} V(n+1)+\frac{1}{2} V(n)+\frac{1}{4} V(n-1)\right)+\bar{F}=0$
- Hence,
$\left[\frac{\bar{T}}{\Delta t^{2}}+\frac{\bar{B}}{2 \Delta t}+\frac{\bar{S}}{4}\right] V(n+1)=\left[\frac{2 \bar{T}}{\Delta t^{2}}-\frac{\bar{S}}{2}\right] V(n)+\left[-\frac{\bar{T}}{\Delta t^{2}}+\frac{\bar{B}}{2 \Delta t}-\frac{\bar{S}}{4}\right] V(n-1)-f(n)$

Introduction

- To solve these equations,
- we need to invert the matrix on the LHS
- Since this matrix is time independent,
- it needs to be filled and
- solved only once
- Vector edge elements
- Field can be approximated as

$$
\vec{E}_{e} \approx \sum_{i=1}^{4} \vec{N}_{i}^{e} E_{i}^{e}
$$

