Introduction

- To solve these equations,
- we need to invert the matrix on the LHS
- Since this matrix is time independent,
- it needs to be filled and
- solved only once
- PML
- Uniaxial PML gives better performance than split-field or stretched coordinate based PML

Introduction

- Doubts raised:
- Q1. While you are discretizing any finite element, how you decide which section to divide into triangular section or rectangular section or any other kind of section? Like in example (page-3) you have divided the finite element into triangular section. So can I divide it in rectangular sections and if I do this..... will it yield same solution when you divide it into triangular section?
- Ans: Depending on the shape you are discretizing, corresponding shape or interpolation functions must be used

Introduction

- Doubts raised:
- Q2. Except Triangular and Rectangular section, what other geometrical figures we use for Discretization whose voltage equation is known to us?
- Ans:
- We have already discussed abut piecewise linear shape functions. For 3-D shapes, you can even use pyramidal shapes

Introduction

- Doubts raised:
- Q3. In page-58 and 59, two methods are discussed such as BAND MATRIX METHOD. ITERATION METHOD. Which method gives more accurate result because in the example discussed in page-58,59 there is slight variation comes in the solution.
- Ans: No hard and fast rule, but for iteration based results, your initial choice and number of iterations effect the final solution
- For band matrix method, you have to do sorting of free nodes and prescribed nodes

Introduction

- Q4. In page 76, To satisfy EULER'S equation we need to find $\mathrm{F}(\mathrm{x}$, phi, phi'). How to find F assuming $\operatorname{Phi}(\mathrm{x})$ is given?
- Ans:
- That is technique to find unknown function in FEM
- If unknown function is already known, we do not seek for any further ways of finding it
- If you still want to find it, we do not consider such problems in FEM, that will be purely a mathematical problem (depends of what you are looking for)

Introduction

- Q5. In page-71, Why we have to find extremum value of I(phi)?
- Ans:
- FEM has two approaches
- Direct approach:
- Solve for unknown function in PDE by applying Galerkin's Weighted residual method
- Indirect approach:
- Find an equivalent problem where minimizing the functional gives the solution of the PDE (Physically it is stable solution for energy or equilibrium points)

Introduction

- Vector edge elements
- Field can be approximated as

$$
\vec{E}_{e} \approx \sum_{i=1}^{4} \vec{N}_{i}^{e} E_{i}^{e}
$$

- Directed edge elements
- We have considered finding potentials which is scalar
- We also find fields,
- fields are vectors,
- so logical to use vector shape or interpolation functions

Introduction

- Rectangular edge element edge 2

Introduction

- where \vec{N}_{i}^{e} are vector basis function which are defined as

$$
\begin{gathered}
\vec{N}_{1}^{e}=\frac{1}{l_{y}^{e}}\left(y_{c}^{e}-y+\frac{l_{y}^{e}}{2}\right) \hat{x} \quad \vec{N}_{2}^{e}=\frac{1}{l_{y}^{e}}\left(y-y_{c}^{e}+\frac{l_{y}^{e}}{2}\right) \hat{x} \\
\vec{N}_{3}^{e}=\frac{1}{l_{x}^{e}}\left(x_{c}^{e}-x+\frac{l_{x}^{e}}{2}\right) \hat{y} \quad \vec{N}_{4}^{e}=\frac{1}{l_{x}^{e}}\left(x-x_{c}^{e}+\frac{l_{x}^{e}}{2}\right) \hat{y}
\end{gathered}
$$

Introduction
 $$
\vec{N}_{1}^{e}=\frac{1}{l_{y}^{l}}\left(y_{c}^{e}-y+\frac{l_{y}^{e}}{2}\right) \hat{x}
$$
 - Note that \vec{N}_{1}^{e} is zero on edge 2

- On edges 3 and 4 it increases linearly from the top to the bottom
- It is purely normal along these edges
- These basis functions provide a mixed-order approximation of the field
- On the edges the approximation is constant tangentially (along edge 1) and linear normally (edge 3 and edge 4)
- In short from these elements are called CT/LN elements

Introduction

- Field in a rectangular element can be interpolated as
- $\vec{E}^{e}(x, y)=E_{1}^{e} \vec{N}_{1}^{e}+E_{2}^{e} \vec{N}_{2}^{e}+E_{3}^{e} \vec{N}_{3}^{e}+E_{4}^{e} \vec{N}_{4}^{e}$
- where E_{1}^{e} is the tangential
- component of the field along
- the edge 1 of the element e and
- \vec{N}_{1}^{e} is the interpolation
- or basis function

Introduction

- These properties of CT/LN permit enforcing tangential continuity (such as in electric field and it is called 1-form) without affecting the normal components (in 2-form for magnetic field and current density it is $\mathrm{CN} / \mathrm{LT}$)
- It is precisely the boundary conditions required by electric and magnetic fields
- Vector elements on triangles- the Whitney element
- Consider a right-angled triangle of unit length along x-axis and y axis
- Even though we derive Whitney function for right-angled triangle it is true for any triangle (D.B. Davidson's book)

Introduction

- Fig. Right-angled triangle [Whitney element $\{\mathrm{P}(\mathrm{x}, \mathrm{y})\}$]

Introduction

- The simplex coordinates are

$$
\lambda_{1}=\frac{\operatorname{area}_{\Delta P 23}}{\operatorname{area}_{\Delta 123}}=\frac{\frac{1}{2}{\text { base } \times \text { height }^{2}}^{\text {edge } 1}}{\frac{1}{2}}=y
$$

- Note that area of triangle 123 is $1 / 2$, and the base of the triangle P23 is unity and height is y

Introduction

- Similarly

$$
\lambda_{3}=\frac{\operatorname{area}_{\Delta P 12}}{\operatorname{area}_{\Delta 123}}=\frac{\frac{1}{2} \text { base } \times \text { height }}{\frac{1}{2}}=x
$$

- and

$$
\because \sum_{i=1}^{3} \lambda_{i}=1 ; \lambda_{2}=1-\lambda_{3}-\lambda_{1}=1-(x+y)
$$

Introduction

- Their gradients

$$
\nabla \lambda_{1}=\hat{y} ; \nabla \lambda_{2}=-\hat{x}-\hat{y} ; \nabla \lambda_{3}=\hat{x}
$$

- Note that $\nabla \lambda_{1}$ is normal to edge 1 (which was along xaxis) and similarly $\nabla \lambda_{2}$ and $\nabla \lambda_{3}$ are normal to edges 2 and 3 respectively
- Now the Whitney elements function for first order (higher order terms may also exist) can be expressed as

$$
\vec{w}_{i j}=\lambda_{i} \nabla \lambda_{j}-\lambda_{j} \nabla \lambda_{i}
$$

Introduction

- For instance,

$$
\begin{aligned}
& \vec{N}_{1}=\vec{w}_{23}=\lambda_{2} \nabla \lambda_{3}-\lambda_{3} \nabla \lambda_{2} \\
& =(1-x-y) \hat{x}-x(-\hat{x}-\hat{y}) \\
& =(1-y) \hat{x}+x \hat{y}
\end{aligned}
$$

- Similarly, $\vec{N}_{2}=\vec{w}_{31}=\lambda_{3} \nabla \lambda_{1}-\lambda_{1} \nabla \lambda_{3}$

$$
\begin{aligned}
& =x \hat{y}-y \hat{x} \\
& \vec{N}_{3}=\vec{w}_{12}=\lambda_{1} \nabla \lambda_{2}-\lambda_{2} \nabla \lambda_{1} \\
& =-y \hat{x}+(-1+x) \hat{y}
\end{aligned}
$$

Introduction

- Interpretations of $\vec{N}_{1}=\vec{w}_{23}=(1-y) \hat{x}+x \hat{y}$
- Along edge 3 (along y -axis, $\mathrm{x}=0$) the function is purely normal
- It increases linearly from node $1(x=0)$ to node $2(x=0)$ along edge 3

FEM by Prof. Rakhesh Singh Kshetrimayum

Introduction

- Interpretations of $\vec{N}_{1}=\vec{w}_{23}=(1-y) \hat{x}+x \hat{y}$
- Along edge 2 (hypotenuse of the right angled triangle) the function is purely normal
- It also increases linearly from node $1(x=0)$ to node $3(y=0)$ along edge 2

Introduction

- Interpretations of $\vec{N}_{1}=\vec{w}_{23}=(1-y) \hat{x}+x \hat{y}$
- Along edge $1(\mathrm{y}=0)$, it has both tangential (it is constant and equal to 1)
- and normal (it is linearly increasing with x) components
- Divergence of Whitney function is also zero

Introduction

- Thus on this edge tangential x -component is constant
- But the normal y-component keeps on increasing linearly
- Summary
- $\vec{N}_{1}=\vec{w}_{23}$ is a basis function with a constant tangential component and
- linearly increasing normal component
- These Whitney basis functions has the same mixed order CT/LN behaviour
- as the rectangular element studied earlier

Introduction

- Whitney elements are used in HFSS
- Field in a triangular element can be interpolated as
- $\vec{E}^{e}(x, y)=E_{1}^{e} \vec{N}_{1}^{e}+E_{2}^{e} \vec{N}_{2}^{e}+E_{3}^{e} \vec{N}_{3}^{e}$
- where E_{1}^{e} is the tangential
- component of the field along
- the edge 1 of the element e and
- \vec{N}_{1}^{e} is the interpolation
- or basis function

