10.3 Introductory examples from electrostatics (c) We may write the above equations in matrix form as

$$\begin{bmatrix} Z_{11} & Z_{12} & \dots & Z_{1N} \\ Z_{21} & Z_{22} & \dots & Z_{2N} \\ Z_{31} & Z_{32} & \dots & Z_{3N} \\ \vdots & \vdots & \ddots & \vdots \\ Z_{N1} & Z_{N2} & \dots & Z_{NN} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ \vdots \\ I_N \end{bmatrix} = \begin{bmatrix} V_0 \\ V_0 \\ V_0 \\ \vdots \\ V_0 \end{bmatrix} \Rightarrow \begin{bmatrix} Z_{mn} \end{bmatrix} \begin{bmatrix} I_n \end{bmatrix} = \begin{bmatrix} V_m \end{bmatrix}$$

where
$$[V_m] = [4\pi\varepsilon_0]$$

 $Z_{mn} = \int_0^l \frac{b_n(y')dy'}{\sqrt{(y_m - y')^2 + a^2}} = \int_{y_{n-1}}^{y_n} \frac{dy'}{\sqrt{(y_m - y')^2 + a^2}}$
 $\cong \int_{y_{n-1}}^{y_n} \frac{dy'}{\sqrt{(y_m - y')^2}} = \int_{y_{n-1}}^{y_n} \frac{dy'}{y_m - y'} \approx \frac{\Delta}{|y_m - y_n|} \quad \text{for } m \neq n$

MoM by Prof. Rakhesh Singh Kshetrimayum

1/8/2021

49

- Special care for calculating the Z_{mn} for m=n case
 - since the expression for Z_{mn} is infinite for this case
- Extraction of this singularity

• Substitute
$$y_m - y' = \xi \Rightarrow d\xi = -dy'$$

 $Z_{mn} = -\int_{\Delta}^{0} \frac{d\xi}{\sqrt{(\xi)^2 + a^2}} = \int_{0}^{\Delta} \frac{d\xi}{\sqrt{(\xi)^2 + a^2}} = \log\left(\xi + \sqrt{(\xi)^2 + a^2}\right)\Big|_{0}^{\Delta}$
 $= \ln\left[\frac{\Delta + \sqrt{\Delta^2 + a^2}}{a}\right]$

- Self or diagonal terms are the
 - most dominant elements in the [Z] matrix
- Note that linear geometry of this problem
 - yields a matrix that is symmetric toeplitz, i.e.,

$$\begin{bmatrix} Z_{mn} \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} & \dots & Z_{1N} \\ Z_{12}^{\prime} & Z_{11} & \dots & Z_{1N-1} \\ \vdots & \vdots & \ddots & \vdots \\ Z_{1N}^{\prime} & Z_{1N-1}^{\prime} & \dots & Z_{11} \end{bmatrix}$$

- All other rows are a rearranged version of the first row
- Required to calculate the first row of the matrix only
- Remaining elements can be obtained by the rearrangement formula:

$$Z_{mn} = Z_{1,|m-n|+1}, \quad m \ge 2, \quad n \ge 1$$

• Therefore the unknown [I] matrix could be solved as

$$[I_n] = [Z_{mn}]^{-1} [V_m]$$

- Let us see the convergence of these two types of elements of the Z matrix say,
 - Z_{11} and Z_{21}
- Fig. 10.3 (a) shows the convergence plot of two elements of the Z matrix
 - for number of sub-sections varying from 5 to 100
- The graph of Z₂₁ (dashed line) versus number of sub-sections is a straight line
 - so any number of sub-sections between 5 and 100 should give the same result

- But the graph of Z_{11} versus number of sub-sections is
 - decreasing quite fast at the initial values of number of subsections and
 - it is decreasing more slowly for larger values of number of subsections
- This shows that at
 - higher values of number of sub-sections,
 - we will get a more convergent result
- Choose the maximum number of sub-sections and
 - plot the line charge density as depicted in the Fig. 10.3 (b)

- See the condition number of the [Z] matrix in order to see
 - whether the [Z] matrix is well-behaved or not
- The **condition number** of [Z] matrix
 - (=7.1409) for maximum number of sub-sections is good
- No problem in taking the inverse
- Fig. 10.3 (b) line charge density is
 - maximum at the two end points of the wire and
 - minimum at the center of the wire
- 2-D Electrostatic case: Charge density of a square conducting plate discussed in the book

- The weighted sum of basis functions is
 - used to represent the unknown function in MoM
- Choose a basis function that reasonably approximates
 - the unknown function over the given interval
- **Basis functions** commonly used in antenna or scattering problems are of two types:
 - entire domain functions and
 - sub-domain functions

- 10.4.1 Entire domain basis functions
- The entire domain functions exist over the full domain -l/2 < x < l/2
- Some examples are:
- Fourier (is well known) $b_n(x) = \cos\left\{\left(\frac{n-1}{2}\right)\frac{2x}{l}\right\}$
- Chebyshev (will discuss briefly) $b_n(x) = T_{2n-2}(\frac{2x}{l})$
- Legendre (will discuss briefly) $b_n(x) = P_{2n-2}(\frac{2x}{l})$
- where n=1,2,3,...,N.

58

• Chebyshev's differential equation

$$(1-x^2)y'' - xy' + n^2y = 0$$

- where n is a real number
- Solutions Chebyshev functions of degree n
- n is a non-negative integer, i.e., n=0,1,2,3,...,
 - \bullet the Chebyshev functions are called Chebyshev polynomials denoted by $T_{\rm n}({\bf x})$

- A Chebyshev polynomial at one point can be
 - expressed by neighboring Chebyshev polynomials at the same point

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \qquad T_2(x) = 2xT_1(x) - T_0(x)$$

• where
$$T_0(x) = 1, T_1(x) = x$$

• Legendre's differential equation

$$(1-x^2)y'' - 2xy' + n(n+1)y = 0$$

• where n is a real number

- Solutions of this equation are called Legendre functions of degree n
- When n is a non-negative integer, i.e., n=0,1,2,3,...,
 - \bullet the Legendre functions are called Legendre polynomials denoted by $P_n(\mathbf{x})$
- Legendre polynomial at one point can be
 - expressed by neighboring Legendre polynomials at the same point

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$$

• where $P_0(x) = 1$, $P_1(x) = x$
$$2P_2(x) = 3xP_1(x) - P_0(x)$$

- Disadvantage: entire domain basis function may not be applicable of any general problem
 - Choose a particular basis function for a particular problem
 - Crucial and only experts in the area could do it efficiently
- Developing a general purpose MoM based software,
 - software for analyzing almost every problem in electromagnetics
 - this is not feasible
- Sub-domain basis functions could achieve this purpose

- 10.4.2 Sub-domain basis functions
- Sub-domain basis functions exist only on one of the N overlapping segments
 - into which the domain is divided
- Some examples are:
- Piecewise constant function (pulse)

$$b_n(x) = \begin{cases} 1 & x[n-1] < x < x[n] \\ 0 & otherwise \end{cases}$$

• Piecewise triangular function

$$b_{n}(x) = \begin{cases} \frac{\Delta - |x - x_{n}|}{\Delta} & x[n-1] < x < x[n+1] \\ 0 & otherwise \end{cases}$$
$$= \begin{cases} \frac{x - x_{n-1}}{x_{n} - x_{n-1}} & x[n-1] < x < x[n] \\ \frac{x_{n+1} - x_{n}}{x_{n+1} - x_{n}} & x[n] < x < x[n+1] \\ 0 & otherwise \end{cases}$$

MoM by Prof. Rakhesh Singh Kshetrimayum

1/8/2021

• Piecewise sinusoidal function

$$b_{n}(x) = \begin{cases} \frac{\sin\left\{k\left(\Delta - |x - x_{n}|\right)\right\}}{\sin\left(k\Delta\right)} & x[n-1] < x < x[n+1] \\ 0 & otherwise \end{cases}$$
$$= \begin{cases} \frac{\sin\left\{k\left(x - x_{n}\right)\right\}}{\sin\left\{k\left(x_{n} - x_{n-1}\right)\right\}} & x[n-1] < x < x[n] \\ \frac{\sin\left\{k\left(x_{n-1} - x_{n-1}\right)\right\}}{\sin\left\{k\left(x_{n-1} - x_{n-1}\right)\right\}} & x[n] < x < x[n+1] \\ 0 & otherwise \end{cases}$$

• where $\Delta = l/N$, assuming equal subintervals but it is not mandatory and k is a constant

• Fig. 10.5 Sub-domain basis functions (a) Piecewise constant function (b) Piecewise triangular function (c) Piecewise sinusoidal function

- Since the derivative of the pulse function is impulsive
 - we cannot employ it for MoM problems
 - o where the linear operator L consists of derivatives
- Piecewise triangular and sinusoidal functions
 - may be used for such kinds of problems
- Piecewise sinusoidal functions are generally used
 - for analysis of wire antennas since
 - they can approximate sinusoidal currents in the wire antennas

- For Piece-wise triangular and sinusoidal functions
- when we have N points in an interval
- we will have N-1 sub-sections and
- N-2 basis functions may be used
- Programming exercise 2 (Homework)
- Plot the following entire domain and sub-domain basis functions

- Chebyshev function (order n=5)
- Legendre function (order n=3)
- Piece wise constant function
- Piece wise triangular function
- Piece wise sinusoidal function

- Consider application of MoM techniques
 - to wire antennas and scatterers

- Antennas can be distinguished from scatterers
 - in terms of the location of the source
- If the source is on the wire
 - it is regarded as antenna
- When the wire is far from the source
 - it acts as scatterer
- For the wire objects (antenna or scatterer)
 - we require to know the current distribution accurately

- Integral equations are derived and
 - solved for this purpose

Wire antennas

- Feed voltage to an antenna is known
 - and the current distribution could be calculated
- other antenna parameters such as
 - impedance,
 - radiation pattern, etc.
- can be calculated

1/8/2021

Wire scatterers

- Wave impinges upon surface of a wire scatterer
 - it induces current density
 - which in turn is used to generate the scattered fields
- We will consider
- how to find the current distribution on a
 - thin wire or
 - cylindrical antenna
- using the MoM

1/8/2021

10.5.1 Electric field integral equation (EFIE)

- On perfect electric conductor like metal
 - the total tangential electric field is zero
- Centrally excited cylindrical antenna (Fig. 10.6)
- have two kinds of electric fields viz.,
 - incident and
 - scattered electric fields

$$\vec{E}_{tan}^{tot} = 0 \Longrightarrow \vec{E}_{tan}^{inc} + \vec{E}_{tan}^{scat} = 0 \Longrightarrow \vec{E}_{tan}^{inc} = -\vec{E}_{tan}^{scat}$$

• Fig. 10.6 A thin wire antenna of length L, radius a (a<<L) and feed gap 2Δ

- where the \vec{E}^{inc} is the source or impressed field and
- \vec{E}^{scat} can be computed from the
- current density induced on the cylindrical wire antenna due to the
 - incident or
 - impressed field
- 10.5.2 Hallen's and Pocklington's Integro-differential equation
- Let us consider a perfectly conducting wire of
 - length L and
 - \bullet radius a such that a<<L and $\lambda,$ the wavelength corresponding to the operating frequency

- Consider the wire to be a hollow metal tube
 - open at both ends
- Let us assume that an incident wave $\vec{E}^{inc}(\vec{r})$
 - impinges on the surface of a wire
- When the wire is an antenna
 - the incident field is produced by the feed at the gap (see Fig. 10.6)
- The impressed field E_z^{inc} is required
 - to be known on the surface of the wire

- Simplest excitation
 - delta-gap excitation
- For delta gap excitation (assumption)
 - excitation voltage at the feed terminal is constant and
 - zero elsewhere
- Implies incident field
 - constant over the feed gap and
 - zero elsewhere

- $2V_0$ (from + V_0 to V_0) voltage source applied
 - across the feed gap 2Δ ,
- Incident field on the wire antenna can be expressed as $z \uparrow$

 $<\frac{L}{2}$

$$\vec{E}_{z}^{inc} = \begin{cases} \frac{V_{0}}{\Delta}; & \left|z\right| < \\ 0; & \Delta < \left|z\right| \end{cases}$$

- Induced current density
 - due to the incident or impressed electric field
- produces the scattered electric field $\vec{E}^{scat}(\vec{r})$

 2Λ

Х

У

• The total electric field is given by

$$\vec{E}^{tot}\left(\vec{r}\right) = \vec{E}^{inc}\left(\vec{r}\right) + \vec{E}^{scat}\left(\vec{r}\right)$$

- Since the wire is assumed to be perfectly conducting,
 - tangential component of the total electric field on the surface of the wire is zero
- For a cylindrical wire placed along z-axis, we can write,

$$\vec{E}_{z}^{tot}\left(\vec{r}\right) = \vec{E}_{z}^{inc}\left(\vec{r}\right) + \vec{E}_{z}^{scat}\left(\vec{r}\right) = 0; \quad on \quad the \quad wire \quad antenna$$

79

1/8/2021

• that is,

$$\vec{E}_{z}^{scat}\left(\vec{r}\right) = -\vec{E}_{z}^{inc}\left(\vec{r}\right)$$

• Find the electric field from the potential functions using

$$\vec{E} = -j\omega\vec{A} - \nabla V_{\rm p}$$

• Lorentz Gauge condition,

$$\nabla \bullet \vec{A} = -j\omega\mu_0\varepsilon_0 V$$

- For a thin cylinder,
- current density considered to be independent of ϕ

$J_{z}(z') = \frac{1}{2\pi a}I(z')$

- where is $J_z(z)$ the surface current density
 - at a point on the conductor z
- skin depth of the perfect conductor is almost zero
 - and therefore all the currents flow on the surface of the wire

- Fig. 10.7 Cylindrical conductor of radius a with surface current density $J_{z}(z')\left(\frac{A}{m}\right)$
- and its equivalence to the case of the conductor replaced by current filament $I(z') = 2\pi a J_z(z')(A)$ at a distance a from the z-axis

- The current I(z') may be assumed to be
- a filamentary current located parallel to z-axis
- at a distance *a* (a is a very small number) as shown in the Fig. 10.7
- For the current flowing only in the z direction,

$$E_z = -j\omega A_z - \frac{\partial V}{\partial z} ,$$

• From Lorentz Gauge condition for time harmonic case,

$$\frac{\partial A_z}{\partial z} = -j\omega\mu_0\varepsilon_0 V \Longrightarrow \frac{\partial^2 A_z}{\partial z^2} = -j\omega\mu_0\varepsilon_0 \frac{\partial V}{\partial z} \Longrightarrow -\frac{\partial V}{\partial z} = \frac{1}{j\omega\mu_0\varepsilon_0}\frac{\partial^2 A_z}{\partial z^2}$$

• Therefore,

$$E_{z} = -j\omega A_{z} + \frac{1}{j\omega\mu_{0}\varepsilon_{0}}\frac{\partial^{2}A_{z}}{\partial z^{2}} = \underbrace{\frac{1}{j\omega\mu_{0}\varepsilon_{0}}}_{j\omega\mu_{0}\varepsilon_{0}}\left(\omega^{2}\mu_{0}\varepsilon_{0}A_{z} + \frac{\partial^{2}A_{z}}{\partial z^{2}}\right) = \frac{1}{j\omega\mu_{0}\varepsilon_{0}}\left(\beta_{0}^{2}A_{z} + \frac{\partial^{2}A_{z}}{\partial z^{2}}\right)$$

• Magnetic vector potential can be expressed as

$$A_z = \mu_0 \iint_S J_z \frac{e^{-j\beta_0 r}}{4\pi r} ds$$

• Putting the J_z expression from (10.20), we have,

$$A_{z} = \mu_{0} \int_{-L/2}^{L/2} \int_{0}^{2\pi} \frac{I(z')}{2\pi a} \frac{e^{-j\beta_{0}r}}{4\pi r} a d\phi' dz'$$

MoM by Prof. Rakhesh Singh Kshetrimayum

1/8/2021

84

• where

$$r = \sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}$$

• For $\rho = a$

$$A_{z}(\rho = a) = \mu_{0} \int_{-L/2}^{L/2} I(z') \left(\frac{1}{2\pi} \int_{0}^{2\pi} \frac{e^{-j\beta_{0}r}}{4\pi r} d\phi'\right) dz'$$

• where

$$r(\rho = a) = \sqrt{4a^2 \sin^2\left(\frac{\varphi'}{2}\right) + (z - z')^2}$$

MoM by Prof. Rakhesh Singh Kshetrimayum

1/8/2021

• Therefore, we can write

$$A_{z}(\rho = a) = \mu_{0} \int_{-L/2}^{L/2} I(z')G(z, z')dz'$$

• where

86

$$G(z,z') = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{e^{-j\beta_{0}r}}{4\pi r} d\phi'$$

• $G(\vec{r}, \vec{r'})$ is the field at the observation point caused by a unit point source placed at $\vec{r'}$

- The field at \vec{r} by a source distribution $J(\vec{r}')$
 - is the integral of $J(\vec{r}')G(\vec{r},\vec{r}')$ over the range of \vec{r}' occupied by the source
- The function *G* is called the Green's function
- We have,

$$E_{z} = \frac{1}{j\omega\varepsilon_{0}\mu_{0}} \left(\frac{\partial^{2}A_{z}}{\partial z^{2}} + \beta_{0}^{2}A_{z} \right)$$

• and

$$A_{z}(\rho = a) = \mu_{0} \int_{-L/2}^{L/2} I(z') \left(\frac{1}{2\pi} \int_{0}^{2\pi} \frac{e^{-j\beta_{0}r}}{4\pi r} d\phi'\right) dz'$$

• From the above two equations we can write, two equations:

(a)
$$E_{z} = \frac{1}{j\omega\varepsilon_{0}} \left(\frac{\partial^{2}}{\partial z^{2}} + \beta_{0}^{2}\right) \int_{-L/2}^{L/2} I(z')G(z,z')dz'$$

- This electric field is the field due to current I(z)
 - [which results because of the impressed or source field] and
 - this field can be written as the scattered field
- Therefore, (

$$E_{z}^{scat} = \frac{1}{j\omega\varepsilon_{0}} \left(\frac{\partial^{2}}{\partial z^{2}} + \beta_{0}^{2}\right) \int_{-L/2}^{L/2} I(z')G(z,z')dz'$$

• Since from the EFIE on the surface of the wire,

$$E_z^{scat}\left(\rho=a\right) = -E_z^{inc}\left(\rho=a\right)$$

$$\frac{1}{j\omega\varepsilon_0} \left(\frac{\partial^2}{\partial z^2} + \beta_0^2 \right) \int_{-L/2}^{L/2} I(z') G(z, z') dz' = -E_z^{inc}(\rho = a)$$

- This equation is called the *Hallen's Integro-differential equation*
- In this case, differential is outside the integral

(b)

$$E_{z} = \frac{1}{j\omega\varepsilon_{0}} \int_{-L/2}^{L/2} \left(\frac{\partial^{2}}{\partial z^{2}} + \beta_{0}^{2} \right) I(z')G(z,z')dz'$$
• This electric field is the field due to current $I(z')$
• [which results because of the impressed or source field] and

- this field can be written as the scattered field
- Therefore, (

$$E_{z}^{scat} = \frac{1}{j\omega\varepsilon_{0}} \int_{-L/2}^{L/2} \left(\frac{\partial^{2}}{\partial z^{2}} + \beta_{0}^{2} \right) I(z')G(z,z')dz'$$

• Since from EFIE on the surface of the wire,

$$E_z^{scat}\left(\rho=a\right) = -E_z^{inc}\left(\rho=a\right)$$

$$\frac{1}{j\omega\varepsilon_{0}}\int_{-L/2}^{L/2} \left(\frac{\partial^{2}}{\partial z^{2}} + \beta_{0}^{2}\right) I(z')G(z,z')dz' = -E_{z}^{inc}(\rho = a)$$

- This equation is the *Pocklington's Integro-differential equation*
- In this case, the differential has moved inside the integral
- Richmond has simplified the above equation as follows:

• (c) In cylindrical coordinates,

$$r = \left| \vec{r} - \vec{r}' \right| = \left| \sqrt{\left(z - z' \right)^2 + \left| \vec{\rho} - \vec{\rho}' \right|^2} \right|$$

$$\because \rho' = a \therefore \left| \vec{\rho} - \vec{\rho}' \right| = \rho^2 + a^2 - 2\vec{\rho} \cdot \vec{\rho}' = \rho^2 + a^2 - 2\rho a \cos\left(\phi - \phi'\right)$$

$$\Rightarrow r = \left| \vec{r} - \vec{r}' \right| = \sqrt{\rho^2 + a^2 - 2\rho a \cos\left(\phi - \phi'\right) + \left(z - z'\right)^2}$$

Problem under analysis has cylindrical symmetry and
observation for any values of φ won't make any difference
we may assume without loss of generality φ = 0

• hence
$$\phi - \phi' = \phi'$$

$$A_{z} = \mu_{0} \int_{-L/2}^{L/2} \frac{I(z')}{2\pi} \int_{0}^{2\pi} \frac{e^{-j\beta_{0}r}}{4\pi r} d\phi' dz'$$

• where
$$r = \sqrt{\rho^2 + a^2 - 2\rho a \cos(\phi') + (z - z')^2}$$

- and the inner integration ^{2π}₀ e^{-jβ₀r}/(4πr) dφ'

 is also referred to as cylindrical wire kernel
- Thin wire approximation
- If we assume $a < < \lambda$ and is very small, we have,
- Inner integrand is no more dependent on the variable

 $r \cong \sqrt{\rho^2 + \left(z - z'\right)^2}$

ø

• Therefore

$$A_{z} = \mu_{0} \int_{-L/2}^{L/2} \frac{I(z')e^{-j\beta_{0}r}}{4\pi r} dz'$$

- Also called as thin wire approximation
 - with the reduced kernel
- For this case, we can write

$$G(z,z') \cong \frac{e^{-j\beta_0 r}}{4\pi r} = G(r)$$

1/8/2021

- Now in the light of this simplification of the magnetic vector potential,
- we can simplify equation 10.29c (see example 10.4) as follows:

$$\frac{1}{j\omega\varepsilon_0 4\pi} \int_{-L/2}^{L/2} I_z(z') \frac{e^{-j\beta_0 r}}{r^5} \Big[(1+j\beta_0 r) (2r^2 - 3a^2) + (\beta_0 ar)^2 \Big] dz' = -E_z^{inc}(\rho = a)$$

- This form of the Pocklington's integro-differential is more suitable for MoM formulation
 - since it does not involve any differentiation.