-~

_Zn Z, .. ZlN__]l_ _Vo_
Zy, Zy o Ly || 1, Vo
Zyy Zy ... Zy || L =V :[Zmn][ln]:[Vm]
_ZNl Lyy o ZNN_ _[N_ _Vo_
® where v, |=[4zsp]

/ ’
j b,(y)dy f dy
y G, - >+ NG, -y Ve
~ dy :I dy ~_ A for m#n

NG . Y .
Y1 \/(ym_y) yn_lym y ‘ym yn‘
@ MoM by Prof. Rakhesh Singh Kshctrirnayum
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10.3 Introductory examples from electrostatics

© Special care for calculating the Z__ for m=n case

® since the expression for Z__is infinite for this case

e Extraction of this singularity

® Substitute y -y =&é=dE=-dy

A A

0
Z,w=-]

dé | dé
@ +a® () +a’
1{A+\/A2+a2}

a

=10g(§+\/(§)2—+612)

0

@ MoM by Prof. Rakhesh Singh Kshctrirnayum
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10.3 Introductory examples from electrostatics

e Self or diagonal terms are the

® most dominant elements in the [Z] matrix

® Note that linear geometry of this problem

® yields a matrix that is symmetric toeplitz, i.e.,

Z, 2Z, e Zyy

[Z,.,]= Z;/Z//Z““

\
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10.3 Introductory examples from electrostatics

e All other rows are a rearranged version of the first row
® Required to calculate the first row of the matrix only

® Remaining elements can be obtained by the rearrangement

formula:

/ =7 m=>2, n>1

mn 1,|m—n|+1 2

® Theretfore the unknown [I] matrix could be solved as

[In]:[Zmn ]_I[Vm]
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Plot of convergence of a diagonal and off-diagonal elements %10 Plot of charge density along the wire
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1
1
1
1
1
1
1
1
1
[

e
—

0 20 40 60 80 100 0'90 0.2 0.4 0.6 0.8 1

Number of sub-sections of the wire Length of the wire

* Fig. 10.3 (a) Convergence plot of Z,, and Z,, (b) Plot of line charge density of
the wire (MATLAB program provided in the book)
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10.3 Introductory examples from electrostatics

® [ et us see the convergence of these two types of elements of
the Z matrix say,
®Z and Z,,

® Fig. 10.3 (a) shows the convergence plot of two elements of
the Z matrix

® for number of sub-sections varying from 5 to 100

® The graph of Z,, (dashed line) versus number of sub-sections
is a straight line

® so any number of sub-sections between 5 and 100 should give

the same result
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10.3 Introductory examples from electrostatics

e But the graph of Z,, versus number of sub-sections is

° decreasing quite fast at the initial values of number of sub-

sections and

® it is decreasing more slowly for larger values of number of sub-

sections

¢ This shows that at
® higher values of number of sub-sections,
* we will get a more convergent result
® Choose the maximum number of sub-sections and

® plot the line charge density as depicted in the Fig. 10.3 (b)
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10.3 Introductory examples from electrostatics

® See the condition number of the [Z] matrix in order to see
® whether the [Z] matrix is well-behaved or not

® The condition number of [Z] matrix
® (=7.1409) for maximum number of sub-sections is good

® No problem in taking the inverse

* Fig. 10.3 (b) line charge density is
® maximum at the two end points of the wire and

® minimum at the center of the wire

e 2_D Electrostatic case: Charge density of a square conducting

plate discussed in the book
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10.4 Some commonly used basis functions

® The weighted sum of basis functions is
® used to represent the unknown function in MoM
® Choose a basis function that reasonably approximates
® the unknown function over the given interval
* Basis functions commonly used in antenna or scattering
problems are of two types:
® entire domain functions and

® sub-domain functions
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10.4 Some commonly used basis functions

10.4.1 Entire domain basis functions

® The entire domain functions exist over the full domain
1/2<x<1/2

® Some examples are:

® Fourier (is well known) 5, (x) :COS{(nz_ 1)21_?6}

® Chebyshev (will discuss briefly) #n()=T. 2n—2(%)

® Legendre (will discuss brietly) b, (x) =P2n_2(%)

® wheren=1,2,3,...,N.
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10.4 Some commonly used basis functions

° Chebyshev's differential equation

[(l—xz)y" —xy' +n2y—OJ

® where n is a real number

e Solutions Chebyshev functions of degree n
® nis a non-negative integer, i.c., n=0,1,2,3,...,

® the Chebyshev functions are called Chebyshev polynomials
denoted by T (x)
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10.4 Some commonly used basis functions

e A Chebyshev polynomial at one point can be
® expressed by neighboring Chebyshev polynomials at the same

point
L1 (1) = 22T, (1)~ Ty (x) 9= 26000)-Tole)

® whereT (x)=1,T,(x)=x

® Legendre's differential equation

(1 —x? )y" — 2xy' + n(n + l)y =0

® where n is a real number
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10.4 Some commonly used basis functions

e Solutions of this equation are called Legendre functions of

degree n

Y T IYTIHITHe

® When n is a non-negative integer, i.e., n=0,1,2,3
® the Legendre functions are called Legendre polynomlals denoted
by P, (x)
o Legendre polynomial at one point can be

® expressed by neighboring Legendre polynomials at the same point

(n+ )Py 11 (x) = (2 + 1)y (x) = nPy 1 (x)

e where Py(x)=1, P,(x)=x 2P,(x)=3xR (x)- A (x)
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10.4 Some commonly used basis functions

® Disadvantage: entire domain basis function may not be
applicable of any general problem
® Choose a particular basis function for a particular problem

® Crucial and only experts in the area could do it efficiently

® Developing a general purpose MoM based software,

® software for analyzing almost every problem in

electromagnetics

® this is not feasible

® Sub-domain basis functions could achieve this purpose
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10.4 Some commonly used basis functions

10.4.2 Sub-domain basis functions

® Sub-domain basis functions exist only on one of the N
overlapping segments

® into which the domain is divided
e Some examples are:

® Piecewise constant function (pulse)

1 x[n—-1]<x<x|n]
b,(x) = .
0 otherwise
MoM by Prof. Rakhesh Singh Kshetrimayum 1/8/2021




10.4 Some commonly used basis functions

® Piecewise triangular function

rA—‘x—xn
b(x)=1 A

0 otherwise

x[n—1]<x<x[n+1]

S a2 M x[n]<x<x[n+1]

0 otherwise

MoM by Prof. Rakhesh Singh Kshctrirnayum
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10.4 Some commonly used basis functions

® Piecewise sinusoidal function

b, (x) =+

rsin{k(A —‘x—xn‘)}
sin (kA)
0

x[n—1]<x<x[n+1]

otherwise

x[n—1]< x < x[n]

x[n]<x < x[n+1]

otherwise

* where A=I/N, assuming equal subintervals but it is not mandatory

and k is a constant

@ MoM by Prof. Rakhesh Singh Kshctrirnayum
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10.4 Some commonly used basis functions

(@) (b) (€)

® Fig. 10.5 Sub-domain basis functions (a) Piecewise constant
function (b) Piecewise triangular function (c) Piecewise
sinusoidal function
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10.4 Some commonly used basis functions

® Since the derivative of the pulse function is impulsive
* we cannot employ it for MoM problems
o where the linear operator L consists of derivatives
® Piecewise triangular and sinusoidal functions
* may be used for such kinds of problems
® Piecewise sinusoidal functions are generally used
e for analysis of wire antennas since

o they can approximate sinusoidal currents in the wire

antennas
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10.5 Wire Antennas and Scatterers

® For Piece-wise triangular and sinusoidal functions
® when we have N points in an interval
¢ we will have N-1 sub-sections and

e N-2 basis functions may be used

Programming exercise 2 (Homework)

e Plot the following entire domain and sub-domain basis

functions
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10.5 Wire Antennas and Scatterers
o Chebyshev function (order n=5)

O Legendre function (order n=3)
o Piece wise constant function
o Piece wise triangular function

o Piece wise sinusoidal function

10.5 Wire Antennas and Scatterers
* Consider application of MoM techniques

® to wire antennas and scatterers

MoM by Prof. Rakhesh Singh Kshctrimayum

1/8/2021




10.5 Wire Antennas and Scatterers

® Antennas can be distinguished from scatterers

® in terms of the location of the source

e [f the source is on the wire
® it is regarded as antenna
® When the wire is far from the source

® it acts as scatterer

* For the wire objects (antenna or scatterer)

® we require to know the current distribution accurately
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10.5 Wire Antennas and Scatterers

o Integral equations are derived and
® solved for this purpose
Wire antennas

® Feed Voltage to an antenna is known

® and the current distribution could be calculated

® other antenna parameters such as
® impedance,
® radiation pattern, etc.

® can be calculated

MoM by Prof. Rakhesh Singh Kshctrirnayum
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10.5 Wire Antennas and Scatterers

Wire scatterers
® Wave Impinges upon surface of a wire scatterer
® it induces current density
® which in turn is used to generate the scattered fields
* We will consider
¢ how to find the current distribution on a
¢ thin wire or

° cylindrical antenna

® using the MoM

MoM by Prof. Rakhesh Singh Kshctrirnayum
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10.5 Wire Antennas and Scatterers
10.5.1 Electric field integral equation (EFIE)

e On perfect electric conductor like metal

® the total tangential electric field is zero
* Centrally excited cylindrical antenna (Fig. 10.6)

® have two kinds of electric fields viz.,
¢ incident and

® scattered electric fields

Etot _ O — Einc _l_Escat _ 0 — Einc _ _Escat

tan tan tan tan tan
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® Fig. 10.6 A thin wire antenna of length L, radius a (a<<L)
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10.5 Wire Antennas and Scatterers

o where the E™ is the source or impressed field and
o FE*’ (canbe computed from the
® current density induced on the cylindrical wire antenna due to the

® incident or

° impressed field
10.5.2 Hallen’s and Pocklington's Integro—differential equation
® [ et us consider a perfectly conducting wire of

® length L and
® radius a such that a<<L and A, the wavelength corresponding to the

operating frequency
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10.5 Wire Antennas and Scatterers

® Consider the wire to be a hollow metal tube
® open at both ends
® [ et us assume that an incident wave fgir (7)

® impinges on the surface of a wire

® When the wire is an antenna

® the incident field is produced by the feed at the gap (see Fig.
10.6)

® The impressed field E™ s required

® to be known on the surface of the wire
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10.5 Wire Antennas and Scatterers

* Simplest excitation
® delta-gap excitation
® For delta gap excitation (assumption)
® excitation voltage at the feed terminal is constant and
® zero elsewhere
* Implies incident field
® constant over the feed gap and

® zero elsewhere

MoM by Prof. Rakhesh Singh Kshctrirnayum
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10.5 Wire Antennas and Scatterers

* 2V, (from +V to - V) voltage source applied
® across the feed gap 24,

® Incident field on the wire antenna can be expressed as !

AT
4
(v
XO, ‘Z‘ < A
E™ =< \ D
I 2A
0, A<|z]<= @
\ 2 /
. X
® Induced current den51ty
® due to the incident or impressed electric field % Y
o produces the scattered electric field  fgse« (7)
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10.5 Wire Antennas and Scatterers

® The total electric field is given by

Etot (’7) — Einc (7_;)+ Escat (I—;)

® Since the wire is assumed to be perfectly conducting,

° tangential component of the total electric field on the surface of

the wire is zero

® For a cylindrical wire placed along z-axis, we can write,

E"(F)=E" (F)+EX“(F)=0; on the wire antenna

_— / T
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10.5 Wire Antennas and Scatterers

e that is,
2?;an (i;) ::__Zéju:(i;)

¢ Find the electric field from the potential functions using

E=—jwd-VV
7 \

* Lorentz Gauge condition,

Ved= —jougEoV

MoM by Prof. Rakhesh Singh Kshctrirnayum
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10.5 Wire Antennas and Scatterers

® For a thin cylinder,

® current density considered to be independent of ¢

® whereis J.(z) the surface current density

® at a point on the conductor z

e skin depth of the perfect conductor is almost zero

® and therefore all the currents flow on the surface of the wire

MoM by Prof. Rakhesh Singh Kshetrimayum
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@ —>a<—
2a

* Fig. 10.7 Cylindrical conductor of radius a with surface current

density y (Z')(éj

m

® and its equivalence to the case of the conductor replaced by current

filament  1(z)=27aJ (z)(4) at a distance a from the z-axis
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10.5 Wire Antennas and Scatterers

The current | (z') may be assumed to be
a filamentary current located parallel to z-axis
at a distance a (a is a very small number) as shown in the Fig. 10.7
For the current flowing only in the z direction,
E,=—jwA, - i
Oz
From Lorentz Gauge conditionm
oA, _ ., T4 _ . o 1 54
Oz s oz’ s Oz Oz joue, 0z°
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10.5 Wire Antennas and Scatterers

® Therefore,

2A 1
. =jod +— -z i+
JOUE, aZ ]a)/uogo ]a)ﬂogo

® Magnetic vector potentlal can be expressed as

o IPor
ds

A, —,u()”J

S

* Putting the ], expression from (10.20), we have,

L/2 2x "\ = B
A= [ [P pagar

3,0 2rwa 4Arr

MoM by Prof. Rakhesh Singh Kshetrirnayum
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10.5 Wire Antennas and Scatterers

® where

MoM by Prof. Rakhesh Singh Kshetrirnayum
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10.5 Wire Antennas and Scatterers

® Therefore, we can write

L/2
A (p=a)= j 1(z)G(z,z )=
—L/2
® where
' 1 27re—jﬂor '
G(z,z)= d
(z,2) 272"[ Ar 4

0

o G(,7) is the field at the observation point caused by a unit

—

point source placed at 7
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10.5 Wire Antennas and Scatterers

® The fieldat 7 by asource distribution J(# ')

'

—

® is the integral of J (¥ ')G(F, V ') over the range of 7 occupied
by the source

® The function G is called the Green's function

®* We have,
2
[0 (P
E, =1 EZJ + Bz
(iaiOluf 0z
® and '
L/2 2r  —j
' 1 e JBor ' '
A(p=a)=4y | 1G)| 5= [ —d¢ gz
1 27 5 Anr
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10.5 Wire Antennas and Scatterers

® From the above two equations we can write, two equations:

(a) 1 az ) L/2 ' ' '
, [822+ ,30) [ 1(z)G(z.2)dz

-L/2

o This clectric ficld is the field due to current 1(z)
® [which results because of the impressed or source field] and

® this field can be written as the scattered field

® Therefore, (

1 82 L/2 ' ' '
E;caf — ( 3 -|-ﬁ02} I ](Z )G(Z,Z )dZ

joe, \ Oz i
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10.5 Wire Antennas and Scatterers

¢ Since from the EFIE on the surface of the wire,

E;cat(p:a):_E;'nc(p:a)

: ( R 2+ﬂ5] [ 1)G(z.2 )z =—E™(p=a)
YA

J &, _L/2

® This equation is called the Hallen's Integro—dyﬁrerential equation

® In this case, differential is outside the integral
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10.5 Wire Antennas and Scatterers

L/2 2
(b) E, =1 j (a+ B; Jl(z )G(z,z Yz
joe 0_7/» 027

e This electric field is the field due to current I(z)
® [which results because of the impressed or source field] and

® this field can be written as the scattered field

® Theref
eretore, ( p
E = j 1(z)G(z,z)dz
I ATANS
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10.5 Wire Antennas and Scatterers

® Since from EFIE on the surface of the wire,

lz;aﬁ (/? ::Cl) ::__lz:uf(/? ::CZ)

1 L/2 52 ' ' ' .
e | (7%]1(2 )G(z,2)dz = —E(p = a)
0 -L/2

® This equation is the Pocklington's Integro-differential equation
® In this case, the differential has moved inside the integral

* Richmond has simplified the above equation as follows:
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10.5 Wire Antennas and Scatterers

® (c) In cylindrical coordinates,

' 1\ 2 - _>12
e

cp=a.|p-pl=prad~25e 5 = pPrad~2pacos(p-4)

‘F—F":\/pz +a’ —2,0azcos(¢5—¢')+(z—Z')2

=>r

® Problem under analysis has cylindrical symmetry and
® observation for any valuesof ¢  won’t make any difference

® we may assume without loss of generality ¢ =0

® hence ¢-¢ =¢
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10.5 Wire Antennas and Scatterers

L/2 '\ 27 =
3 I(Z)Fe
A=y | | g

-L/2 0

2T

* where r:\/,02+c12—2,oacos(¢')—|r(z—z')2

2 _—jpor

e '
® and the inner integration I - d¢
0

® is also referred to as cylindrical wire kernel

: : : : ) \2
¢ Thin wire approximation reLlpt+ (z —z )

* If we assume a<<A and is very small, we have,

® Inner integrand is no more dependent on the variable

MoM by Prof. Rakhesh Singh Kshetrimayum

"

1/8/2021




10.5 Wire Antennas and Scatterers

® Therefore

L/2 N —7
] z e JBor
AZ - IUO I ( )

-L/2

dz

Ay

® Also called as thin wire approximation

® with the reduced kernel

¢ For this case, we can write

G(z,zv) =~ e = G(r)

Ay
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10.5 Wire Antennas and Scatterers

e Now in the light of this simplification of the magnetic vector

potential,
* we can simplify equation 10.29c¢ (see example 10.4) as
follows:
1 L/2 —JjBor

[ 1. . [(1+ jByr)(2r* =3a* )+ (Bar) ]dz' - _E"™(p=a)

jos,4r i

® This form of the Pocklington’s integro—differential is more
suitable for MoM formulation

® since it does not involve any differentiation.
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