10.3 Introductory examples from electrostatics

(c) We may write the above equations in matrix form as

$$
\left[\begin{array}{llll}
Z_{11} & Z_{12} & \ldots & Z_{1 N} \\
Z_{21} & Z_{22} & \ldots & Z_{2 N} \\
Z_{31} & Z_{32} & \ldots & Z_{3 N} \\
\vdots & \vdots & \ddots & \vdots \\
Z_{N 1} & Z_{N 2} & \ldots & Z_{N N}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3} \\
\vdots \\
I_{N}
\end{array}\right]=\left[\begin{array}{l}
V_{0} \\
V_{0} \\
V_{0} \\
\vdots \\
V_{0}
\end{array}\right] \Rightarrow\left[Z_{m n}\right]\left[I_{n}\right]=\left[V_{m}\right]
$$

- where $\quad\left[V_{m}\right]=\left[4 \pi \varepsilon_{0}\right]$

$$
\begin{aligned}
& Z_{m n}=\int_{0}^{l} \frac{b_{n}\left(y^{\prime}\right) d y^{\prime}}{\sqrt{\left(y_{m}-y^{\prime}\right)^{2}+a^{2}}}=\int_{y_{n-1}}^{y_{n}} \frac{d y^{\prime}}{\sqrt{\left(y_{m}-y^{\prime}\right)^{2}+a^{2}}} \\
& \cong \int_{y_{n-1}}^{y_{n}} \frac{d y^{\prime}}{\sqrt{\left(y_{m}-y^{\prime}\right)^{2}}}=\int_{y_{n-1}}^{y_{n}} \frac{d y^{\prime}}{y_{m}-y^{\prime}} \approx \frac{\Delta}{\left|y_{m}-y_{n}\right|} \quad \text { for } \quad m \neq n
\end{aligned}
$$

10.3 Introductory examples from electrostatics

- Special care for calculating the Z_{mn} for $\mathrm{m}=\mathrm{n}$ case
- since the expression for Z_{mn} is infinite for this case
- Extraction of this singularity
- Substitute $y_{m}-y^{\prime}=\xi \Rightarrow d \xi=-d y^{\prime}$

$$
\begin{aligned}
& Z_{m n}=-\int_{\Delta}^{0} \frac{d \xi}{\sqrt{(\xi)^{2}+a^{2}}}=\int_{0}^{\Delta} \frac{d \xi}{\sqrt{(\xi)^{2}+a^{2}}}=\left.\log \left(\xi+\sqrt{(\xi)^{2}+a^{2}}\right)\right|_{0} ^{\Delta} \\
& =\ln \left[\frac{\Delta+\sqrt{\Delta^{2}+a^{2}}}{a}\right]
\end{aligned}
$$

10.3 Introductory examples from electrostatics

- Self or diagonal terms are the
- most dominant elements in the [Z] matrix
- Note that linear geometry of this problem
- yields a matrix that is symmetric toeplitz, i.e.,

$$
\left[Z_{m n}\right]=\left[\begin{array}{cccc}
Z_{11} & Z_{12} & \cdots & Z_{1 N} \\
Z_{12} & Z_{11} & \cdots & Z_{1 N-1} \\
\hdashline & & \cdots & \cdot \\
Z_{1 N} & Z_{1 N-1} & \cdots & Z_{11}
\end{array}\right]
$$

10.3 Introductory examples from electrostatics

- All other rows are a rearranged version of the first row
- Required to calculate the first row of the matrix only
- Remaining elements can be obtained by the rearrangement formula:

$$
Z_{m n}=Z_{1,|m-n|+1}, \quad m \geq 2, \quad n \geq 1
$$

- Therefore the unknown [I] matrix could be solved as

$$
\left[I_{n}\right]=\left[Z_{m n}\right]^{-1}\left[V_{m}\right]
$$

- Fig. 10.3 (a) Convergence plot of Z_{11} and Z_{21} (b) Plot of line charge density of the wire (MATLAB program provided in the book)

10.3 Introductory examples from electrostatics

- Let us see the convergence of these two types of elements of the Z matrix say,
- Z_{11} and Z_{21}
- Fig. 10.3 (a) shows the convergence plot of two elements of the Z matrix
- for number of sub-sections varying from 5 to 100
- The graph of Z_{21} (dashed line) versus number of sub-sections is a straight line
- so any number of sub-sections between 5 and 100 should give the same result

10.3 Introductory examples from electrostatics

- But the graph of Z_{11} versus number of sub-sections is
- decreasing quite fast at the initial values of number of subsections and
- it is decreasing more slowly for larger values of number of subsections
- This shows that at
- higher values of number of sub-sections,
- we will get a more convergent result
- Choose the maximum number of sub-sections and
- plot the line charge density as depicted in the Fig. 10.3 (b)

10.3 Introductory examples from electrostatics

- See the condition number of the [Z] matrix in order to see
- whether the [Z] matrix is well-behaved or not
- The condition number of [Z] matrix
- (=7.1409) for maximum number of sub-sections is good
- No problem in taking the inverse
- Fig. 10.3 (b) line charge density is
- maximum at the two end points of the wire and
- minimum at the center of the wire
- 2-D Electrostatic case: Charge density of a square conducting plate discussed in the book

10.4 Some commonly used basis functions

- The weighted sum of basis functions is
- used to represent the unknown function in MoM
- Choose a basis function that reasonably approximates
- the unknown function over the given interval
- Basis functions commonly used in antenna or scattering problems are of two types:
- entire domain functions and
- sub-domain functions

10.4 Some commonly used basis functions

10.4.1 Entire domain basis functions

- The entire domain functions exist over the full domain
$-1 / 2<x<1 / 2$
- Some examples are:
- Fourier (is well known) $b_{n}(x)=\cos \left\{\left(\frac{n-1}{2}\right) \frac{2 x}{l}\right\}$
- Chebyshev (will discuss briefly) $b_{n}(x)=T_{2 n-2}\left(\frac{2 x}{l}\right)$
- Legendre (will discuss briefly) $\quad b_{n}(x)=P_{2 n-2}\left(\frac{2 x}{l}\right)$
- where $\mathrm{n}=1,2,3, \ldots, \mathrm{~N}$.

10.4 Some commonly used basis functions

- Chebyshev's differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0
$$

- where n is a real number
- Solutions Chebyshev functions of degree n
- n is a non-negative integer, i.e., $\mathrm{n}=0,1,2,3, \ldots$,
- the Chebyshev functions are called Chebyshev polynomials denoted by $\mathrm{T}_{\mathrm{n}}(\mathrm{x})$

10.4 Some commonly used basis functions

- A Chebyshev polynomial at one point can be
- expressed by neighboring Chebyshev polynomials at the same point

$$
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x) \quad T_{2}(x)=2 x T_{1}(x)-T_{0}(x)
$$

- where $\mathrm{T}_{0}(\mathrm{x})=1, \mathrm{~T}_{1}(\mathrm{x})=\mathrm{x}$
- Legendre's differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0
$$

- where n is a real number

10.4 Some commonly used basis functions

- Solutions of this equation are called Legendre functions of degree n
- When n is a non-negative integer, i.e., $\mathrm{n}=0,1,2,3, \ldots$,
- the Legendre functions are called Legendre polynomials denoted by $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$
- Legendre polynomial at one point can be
- expressed by neighboring Legendre polynomials at the same point

$$
(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x)
$$

- where $\mathrm{P}_{0}(\mathrm{x})=1, \mathrm{P}_{1}(\mathrm{x})=\mathrm{x}$

$$
2 P_{2}(x)=3 x P_{1}(x)-P_{0}(x)
$$

10.4 Some commonly used basis functions

- Disadvantage: entire domain basis function may not be applicable of any general problem
- Choose a particular basis function for a particular problem
- Crucial and only experts in the area could do it efficiently
- Developing a general purpose MoM based software,
- software for analyzing almost every problem in electromagnetics
- this is not feasible
- Sub-domain basis functions could achieve this purpose

10.4 Some commonly used basis functions

10.4.2 Sub-domain basis functions

- Sub-domain basis functions exist only on one of the N overlapping segments
- into which the domain is divided
- Some examples are:
- Piecewise constant function (pulse)

$$
b_{n}(x)=\left\{\begin{array}{cc}
1 & x[n-1]<x<x[n] \\
0 & \text { otherwise }
\end{array}\right.
$$

10.4 Some commonly used basis functions

- Piecewise triangular function

$$
\begin{aligned}
& b_{n}(x)=\left\{\begin{array}{cc}
\frac{\Delta-\left|x-x_{n}\right|}{\Delta} & x[n-1]<x<x[n+1] \\
0 & \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{cc}
\frac{x-x_{n-1}}{x_{n}-x_{n-1}} & x[n-1]<x<x[n] \\
\frac{x_{n+1}-x}{x_{n+1}-x_{n}} & x[n]<x<x[n+1] \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

10.4 Some commonly used basis functions

- Piecewise sinusoidal function

$$
\begin{aligned}
& b_{n}(x)=\left\{\begin{array}{cc}
\frac{\sin \left\{k\left(\Delta-\left|x-x_{n}\right|\right)\right\}}{\sin (k \Delta)} & x[n-1]<x<x[n+1] \\
0 & \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{cc}
\frac{\sin \left\{k\left(x-x_{n}\right)\right\}}{\sin \left\{k\left(x_{n}-x_{n-1}\right)\right\}} & x[n-1]<x<x[n] \\
\frac{\sin \left\{k\left(x_{n+1}-x\right)\right\}}{\sin \left\{k\left(x_{n}-x_{n-1}\right)\right\}} & x[n]<x<x[n+1] \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

- where $\Delta=\mathrm{l} / \mathrm{N}$, assuming equal subintervals but it is not mandatory and k is a constant

10.4 Some commonly used basis functions

(b)

(c)

- Fig. 10.5 Sub-domain basis functions (a) Piecewise constant function (b) Piecewise triangular function (c) Piecewise sinusoidal function

10.4 Some commonly used basis functions

- Since the derivative of the pulse function is impulsive
- we cannot employ it for MoM problems
o where the linear operator L consists of derivatives
- Piecewise triangular and sinusoidal functions
- may be used for such kinds of problems
- Piecewise sinusoidal functions are generally used
- for analysis of wire antennas since
- they can approximate sinusoidal currents in the wire antennas

10.5 Wire Antennas and Scatterers

- For Piece-wise triangular and sinusoidal functions
- when we have N points in an interval
- we will have $\mathrm{N}-1$ sub-sections and
- N-2 basis functions may be used

Programming exercise 2 (Homework)

- Plot the following entire domain and sub-domain basis functions

10.5 Wire Antennas and Scatterers

- Chebyshev function (order $\mathrm{n}=5$)
- Legendre function (order $\mathrm{n}=3$)
- Piece wise constant function
- Piece wise triangular function
- Piece wise sinusoidal function
10.5 Wire Antennas and Scatterers
- Consider application of MoM techniques
- to wire antennas and scatterers

10.5 Wire Antennas and Scatterers

- Antennas can be distinguished from scatterers
- in terms of the location of the source
- If the source is on the wire
- it is regarded as antenna
- When the wire is far from the source
- it acts as scatterer
- For the wire objects (antenna or scatterer)
- we require to know the current distribution accurately

10.5 Wire Antennas and Scatterers

- Integral equations are derived and
- solved for this purpose

Wire antennas

- Feed voltage to an antenna is known
- and the current distribution could be calculated
- other antenna parameters such as
- impedance,
- radiation pattern, etc.
- can be calculated

10.5 Wire Antennas and Scatterers

Wire scatterers

- Wave impinges upon surface of a wire scatterer
- it induces current density
- which in turn is used to generate the scattered fields
- We will consider
- how to find the current distribution on a
- thin wire or
- cylindrical antenna
- using the MoM

10.5 Wire Antennas and Scatterers

10.5.1 Electric field integral equation (EFIE)

- On perfect electric conductor like metal
- the total tangential electric field is zero
- Centrally excited cylindrical antenna (Fig. 10.6)
- have two kinds of electric fields viz.,
- incident and
- scattered electric fields

$$
\vec{E}_{\text {tan }}^{\text {tot }}=0 \Rightarrow \vec{E}_{\text {tan }}^{\text {inc }}+\vec{E}_{\text {tan }}^{\text {sact }}=0 \Rightarrow \vec{E}_{\text {tan }}^{\text {inc }}=-\vec{E}_{\text {tan }}^{\text {seat }}
$$

- Fig. 10.6 A thin wire antenna of length L , radius a ($\mathrm{a} \ll \mathrm{L}$) and feed gap 2 Δ

10.5 Wire Antennas and Scatterers

- where the $\vec{E}^{i n c}$ is the source or impressed field and
- $\vec{E}^{\text {scat }}$ can be computed from the
- current density induced on the cylindrical wire antenna due to the
- incident or
- impressed field
10.5.2 Hallen's and Pocklington's Integro-differential equation
- Let us consider a perfectly conducting wire of
- length L and
- radius a such that $\mathrm{a} \ll \mathrm{L}$ and λ, the wavelength corresponding to the operating frequency

10.5 Wire Antennas and Scatterers

- Consider the wire to be a hollow metal tube
- open at both ends
- Let us assume that an incident wave $\vec{E}^{\text {inc }}(\vec{r})$
- impinges on the surface of a wire
- When the wire is an antenna
- the incident field is produced by the feed at the gap (see Fig. 10.6)
- The impressed field $E_{z}^{i n c} \quad$ is required
- to be known on the surface of the wire

10.5 Wire Antennas and Scatterers

- Simplest excitation
- delta-gap excitation
- For delta gap excitation (assumption)
- excitation voltage at the feed terminal is constant and
- zero elsewhere
- Implies incident field
- constant over the feed gap and
- zero elsewhere

10.5 Wire Antennas and Scatterers

- $2 \mathrm{~V}_{0}$ (from $+\mathrm{V}_{0}$ to $-\mathrm{V}_{0}$) voltage source applied
- across the feed gap 2Δ,
- Incident field on the wire antenna can be expressed as

$$
\vec{E}_{z}^{\text {inc }}= \begin{cases}\frac{V_{0}}{\Delta} ; & |z|<\Delta \\ 0 ; & \Delta<|z|<\frac{L}{2}\end{cases}
$$

- Induced current density
- due to the incident or impressed electric field
- produces the scattered electric field $\vec{E}^{\text {scat }}(\vec{r})$

10.5 Wire Antennas and Scatterers

- The total electric field is given by

$$
\vec{E}^{\text {bot }}(\vec{r})=\vec{E}^{\text {inc }}(\vec{r})+\vec{E}^{\text {sat }}(\vec{r})
$$

- Since the wire is assumed to be perfectly conducting,
- tangential component of the total electric field on the surface of the wire is zero
- For a cylindrical wire placed along z-axis, we can write,

$$
\underset{\rightarrow}{\vec{E}_{z}^{\text {tot }}}(\vec{r})=\vec{E}_{z}^{\text {inc }}(\vec{r})+\vec{E}_{z}^{\text {scat }}(\vec{r})=0 ; \quad \text { on the wire antenna }
$$

10.5 Wire Antennas and Scatterers

- that is,

$$
\vec{E}_{z}^{\text {sat }}(\vec{r})=-\vec{E}_{z}^{\text {inc }}(\vec{r})
$$

- Find the electric field from the potential functions using

$$
\vec{E}=-j \omega \vec{A}-\nabla V^{0}
$$

- Lorentz Gauge condition,

$$
\nabla \bullet \vec{A}=-j \omega \mu_{0} \varepsilon_{0} V
$$

10.5 Wire Antennas and Scatterers

- For a thin cylinder,
- current density considered to be independent of ϕ

$$
J_{z}\left(z^{\prime}\right)=\frac{1}{2 \pi a} I\left(z^{\prime}\right)
$$

- where is $J_{z}\left(z^{\prime}\right)$ the surface current density
- at a point on the conductor z^{\prime}
- skin depth of the perfect conductor is almost zero
- and therefore all the currents flow on the surface of the wire

- Fig. 10.7 Cylindrical conductor of radius a with surface current density

$$
J_{z}\left(z^{\prime}\right)\left(\frac{A}{m}\right)
$$

- and its equivalence to the case of the conductor replaced by current filament $\quad I\left(z^{\prime}\right)=2 \pi a J_{z}\left(z^{\prime}\right)(A) \quad$ at a distance a from the z -axis

10.5 Wire Antennas and Scatterers

- The current $I\left(z^{\prime}\right)$ may be assumed to be
- a filamentary current located parallel to z-axis
- at a distance a (a is a very small number) as shown in the Fig. 10.7
- For the current flowing only in the z direction,

$$
E_{z}=-j \omega A_{z}-\frac{\partial V}{\partial z}
$$

- From Lorentz Gauge condition for time harmonic case,

$$
\frac{\partial A_{z}}{\partial z}=-j \omega \mu_{0} \varepsilon_{0} V \Rightarrow \frac{\partial^{2} A_{z}}{\partial z^{2}}=-j \omega \mu_{0} \varepsilon_{0} \frac{\partial V}{\partial z} \Rightarrow-\frac{\partial V}{\partial z}=\frac{1}{j \omega \mu_{0} \varepsilon_{0}} \frac{\partial^{2} A_{z}}{\partial z^{2}}
$$

10.5 Wire Antennas and Scatterers

- Therefore,
$E_{z}=-j \omega A_{z}+\frac{1}{j \omega \mu_{0} \varepsilon_{0}} \frac{\partial^{2} A_{z}}{\partial z^{2}}=\frac{1}{j \omega \mu_{0} \varepsilon_{0}}\left(\omega^{2} \mu_{0} \varepsilon_{0} A_{z}+\frac{\partial^{2} A_{z}}{\partial z^{2}}\right)=\frac{1}{j \omega \mu_{0} \varepsilon_{0}}\left(\beta_{0}^{2} A_{z}+\frac{\partial^{2} A_{z}}{\partial z^{2}}\right)$
- Magnetic vector potential can be expressed as

$$
A_{z}=\mu_{0} \iint_{s} J_{z} \frac{e^{-j \beta_{0} r}}{4 \pi r} d s^{\prime}
$$

- Putting the J_{z} expression from (10.20), we have,

$$
A_{z}=\mu_{0} \int_{-L / 2}^{L / 2} \int_{0}^{2 \pi} \frac{I\left(z^{\prime}\right)}{2 \pi a} \frac{e^{-j \beta_{0} r}}{4 \pi r} a d \phi^{\prime} d z^{\prime}
$$

10.5 Wire Antennas and Scatterers

- where

$$
r=\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}
$$

- For $\rho=\mathrm{a}$

$$
A_{z}(\rho=a)=\mu_{0} \int_{-L / 2}^{L / 2} I\left(z^{\prime}\right) \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{-j \beta_{0} r^{\prime}}}{4 \pi r} d \phi^{\prime} d z^{\prime}
$$

- where

$$
r(\rho=a)=\sqrt{4 a^{2} \sin ^{2}\left(\frac{\varphi^{\prime}}{2}\right)+\left(z-z^{\prime}\right)^{2}}
$$

10.5 Wire Antennas and Scatterers

- Therefore, we can write

$$
A_{z}(\rho=a)=\mu_{0} \int_{-L / 2}^{L / 2} I\left(z^{\prime}\right) G\left(z, z^{\prime}\right) d z^{\prime}
$$

- where

$$
G\left(z, z^{\prime}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{-j \beta_{0} r}}{4 \pi r} d \phi^{\prime}
$$

- $G\left(\vec{r}, \vec{r}^{\prime}\right)$ is the field at the observation point caused by a unit point source placed at $\quad \vec{r}^{\prime}$

10.5 Wire Antennas and Scatterers

- The field at \vec{r} by a source distribution $J\left(\vec{r}^{\prime}\right)$
- is the integral of $J\left(\vec{r}^{\prime}\right) G\left(\vec{r}, \vec{r}^{\prime}\right)$ over the range of \vec{r}^{\prime} occupied by the source
- The function G is called the Green's function
- We have,
- and

$$
E_{z}=\frac{1}{j \omega \varepsilon_{0} \mu_{0}}\left(\frac{\partial^{2}}{\partial z^{2}}+A_{z}^{2} A_{z}\right)
$$

$$
A_{z}(\rho=a)=\mu_{0}^{L / 2} I\left(z^{\prime}\right)\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{-j \beta_{0_{0}} r}}{4 \pi r} d \phi^{\prime}\right) d z^{\prime}
$$

10.5 Wire Antennas and Scatterers

- From the above two equations we can write, two equations:
(a)

$$
E_{z}=\frac{1}{j \omega \varepsilon_{0}}\left(\frac{\partial^{2}}{\partial z^{2}}+\beta_{0}^{2}\right)_{-L / 2}^{L / 2} I\left(z^{\prime}\right) G\left(z, z^{\prime}\right) d z^{\prime}
$$

- This electric field is the field due to current $I\left(z^{\prime}\right)$
- [which results because of the impressed or source field] and
- this field can be written as the scattered field
- Therefore,

$$
E_{z}^{s \text { sat }}=\frac{1}{j \omega \varepsilon_{0}}\left(\frac{\partial^{2}}{\partial z^{2}}+\beta_{0}^{2}\right) \int_{-L / 2}^{L / 2} I\left(z^{\prime}\right) G\left(z, z^{\prime}\right) d z^{\prime}
$$

10.5 Wire Antennas and Scatterers

- Since from the EFIE on the surface of the wire,

$$
\begin{aligned}
& E_{z}^{\text {scat }}(\rho=a)=-E_{z}^{i n c}(\rho=a) \\
& \frac{1}{j \omega \varepsilon_{0}}\left(\frac{\partial^{2}}{\partial z^{2}}+\beta_{0}^{2}\right)_{-L / 2}^{L / 2} I\left(z^{\prime}\right) G\left(z, z^{\prime}\right) d z^{\prime}=-E_{z}^{i n c}(\rho=a)
\end{aligned}
$$

- This equation is called the Hallen's Integro-differential equation
- In this case, differential is outside the integral

10.5 Wire Antennas and Scatterers

(b)

$$
E_{z}=\frac{1}{j \omega \varepsilon_{0}} \int_{-L / 2}^{L / 2}\left(\frac{\partial^{2}}{\partial z^{2}}+\beta_{0}^{2}\right) I\left(z^{\prime}\right) G\left(z, z^{\prime}\right) d z^{\prime}
$$

- This electric field is the field due to current $I\left(z^{\prime}\right)$
- [which results because of the impressed or source field] and
- this field can be written as the scattered field
- Therefore,

$$
E_{z}^{\text {sat }}=\frac{1}{j \omega \varepsilon_{0}} \int_{-L / 2}^{L / 2}\left(\frac{\partial^{2}}{\partial z^{2}}+\beta_{0}^{2}\right) I\left(z^{\prime}\right) G\left(z, z^{\prime}\right) d z^{\prime}
$$

10.5 Wire Antennas and Scatterers

- Since from EFIE on the surface of the wire,

$$
\begin{aligned}
& E_{z}^{\text {scat }}(\rho=a)=-E_{z}^{\text {inc }}(\rho=a) \\
& \frac{1}{j \omega \varepsilon_{0}} \int_{-L / 2}^{L / 2}\left(\frac{\partial^{2}}{\partial z^{2}}+\beta_{0}^{2}\right) I\left(z^{\prime}\right) G\left(z, z^{\prime}\right) d z^{\prime}=-E_{z}^{\text {inc }}(\rho=a)
\end{aligned}
$$

- This equation is the Pocklington's Integro-differential equation
- In this case, the differential has moved inside the integral
- Richmond has simplified the above equation as follows:

10.5 Wire Antennas and Scatterers

- (c) In cylindrical coordinates,

$$
\begin{gathered}
r=\left|\vec{r}-\vec{r}^{\prime}\right|=\left|\sqrt{\left(z-z^{\prime}\right)^{2}+\left|\vec{\rho}-\vec{\rho}^{\prime}\right|^{2}}\right| \\
\because \rho^{\prime}=a \therefore\left|\vec{\rho}-\vec{\rho}^{\prime}\right|=\rho^{2}+a^{2}-2 \vec{\rho} \bullet \vec{\rho}^{\prime}=\rho^{2}+a^{2}-2 \rho a \cos \left(\phi-\phi^{\prime}\right) \\
\Rightarrow r=\left|\vec{r}-\vec{r}^{\prime}\right|=\sqrt{\rho^{2}+a^{2}-2 \rho a \cos \left(\phi-\phi^{\prime}\right)+\left(z-z^{\prime}\right)^{2}}
\end{gathered}
$$

- Problem under analysis has cylindrical symmetry and
- observation for any values of ϕ won't make any difference
- we may assume without loss of generality $\phi=0$
- hence $\phi-\phi^{\prime}=\phi^{\prime}$

10.5 Wire Antennas and Scatterers

$$
A_{z}=\mu_{0} \int_{-L / 2}^{L / 2} \frac{I\left(z^{\prime}\right)}{2 \pi} \int_{0}^{2 \pi} \frac{e^{-j \beta_{0} r}}{4 \pi r} d \phi^{\prime} d z^{\prime}
$$

- where $r=\sqrt{\rho^{2}+a^{2}-2 \rho a \cos \left(\phi^{\prime}\right)+\left(z-z^{\prime}\right)^{2}}$
- and the inner integration $\int_{0}^{2 \pi} \frac{e^{-j \beta_{0} r}}{4 \pi r} d \phi^{\prime}$
- is also referred to as cylindrical wire kernel
- Thin wire approximation

$$
r \cong \sqrt{\rho^{2}+\left(z-z^{\prime}\right)^{2}}
$$

- If we assume $\mathrm{a} \ll \boldsymbol{\lambda}$ and is very small, we have,
- Inner integrand is no more dependent on the variable

10.5 Wire Antennas and Scatterers

- Therefore

$$
A_{z}=\mu_{0} \int_{-L / 2}^{L / 2} \frac{I\left(z^{\prime}\right) e^{-j \beta_{0} r}}{4 \pi r} d z^{\prime}
$$

- Also called as thin wire approximation
- with the reduced kernel
- For this case, we can write

$$
G\left(z, z^{\prime}\right) \cong \frac{e^{-j \beta_{0} r}}{4 \pi r}=G(r)
$$

10.5 Wire Antennas and Scatterers

- Now in the light of this simplification of the magnetic vector potential,
- we can simplify equation 10.29 ((see example 10.4) as follows:

$$
\frac{1}{j \omega \varepsilon_{0} 4 \pi} \int_{-L / 2}^{L / 2} I_{z}\left(z^{\prime}\right) \frac{e^{-j \beta_{0} r}}{r^{5}}\left[\left(1+j \beta_{0} r\right)\left(2 r^{2}-3 a^{2}\right)+\left(\beta_{0} a r\right)^{2}\right] d z^{\prime}=-E_{z}^{i n c}(\rho=a)
$$

- This form of the Pocklington's integro-differential is more suitable for MoM formulation
- since it does not involve any differentiation.

