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(c) We may write the above equations in matrix form as

 where 
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 Special care for calculating the Zmn for m=n case 
 since the expression for Zmn is infinite for this case

 Extraction of this singularity
 Substitute ' '

my y d dy     
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 Self or diagonal terms are the 
 most dominant elements in the [Z] matrix

 Note that linear geometry of this problem 
 yields a matrix that is symmetric toeplitz, i.e.,
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 All other rows are a rearranged version of the first row
 Required to calculate the first row of the matrix only
 Remaining elements can be obtained by the rearrangement 

formula:

 Therefore the unknown [I] matrix could be solved as

1, 1, 2, 1mn m nZ Z m n   

     mmnn VZI 1
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 Fig. 10.3 (a) Convergence plot of Z11 and Z21 (b) Plot of line charge density of 
the wire (MATLAB program provided in the book)
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 Let us see the convergence of these two types of elements of 
the Z matrix say, 
 Z11 and Z21

 Fig. 10.3 (a) shows the convergence plot of two elements of 
the Z matrix 
 for number of sub-sections varying from 5 to 100

 The graph of Z21 (dashed line) versus number of sub-sections 
is a straight line 
 so any number of sub-sections between 5 and 100 should give 

the same result 
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 But the graph of Z11 versus number of sub-sections is 
 decreasing quite fast at the initial values of number of sub-

sections and 
 it is decreasing more slowly for larger values of number of sub-

sections

 This shows that at 
 higher values of number of sub-sections, 
 we will get a more convergent result

 Choose the maximum number of sub-sections and 
 plot the line charge density as depicted in the Fig. 10.3 (b)
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 See the condition number of the [Z] matrix in order to see 
 whether the [Z] matrix is well-behaved or not

 The condition number of [Z] matrix 
 (=7.1409) for maximum number of sub-sections is good

 No problem in taking the inverse
 Fig. 10.3 (b) line charge density is 

 maximum at the two end points of the wire and 
 minimum at the center of the wire 

 2-D Electrostatic case: Charge density of a square conducting 
plate discussed in the book
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 The weighted sum of basis functions is 
 used to represent the unknown function in MoM

 Choose a basis function that reasonably approximates 
 the unknown function over the given interval

 Basis functions commonly used in antenna or scattering 
problems are of two types: 
 entire domain functions and 
 sub-domain functions 
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10.4.1 Entire domain basis functions
 The entire domain functions exist over the full domain 
-l/2<x<l/2
 Some examples are:
 Fourier (is well known)

 Chebyshev (will discuss briefly)  

 Legendre (will discuss briefly)
 where n=1,2,3,…,N.  
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 Chebyshev's differential equation

 where n is a real number
 Solutions Chebyshev functions of degree n
 n is a non-negative integer, i.e., n=0,1,2,3,…, 

 the Chebyshev functions are called Chebyshev polynomials 
denoted by Tn(x)

  01 2'''2  ynxyyx
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 A Chebyshev polynomial at one point can be 
 expressed by neighboring Chebyshev polynomials at the same 

point

 whereT0(x)=1, T1(x)=x
 Legendre's differential equation

 where n is a real number

     xTxxTxT nnn 11 2  

    0121 '''2  ynnxyyx

     xTxxTxT 012 2 
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 Solutions of this equation are called Legendre functions of 
degree n

 When n is a non-negative integer, i.e., n=0,1,2,3,…, 
 the Legendre functions are called Legendre polynomials denoted 

by Pn(x)

 Legendre polynomial at one point can be 
 expressed by neighboring Legendre polynomials at the same point

 where P0(x)=1, P1(x)=x

         xnPxxPnxPn nnn 11 121  

     xPxxPxP 012 32 
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 Disadvantage: entire domain basis function may not be 
applicable of any general problem
 Choose a particular basis function for a particular problem 
 Crucial and only experts in the area could do it efficiently

 Developing a general purpose MoM based software, 
 software for analyzing almost every problem in 

electromagnetics
 this is not feasible

 Sub-domain basis functions could achieve this purpose
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10.4.2 Sub-domain basis functions
 Sub-domain basis functions exist only on one of the N 

overlapping segments 
 into which the domain is divided

 Some examples are:
 Piecewise constant function (pulse) 
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 Piecewise triangular function
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 Piecewise sinusoidal function

 where Δ=l/N, assuming equal subintervals but it is not mandatory 
and k is a constant 
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 Fig. 10.5 Sub-domain basis functions (a) Piecewise constant 
function (b) Piecewise triangular function (c) Piecewise 
sinusoidal function 
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 Since the derivative of the pulse function is impulsive
 we cannot employ it for MoM problems 

o where the linear operator L consists of derivatives
 Piecewise triangular and sinusoidal functions 
 may be used for such kinds of problems

 Piecewise sinusoidal functions are generally used 
 for analysis of wire antennas since 
 they can approximate sinusoidal currents in the wire 

antennas
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 For Piece-wise triangular and sinusoidal functions 
 when we have N points in an interval
 we will have N-1 sub-sections and 
 N-2 basis functions may be used 

Programming exercise 2 (Homework)
 Plot the following entire domain and sub-domain basis 

functions
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o Chebyshev function (order n=5)
o Legendre function (order n=3)
o Piece wise constant function
o Piece wise triangular function
o Piece wise sinusoidal function

10.5 Wire Antennas and Scatterers
 Consider application of MoM techniques 
 to wire antennas and scatterers
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 Antennas can be distinguished from scatterers
 in terms of the location of the source

 If the source is on the wire
 it is regarded as antenna

 When the wire is far from the source 
 it acts as scatterer

 For the wire objects (antenna or scatterer) 
 we require to know the current distribution accurately
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 Integral equations are derived and 
 solved for this purpose

Wire antennas
 Feed voltage to an antenna is known 

 and the current distribution could be calculated 

 other antenna parameters such as 
 impedance, 
 radiation pattern, etc. 

 can be calculated
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Wire scatterers
 Wave impinges upon surface of a wire scatterer

 it induces current density
 which in turn is used to generate the scattered fields

 We will consider 
 how to find the current distribution on a 

 thin wire or 
 cylindrical antenna 

 using the MoM



10.5 Wire Antennas and Scatterers

1/8/2021MoM by Prof. Rakhesh Singh Kshetrimayum73

10.5.1 Electric field integral equation (EFIE)
 On perfect electric conductor like metal

 the total tangential electric field is zero

 Centrally excited cylindrical antenna (Fig. 10.6) 
 have two kinds of electric fields viz., 

 incident and 
 scattered electric fields

t
tan tan tan tan tan0 0ot inc scat inc scatE E E E E      
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 Fig. 10.6 A thin wire antenna of length L, radius a (a<<L) 
and feed gap 2Δ

2
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 where the  is the source or impressed field and  
 can be computed from the 
 current density induced on the cylindrical wire antenna due to the 

 incident or 
 impressed field

10.5.2 Hallen’s and Pocklington's Integro-differential equation
 Let us consider a perfectly conducting wire of 

 length L and 
 radius a such that a<<L and λ, the wavelength corresponding to the 

operating frequency

incE


scatE
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 Consider the wire to be a hollow metal tube 
 open at both ends

 Let us assume that an incident wave  
 impinges on the surface of a wire

 When the wire is an antenna
 the incident field is produced by the feed at the gap (see Fig. 

10.6)

 The impressed field              is required 
 to be known on the surface of the wire

 incE r
 

inc
zE
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 Simplest excitation
 delta-gap excitation

 For delta gap excitation (assumption) 
 excitation voltage at the feed terminal is constant and 
 zero elsewhere

 Implies incident field
 constant over the feed gap and 
 zero elsewhere
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 2V0 (from + V0 to -V0) voltage source applied 
 across the feed gap 2Δ,

 Incident field on the wire antenna can be expressed as

 Induced current density 
 due to the incident or impressed electric field 

 produces the scattered electric field

0 ;
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 The total electric field is given by

 Since the wire is assumed to be perfectly conducting,
 tangential component of the total electric field on the surface of 

the wire is zero

 For a cylindrical wire placed along z-axis, we can write,

     tot inc scatE r E r E r 
    

      0;tot inc scat
z z zE r E r E r on the wire antenna  
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 that is, 

 Find the electric field from the potential functions using

 Lorentz Gauge condition,

   scat inc
z zE r E r 
  

VAjE 




VjA 00
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 For a thin cylinder, 
 current density considered to be independent of

 where is             the surface current density 
 at a point  on the conductor

 skin depth of the perfect conductor is almost zero 
 and therefore all the currents flow on the surface of the wire
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 Fig. 10.7 Cylindrical conductor of radius a with surface current 
density  

 and its equivalence to the case of the conductor replaced by current 
filament                                             at a distance a from the z-axis
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 The current             may be assumed to be 
 a filamentary current located parallel to z-axis
 at a distance a (a is a very small number) as shown in the Fig. 10.7
 For the current flowing only in the z direction, 

 From Lorentz Gauge condition for time harmonic case,
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 Therefore,

 Magnetic vector potential can be expressed as

 Putting the Jz expression from (10.20), we have,
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 where

 For ρ =a

 where 
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 Therefore, we can write 

 where 

 is the field at the observation point caused by a unit 
point source placed at          
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 The field at         by a source distribution           
 is the integral of                       over the range of        occupied 

by the source

 The function G is called the Green's function
 We have,
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 From the above two equations we can write, two equations: 
(a)

 This electric field is the field due to current               
 [which results because of the impressed or source field] and 
 this field can be written as the scattered field

 Therefore, 
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 Since from the EFIE on the surface of the wire,

 This equation is called the Hallen's Integro-differential equation

 In this case, differential is outside the integral
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(b)

 This electric field is the field due to current  
 [which results because of the impressed or source field] and 
 this field can be written as the scattered field

 Therefore, 
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 Since from EFIE on the surface of the wire,

 This equation is the Pocklington's Integro-differential equation

 In this case, the differential has moved inside the integral
 Richmond has simplified the above equation as follows:   
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 (c) In cylindrical coordinates, 

 Problem under analysis has cylindrical symmetry and 
 observation for any values of            won’t make any difference 
 we may assume  without loss of generality
 hence 
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 where 

 and the inner integration  
 is also referred to as cylindrical wire kernel

 Thin wire approximation

 If we assume a<<λ and is very small, we have, 
 Inner integrand is no more dependent on the variable
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 Therefore

 Also called as thin wire approximation 
 with the reduced kernel

 For this case, we can write
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 Now in the light of this simplification of the magnetic vector 
potential, 

 we can simplify equation 10.29c (see example 10.4) as 
follows:

 This form of the Pocklington’s integro-differential is more 
suitable for MoM formulation 
 since it does not involve any differentiation.
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