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(c) We may write the above equations in matrix form as

 where 
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 Special care for calculating the Zmn for m=n case 
 since the expression for Zmn is infinite for this case

 Extraction of this singularity
 Substitute ' '
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 Self or diagonal terms are the 
 most dominant elements in the [Z] matrix

 Note that linear geometry of this problem 
 yields a matrix that is symmetric toeplitz, i.e.,
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 All other rows are a rearranged version of the first row
 Required to calculate the first row of the matrix only
 Remaining elements can be obtained by the rearrangement 

formula:

 Therefore the unknown [I] matrix could be solved as

1, 1, 2, 1mn m nZ Z m n   

     mmnn VZI 1
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 Fig. 10.3 (a) Convergence plot of Z11 and Z21 (b) Plot of line charge density of 
the wire (MATLAB program provided in the book)
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 Let us see the convergence of these two types of elements of 
the Z matrix say, 
 Z11 and Z21

 Fig. 10.3 (a) shows the convergence plot of two elements of 
the Z matrix 
 for number of sub-sections varying from 5 to 100

 The graph of Z21 (dashed line) versus number of sub-sections 
is a straight line 
 so any number of sub-sections between 5 and 100 should give 

the same result 
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 But the graph of Z11 versus number of sub-sections is 
 decreasing quite fast at the initial values of number of sub-

sections and 
 it is decreasing more slowly for larger values of number of sub-

sections

 This shows that at 
 higher values of number of sub-sections, 
 we will get a more convergent result

 Choose the maximum number of sub-sections and 
 plot the line charge density as depicted in the Fig. 10.3 (b)
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 See the condition number of the [Z] matrix in order to see 
 whether the [Z] matrix is well-behaved or not

 The condition number of [Z] matrix 
 (=7.1409) for maximum number of sub-sections is good

 No problem in taking the inverse
 Fig. 10.3 (b) line charge density is 

 maximum at the two end points of the wire and 
 minimum at the center of the wire 

 2-D Electrostatic case: Charge density of a square conducting 
plate discussed in the book
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 The weighted sum of basis functions is 
 used to represent the unknown function in MoM

 Choose a basis function that reasonably approximates 
 the unknown function over the given interval

 Basis functions commonly used in antenna or scattering 
problems are of two types: 
 entire domain functions and 
 sub-domain functions 
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10.4.1 Entire domain basis functions
 The entire domain functions exist over the full domain 
-l/2<x<l/2
 Some examples are:
 Fourier (is well known)

 Chebyshev (will discuss briefly)  

 Legendre (will discuss briefly)
 where n=1,2,3,…,N.  
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 Chebyshev's differential equation

 where n is a real number
 Solutions Chebyshev functions of degree n
 n is a non-negative integer, i.e., n=0,1,2,3,…, 

 the Chebyshev functions are called Chebyshev polynomials 
denoted by Tn(x)

  01 2'''2  ynxyyx



10.4 Some commonly used basis functions

1/8/2021MoM by Prof. Rakhesh Singh Kshetrimayum60

 A Chebyshev polynomial at one point can be 
 expressed by neighboring Chebyshev polynomials at the same 

point

 whereT0(x)=1, T1(x)=x
 Legendre's differential equation

 where n is a real number

     xTxxTxT nnn 11 2  
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     xTxxTxT 012 2 



10.4 Some commonly used basis functions

1/8/2021MoM by Prof. Rakhesh Singh Kshetrimayum61

 Solutions of this equation are called Legendre functions of 
degree n

 When n is a non-negative integer, i.e., n=0,1,2,3,…, 
 the Legendre functions are called Legendre polynomials denoted 

by Pn(x)

 Legendre polynomial at one point can be 
 expressed by neighboring Legendre polynomials at the same point

 where P0(x)=1, P1(x)=x

         xnPxxPnxPn nnn 11 121  

     xPxxPxP 012 32 
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 Disadvantage: entire domain basis function may not be 
applicable of any general problem
 Choose a particular basis function for a particular problem 
 Crucial and only experts in the area could do it efficiently

 Developing a general purpose MoM based software, 
 software for analyzing almost every problem in 

electromagnetics
 this is not feasible

 Sub-domain basis functions could achieve this purpose
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10.4.2 Sub-domain basis functions
 Sub-domain basis functions exist only on one of the N 

overlapping segments 
 into which the domain is divided

 Some examples are:
 Piecewise constant function (pulse) 
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 Piecewise triangular function
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 Piecewise sinusoidal function

 where Δ=l/N, assuming equal subintervals but it is not mandatory 
and k is a constant 
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 Fig. 10.5 Sub-domain basis functions (a) Piecewise constant 
function (b) Piecewise triangular function (c) Piecewise 
sinusoidal function 
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 Since the derivative of the pulse function is impulsive
 we cannot employ it for MoM problems 

o where the linear operator L consists of derivatives
 Piecewise triangular and sinusoidal functions 
 may be used for such kinds of problems

 Piecewise sinusoidal functions are generally used 
 for analysis of wire antennas since 
 they can approximate sinusoidal currents in the wire 

antennas
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 For Piece-wise triangular and sinusoidal functions 
 when we have N points in an interval
 we will have N-1 sub-sections and 
 N-2 basis functions may be used 

Programming exercise 2 (Homework)
 Plot the following entire domain and sub-domain basis 

functions
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o Chebyshev function (order n=5)
o Legendre function (order n=3)
o Piece wise constant function
o Piece wise triangular function
o Piece wise sinusoidal function

10.5 Wire Antennas and Scatterers
 Consider application of MoM techniques 
 to wire antennas and scatterers
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 Antennas can be distinguished from scatterers
 in terms of the location of the source

 If the source is on the wire
 it is regarded as antenna

 When the wire is far from the source 
 it acts as scatterer

 For the wire objects (antenna or scatterer) 
 we require to know the current distribution accurately
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 Integral equations are derived and 
 solved for this purpose

Wire antennas
 Feed voltage to an antenna is known 

 and the current distribution could be calculated 

 other antenna parameters such as 
 impedance, 
 radiation pattern, etc. 

 can be calculated
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Wire scatterers
 Wave impinges upon surface of a wire scatterer

 it induces current density
 which in turn is used to generate the scattered fields

 We will consider 
 how to find the current distribution on a 

 thin wire or 
 cylindrical antenna 

 using the MoM
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10.5.1 Electric field integral equation (EFIE)
 On perfect electric conductor like metal

 the total tangential electric field is zero

 Centrally excited cylindrical antenna (Fig. 10.6) 
 have two kinds of electric fields viz., 

 incident and 
 scattered electric fields

t
tan tan tan tan tan0 0ot inc scat inc scatE E E E E      
    
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 Fig. 10.6 A thin wire antenna of length L, radius a (a<<L) 
and feed gap 2Δ

2
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 where the  is the source or impressed field and  
 can be computed from the 
 current density induced on the cylindrical wire antenna due to the 

 incident or 
 impressed field

10.5.2 Hallen’s and Pocklington's Integro-differential equation
 Let us consider a perfectly conducting wire of 

 length L and 
 radius a such that a<<L and λ, the wavelength corresponding to the 

operating frequency

incE


scatE
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 Consider the wire to be a hollow metal tube 
 open at both ends

 Let us assume that an incident wave  
 impinges on the surface of a wire

 When the wire is an antenna
 the incident field is produced by the feed at the gap (see Fig. 

10.6)

 The impressed field              is required 
 to be known on the surface of the wire

 incE r
 

inc
zE
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 Simplest excitation
 delta-gap excitation

 For delta gap excitation (assumption) 
 excitation voltage at the feed terminal is constant and 
 zero elsewhere

 Implies incident field
 constant over the feed gap and 
 zero elsewhere
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 2V0 (from + V0 to -V0) voltage source applied 
 across the feed gap 2Δ,

 Incident field on the wire antenna can be expressed as

 Induced current density 
 due to the incident or impressed electric field 

 produces the scattered electric field
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 The total electric field is given by

 Since the wire is assumed to be perfectly conducting,
 tangential component of the total electric field on the surface of 

the wire is zero

 For a cylindrical wire placed along z-axis, we can write,

     tot inc scatE r E r E r 
    

      0;tot inc scat
z z zE r E r E r on the wire antenna  
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 that is, 

 Find the electric field from the potential functions using

 Lorentz Gauge condition,

   scat inc
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 For a thin cylinder, 
 current density considered to be independent of

 where is             the surface current density 
 at a point  on the conductor

 skin depth of the perfect conductor is almost zero 
 and therefore all the currents flow on the surface of the wire
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 Fig. 10.7 Cylindrical conductor of radius a with surface current 
density  

 and its equivalence to the case of the conductor replaced by current 
filament                                             at a distance a from the z-axis
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 The current             may be assumed to be 
 a filamentary current located parallel to z-axis
 at a distance a (a is a very small number) as shown in the Fig. 10.7
 For the current flowing only in the z direction, 

 From Lorentz Gauge condition for time harmonic case,
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 Therefore,

 Magnetic vector potential can be expressed as

 Putting the Jz expression from (10.20), we have,
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 where

 For ρ =a

 where 
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 Therefore, we can write 

 where 

 is the field at the observation point caused by a unit 
point source placed at          
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 The field at         by a source distribution           
 is the integral of                       over the range of        occupied 

by the source

 The function G is called the Green's function
 We have,

 and 
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 From the above two equations we can write, two equations: 
(a)

 This electric field is the field due to current               
 [which results because of the impressed or source field] and 
 this field can be written as the scattered field

 Therefore, 
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 Since from the EFIE on the surface of the wire,

 This equation is called the Hallen's Integro-differential equation

 In this case, differential is outside the integral

   scat inc
z zE a E a    

/ 22
2 ' ' '
02

0 / 2

1
( ) ( , ) ( )

L
inc
z

L

I z G z z dz E a
j z

 
 

 
     





10.5 Wire Antennas and Scatterers

1/8/2021MoM by Prof. Rakhesh Singh Kshetrimayum90

(b)

 This electric field is the field due to current  
 [which results because of the impressed or source field] and 
 this field can be written as the scattered field

 Therefore, 
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 Since from EFIE on the surface of the wire,

 This equation is the Pocklington's Integro-differential equation

 In this case, the differential has moved inside the integral
 Richmond has simplified the above equation as follows:   
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 (c) In cylindrical coordinates, 

 Problem under analysis has cylindrical symmetry and 
 observation for any values of            won’t make any difference 
 we may assume  without loss of generality
 hence 
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 where 

 and the inner integration  
 is also referred to as cylindrical wire kernel

 Thin wire approximation

 If we assume a<<λ and is very small, we have, 
 Inner integrand is no more dependent on the variable
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 Therefore

 Also called as thin wire approximation 
 with the reduced kernel

 For this case, we can write
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 Now in the light of this simplification of the magnetic vector 
potential, 

 we can simplify equation 10.29c (see example 10.4) as 
follows:

 This form of the Pocklington’s integro-differential is more 
suitable for MoM formulation 
 since it does not involve any differentiation.
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