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 Finite element analysis of vector fields
 FEM can be extended to deal BVP involving vector fields
 It is very important for electrodynamic problems 

 which deal with vector electromagnetic fields

 BVP:

 Consider the problem of finding the electric field intensity 

 due to impressed electric current density in a domain 
 characterized by permittivity and permeability 

 To calculate we need to solve Maxwell’s equations
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 (1)



 ೡ



 subject to certain BCs

 In first equation divide by we have


ೝ
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


ೝ





 in 


ೝ

 we have


ೝ
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
ೝ


ೝ

 where ଴
ଶ ଶ

଴ ଴, ଴
ఓబ

ఢబ

  and 

 hence   బ

బ

 

 So


ೝ
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 is


ೝ

 For source free vector wave equation


ೝ




ೝ

 J.-M. Jin, The Finite Element Method in Electromagnetics, John 
Wiley & Sons, 2002
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 and associated 
eigenvectors 

 High frequency variational function
 The 2-D variational functional analysis for a homogeneous 

waveguide
 For homogeneously filled waveguide, eigenmode splits into TE 

and TM modes
 The functional for the transverse field components subject to 

the prescribed boundary condition 


 is given on next slide
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
ೝ

 Considering TE modes 


 The vectors of unknowns in the generalized eigenvalue 
problem is found as


 which will also include prescribed values also
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



 which will also include prescribed nodes also
 This can be obtained from the functional



 Differentiate w.r.t. 
 then applying the prescribed conditions 

 We can get the above relation

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



 and



 For wave propagating along z-axis, 
 and are operators in the x-y plane

 The three simplex coordinates are given by

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 Therefore,






 In matrix form



 Also we know that is equal to 1 for node i and zero for other 
nodes
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 In matrix form



 Hence we can find ( ) as follows



 Let us define


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 Let us also define



 Now we can find curl of 
where and are the endpoints of edge i as follows



 Note that 
 And since where is scalar function, we have,
 and 


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 Hence



 where and is defined as



 Also note that 
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





 Hence,





 



Introduction

4/16/2021FEM by Prof. Rakhesh Singh Kshetrimayum193

 Hence,



 





 It has been shown that 






