Introduction

- Finite element analysis of vector fields
- FEM can be extended to deal BVP involving vector fields
- It is very important for electrodynamic problems
- which deal with vector electromagnetic fields
- BVP:
- Consider the problem of finding the electric field intensity \vec{E}
- due to impressed electric current density $\vec{J}_{i m p}$ in a domain Ω
- characterized by permittivity ε and permeability μ
- To calculate \vec{E} we need to solve Maxwell's equations

Introduction

- $\nabla \times \vec{E}=-j \omega \mu \vec{H}$
- $\nabla \times \vec{H}=j \omega \epsilon \vec{E}+\vec{J}_{i m p}$
- $\nabla \cdot(\epsilon \vec{E})=-\frac{1}{j \omega} \nabla \cdot \vec{J}_{i m p}$
$\because \nabla \cdot \vec{J}=-\frac{\partial \rho_{v}}{\partial t}=-j \omega \rho_{v}$
- $\nabla \cdot(\mu \vec{H})=0$
- subject to certain BCs
- In first equation divide by μ_{r} we have
- $\left(\frac{1}{\mu_{r}} \nabla \times \vec{E}\right)=-j \omega \mu_{0} \vec{H}$

Introduction

- Taking another curl
- $\nabla \times\left(\frac{1}{\mu_{r}} \nabla \times \vec{E}\right)=-j \omega \mu_{0}(\nabla \times \vec{H})$
- Putting second equation
- $\nabla \times \vec{H}=j \omega \epsilon \vec{E}+\vec{J}_{i m p}$
- in
- $\nabla \times\left(\frac{1}{\mu_{r}} \nabla \times \vec{E}\right)=-j \omega \mu_{0}(\nabla \times \vec{H})$
- we have
- $\nabla \times\left(\frac{1}{\mu_{r}} \nabla \times \vec{E}\right)=-j \omega \mu_{0}\left(j \omega \epsilon \vec{E}+\vec{J}_{i m p}\right)$

Introduction

- $\nabla \times\left(\frac{1}{\mu_{r}} \nabla \times \vec{E}\right)=\omega^{2} \mu_{0} \epsilon_{0} \epsilon_{r} \vec{E}-j \omega \mu_{0} \vec{J}_{i m p}$
- $\nabla \times\left(\frac{1}{\mu_{r}} \nabla \times \vec{E}\right)=k_{0}^{2} \epsilon_{r} \vec{E}-j \omega \mu_{0} \vec{J}_{i m p}$
- where $k_{0}^{2}=\omega^{2} \mu_{0} \epsilon_{0}, Z_{0}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}$ and
- hence $Z_{0} k_{0}=\omega \sqrt{\mu_{0} \epsilon_{0}} \sqrt{\frac{\mu_{0}}{\epsilon_{0}}}=\omega \mu_{0}$
- So
- $\nabla \times\left(\frac{1}{\mu_{r}} \nabla \times \vec{E}\right)-k_{0}^{2} \epsilon_{r} \vec{E}=-j Z_{0} k_{0} \vec{J}_{i m p}$

Introduction

- The functional for such electrodynamic problems ${ }^{1}$ is
- $F(\vec{E})=\int_{\Omega}\left[\frac{1}{\mu_{r}}(\nabla \times \vec{E}) \cdot(\nabla \times \vec{E})-k_{0}^{2} \epsilon_{r} \vec{E} \cdot \vec{E}\right] d \Omega+$ $j Z_{0} k_{0} \int \vec{E} \cdot \vec{J}_{i m p} d \Omega$
- For source free vector wave equation
- $\nabla \times\left(\frac{1}{\mu_{r}} \nabla \times \vec{E}\right)-k_{i}^{2} \epsilon_{r} \vec{E}=0$
- The functional is
- $F(\vec{E})=\int_{\Omega}\left[\frac{1}{\mu_{r}}(\nabla \times \vec{E}) \cdot(\nabla \times \vec{E})-k_{i}^{2} \epsilon_{r} \vec{E} \cdot \vec{E}\right] d \Omega$
- ${ }^{1}$ J.-M. Jin, The Finite Element Method in Electromagnetics, John Wiley \& Sons, 2002

Introduction

- The solution is the set of eignevalues k_{i} and associated eigenvectors \vec{E}_{i}
- High frequency variational function
- The 2-D variational functional analysis for a homogeneous waveguide
- For homogeneously filled waveguide, eigenmode splits into TE and TM modes
- The functional for the transverse field components subject to the prescribed boundary condition
- $\hat{n} \times \vec{E}_{t}=0$
- is given on next slide

Introduction

- $F\left(\vec{E}_{t}\right)=\iint_{S}\left[\frac{1}{\mu_{r}}\left(\nabla_{t} \times \vec{E}_{t}\right) \cdot\left(\nabla_{t} \times \vec{E}_{t}\right)-k_{0}^{2} \epsilon_{r} \vec{E}_{t}\right.$. $\left.\vec{E}_{t}\right] d S$
- Considering TE modes
- $E_{z}=0$
- The vectors of unknowns $\{e\}$ in the generalized eigenvalue problem is found as
- $[S]\{e\}=k^{2}[T]\{e\}$
- which will also include prescribed values also

Introduction

- In order include only contribution from free edges
- $\left[S_{f f}\right]\left\{e_{f}\right\}=k^{2}\left[T_{f f}\right]\left\{e_{f}\right\}$
- which will also include prescribed nodes also
- This can be obtained from the functional
- $F\{e\}=\left\{e_{f} e_{p}\right\}^{T}\left[\begin{array}{ll}S_{f f} & S_{f p} \\ S_{p f} & S_{p p}\end{array}\right]\left\{e_{f} e_{p}\right\}$
- Differentiate $F\{e\}$ w.r.t. $\left\{e_{f}\right\}$
- then applying the prescribed conditions $\left\{e_{p}\right\}=0$
- We can get the above relation
- $\left[S_{f f}\right]\left\{e_{f}\right\}=k^{2}\left[T_{f f}\right]\left\{e_{f}\right\}$

Introduction

- Explicit formula for the elemental matrix entries
- $S_{i j}=\iint_{S}\left(\nabla_{t} \times \vec{N}_{i}\right) \cdot\left(\nabla_{t} \times \vec{N}_{j}\right) d S$
- and
- $T_{i j}=\iint_{S} \vec{N}_{i} \cdot \vec{N}_{j} d S$
- For wave propagating along z-axis,
- ∇_{t} and $\nabla_{t} \times$ are operators in the x-y plane
- The three simplex coordinates are given by
- $\lambda_{i}=a_{i}+b_{i} x+c_{i} y$

Introduction

- Therefore,
- $\lambda_{1}=a_{1}+b_{1} x+c_{1} y$
- $\lambda_{2}=a_{2}+b_{2} x+c_{2} y$
- $\lambda_{3}=a_{3}+b_{3} x+c_{3} y$
- In matrix form
$\cdot\left[\begin{array}{l}\lambda_{1} \\ \lambda_{2} \\ \lambda_{3}\end{array}\right]=\left[\begin{array}{lll}b_{1} & c_{1} & a_{1} \\ b_{2} & c_{2} & a_{2} \\ b_{3} & c_{3} & a_{3}\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$
- Also we know that λ_{i} is equal to 1 for node i and zero for other nodes

Introduction

- In matrix form
$\cdot\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}b_{1} & c_{1} & a_{1} \\ b_{2} & c_{2} & a_{2} \\ b_{3} & c_{3} & a_{3}\end{array}\right]\left[\begin{array}{ccc}x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \\ 1 & 1 & 1\end{array}\right]$
- Hence we can find (b_{i}, c_{i}, a_{i}) as follows
$\cdot\left[\begin{array}{lll}b_{1} & c_{1} & a_{1} \\ b_{2} & c_{2} & a_{2} \\ b_{3} & c_{3} & a_{3}\end{array}\right]=\left[\begin{array}{ccc}x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \\ 1 & 1 & 1\end{array}\right]^{-1}$
- Let us define
- $\vec{v}_{i j}=\nabla \lambda_{i} \times \nabla \lambda_{j}=\left(b_{i} \hat{x}+c_{i} \hat{y}\right) \times\left(b_{j} \hat{x}+c_{j} \hat{y}\right)=$ $\left(b_{i} c_{j}-b_{j} c_{i}\right) \hat{z}=-\vec{v}_{j i}$

Introduction

- Let us also define
- $\phi_{i j}=\nabla \lambda_{i} \cdot \nabla \lambda_{j}=\left(b_{i} \hat{x}+c_{i} \hat{y}\right) \cdot\left(b_{j} \hat{x}+c_{j} \hat{y}\right)=b_{i} b_{j}+c_{i} c_{j}$
- Now we can find curl of $\vec{N}_{i}=\vec{w}_{i 1, i 2}=\lambda_{i 1} \nabla \lambda_{i 2}-\lambda_{i 2} \nabla \lambda_{i 1}$ where i_{1} and i_{2} are the endpoints of edge i as follows
- $\nabla \times \vec{N}_{i}=\nabla \times\left(\lambda_{i 1} \nabla \lambda_{i 2}-\lambda_{i 2} \nabla \lambda_{i 1}\right)=\nabla \times\left(\lambda_{i 1} \nabla \lambda_{i 2}\right)-\nabla \times$ $\left(\lambda_{i 2} \nabla \lambda_{i 1}\right)$
- Note that $\nabla \times(\phi \vec{A})=\phi \nabla \times(\vec{A})+\nabla \phi \times(\vec{A})$
- And since $\nabla \times(\nabla \Psi)=0$ where Ψ is scalar function, we have,
- $\nabla \times\left(\lambda_{i 1} \nabla \lambda_{i 2}\right)=\nabla \lambda_{i 1} \times \nabla \lambda_{i 2}$ and $\nabla \times\left(\lambda_{i 2} \nabla \lambda_{i 1}\right)=\nabla \lambda_{i 2} \times$ $\nabla \lambda_{i 1}=-\nabla \lambda_{i 1} \times \nabla \lambda_{i 2}$
- $\therefore \nabla \times \vec{N}_{i}=2 \nabla \lambda_{i 1} \times \nabla \lambda_{i 2}=2 \vec{v}_{i 1, i 2}$

Introduction

- Hence
- $S_{i j}=\iint_{S}\left(\nabla_{t} \times \vec{N}_{i}\right) \cdot\left(\nabla_{t} \times \vec{N}_{j}\right) d S=$
$4 \iint_{S}\left(\vec{v}_{i 1, i 2}\right) \cdot\left(\vec{v}_{j 1, j 2}\right) d S=4 A\left(\vec{v}_{i 1, i 2}\right) \cdot\left(\vec{v}_{j 1, j 2}\right)$
- where $A=\left|A^{\prime}\right|$ and A^{\prime} is defined as
- $A^{\prime}=\frac{1}{2}\left|\begin{array}{lll}1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2} \\ 1 & x_{3} & y_{3}\end{array}\right|$
- Also note that $\vec{N}_{i} \cdot \vec{N}_{j}=\left(\lambda_{i 1} \nabla \lambda_{i 2}-\lambda_{i 2} \nabla \lambda_{i 1}\right) \cdot\left(\lambda_{j 1} \nabla \lambda_{j 2}-\right.$ $\lambda_{j 2} \nabla \lambda_{j 1}$)

Introduction

- $\vec{N}_{i} \cdot \vec{N}_{j}=\left(\lambda_{i 1} \nabla \lambda_{i 2}-\lambda_{i 2} \nabla \lambda_{i 1}\right) \cdot\left(\lambda_{j 1} \nabla \lambda_{j 2}-\lambda_{j 2} \nabla \lambda_{j 1}\right)$
$\bullet=\lambda_{i 1} \lambda_{j 1} \nabla \lambda_{i 2} \cdot \nabla \lambda_{j 2}-\lambda_{i 1} \lambda_{j 2} \nabla \lambda_{i 2} \cdot \nabla \lambda_{j 1}-\lambda_{i 2} \lambda_{j 1} \nabla \lambda_{i 1}$.
$\nabla \lambda_{j 2}+\lambda_{i 2} \lambda_{j 2} \nabla \lambda_{i 1} \cdot \nabla \lambda_{j 1}$
- $=\lambda_{i 1} \lambda_{j 1} \phi_{i 2, j 2}-\lambda_{i 1} \lambda_{j 2} \phi_{i 2, j 1}-\lambda_{i 2} \lambda_{j 1} \phi_{i 1, j 2}+\lambda_{i 2} \lambda_{j 2} \phi_{i 1, j 1}$
- Hence,
- $T_{i j}=\iint_{S} \vec{N}_{i} \cdot \vec{N}_{j} d S$
$\cdot=\iint_{S}\left(\lambda_{i 1} \lambda_{j 1} \phi_{i 2, j 2}-\lambda_{i 1} \lambda_{j 2} \phi_{i 2, j 1}-\lambda_{i 2} \lambda_{j 1} \phi_{i 1, j 2}+\right.$ $\left.\lambda_{i 2} \lambda_{j 2} \phi_{i 1, j 1}\right) d S$

Introduction

- Hence, $T_{i j}=\iint_{S} \vec{N}_{i} \cdot \vec{N}_{j} d S$
$\cdot=\iint_{S}\left(\lambda_{i 1} \lambda_{j 1} \phi_{i 2, j 2}-\lambda_{i 1} \lambda_{j 2} \phi_{i 2, j 1}-\lambda_{i 2} \lambda_{j 1} \phi_{i 1, j 2}+\right.$ $\left.\lambda_{i 2} \lambda_{j 2} \phi_{i 1, j 1}\right) d S$
$\cdot \phi_{i 2, j 2} \iint_{S} \lambda_{i 1} \lambda_{j 1} d S-\phi_{i 2, j 1} \iint_{S} \lambda_{i 1} \lambda_{j 2} d S$
- $-\phi_{i 1, j 2} \iint_{S} \lambda_{i 2} \lambda_{j 1} d S+\phi_{i 1, j 1} \iint_{S} \lambda_{i 2} \lambda_{j 2} d S$
- It has been shown that $M_{i j}=\iint_{S} \lambda_{i} \lambda_{j} d S$
- $T_{i j}=\phi_{i 2, j 2} M_{i 1, j 1}-\phi_{i 2, j 1} M_{i 1, j 2}$
- $-\phi_{i 1, j 2} M_{i 2, j 1}+\phi_{i 1, j 1} M_{i 2, j 2}$

